EP0054601A1 - Chaudière à vapeur à circulation forcée - Google Patents

Chaudière à vapeur à circulation forcée Download PDF

Info

Publication number
EP0054601A1
EP0054601A1 EP81100601A EP81100601A EP0054601A1 EP 0054601 A1 EP0054601 A1 EP 0054601A1 EP 81100601 A EP81100601 A EP 81100601A EP 81100601 A EP81100601 A EP 81100601A EP 0054601 A1 EP0054601 A1 EP 0054601A1
Authority
EP
European Patent Office
Prior art keywords
evaporator
steam generator
forming
flow
combustion chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP81100601A
Other languages
German (de)
English (en)
Other versions
EP0054601B1 (fr
EP0054601B2 (fr
Inventor
Pawel Miszak
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ABB Management AG
Original Assignee
Sulzer AG
Gebrueder Sulzer AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=4352617&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP0054601(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Sulzer AG, Gebrueder Sulzer AG filed Critical Sulzer AG
Publication of EP0054601A1 publication Critical patent/EP0054601A1/fr
Publication of EP0054601B1 publication Critical patent/EP0054601B1/fr
Application granted granted Critical
Publication of EP0054601B2 publication Critical patent/EP0054601B2/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B29/00Steam boilers of forced-flow type
    • F22B29/06Steam boilers of forced-flow type of once-through type, i.e. built-up from tubes receiving water at one end and delivering superheated steam at the other end of the tubes
    • F22B29/12Steam boilers of forced-flow type of once-through type, i.e. built-up from tubes receiving water at one end and delivering superheated steam at the other end of the tubes operating with superimposed recirculation during starting and low-load periods, e.g. composite boilers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B29/00Steam boilers of forced-flow type
    • F22B29/06Steam boilers of forced-flow type of once-through type, i.e. built-up from tubes receiving water at one end and delivering superheated steam at the other end of the tubes
    • F22B29/061Construction of tube walls
    • F22B29/062Construction of tube walls involving vertically-disposed water tubes

Definitions

  • the invention relates to a forced-flow steam generator system according to the preamble of claim 1.
  • Systems are known in which part of the working fluid escaping from the combustion chamber wall pipes is returned to their entry into high load ranges.
  • the forced circulation generated in this way ensures that the working medium flow is so high for all loads that good cooling of the exposed combustion chamber wall pipes on the working medium side is guaranteed at all times.
  • the fresh must steam pressure in front of the turbine, adapted to its swallowing characteristics, be throttled. Since such a throttling involves a considerable drop in temperature and since the turbines are sensitive to rapid changes in temperature, the load change speed must be considerably limited in such a concept.
  • this solution necessitates the installation of additional throttle bodies, which can be subject to premature wear due to their high load in the case of prolonged throttle operation.
  • the invention Compared to a solution with wall pipes winding around the combustion chamber, the invention has the advantages of cheaper and faster production and lower production risks.
  • the measure according to claim 2 results in a reduction in the weight and the material requirement of the pressure-carrying parts.
  • the feature according to claim 3 allows the combustion chamber walls to be subjected to higher thermal loads.
  • the side of the tubes exposed to the flame radiation is heated to a greater extent, so that film evaporation can occur on the inside facing this heating, which leads to impermissible pipe wall temperatures.
  • the helically arranged grooves on the inner wall force the tool due to its longitudinal flow to rotate, by means of which the heavier, liquid phase of the tool is centrifuged against the wall. This makes it possible to increase the thermal load-bearing capacity of the pipes beyond what is to be expected from the increase in surface area. This effect is particularly evident when pipes flow vertically upwards.
  • the system contains a condenser 1 in which steam from a turbine group 2 is condensed.
  • An additional water line 3 with an additional water pump 4 and an additional water treatment system 5 is connected to the condenser 1.
  • a condensate line 6 leads via a condensate pump 7, a condensate treatment system 8 and two condensate preheaters 9 and 10 to the entry of a degasser 12 seated on a feed water vessel 13.
  • a feed water line 15 with a feed pump 16 and two high-pressure preheaters 17 and 18 leads to the input of an economizer 20 of a once-through steam generator 22.
  • the outlet of the economizer 20 is connected via a connecting line 23 to the distributor 25 of an evaporator heating surface 26.
  • This consists of tubes 27 which are tightly welded to one another and form a funnel-shaped base 28 and four flat walls 29 of a combustion chamber 30 of the steam generator 22. In the walls 29, the tubes 27 run vertically; in section A they are provided with helical internal grooves.
  • the combustion chamber 30 has a furnace 32.
  • the wall-forming tubes 27 are alternately bent outwards from the walls 29 at the height of one and the other of two horizontal planes E and F and led to collectors 35. These collectors 35 are connected via a line 36 to a final evaporator 40, which consists of a system of finned tubes 41 and is arranged in a flue gas duct 60 starting from the combustion chamber 30 directly below the economizer 20.
  • the outlet of the final evaporator 40 is connected via a line 42 to the inlet of a water separator 44, from the bottom of which a line 45 with a level-controlled valve 46 leads back to the feed water vessel 13.
  • a connecting pipe 50 is connected, which opens into a ring distributor 51, from which wall pipes 53 lead to a ring collector 55.
  • the wall tubes 53 alternately enter the combustion chamber walls 29 in the horizontal planes E and F. They are tightly welded to one another and to the tubes 27, so that the flue gas duct 60 connects seamlessly to the combustion chamber 30.
  • the train 60 is delimited in its uppermost part by uncooled sheet metal walls 62 and a ceiling 63, to which a chimney 65 connects.
  • a second superheater 72 and a final superheater 75 are connected in series to the collector 55 of the wall tubes 53 forming a first superheater, and a live steam line 77 leads from the outlet of the final superheater 75 to a high-pressure turbine 78 connected to an intermediate superheater 82 which is arranged in the flue gas flue 60 between the two superheaters 72 and 75.
  • a return leads from the outlet of the reheater 82 line 84 to a low-pressure turbine 86, which together with the high-pressure turbine 78 and a generator 88, seated on a common shaft, forms the turbine group 2.
  • the condensate treatment system 8 is designed in such a way that the treated condensate has practically no salts, which corresponds to a conductivity of 0.2 ⁇ Siemens, and that the silicon content is below 0.02 ppm. This means that salt deposits in the evaporator are negligible.
  • the additional water treatment system 5 serves to relieve the load on the condensate treatment system 8 and also to protect the condenser 1.
  • the system is particularly suitable for sliding pressure operation, with supercritical pressure preferably prevailing in full load operation.
  • supercritical pressure preferably prevailing in full load operation.
  • the condensate accumulating in the condenser 1 is practically completely desalinated together with the make-up water flowing in via line 3 in the condensate treatment system 8, which preferably contains a cation exchanger, a C0 2 Riesler, an anion exchanger and a mixed bed filter. It is then heated by the two preheaters 9 and 10, which are connected to the two lowermost withdrawals 11 of the low-pressure turbine 86 in a manner not shown, and fed into the degasifier 12, from which it flows into the feed vessel 13.
  • the working fluid - now no longer called condensate, but called feed water - is now transferred from the feed pump to one of the The pressure of the system-dependent pressure, possibly at supercritical pressure during full load operation.
  • the feed water is heated in the two high-pressure preheaters 17 and 18, which are fed with bleed steam from two extraction points 19 of the low-pressure turbine 86.
  • a further heating in the assumed operation with subcritical pressure close to the evaporation temperature, takes place in the economizer 20.
  • the water is then distributed as evenly as possible to the tubes 27.
  • adjustable throttling elements are installed in the mouths of the tubes 27. Since the heating of the individual pipes is not exactly the same among themselves, the working fluid flows of the individual pipes absorb an uneven amount of heat and accordingly an unevenly large amount of water evaporates in the different pipes.
  • the steam / water mixture of different water content flowing into the collector 35 is mixed on its way through the line 36 and - with possibly still considerable differences in the water content - distributed into the parallel pipes 41 of the final evaporator 40. Since the final evaporator 40 is located in a weakly heated area of the flue gas stream, that is, in an area where the flue gas temperature is not much higher than the temperature of the evaporating water ne surface on the flue gas side, even if the work equipment is distributed very unevenly on the pipes, do not assume dangerously high temperatures.
  • the working medium flows, preferably at slightly overheated, into the separator 44. After any water that may still have been separated there, the now dry steam flows through the first superheater at a high speed, which guarantees good heat transfer, and a homogeneous temperature forming wall tubes 53.
  • the temperature difference between the welded tubes 27 of the evaporator 26 and the tubes 53 of the first superheater is mainly determined by the position of the final evaporator 40 in the flue gas stream. This position is chosen so that the temperature difference mentioned does not lead to inadmissibly high thermal stresses.
  • means for influencing the flue gas-side heat supply to the final evaporator can be provided, which can be brought about, for example, by flue gas circulation or through a shunt channel through which flue gases can be directed past the final evaporator.
  • the temperature difference can also be checked by a bypass line to the final evaporator 40 or, for example, by a temperature-controlled injection element in the area of the line 42.
  • the superheated steam flows out of the ring collector 55 the second superheater 72, in which further heating takes place, and then via an injection element 74 in the line 73 through the final superheater 75.
  • the steam in the reheater 82 is reheated and fed to the low-pressure turbine 86, in which it is expanded to the vacuum generated in the condenser 1.
  • the delivery quantity of the feed pump 16 is preferably kept constant for starting and in a load range below a certain limit load.
  • the delivery quantity of the feed pump 16 is preferably kept constant for starting and in a load range below a certain limit load.
  • the outlet of the final evaporator 40 there is a load-dependent water content.
  • the water is separated in the separator 44 and returned to the feed water vessel 13 via the valve 46, which is controlled by the level in the separator 44.
  • a bypass line with a throttle element parallel to the final evaporator 40, so that a partial flow of the working medium can be bypassed the final evaporator during operation with high load.
  • the temperature difference between the tubes 27 and 53 in the region where they are welded to one another can thus be reduced, as a result of which the thermal stresses are reduced.
  • Thermal stresses in the area of levels E and F can also be reduced by welding tubes 27 and 53 directly to one another only over short lengths and the sealing is achieved by a skin construction.
  • the limit load up to which working medium is circulated via the evaporator heating surface is determined according to the dimensions of the steam generator and according to the operating conditions to be expected. If this limit load is low, it may be expedient to return the water removed from the separator directly into the feed water vessel 13, as shown in the drawing. If the limit load is higher, it is preferable to provide a heat exchanger between the line 45 and the feed water line 15, preferably downstream of the high-pressure preheater 18. Instead of such a circulation pump arranged in the flow or in the return flow can also be attached, the two evaporators and also the economizer being able to be included in the circulation circuit.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)
  • Control Of Steam Boilers And Waste-Gas Boilers (AREA)
EP81100601A 1980-12-23 1981-01-28 Chaudière à vapeur à circulation forcée Expired - Lifetime EP0054601B2 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CH9497/80 1980-12-23
CH949780 1980-12-23

Publications (3)

Publication Number Publication Date
EP0054601A1 true EP0054601A1 (fr) 1982-06-30
EP0054601B1 EP0054601B1 (fr) 1984-09-19
EP0054601B2 EP0054601B2 (fr) 1991-08-28

Family

ID=4352617

Family Applications (1)

Application Number Title Priority Date Filing Date
EP81100601A Expired - Lifetime EP0054601B2 (fr) 1980-12-23 1981-01-28 Chaudière à vapeur à circulation forcée

Country Status (8)

Country Link
US (1) US4430962A (fr)
EP (1) EP0054601B2 (fr)
JP (1) JPS57117705A (fr)
AU (1) AU542220B2 (fr)
CA (1) CA1176517A (fr)
DE (1) DE3166099D1 (fr)
FI (1) FI68458C (fr)
YU (1) YU238181A (fr)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996024803A1 (fr) * 1995-02-09 1996-08-15 Siemens Aktiengesellschaft Procede et dispositif pour la mise en marche d'un generateur de vapeur en continu
DE19528438A1 (de) * 1995-08-02 1997-02-06 Siemens Ag Verfahren und System zum Anfahren eines Durchlaufdampferzeugers
WO2014048779A1 (fr) * 2012-09-28 2014-04-03 Siemens Aktiengesellschaft Procédé de récupération des eaux usées d'un groupe vapeur
CN109269138A (zh) * 2018-09-03 2019-01-25 南京天加环境科技有限公司 一种防止压缩机回液的多联机系统及其控制方法
DE102010038883C5 (de) * 2010-08-04 2021-05-20 Siemens Energy Global GmbH & Co. KG Zwangdurchlaufdampferzeuger

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH657675A5 (de) * 1982-09-17 1986-09-15 Sulzer Ag Druckmediumbetaetigte stellmotoranordnung.
DE3447265A1 (de) * 1984-12-22 1986-06-26 L. & C. Steinmüller GmbH, 5270 Gummersbach Verfahren und vorrichtung zur erzeugung von hochgespanntem und ueberhitztem dampf
JPH0539282Y2 (fr) * 1985-01-29 1993-10-05
DE3511877A1 (de) * 1985-04-01 1986-10-02 Kraftwerk Union AG, 4330 Mülheim Durchlaufdampferzeuger
US4843824A (en) * 1986-03-10 1989-07-04 Dorothy P. Mushines System for converting heat to kinetic energy
JP2516661B2 (ja) * 1988-07-25 1996-07-24 三菱重工業株式会社 再熱式排ガスボイラ
US4896496A (en) * 1988-07-25 1990-01-30 Stone & Webster Engineering Corp. Single pressure steam bottoming cycle for gas turbines combined cycle
US5048466A (en) * 1990-11-15 1991-09-17 The Babcock & Wilcox Company Supercritical pressure boiler with separator and recirculating pump for cycling service
SE469606B (sv) * 1991-12-20 1993-08-02 Abb Carbon Ab Foerfarande vid start och laaglastdrift av genomstroemningspanna och anordning foer genomfoerande av foerfarandet
DE59301406D1 (de) * 1992-09-30 1996-02-22 Siemens Ag Verfahren zum Betreiben einer Kraftwerksanlage sowie danach arbeitende Anlage
US5390631A (en) * 1994-05-25 1995-02-21 The Babcock & Wilcox Company Use of single-lead and multi-lead ribbed tubing for sliding pressure once-through boilers
US5713311A (en) * 1996-02-15 1998-02-03 Foster Wheeler Energy International, Inc. Hybrid steam generating system and method
US6675747B1 (en) * 2002-08-22 2004-01-13 Foster Wheeler Energy Corporation System for and method of generating steam for use in oil recovery processes
US20030167769A1 (en) * 2003-03-31 2003-09-11 Desikan Bharathan Mixed working fluid power system with incremental vapor generation
ES2523848T3 (es) * 2004-01-20 2014-12-02 Siemens Aktiengesellschaft Procedimiento y dispositivo para la eliminación de agua en una central de vapor
US7093566B2 (en) * 2004-11-12 2006-08-22 Maxitherm Inc. Vapor generator
US7874140B2 (en) * 2007-06-08 2011-01-25 Foster Wheeler North America Corp. Method of and power plant for generating power by oxyfuel combustion
US7621237B2 (en) * 2007-08-21 2009-11-24 Hrst, Inc. Economizer for a steam generator
EP2182278A1 (fr) * 2008-09-09 2010-05-05 Siemens Aktiengesellschaft Générateur de vapeur en continu
JP5054642B2 (ja) * 2008-09-09 2012-10-24 アクアインテック株式会社 管路補修システム
EP2589760B1 (fr) * 2011-11-03 2020-07-29 General Electric Technology GmbH Centrale thermique à vapeur avec réservoir de chaleur haute température
KR101245088B1 (ko) 2012-08-13 2013-03-18 서영호 전기로를 이용한 발전장치
RU2525569C2 (ru) * 2012-09-10 2014-08-20 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования Самарский государственный университет Парогазовая надстройка паротурбинного энергоблока с докритическими параметрами пара
RU2533601C2 (ru) * 2012-12-04 2014-11-20 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования Самарский государственный технический университет Энергетическая установка с парогазовой установкой
EP2746656A1 (fr) * 2012-12-19 2014-06-25 Siemens Aktiengesellschaft Drainage d'une centrale
PT3086032T (pt) * 2015-04-21 2021-01-29 General Electric Technology Gmbh Gerador de vapor de passagem única de sal fundido
FI128782B (fi) * 2016-01-28 2020-12-15 Andritz Oy Talteenottokattilan lämmöntalteenottopintojen järjestely

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1382220A (en) * 1920-02-04 1921-06-21 Thomas E Murray Circulation-tube for water-tube steam-boilers
DE736611C (de) * 1940-10-01 1943-06-23 Duerrwerke Ag Zwangdurchlauf-Dampferzeuger mit einem unmittelbar an die Verdampfungsheizflaeche angeschlossenen UEberhitzer
DE1000828B (de) * 1954-04-30 1957-01-17 Siemens Ag Entsalzungseinrichtung fuer Zwangstrom-Dampferzeuger und Verfahren hierfuer
DE1015818B (de) * 1955-11-15 1957-09-19 Siemens Ag Zwangstrom-Dampferzeuger fuer sehr hohe Betriebsdruecke, insbesondere fuer ueberkritischen Druck
FR1231916A (fr) * 1958-06-26 1960-10-04 Babcock & Wilcox France Perfectionnements aux chaudières tubulaires et procédé perfectionné de formation d'une paroi tubulaire
FR1574394A (fr) * 1967-07-13 1969-07-11
GB2007340A (en) * 1977-11-07 1979-05-16 Foster Wheeler Energy Corp Vapour generating system utilizing intergral separators and angulary arranged furnace boundary wall fluid flow tubeshaving rifled bores

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS3511402Y1 (fr) * 1958-07-23 1960-05-26
US3789806A (en) * 1971-12-27 1974-02-05 Foster Wheeler Corp Furnace circuit for variable pressure once-through generator
JPS5472301A (en) * 1977-11-21 1979-06-09 Mitsubishi Heavy Ind Ltd Boiler
CH635184A5 (de) * 1978-12-22 1983-03-15 Sulzer Ag Dampferzeugeranlage.
US4290389A (en) * 1979-09-21 1981-09-22 Combustion Engineering, Inc. Once through sliding pressure steam generator

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1382220A (en) * 1920-02-04 1921-06-21 Thomas E Murray Circulation-tube for water-tube steam-boilers
DE736611C (de) * 1940-10-01 1943-06-23 Duerrwerke Ag Zwangdurchlauf-Dampferzeuger mit einem unmittelbar an die Verdampfungsheizflaeche angeschlossenen UEberhitzer
DE1000828B (de) * 1954-04-30 1957-01-17 Siemens Ag Entsalzungseinrichtung fuer Zwangstrom-Dampferzeuger und Verfahren hierfuer
DE1015818B (de) * 1955-11-15 1957-09-19 Siemens Ag Zwangstrom-Dampferzeuger fuer sehr hohe Betriebsdruecke, insbesondere fuer ueberkritischen Druck
FR1231916A (fr) * 1958-06-26 1960-10-04 Babcock & Wilcox France Perfectionnements aux chaudières tubulaires et procédé perfectionné de formation d'une paroi tubulaire
FR1574394A (fr) * 1967-07-13 1969-07-11
CH477651A (de) * 1967-07-13 1969-08-31 Sulzer Ag Hochdruck-Zwangdurchlaufdampferzeugeranlage mit aus gasdicht geschweissten Rohren bestehender Brennkammer und Verfahren zum Betrieb der Anlage
GB2007340A (en) * 1977-11-07 1979-05-16 Foster Wheeler Energy Corp Vapour generating system utilizing intergral separators and angulary arranged furnace boundary wall fluid flow tubeshaving rifled bores

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996024803A1 (fr) * 1995-02-09 1996-08-15 Siemens Aktiengesellschaft Procede et dispositif pour la mise en marche d'un generateur de vapeur en continu
US5983639A (en) * 1995-03-02 1999-11-16 Siemens Aktiengesellschaft Method and system for starting up a continuous flow steam generator
DE19528438A1 (de) * 1995-08-02 1997-02-06 Siemens Ag Verfahren und System zum Anfahren eines Durchlaufdampferzeugers
DE19528438C2 (de) * 1995-08-02 1998-01-22 Siemens Ag Verfahren und System zum Anfahren eines Durchlaufdampferzeugers
DE102010038883C5 (de) * 2010-08-04 2021-05-20 Siemens Energy Global GmbH & Co. KG Zwangdurchlaufdampferzeuger
WO2014048779A1 (fr) * 2012-09-28 2014-04-03 Siemens Aktiengesellschaft Procédé de récupération des eaux usées d'un groupe vapeur
US9962664B2 (en) 2012-09-28 2018-05-08 Siemens Aktiengesellschaft Method for recovering process wastewater from a steam power plant
CN109269138A (zh) * 2018-09-03 2019-01-25 南京天加环境科技有限公司 一种防止压缩机回液的多联机系统及其控制方法
CN109269138B (zh) * 2018-09-03 2020-10-30 南京天加环境科技有限公司 一种防止压缩机回液的多联机系统及其控制方法

Also Published As

Publication number Publication date
EP0054601B1 (fr) 1984-09-19
YU238181A (en) 1984-02-29
CA1176517A (fr) 1984-10-23
FI813379L (fi) 1982-06-24
AU542220B2 (en) 1985-02-14
FI68458C (fi) 1985-09-10
JPS57117705A (en) 1982-07-22
EP0054601B2 (fr) 1991-08-28
DE3166099D1 (en) 1984-10-25
JPH0348402B2 (fr) 1991-07-24
AU7836481A (en) 1982-07-01
US4430962A (en) 1984-02-14
FI68458B (fi) 1985-05-31

Similar Documents

Publication Publication Date Title
EP0054601B1 (fr) Chaudière à vapeur à circulation forcée
EP1848925B1 (fr) Générateur de vapeur de type horizontal
EP0944801B1 (fr) Chaudiere a vapeur
EP0617778B1 (fr) Generateur de vapeur en continu alimente par matiere fossile
EP1710498A1 (fr) Générateur de vapeur
DE2430208B2 (de) Atomkraftanlage mit Dampferzeuger und Zwischenüberhitzer für teilentspannten Dampf
DE19717158C2 (de) Durchlaufdampferzeuger und Verfahren zum Anfahren eines Durchlaufdampferzeugers
EP1701091A1 (fr) Générateur de vapeur à passage unique
DE69733812T2 (de) Heizkessel
WO2015039831A2 (fr) Centrale à cycle combiné gaz-vapeur munie d'un générateur de vapeur à récupération de chaleur
CH653758A5 (de) Zwangsdurchlaufkessel.
EP2676072B1 (fr) Procédé pour faire fonctionner un générateur de vapeur à circulation ouverte
DE647193C (de) Roehrendampferzeuger
DE3121297C2 (de) Vorrichtung zum Regeln der Temperatur eines korrosiven Gases, insbesondere Synthesegas
DE2039180A1 (de) Mit einem fluidisierten Brennstoffbett betriebener Dampfkessel
EP2564117B1 (fr) Générateur de vapeur
DE3004093C2 (de) Dampferzeuger mit wahlweise zu betreibenden Brennern für zwei Brennstoffe unterschiedlich intensiver Flammenstrahlung
DE2006409B2 (de) Fuer gleitdruckbetrieb geeigneter zwanglaufdampferzeuger
EP0812407B1 (fr) Procede et systeme de demarrage d'un generateur de vapeur a fonctionnement continu
DE1965078B2 (de) Verfahren zum gleitdruckbetrieb eines zwanglaufdampferzeu gers
DE889597C (de) Dampferzeuger mit mittelbarer Beheizung des Arbeitsmittels
DE832293C (de) Einrichtung zur Verhuetung von Rohrreissern bei Wasserrohrkesseln mit selbsttaetigemWasserumlauf
AT213913B (de) Einrichtung zur Erhöhung der Speicherfähigkeit von Zwangsdurchlaufkesseln
AT128483B (de) Verfahren zur Dampferzeugung in Strahlungsrohrwänden.
AT132508B (de) Einrichtung zur Überhitzung von Dampf.

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19810128

AK Designated contracting states

Designated state(s): AT BE CH DE FR GB IT LU NL SE

ITF It: translation for a ep patent filed

Owner name: ING. ZINI MARANESI & C. S.R.L.

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): DE FR IT NL SE

REF Corresponds to:

Ref document number: 3166099

Country of ref document: DE

Date of ref document: 19841025

ET Fr: translation filed
PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

26 Opposition filed

Opponent name: KRAFTWERK UNION AKTIENGESELLSCHAFT

Effective date: 19850614

NLR1 Nl: opposition has been filed with the epo

Opponent name: KRAFTWERK UNION AKTIENGESELLSCHAFT

PLAB Opposition data, opponent's data or that of the opponent's representative modified

Free format text: ORIGINAL CODE: 0009299OPPO

R26 Opposition filed (corrected)

Opponent name: SIEMENS AKTIENGESELLSCHAFT, BERLIN UND MUENCHEN

Effective date: 19850614

NLXE Nl: other communications concerning ep-patents (part 3 heading xe)

Free format text: IN PAT.BUL.01/86,PAGE 120 CORR.:SIEMENS AG

ITF It: translation for a ep patent filed

Owner name: ING. ZINI MARANESI & C. S.R.L.

PUAH Patent maintained in amended form

Free format text: ORIGINAL CODE: 0009272

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: PATENT MAINTAINED AS AMENDED

27A Patent maintained in amended form

Effective date: 19910828

AK Designated contracting states

Kind code of ref document: B2

Designated state(s): DE FR IT NL SE

NLR2 Nl: decision of opposition
ET3 Fr: translation filed ** decision concerning opposition
NLR3 Nl: receipt of modified translations in the netherlands language after an opposition procedure
ITTA It: last paid annual fee
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19931222

Year of fee payment: 14

ITPR It: changes in ownership of a european patent

Owner name: TRASFORMAZIONE SOCIETARIA;SULZER AKTIENGESELLSCHAF

NLT1 Nl: modifications of names registered in virtue of documents presented to the patent office pursuant to art. 16 a, paragraph 1

Owner name: SULZER AG TE WINTERTHUR, ZWITSERLAND.

NLS Nl: assignments of ep-patents

Owner name: ABB MANAGEMENT AG TE BADEN, ZWITSERLAND.

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

Ref country code: FR

Ref legal event code: CD

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19950129

EAL Se: european patent in force in sweden

Ref document number: 81100601.4

EUG Se: european patent has lapsed

Ref document number: 81100601.4

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19961216

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19961217

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19961223

Year of fee payment: 17

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980801

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY

Effective date: 19980930

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 19980801

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19981001

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

APAH Appeal reference modified

Free format text: ORIGINAL CODE: EPIDOSCREFNO