EP0049373A1 - Oberflächengehärtetes Sintereisenteil sowie Verfahren zur Herstellung - Google Patents

Oberflächengehärtetes Sintereisenteil sowie Verfahren zur Herstellung Download PDF

Info

Publication number
EP0049373A1
EP0049373A1 EP81106947A EP81106947A EP0049373A1 EP 0049373 A1 EP0049373 A1 EP 0049373A1 EP 81106947 A EP81106947 A EP 81106947A EP 81106947 A EP81106947 A EP 81106947A EP 0049373 A1 EP0049373 A1 EP 0049373A1
Authority
EP
European Patent Office
Prior art keywords
sintered iron
sintered
hardening
parts
workpiece
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP81106947A
Other languages
English (en)
French (fr)
Other versions
EP0049373B1 (de
Inventor
Werner Dipl.-Ing. Bodden
Winfried Diegelmann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Schunk and Ebe GmbH
Original Assignee
Schunk and Ebe GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Schunk and Ebe GmbH filed Critical Schunk and Ebe GmbH
Priority to AT81106947T priority Critical patent/ATE10070T1/de
Publication of EP0049373A1 publication Critical patent/EP0049373A1/de
Application granted granted Critical
Publication of EP0049373B1 publication Critical patent/EP0049373B1/de
Expired legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/02Pretreatment of the material to be coated
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/24After-treatment of workpieces or articles

Definitions

  • the invention relates to a method for producing a surface-hardened sintered iron part, a sintered iron part being produced by powder metallurgy and the sintered iron part being subjected to a heat treatment suitable for hardening iron parts.
  • Sintered iron parts can be significantly improved in their properties by a subsequent heat treatment.
  • Such heat treatment processes to achieve greater hardness are carburizing or carbonitriding as a preliminary stage, as well as hardening, case hardening, nitriding and oxidizing as the actual hardening process.
  • the carburization of sintered iron parts in carbon-donating agents is preferably carried out in the gas atmosphere at temperatures between 820 and 930 ° C.
  • the hardening is carried out by subsequent quenching, preferably in an oil bath.
  • Carburizing or carbonitriding with subsequent quenching is referred to as case hardness.
  • the carbonitriding where at the same time as carbon s nitrogen-donating media also be used, is carried out at temperatures of 720-950 ° C. This process enables surfaces with high wear resistance to be achieved.
  • Hard wear-resistant surfaces are also created by heat treatment in exclusively nitrogen-releasing media, nitriding at temperatures of 480 to 580 ° C.
  • the treatment of sintered iron parts in superheated steam should also be mentioned, which also leads to an increase in hardness and wear resistance as well as an increase in corrosion resistance.
  • heat treatment process in this document therefore corresponds to the definition as it was given in the material data sheet "Heat treatment of sintered metal parts; Sint 06, edition Nov. 1979, Beuth Verlag GmbH, Berlin 30 and Cologne 1" issued by the Powder Metallurgy Association and includes all processes that were specified there in Section 3.
  • these are impregnated with an alkali silicate at least on the surface according to DE-OS 19 47 963 and the silicate is cured.
  • the impregnation of sintered metal parts with alkali silicate is known from DE-PS 20 50 576 as pretreatment of sintered metal bodies to which a metal layer is to be applied using metal salt baths.
  • the object of the invention is to provide a method which makes it possible to create a surface-hardened sintered iron part with a defined hardening depth, regardless of its space filling or sintering density.
  • the invention is achieved in that the sintered iron part is impregnated with an alkali silicate solution before the heat treatment is carried out, that the alkali silicate solution adhering to the surface of the sintered iron part is rinsed off and that the impregnated sintered iron part is dried at an elevated temperature.
  • a sodium silicate solution is preferably used as the alkali silicate solution.
  • the advantages of the present invention lie in the fact that relatively porous sintered iron parts can now be provided with a very wear-resistant surface layer by normal heat treatment for the purpose of hardening, without the properties of the core of the sintered iron part being changed thereby.
  • Another decisive advantage lies in the fact that, by preventing the penetration of carbon, nitrogen or oxygen inside the body, the increase in volume of the sintered iron material associated with the absorption of foreign atoms is prevented. This makes it possible, even with surface-hardened sintered iron parts, to comply with the tolerances of IT 6 and IT 7 that are usually to be observed with sintered iron parts. However, due to the case hardening that was previously possible, only tolerance ranges of IT 9 are possible.
  • the sintered iron parts are evacuated in a container to which a pump and a storage vessel with alkali silicate solution is connected until a vacuum of 4 to 20 torr is reached.
  • the vacuum pump is still running, the tap to the pump is closed and the tap to the storage vessel is opened so that the alkali silicate solution can flow in in a strong jet.
  • the impregnation liquid is about 5 cm above the sintered parts, the addition of impregnation solution is interrupted and the vacuum in the container is slowly released.
  • the sintered iron parts remain on for about 30 minutes Atmospheric pressure in the alkali silicate solution. The sintered parts are now removed from the solution.
  • the rinsing is carried out either by repeated dipping in water or the parts are then dried in air or with oil-free compressed air and heated and dried in stages in a drying cabinet from 50 to 180 ° C.
  • the drying temperature can optionally be further increased without disadvantages, which will be the case if the drying takes place in the same oven in which the curing is carried out.
  • alkali silicate solution compared to other impregnating solutions are the extremely low cost of the impregnating agent itself, as well as its low viscosity, which allows easy handling.
  • the alkali silicate solution is non-flammable, is odorless and has no toxic properties. In closed storage containers it shows no signs of aging or hardening.
  • the above-mentioned heat treatment methods can be used to harden iron parts. Since the pore walls are largely protected from the ingress of carbon, nitrogen or oxygen by the alkali silicate, carburization, carbonitriding, nitriding or oxidation only occur via the surface. The penetration of these elements into the sintered iron part is similar to solid iron parts only from the surface due to the diffusion rate of the foreign atoms in the metal controlled. From this it follows that the foreign atoms are only deposited in a surface layer and thus surface hardening with a specific hardening depth is achieved.
  • a sintered iron part was produced from a standard iron powder without further additions by pressing the sintered powder and annealing the compact in a non-oxidizing atmosphere.
  • the density was 6.6 g / cm 3 , the space filling was 84%.
  • Some of the sintered iron parts were impregnated with sodium silicate solution, rinsed off and dried at 180 ° C. using the method described above. This treatment was not carried out on the other part of the sintered iron parts. Both the impregnated and the non-impregnated sintered iron parts were subjected to the same carburizing treatment.
  • the carburizing time was 2 hours at a temperature of 870 ° C; Endogas with a dew point - 2 ° C was used as the carburizing medium.
  • the hardening was carried out by subsequent quenching in an oil bath. The parts were then cut open and the Vickers hardness HV 0.3 measured at various distances from the surface. The measurement result is shown in Fig. 1.
  • the curves show the hardness depending on the distance to the surface. From curve (A), which was measured for parts without sodium silicate impregnation, it follows that the hardness is practically constant up to a depth of 1.5 mm from the surface. In contrast, curve (B) drops steeply for the part with a sodium silicate treatment and already reaches the value of the starting material before hardening at a depth of about 0.5 mm.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Powder Metallurgy (AREA)
  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)
  • Electromagnets (AREA)
  • Turning (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

Oberflächengehärtetes Sintereisenteil und Verfahren zu seiner Herstellung, wobei eine pulvermetallurgisch hergestelltes Sintereisenteil vor der zur Härtung von Eisenteilen geeigneten Wärmebehandlung mit einer Alkalisilikatlösung imprägniert, abgespült und getrocknet wird.

Description

  • Die Erfindung betrifft ein Verfahren zur Herstellung eines oberflächengehärteten Sintereisenteiles, wobei ein Sintereisenteil pulvermetallurgisch gefertigt und das Sintereisenteil einer zur Härtung von Eisenteilen geeigneten Wärmebehandlung unterzogen wird.
  • Sintereisenteile können durch eine nachfolgende Wärmebehandlung in ihren Eigenschaften wesentlich verbessert werden. Derartige Wärmebehandlungsverfahren zur Erzielung einer größeren Härte sind Aufkohlen oder Carbonitrieren als Vorstufe, sowie Härten, Einsatzhärten, Nitrieren und Oxidieren als eigentliche Härteverfahren.
  • Die Aufkohlung von Sintereisenteilen in kohlenstoffabgebenden Mitteln erfolgt vorzugsweise in der Gasatmosphäre bei Temperaturen zwischen 820 und 930 °C. Die Härtung erfolgt durch nachfolgendes Abschrecken, vorzugsweise in einem Ölbad.
  • Als Einsatzhärte wird ein Aufkohlen oder Carbonitrieren mit direkt anschließendem Abschrecken bezeichnet. Das Carbonitrieren, bei dem gleichzeitig neben kohlenstoffauch stickstoffabgebende Medien verwendet werden, wird bei Temperaturen von 720 bis 950 °C durchgeführt. Durch dieses Verfahren lassen sich Oberflächen von hohem Verschleißwiderstand erzielen.
  • Auch durch eine Wärmebehandlung in ausschließlich stickstoffabgebenden Medien, dem Nitrieren bei Temperaturen von 480 bis 580 C werden harte verschleißfeste Oberflächen erzeugt. Schließlich ist noch die Behandlung von Sintereisenteilen in überhitztem Wasserdampf zu erwähnen, wodurch ebenfalls eine Steigerung der Härte und Verschleißfestigkeit neben der Erhöhung der Korrosionsbeständigkeit zu erzielen ist. Bei diesem Verfahren wird eine Eisenoxidschicht, und zwar Magnetit (=Fe203) gebildet.
  • Der Begriff Wärmebehandlungsverfahren in dieser Schrift entspricht somit der Definition, wie sie aus dem vom Fachverband Pulvermetallurgie herausgegebenen Werkstoffleistungsblatt "Wärmebehandlung von Sintermetallteilen; Sint 06, Ausgabe Nov. 1979, Beuth Verlag GmbH, Berlin 30 und Köln 1 gegeben wurde und umfasst sämtliche Verfahren, die dort in Abschnitt 3 angegeben wurden.
  • Im Gegensatz zu Massiveisenteilen, bei denen durch Härten nach einem Aufkohlen, Carbonitrieren oder Nitrieren eine definierte Oberflächenhärtung leicht zu erzielen ist, ist dies bei Sintereisenteilen ohne besondere Maßnahmen nicht möglich. Durch die offenen, von der Oberfläche zugänglichen Poren können gasförmige oder flüssige Behandlungsmedien in das Sintermetallteil eindringen. Freilich ist dieser Vorgang von der Raumerfüllung bzw. der Sinterdichte abhängig. So wird angegeben ( a.a.O.), daß bei einer Raumerfüllung von etwa 85 %, was einer Sinterdichte von ca. 6,6 g/cm entspricht, beim Aufkohlen stets mit einer Durchkohlung zu rechnen ist, d.h. nach dem Abschrecken zu einer Durchhärtung führt.
  • Häufig ist jedoch erwünscht, ausschließlich eine Oberflächenhärtung zu erhalten. Die Beschränkung der Aufkohlung auf eine Randschicht gelingt bisher erst ab einer Raumerfüllung von mehr als etwa 90 %, was einer Sinterdichte von 7,0 g/cm3entspricht. Die Forderung nach einem Sintereisenteil mit einer geringeren Raumerfüllung und gleichzeitiger Oberflächenhärtung konnte bisher nicht erfüllt werden.
  • Als Vorbehandlungsverfahren vor der Wärmebehandlung sind verschiedene Entfettungsverfahren bekannt.
  • Zu einem anderen Zweck, nämlich der Erhöhung der Korrosionsbeständigkeit von Sintermetallteilen werden diese nach der DE-OS 19 47 963 wenigstens an der Oberfläche mit einem Alkalisilikat imprägniert und das Silikat ausgehärtet.
  • Die Imprägnierung von Sintermetallteilen mit Alkalisilikat ist aus der DE-PS 20 50 576 als Vorbehandlung von Sintermetallkörpern, auf die eine Metallschicht unter Verwendung von Metallsalzbädern aufgebracht werden soll, bekannt.
  • Aufgabe der Erfindung ist es, ein Verfahren anzugeben, das es erlaubt, ein oberflächengehärtetes Sintereisenteil mit einer definierten Einhärtetiefe zu schaffen-, unabhängig von seiner Raumerfüllung bzw. Sinterdichte.
  • Die Erfindung wird dadurch gelöst, daß das Sintereisenteil vor Durchführung der Wärmebehandlung mit einer Alkalisilikatlösung imprägniert wird, daß die an der Oberfläche des Sintereisenteils anhaftende Alkalisilikatlösung abgespült wird und daß das imprägnierte Sintereisenteil bei erhöhter Temperatur getrocknet wird. Vorzugsweise als Alkalisilikatlösung eine Natriumsilikatlösung verwendet.
  • Die Vorteile der vorliegenden Erfindung liegen darin, daß nunmehr auch relativ poröse Sintereisenteile durch eine normale Wärmebehandlung zum Zweck der Härtung mit einer sehr verschleißfesten Oberflächenschicht versehen werden können, ohne daß dadurch die Eigenschaften des Kernes des Sintereisenteiles verändert werden.
  • Ein weiterer entscheidender Vorteil liegt in der Tatsache, daß mit der Verhinderung des Eindringens des Kohlenstoffs, Stickstoffs oder Sauerstoffs im Innern des Körpers die mit der Aufnahme von Fremdatomen verbundene Volumenzunahme des Sintereisenwerkstoffes verhindert wird. Hierdurch ist es möglich, auch bei oberflächengehärteten Sintereisenteilen, die üblicherweise bei Sintereisenteilen einzuhaltenden Toleranzen von IT 6 und IT 7 einzuhalten. Durch die bisher mögliche Einsatzhärtung sind dagegen nur Toleranzbereiche von IT 9 möglich.
  • Nicht zu unterschätzen ist auch die Tatsache, daß die' Korrosionsbeständigkeit der Sintereisenteile durch die Auskleidung der Poren mit Alkalisilikat erheblich gesteigert wird.
  • Im folgenden wird das erfindungsgemäße Verfahren beispielhaft erläutert. Die Sintereisenteile werden nach dem Sinterprozeß in einem Behälter , an dem eine Pumpe und ein Vorratsgefäß mit Alkalislilikatlösung angeschlossen ist, so lange evakuiert, bis ein Vakuum von 4 bis 20 torr erreicht ist. Bei noch laufender Vakuumpumpe wird der Hahn zur Pumpe geschlossen und der Hahn zum Vorratsgefäß geöffnet, so daß die Alkalisilikatlösung in starkem Strahl einfließen kann. Wenn die Imprägnierflüssigkeit ca. 5 cm über den Sinterteilen steht, wird die Imprägnierlösungszugabe unterbrochen und das Vakuum im Behälter langsam aufgehoben. Hierauf bleiben die Sintereisenteile ca. 30 Minuten unter Atmosphärendruck in der Alkalisilikatlösung stehen. Die Sinterteile werden nun aus der Lösung genommen. Man lässt die Teile abtropfen und spült schließlich mit kaltem Wasser. Das Spülen erfolgt entweder durch wiederholtes Tauchen in Wasser oder die Teile werden sodann an Luft oder mit ölfreier Preßluft getrocknet und stufenweise im Trockenschrank von 50 bis zu 180 °C erwärmt und getrocknet. Die Trocknungstemperatur kann ohne Nachteile auch wahlweise weiter erhöht werden, was dann der Fall sein wird, wenn die Trocknung im selben Ofen erfolgt, in dem die Härtung durchgeführt wird.
  • Die besonderen Vorteile bei der Verwendung von Alkalisilikatlösung gegenüber anderen Imprägnierlösungen bestehen in den äußerst geringen Kosten des Imprägniermittels selbst, ferner in seiner niedrigen Viskosität, die eine einfache Handhabung zuläßt. Außerdem ist die Alkalisilikatlösung nicht brennbar, ist geruchslos und hat.keine toxischen Eigenschaften. In geschlossenen Vorratsbehältern zeigt sie keine Alterungserscheinungen bzw. Aushärtungen.
  • Durch die Benetzung des Metalls ist eine nur geringe Imprägnierzeit erforderlich. Die Trocknungszeiten sind im Vergleich zu denjenigen anderer Imprägniermittel relativ kurz. Nach erfolgter Aushärtung des Imprägniermittels können die oben angegebenen Wärmebehandlungsverfahren zur Härtung von Eisenteilen angewendet werden. Da nun die Porenwände durch das Alkalisilikat vor Eindringen von Kohlenstoff, Stickstoff bzw. Sauerstoff weitgehendst geschützt sind, tritt eine Aufkohlung, Carbonitrierung, Nitrierung bzw. Oxidation lediglich über die Oberfläche ein. Das Eindringen dieser Elemente in das Sintereisenteil wird somit ähnlich wie bei massiven Eisenteilen nur von der Oberfläche durch die Diffusionsgeschwindigkeit der Fremdatome im Metall gesteuert. Hieraus folgt, daß die Einlagerung der Fremdatome lediglich in einer Oberflächenschicht erfolgt und es somit eine Oberflächenhärtung mit einer gezielten Einhärtetiefe erreicht wird.
  • Zur näheren Erläuterung der Erfindung wird folgendes Beispiel angegeben.
  • Es wurde ein Sintereisenteil aus einem Standardeisenpulver ohne weitere Zusätze durch Pressen des Sinterpulvers und Glühen des Presslings in nichtoxidierender Atmosphäre hergestellt. Die Dichte betrug 6,6 g/cm3, die Raumerfüllung betrug 84 %. Ein Teil der Sintereisenteile wurde nach vorgehend beschriebenen Verfahren mit Natriumsilikatlösung imprägniert, abgespült und bei 180 C getrocknet. Bei dem anderen Teil der Sintereisenteile wurde diese Behandlung nicht durchgeführt. Sowohl die imprägnierten, als auch die nicht imprägnierten Sintereisenteile wurden derselben Aufkohlungsbehandlung unterworfen. Die Aufkohlungszeit betrug 2 Stunden bei einer Temperatur von 870 °C; als Aufkohlungsmedium wurde Endogas mit einem Taupunkt - 2 °C verwendet.
  • Die Härtung erfolgte durch nachfolgendes Abschrecken in einem Ölbad. Anschließend wurden die Teile aufgeschnitten und die Vickershärte HV 0,3 in verschiedenen Abständen von der Oberfläche gemessen. Das Messergebnis ist in Fig. 1 dargestellt. Die Kurven zeigen die Härte in Abhängigkeit vom Abstand zur Oberfläche. Aus der Kurve (A), die bei Teilen ohne Natriumsilikatimprägnierung gemessen wurde, ergibt sich, daß bis zu einer Tiefe von 1,5 mm von der Oberfläche die Härte praktisch konstant ist. Demgegenüber fällt die Kurve (B) für das Teil mit einer Natriumsilikatbehandlung steil ab und erreicht bei etwa 0,5 mm Tiefe bereits den Wert des Ausgangsmaterials vor dem Härten.

Claims (3)

1. Verfahren zur Herstellung eines oberflächengehärteten Sintereisenteils, bei dem man
a. ein Sintereisenteil pulvermetallurgisch fertigt,
b. das Sintereisenteil mit einer Alkalisilikatlösung imprägniert,
c. die an der Oberfläche des Sintereisenteils anhaftende Alkalisilikatlösung abspült,
d. die imprägnierten Sintereisenteile trocknet,
e. das Sintereisenteil einer zur Härtung von Eisenteilen geeigneten Wärmebehandlung unterzieht,

wobei die Verfahrensschritte a. und e. den Oberbegriff und die Verfahrensschritte b. bis d. den kennzeichnenden Teil bilden.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet , daß die Alkalisilikatlösung Natriumsilikatlösung ist.
3. Sintereisenteile hergestellt nach einem Verfahren nach Anspruch 1 oder Anspruch 2.
EP81106947A 1980-09-23 1981-09-04 Oberflächengehärtetes Sintereisenteil sowie Verfahren zur Herstellung Expired EP0049373B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT81106947T ATE10070T1 (de) 1980-09-23 1981-09-04 Oberflaechengehaertetes sintereisenteil sowie verfahren zur herstellung.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3035772 1980-09-23
DE3035772A DE3035772C2 (de) 1980-09-23 1980-09-23 Verfahren zur Herstellung eines oberflächengehärteten Sintereisenteils

Publications (2)

Publication Number Publication Date
EP0049373A1 true EP0049373A1 (de) 1982-04-14
EP0049373B1 EP0049373B1 (de) 1984-10-31

Family

ID=6112598

Family Applications (1)

Application Number Title Priority Date Filing Date
EP81106947A Expired EP0049373B1 (de) 1980-09-23 1981-09-04 Oberflächengehärtetes Sintereisenteil sowie Verfahren zur Herstellung

Country Status (6)

Country Link
US (1) US4508681A (de)
EP (1) EP0049373B1 (de)
JP (1) JPS5785904A (de)
AT (1) ATE10070T1 (de)
BR (1) BR8106065A (de)
DE (2) DE3035772C2 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0900610A1 (de) * 1997-09-05 1999-03-10 Maxon-Motor GmbH Verfahren zur Herstellung eines Gleitlagers aus gesintertem Metall für Keramikwellen und Gleitlager

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE446605B (sv) * 1985-02-13 1986-09-29 Ibm Svenska Ab Vakuumimpregnering av sintrade material med torrt smorjmedel
CA2268649C (en) * 1996-10-15 2002-10-01 Zenith Sintered Products, Inc. Surface densification of machine components made by powder metallurgy
JP3606434B2 (ja) * 1999-09-28 2005-01-05 スズキ株式会社 焼結部材の硬化処理方法
US6759087B1 (en) 2002-04-10 2004-07-06 Conspectus, Inc. Solution for sealing porous metal substrates and process of applying the solution
US20070047857A1 (en) * 2005-08-26 2007-03-01 Tsutomu Hamada Sleeve for hydrodynamic bearing device, hydrodynamic bearing device and spindle motor using the same, and method for manufacturing sleeve

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE880448C (de) * 1943-07-13 1953-06-22 Boehler & Co Ag Geb Verfahren zum Abdecken von Werkstoffteilen aus Sonderstahl, die beim Nitriervorgang vor der Einwirkung des Nitriermittels geschuetzt werden sollen
DE1947963A1 (de) * 1968-09-26 1970-04-02 Allegheny Ludlum Steel Korrosionsbestaendiger Gegenstand aus Sintermetall und Verfahren zur Herstellung desselben
DE2050576A1 (de) * 1970-10-15 1972-04-20 Schunk & Ebe Gmbh Verfahren zur Oberflächenveredelung von Sintermetallteilen
FR2236016A1 (de) * 1973-07-03 1975-01-31 British Steel Corp

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4071382A (en) * 1976-07-22 1978-01-31 Midland-Ross Corporation Method for case hardening powdered metal parts

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE880448C (de) * 1943-07-13 1953-06-22 Boehler & Co Ag Geb Verfahren zum Abdecken von Werkstoffteilen aus Sonderstahl, die beim Nitriervorgang vor der Einwirkung des Nitriermittels geschuetzt werden sollen
DE1947963A1 (de) * 1968-09-26 1970-04-02 Allegheny Ludlum Steel Korrosionsbestaendiger Gegenstand aus Sintermetall und Verfahren zur Herstellung desselben
DE2050576A1 (de) * 1970-10-15 1972-04-20 Schunk & Ebe Gmbh Verfahren zur Oberflächenveredelung von Sintermetallteilen
FR2236016A1 (de) * 1973-07-03 1975-01-31 British Steel Corp

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0900610A1 (de) * 1997-09-05 1999-03-10 Maxon-Motor GmbH Verfahren zur Herstellung eines Gleitlagers aus gesintertem Metall für Keramikwellen und Gleitlager
US6174087B1 (en) 1997-09-05 2001-01-16 Maxon Motor Gmbh Friction bearing
US6223437B1 (en) 1997-09-05 2001-05-01 Maxon Motor Gmbh Method for fabricating a friction bearing, and friction bearing

Also Published As

Publication number Publication date
BR8106065A (pt) 1982-06-08
ATE10070T1 (de) 1984-11-15
DE3035772C2 (de) 1982-09-30
US4508681A (en) 1985-04-02
DE3166981D1 (en) 1984-12-06
DE3035772A1 (de) 1982-05-13
EP0049373B1 (de) 1984-10-31
JPS5785904A (en) 1982-05-28

Similar Documents

Publication Publication Date Title
DE2216628C2 (de) Verfahren zur Behandlung einer Oberfläche aus Stahl durch Ionenimplantation zur Modifizierung der Struktur der Oberfläche
DE2417179B2 (de) Verfahren zum karburieren hochlegierter staehle
EP0049373B1 (de) Oberflächengehärtetes Sintereisenteil sowie Verfahren zur Herstellung
DE19510302C2 (de) Oberflächenbehandelte Kolbenstange und Verfahren zu ihrer Herstellung
DE4140148C2 (de)
DE112016001286T5 (de) Maschinenkomponente und herstellungsverfahren dafür
DE19909694A1 (de) Verfahren zum Varbonitrieren bei Unterdruckverfahren ohne Plasmaunterstützung
DE102006054280B4 (de) Verfahren und Vorrichtung zur Erhöhung der Korrosionsbeständigkeit nitrocarburierter oder nitrocarburierter und oxidierter Oberflächen von aus Stahl bestehenden Bauteilen
DE3301541A1 (de) Verfahren zur herstellung oberflaechengehaerteter sinterkoerper
DE69728861T2 (de) Ein fur die verwendung in einem leichtwasserkernreaktor entworfener bauteil und verfahren zu seiner herstellung
DE2361017C3 (de) Verfahren zum Borieren der Oberfläche eines metallischen Werkstücks
EP0354389B1 (de) Verfahren zum Herstellen eines Formteiles aus Sinterstahl und daraus hergestelltes Formteil
DE69815051T2 (de) Verfahren zum direktem Schutz gegen Verschleiss-Korrosion von metallischen Gegenständen
DE1234479B (de) Verfahren zur Nachbehandlung von elektrisch isolierenden anorganischen Deckschichten
DE954607C (de) Verfahren zum Entkohlen der Oberflaechenschichten von Werkstuecken aus Eisen oder Stahl
DE1947963C3 (de) Verfahren zur Herstellung korrosionsbeständiger Sinterkörper aus rostfreiem Stahl
DE2201349A1 (de) Verfahren zur Herstellung von Uhrgehaeuseteilen und nach diesem Verfahren hergestellte Uhrgehaeuseteile
DE910771C (de) Verfahren zur Herstellung von elektrisch und thermisch schlecht leitenden bzw. elektrisch isolierenden oder schall- und schwingungs- daemmenden ummantelungen von Bolzen,Schraubenschaeften, Buchsen oder aehnlich geformten Konstruktionsteilen aus Metall
DE112014005584T5 (de) Kolbenring und Wärmebehandlungsverfahren
DE3642839A1 (de) Verfahren zur herstellung eines randschichtgehaerteten werkstuecks aus sintermetall
DE10235131A1 (de) Verfahren und Vorrichtung zum Schwärzen von Bauteilen
AT243820B (de) Werkstoff, vorzugsweise für Filter- und Maschinenteile, aus Metallfasern, insbesondere Stahlfasern
DE1084104B (de) Verfahren zum Inaktivieren eines oxydierbaren Metallpulvers fuer Sprengstoffe und pyrotechnische Zwecke
DE2823873A1 (de) Verfahren zum schuetzen von verchromten oberflaechen
DE2751967A1 (de) Verfahren zur herstellung von sintermetallteilen

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): AT CH DE FR GB IT

17P Request for examination filed

Effective date: 19820727

ITF It: translation for a ep patent filed

Owner name: BARZANO' E ZANARDO ROMA S.P.A.

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): AT CH DE FR GB IT LI

REF Corresponds to:

Ref document number: 10070

Country of ref document: AT

Date of ref document: 19841115

Kind code of ref document: T

REF Corresponds to:

Ref document number: 3166981

Country of ref document: DE

Date of ref document: 19841206

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19860603

ITTA It: last paid annual fee
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19980812

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19980819

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19980828

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19980925

Year of fee payment: 18

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990904

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990904

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990930

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990930

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19990904

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000531

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST