EP0045531B1 - Verfahren zum kontinuierlichen direkten Schmelzen von metallischem Blei aus sulfidischen Bleikonzentraten - Google Patents
Verfahren zum kontinuierlichen direkten Schmelzen von metallischem Blei aus sulfidischen Bleikonzentraten Download PDFInfo
- Publication number
- EP0045531B1 EP0045531B1 EP81200502A EP81200502A EP0045531B1 EP 0045531 B1 EP0045531 B1 EP 0045531B1 EP 81200502 A EP81200502 A EP 81200502A EP 81200502 A EP81200502 A EP 81200502A EP 0045531 B1 EP0045531 B1 EP 0045531B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- lead
- phase
- reactor
- slag
- zone
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 238000000034 method Methods 0.000 title claims description 17
- WABPQHHGFIMREM-UHFFFAOYSA-N lead(0) Chemical compound [Pb] WABPQHHGFIMREM-UHFFFAOYSA-N 0.000 title claims description 14
- 238000003723 Smelting Methods 0.000 title claims description 6
- 239000012141 concentrate Substances 0.000 title description 8
- 239000002893 slag Substances 0.000 claims description 38
- 238000002844 melting Methods 0.000 claims description 22
- 230000008018 melting Effects 0.000 claims description 22
- 229910052717 sulfur Inorganic materials 0.000 claims description 19
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 claims description 18
- 230000003647 oxidation Effects 0.000 claims description 18
- 238000007254 oxidation reaction Methods 0.000 claims description 18
- 239000011593 sulfur Substances 0.000 claims description 18
- 239000000463 material Substances 0.000 claims description 16
- 239000003638 chemical reducing agent Substances 0.000 claims description 2
- 238000010924 continuous production Methods 0.000 claims 1
- 239000000155 melt Substances 0.000 description 19
- 239000002184 metal Substances 0.000 description 15
- 229910052751 metal Inorganic materials 0.000 description 15
- 229910052797 bismuth Inorganic materials 0.000 description 14
- 239000008188 pellet Substances 0.000 description 13
- JCXGWMGPZLAOME-UHFFFAOYSA-N bismuth atom Chemical compound [Bi] JCXGWMGPZLAOME-UHFFFAOYSA-N 0.000 description 11
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 10
- 229910052760 oxygen Inorganic materials 0.000 description 10
- 239000001301 oxygen Substances 0.000 description 10
- 150000002739 metals Chemical class 0.000 description 8
- 229910052787 antimony Inorganic materials 0.000 description 7
- 229910052785 arsenic Inorganic materials 0.000 description 7
- 229910052718 tin Inorganic materials 0.000 description 7
- 239000007789 gas Substances 0.000 description 6
- 238000002474 experimental method Methods 0.000 description 5
- 238000010309 melting process Methods 0.000 description 4
- CWYNVVGOOAEACU-UHFFFAOYSA-N Fe2+ Chemical compound [Fe+2] CWYNVVGOOAEACU-UHFFFAOYSA-N 0.000 description 3
- 239000000654 additive Substances 0.000 description 3
- 239000002817 coal dust Substances 0.000 description 3
- 229940056932 lead sulfide Drugs 0.000 description 3
- 229910052981 lead sulfide Inorganic materials 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 229910044991 metal oxide Inorganic materials 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 238000007670 refining Methods 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 150000003467 sulfuric acid derivatives Chemical class 0.000 description 2
- 206010011971 Decreased interest Diseases 0.000 description 1
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 1
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- WATWJIUSRGPENY-UHFFFAOYSA-N antimony atom Chemical compound [Sb] WATWJIUSRGPENY-UHFFFAOYSA-N 0.000 description 1
- RQNWIZPPADIBDY-UHFFFAOYSA-N arsenic atom Chemical compound [As] RQNWIZPPADIBDY-UHFFFAOYSA-N 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- 239000012159 carrier gas Substances 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 239000000428 dust Substances 0.000 description 1
- -1 ferrous metal oxides Chemical class 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 229910000464 lead oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 238000005065 mining Methods 0.000 description 1
- 239000007800 oxidant agent Substances 0.000 description 1
- YEXPOXQUZXUXJW-UHFFFAOYSA-N oxolead Chemical compound [Pb]=O YEXPOXQUZXUXJW-UHFFFAOYSA-N 0.000 description 1
- 238000005192 partition Methods 0.000 description 1
- 239000010970 precious metal Substances 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 238000010079 rubber tapping Methods 0.000 description 1
- 239000011343 solid material Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 150000004763 sulfides Chemical class 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22B—PRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
- C22B13/00—Obtaining lead
- C22B13/06—Refining
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22B—PRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
- C22B13/00—Obtaining lead
- C22B13/02—Obtaining lead by dry processes
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22B—PRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
- C22B13/00—Obtaining lead
- C22B13/06—Refining
- C22B13/08—Separating metals from lead by precipitating, e.g. Parkes process
Definitions
- the invention relates to a process for the continuous direct melting of metallic lead from sulfur-containing lead materials in an elongated, lying reactor, in which a melt from a slag phase and a lead phase is maintained, the feed on one side of the reactor into a melting zone while maintaining a such an oxidation potential is charged to the melt that metallic lead and slag are formed, on the other side of the reactor reducing substances are introduced into the slag phase in a reduction zone, and low-lead slag and metallic lead are drawn off from their phases.
- DE-OS2807964 discloses such a process for the continuous conversion of lead sulfide concentrates into a liquid lead phase and a slag phase in an elongated, lying reactor, under a gas atmosphere containing zones of SO 2 , with sulfidic lead concentrates and additives being charged onto the melt
- Lead phase and a non-ferrous metal slag phase are discharged at the opposite end of the reactor and the phases flow in countercurrent to one another in substantially continuously layered streams to the outlet ends, at least part of the oxygen through a plurality of independently controlled and over the length of the oxidation zone of the reactor distributed nozzles are blown into the melt from below, the solid feed is gradually charged into the reactor by a plurality of independently controlled feeders distributed over a considerable length of the reactor, the degree ient is the oxygen activity in the melt by choosing the local addition and control of the amounts of oxygen and solid material introduced so that it progressively in the reduction zone from a maximum for the production of lead at the outlet end to a minimum for the Generation of non-
- a direct lead melting process is known from US Pat. No. 3,663,207, in which the slag phase and lead phase are passed through the reactor in cocurrent, the slag at one end of the reactor and the lead being drawn off from the reactor in a central zone.
- a direct lead smelting process is known from the "Engineering Mining Journal” April 1978, pages 88 to 91, 118, in which the fine-grained concentrate is ignited in a vertical shaft in the presence of oxygen and is roasted, melted and partially reduced to metallic lead in the suspended state.
- a hearth furnace is arranged under the shaft, from which the melt enters under a partition into an electric resistance-heated hearth space. There is a reduction of non-ferrous metal oxides to liquid lead and the removal of slag and lead.
- the stripped lead contains the entire bismuth.
- bismuth is an impurity that has to be removed from the end product (fine lead) at high costs, on the other hand it is a by-product that has a commercial value.
- a large part of the production of refined lead can be sold with bi contents of 100 ppm and more. With certain varieties, however, 70 ppm Bi and less must not be exceeded.
- the refining costs required for separating the bismuth are more than offset by the commercial value of this metal, but the costs exceed the proceeds for bi-poor raw materials.
- Many lead smelters therefore separate their bi-rich and bi-poor raw materials and process them separately for each campaign. This leads to many difficulties in the smelting and refining operations, including loss of interest, especially when concentrates rich in precious metals have to be stacked over a long period of time.
- the object of the invention is to collect the lead bismuth content in the feed in the smallest possible amount of lead in a continuous, one-step direct lead melting process.
- the oxidation potential in the melt is set in the melting zone so that the sulfur content of the lead phase is 0.05 to 2% by weight, and the bi-rich primary lead obtained in this zone is drawn off separately, and the bi-poor secondary lead accumulating in the reduction zone is also drawn off separately.
- Sulfidic, sulfatic and oxidic lead materials with sulfides or sulfates are suitable as lead materials containing sulfur. If the material is charged onto the melt in the solid state, the melting zone lies in the melt itself. Then the oxidation potential in the melt is adjusted by introducing oxygen in such a way that it is sufficient for the formation of metallic lead and slag and that the required sulfur content is achieved in the lead phase.
- the oxidation potential is already set in the floating zone so that the required sulfur content of the lead phase is achieved after settling in the melt. If there is a combined melting in the suspended state and in the melt, the oxidation potentials are coordinated accordingly.
- the oxidation potential results from the stoichiometric ratio of oxidizing agents - such as oxygen, metal sulfates, metal oxides - to oxidizable components - such as sulfide sulfur, possibly added fuels - the sum of which is such that the partial oxidation required to achieve the required sulfur content in the lead phase he follows.
- the amount of primary lead drawn off is kept as small as possible, but so large that the major part of the lead bismuth is contained in the primary lead.
- the primary lead contains only small amounts of tin, arsenic and antimony, while the secondary lead contains the main part of the leading Sn, As and Sb.
- a preferred embodiment consists in that when using lead materials with a lead content above 55% by weight, the sulfur content of the lead phase in the melting zone is set to 0.1 to 0.4% by weight. As a result, a good collection of bismuth in a relatively small amount of primary lead is achieved with richer lead materials.
- a preferred embodiment is that when using lead materials with a lead content between 55 and 40% by weight, the sulfur content of the lead phase in the melting zone is set to 0.3 to 1.0% by weight. This results in a good collection of bismuth in a relatively small amount of primary lead in poorer lead materials.
- a preferred embodiment is that when using lead materials with a lead content below 40% by weight, the sulfur content of the lead phase in the melting zone is set to 0.8 to 2.0% by weight. As a result, a good collection of bismuth in a relatively small amount of primary lead can be achieved even with very poor lead materials.
- a preferred embodiment consists in that the slag phase and lead phase are passed in countercurrent through the reactor, the primary lead is drawn off at the end of the reactor delimiting the melting zone, and the secondary lead is attached behind one at the other end of the melting zone on the bottom of the reactor and into the Slag phase protruding weir is withdrawn.
- a method according to DE-OS 28 07 964 and DE-AS 24 17 978 described at the outset is particularly suitable for carrying out the method according to the invention if a separate removal of primary and secondary lead is made possible by a weir.
- the bottom of the reactor can be inclined so that both primary lead and secondary lead flow in the direction of the melting zone. Then the secondary lead on the weir is drawn off.
- the bottom of the reactor can also be inclined so that only the primary lead flows to the end of the melting zone and the secondary lead flows to the other end and is drawn off there.
- One embodiment consists in that a narrow zone is arranged before tapping the primary lead, into which no feed is charged and in which sulfur is removed from the lead by oxidation. In this zone, a particularly precise adjustment of the sulfur content of the lead phase can be achieved, so that the collection of a large part of the bismuth in a particularly relatively small amount of primary lead drawn off is possible.
- the feed 1 is charged to the slag phase 3 in the melting zone 2.
- Oxygen 4 is passed from below into the lead phase and from there flows further through the slag phase 3.
- the primary lead 6 is drawn off from the melting zone on the end wall.
- the slag flows over the weir 7 into the reduction zone 8.
- There coal dust is blown in as a reducing agent 9 from below.
- the low-lead slag 11 is withdrawn from the slag stitch.
- the exhaust gas 12 is discharged through the end wall of the melting zone 2.
- the secondary lead 10 is drawn off in front of the weir 7 and in FIG. 2 on the front side of the reduction zone 8.
- a refractory, rotatably mounted reactor in the form of a horizontal one Cylinders with a clear length of 4.5 m and a clear diameter of 1.20 m, with a burner and tap openings on the front face, an exhaust opening on the rear face, charging openings in the upper part of the casing and vertical in the lower part of the casing equipped upward nozzles, pelleted lead concentrates were melted with fly dust and additives.
- the pellets had the following composition:
- the pellets were melted in such a way that the reactor was heated to a temperature of 950 ° C. using the burner, passed technically pure oxygen at a rate of 150 m 3 / h (NPT) through the nozzles and through the charging openings Pellets were charged into the reactor in a time quantity which varied between 1.9 and 2.1 t / h.
- NPT 150 m 3 / h
- the lead formed contained 96% of the preceding Bi, while only minor amounts of the three other metals were taken up by the lead.
- the slag contained 40% of the lead in the pellets and had the following concentrations of the metals in question:
- the temperature of the melt rose to 985 ° C, while the lead phase contained only 0.18% S.
- the amount of metal formed corresponded to 10% of the lead leading in the pellets.
- the lead located under the slag as the bottom phase was selectively drawn off through a tap hole at the level of the reactor base, while the slag was left in the reactor.
- the nozzles were then replaced by coal dust injectors.
- the slag temperature was then slowly raised to a final value of 1,150 ° C. using the burner, while at the same time a mixture of coal dust and carrier gas was blown into the slag bath in a metered amount.
- the slag obtained in equilibrium with this lead phase had a Pb content of 23.9% and a Bi content of 0.002%.
- the advantages of the invention are that in the case of single-stage, direct lead melting processes, the lead in bismuth can be accumulated in a simple manner to a large extent in a relatively small amount of primary lead.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Manufacture And Refinement Of Metals (AREA)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
AT81200502T ATE5901T1 (de) | 1980-08-06 | 1981-05-12 | Verfahren zum kontinuierlichen direkten schmelzen von metallischem blei aus sulfidischen bleikonzentraten. |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE19803029682 DE3029682A1 (de) | 1980-08-06 | 1980-08-06 | Verfahren zum kontinuierlichen direkten schmelzen von metallischem blei aus sulfidischen bleikonzentraten |
DE3029682 | 1980-08-06 |
Publications (2)
Publication Number | Publication Date |
---|---|
EP0045531A1 EP0045531A1 (de) | 1982-02-10 |
EP0045531B1 true EP0045531B1 (de) | 1984-01-18 |
Family
ID=6108956
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP81200502A Expired EP0045531B1 (de) | 1980-08-06 | 1981-05-12 | Verfahren zum kontinuierlichen direkten Schmelzen von metallischem Blei aus sulfidischen Bleikonzentraten |
Country Status (20)
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE4129475A1 (de) * | 1991-09-05 | 1993-03-11 | Metallgesellschaft Ag | Verfahren zum kontinuierlichen erschmelzen von metallischem blei |
US6264884B1 (en) * | 1999-09-03 | 2001-07-24 | Ati Properties, Inc. | Purification hearth |
US8211207B2 (en) | 2006-12-05 | 2012-07-03 | Stannum Group LLC | Process for refining lead bullion |
US8105416B1 (en) | 2010-05-05 | 2012-01-31 | Stannum Group LLC | Method for reclaiming lead |
US11150021B2 (en) | 2011-04-07 | 2021-10-19 | Ati Properties Llc | Systems and methods for casting metallic materials |
US9050650B2 (en) | 2013-02-05 | 2015-06-09 | Ati Properties, Inc. | Tapered hearth |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1809871A (en) * | 1928-12-31 | 1931-06-16 | Cerro De Pasco Copper Corp | Production of bismuth |
US1870470A (en) * | 1930-06-04 | 1932-08-09 | Cerro De Pasco Copper Corp | Concentration of bismuth alloy |
DE589738C (de) * | 1930-12-18 | 1933-12-13 | Berzelius Metallhuetten Ges M | Verfahren zur Gewinnung von Blei, Antimon oder Wismut |
DE590505C (de) * | 1931-03-08 | 1934-01-08 | Berzelius Metallhuetten Ges M | Verfahren zur Gewinnung von Blei, Antimon oder Wismut |
US2797158A (en) * | 1953-09-10 | 1957-06-25 | Metallgesellschaft Ag | Process for producing lead from lead sulfide containing materials |
CA893624A (en) * | 1969-10-27 | 1972-02-22 | J. Themelis Nickolas | Direct process for smelting of lead sulphide concentrates to lead |
US3941587A (en) * | 1973-05-03 | 1976-03-02 | Q-S Oxygen Processes, Inc. | Metallurgical process using oxygen |
LU75732A1 (enrdf_load_stackoverflow) * | 1976-09-06 | 1978-04-27 | ||
DE2807964A1 (de) * | 1978-02-24 | 1979-08-30 | Metallgesellschaft Ag | Verfahren zur kontinuierlichen konvertierung von ne-metallsulfidkonzentraten |
US4294433A (en) * | 1978-11-21 | 1981-10-13 | Vanjukov Andrei V | Pyrometallurgical method and furnace for processing heavy nonferrous metal raw materials |
-
1980
- 1980-08-06 DE DE19803029682 patent/DE3029682A1/de not_active Withdrawn
-
1981
- 1981-05-12 DE DE8181200502T patent/DE3161936D1/de not_active Expired
- 1981-05-12 EP EP81200502A patent/EP0045531B1/de not_active Expired
- 1981-05-12 AT AT81200502T patent/ATE5901T1/de not_active IP Right Cessation
- 1981-05-14 ZA ZA00813227A patent/ZA813227B/xx unknown
- 1981-05-25 IN IN553/CAL/81A patent/IN154428B/en unknown
- 1981-05-27 AR AR285462A patent/AR228272A1/es active
- 1981-05-27 ES ES502522A patent/ES502522A0/es active Granted
- 1981-06-19 US US06/275,560 patent/US4376649A/en not_active Expired - Lifetime
- 1981-07-17 YU YU1768/81A patent/YU42020B/xx unknown
- 1981-07-20 FI FI812264A patent/FI70730C/fi not_active IP Right Cessation
- 1981-07-31 ZM ZM69/81A patent/ZM6981A1/xx unknown
- 1981-08-03 PH PH25995A patent/PH17206A/en unknown
- 1981-08-04 MX MX188606A patent/MX155929A/es unknown
- 1981-08-05 AU AU73801/81A patent/AU544413B2/en not_active Ceased
- 1981-08-05 BR BR8105030A patent/BR8105030A/pt unknown
- 1981-08-05 MA MA19436A patent/MA19236A1/fr unknown
- 1981-08-05 KR KR1019810002845A patent/KR860000831B1/ko not_active Expired
- 1981-08-05 CA CA000383274A patent/CA1171288A/en not_active Expired
- 1981-08-05 PL PL23249581A patent/PL232495A2/xx unknown
- 1981-08-06 JP JP56123562A patent/JPS5757848A/ja active Granted
Also Published As
Publication number | Publication date |
---|---|
ATE5901T1 (de) | 1984-02-15 |
MA19236A1 (fr) | 1982-04-01 |
FI70730B (fi) | 1986-06-26 |
MX155929A (es) | 1988-05-24 |
DE3161936D1 (en) | 1984-02-23 |
KR860000831B1 (ko) | 1986-07-02 |
AU7380181A (en) | 1982-02-11 |
YU176881A (en) | 1983-09-30 |
DE3029682A1 (de) | 1982-03-11 |
KR830006453A (ko) | 1983-09-24 |
PL232495A2 (enrdf_load_stackoverflow) | 1982-04-13 |
AR228272A1 (es) | 1983-02-15 |
FI812264L (fi) | 1982-02-07 |
YU42020B (en) | 1988-04-30 |
JPS5757848A (en) | 1982-04-07 |
CA1171288A (en) | 1984-07-24 |
ES8203977A1 (es) | 1982-04-01 |
EP0045531A1 (de) | 1982-02-10 |
IN154428B (enrdf_load_stackoverflow) | 1984-10-27 |
US4376649A (en) | 1983-03-15 |
BR8105030A (pt) | 1982-04-20 |
ZA813227B (en) | 1982-06-30 |
JPH0158258B2 (enrdf_load_stackoverflow) | 1989-12-11 |
ZM6981A1 (en) | 1983-07-21 |
ES502522A0 (es) | 1982-04-01 |
PH17206A (en) | 1984-06-19 |
AU544413B2 (en) | 1985-05-23 |
FI70730C (fi) | 1986-10-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE3415813C2 (enrdf_load_stackoverflow) | ||
DE2710970C2 (de) | Verfahren zur Gewinnung von Roh- bzw. Blasenkupfer aus sulfidischem Kupferrohmaterial | |
DE2156041B2 (de) | Verfahren zum kontinuierlichen Schmelzen und Windfrischen von Kupferkonzentraten und Vorrichtung für dieses | |
DE2739963C2 (enrdf_load_stackoverflow) | ||
EP0003853B1 (de) | Verfahren zur kontinuierlichen Konvertierung von NE-Metallsulfidkonzentraten | |
DE2459832C3 (de) | Verfahren zur Gewinnung von Rohblei aus Materialien, die Blei im wesentlichen in Form von Oxyden und/oder Sulfaten enthalten | |
DE2253074C3 (de) | Verfahren zur pyrometallurgischen Behandlung von Feststoffen | |
DE2001450A1 (de) | Ein im Zusammenhang mit dem Schmelzen von Sulfiderzen anzuwendendes Verfahren | |
DE2941225A1 (de) | Verfahren und vorrichtung zur pyrometallurgischen gewinnung von kupfer | |
EP0045531B1 (de) | Verfahren zum kontinuierlichen direkten Schmelzen von metallischem Blei aus sulfidischen Bleikonzentraten | |
EP0171845B1 (de) | Verfahren und Vorrichtung zur kontinuierlichen pyrometallurgischen Verarbeitung von Kupferbleistein | |
DE3140260C2 (enrdf_load_stackoverflow) | ||
DE3212100A1 (de) | Verfahren und vorrichtung zur durchfuehrung pyrometallurgischer prozesse | |
DE69016593T2 (de) | Verfahren und Vorrichtung zum Behandeln von Zinkkonzentraten. | |
DE3115502C2 (enrdf_load_stackoverflow) | ||
DE2645585C3 (de) | Verfahren zur kontinuierlichen oder diskontinuierlichen Behandlung von geschmolzenen schwermetalloxidhaltigen Schlacken zur Freisetzung von Wertmetallen und/oder deren Verbindungen | |
EP0045532B1 (de) | Verfahren zum kontinuierlichen direkten Schmelzen von metallischem Blei aus schwefelhaltigen Bleimaterialien | |
DE2320548B2 (de) | Verfahren zum Verhütten von Blei | |
DE3639343A1 (de) | Verfahren und anlage zur pyrometallurgischen verhuettung von feinverteilten materialien | |
DE3207024C2 (de) | Verfahren zur Konzentrierung von Antimon- und Zinnoxiden aus Erzen oder sekundären Ausgangsmaterialien und eine hierfür geeignete Vorrichtung | |
DE3304884A1 (de) | Verfahren zur gewinnung von blei aus bleiglanz (bleisulfid) | |
EP0530893B1 (de) | Verfahren zum kontinuierlichen Erschmelzen von metallischem Blei | |
DE2303902C2 (de) | Verfahren zur Gewinnung von Sublimaten aus Zinn und gegebenenfalls weitere Buntmetalle enthaltenden Erzkonzentraten | |
DE69328780T2 (de) | Verfahren zur wiederaufbereitung bleihaltiger materialien | |
DE3233338C2 (de) | Verfahren zur Verarbeitung von sulfidischen Blei- oder Bleizink-Erzen oder deren Gemischen |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Designated state(s): AT BE DE FR GB IT SE |
|
17P | Request for examination filed |
Effective date: 19820209 |
|
RBV | Designated contracting states (corrected) |
Designated state(s): AT BE DE FR GB IT SE |
|
ITF | It: translation for a ep patent filed | ||
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Designated state(s): AT BE DE FR GB IT SE |
|
REF | Corresponds to: |
Ref document number: 5901 Country of ref document: AT Date of ref document: 19840215 Kind code of ref document: T |
|
REF | Corresponds to: |
Ref document number: 3161936 Country of ref document: DE Date of ref document: 19840223 |
|
ET | Fr: translation filed | ||
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 19840627 Year of fee payment: 4 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed | ||
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: AT Payment date: 19860327 Year of fee payment: 6 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Effective date: 19880512 Ref country code: AT Effective date: 19880512 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee | ||
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Effective date: 19890201 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: SE Payment date: 19930315 Year of fee payment: 13 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 19930319 Year of fee payment: 13 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: BE Payment date: 19930601 Year of fee payment: 13 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Effective date: 19940513 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Effective date: 19940531 |
|
BERE | Be: lapsed |
Owner name: METALL-G. A.G. Effective date: 19940531 |
|
EUG | Se: european patent has lapsed |
Ref document number: 81200502.3 Effective date: 19941210 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Effective date: 19950131 |
|
EUG | Se: european patent has lapsed |
Ref document number: 81200502.3 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST |