EP0042555B1 - Verfahren zur digitalen Hüllkurvensteuerung eines polyphonen Musiksyntheseinstruments und Schaltungsanordnung zur Durchführung des Verfahrens - Google Patents

Verfahren zur digitalen Hüllkurvensteuerung eines polyphonen Musiksyntheseinstruments und Schaltungsanordnung zur Durchführung des Verfahrens Download PDF

Info

Publication number
EP0042555B1
EP0042555B1 EP81104526A EP81104526A EP0042555B1 EP 0042555 B1 EP0042555 B1 EP 0042555B1 EP 81104526 A EP81104526 A EP 81104526A EP 81104526 A EP81104526 A EP 81104526A EP 0042555 B1 EP0042555 B1 EP 0042555B1
Authority
EP
European Patent Office
Prior art keywords
envelope
memory
read
address
curve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP81104526A
Other languages
English (en)
French (fr)
Other versions
EP0042555A1 (de
Inventor
Christian Jacques Dipl.-Ing. Deforeit
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Matth Hohner AG
Original Assignee
Matth Hohner AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matth Hohner AG filed Critical Matth Hohner AG
Priority to AT81104526T priority Critical patent/ATE7428T1/de
Publication of EP0042555A1 publication Critical patent/EP0042555A1/de
Application granted granted Critical
Publication of EP0042555B1 publication Critical patent/EP0042555B1/de
Expired legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10HELECTROPHONIC MUSICAL INSTRUMENTS; INSTRUMENTS IN WHICH THE TONES ARE GENERATED BY ELECTROMECHANICAL MEANS OR ELECTRONIC GENERATORS, OR IN WHICH THE TONES ARE SYNTHESISED FROM A DATA STORE
    • G10H1/00Details of electrophonic musical instruments
    • G10H1/02Means for controlling the tone frequencies, e.g. attack or decay; Means for producing special musical effects, e.g. vibratos or glissandos
    • G10H1/04Means for controlling the tone frequencies, e.g. attack or decay; Means for producing special musical effects, e.g. vibratos or glissandos by additional modulation
    • G10H1/053Means for controlling the tone frequencies, e.g. attack or decay; Means for producing special musical effects, e.g. vibratos or glissandos by additional modulation during execution only
    • G10H1/057Means for controlling the tone frequencies, e.g. attack or decay; Means for producing special musical effects, e.g. vibratos or glissandos by additional modulation during execution only by envelope-forming circuits
    • G10H1/0575Means for controlling the tone frequencies, e.g. attack or decay; Means for producing special musical effects, e.g. vibratos or glissandos by additional modulation during execution only by envelope-forming circuits using a data store from which the envelope is synthesized

Definitions

  • the invention relates to a method for digital envelope control of a polyphonic music synthesis instrument and a circuit arrangement for carrying out the method.
  • Digitally operating electronic musical instruments so-called music synthesis instruments, are known and described, for example, in FR-A No. 7915337 and No. 8003892. They are based on the principle of synthesizing the frequencies to be heard by scanning phase counters and integrating the output pulses. This allows the audible frequencies to be generated polyphonically, although it can be assumed that eight tones can be played on the instrument at the same time. Sound is understood to mean a single fundamental frequency plus the harmonic content which is typical of a traditional musical instrument to be simulated, for example.
  • the harmonic component can include up to eight or even ten harmonics, and the individual frequencies are to be referred to here and below as single tones. A tone with five harmonic components accordingly comprises six single tones.
  • the harmonic content is not the only criterion to be taken into account.
  • the course of the envelope curve is equally significant, ie the attack and decay, which in turn is typical of individual traditional musical instruments to be simulated; there are not only characteristic amplitude transitions, but also frequency variations, for example the typical vibrato in stringed instruments.
  • a music synthesis instrument should therefore be able to generate up to 200 and more different envelopes at the same time in order to realize all misical possibilities and desires.
  • an envelope is generated for the attack and decay of only a single tone, while the other single tones played at the same time remain unaffected in terms of amplitude and frequency.
  • the number of envelope circuits is multiplied accordingly.
  • the object of the present invention is to enable the simulation of such a process in a method according to the preamble of patent claim 1.
  • the invention also relates to a circuit arrangement which enables the method to be carried out using relatively simple means.
  • the characterizing part of claim 1 or claim 4 names the features provided according to the invention for solving this problem.
  • a single tone is of course a sine wave; a tone consisting of a fundamental vibration (single tron) and harmonics then has rectangular, triangular or other pulse shapes, which are not discussed here; rather, only the change in the respective peak amplitude is shown in the diagrams.
  • the pitching and decaying of a tone normally follows an exponential function, since it is a matter of simulating settling processes that can take place periodically (vibraphone) or aperiodically.
  • the envelopes that are shown and to be generated have nothing to do with the volume that the player may be able to change at will, which would rather change the ordinate scale of the diagrams.
  • Fig. 1 a The simplest case is shown in Fig. 1 a. From time A onwards, the amplitude increases, following an exponential function in the aperiodic limit case, that is to say in accordance with a first envelope curve A, up to the maximum amplitude H. The amplitude remains at this value until time R, from which the amplitude, again following an aperiodic exponential profile of the envelope R, drops to zero.
  • A, and R may be mirror images similar, they are stored separately in read-only memory.
  • Diagram 1b shows the case in which the memory already triggers the end command before the attack envelope has been run through to the nominal value H of the amplitude.
  • the result is a shortened attack envelope A 2 , which may not, however, be followed by the retardation envelope R, since this would result in a jump in amplitude. Rather, the envelope curve A 2 must pass at least approximately exactly into a correspondingly shortened decay envelope curve R 2 . How this is done will be explained below.
  • 1 c shows an attack envelope A 3 , as is typical for a piano: the amplitude jumps to a maximum value and then drops according to an exponential function. When the player releases the piano key, the vibration is damped and curve A 3 must transition to the decay envelope R 3 without an amplitude jump. This is a special case of diagram 1 b.
  • FIG. 1 e Another form of the envelope curve A 6 with overshoot is shown in Fig. 1 e; this course is typical of brass.
  • Fig. 1g finally shows a decay envelope form A s , which actually consists of the repeated repetition of one and the same curve form, which can be recognized as A 3 with a shortened time scale.
  • the circuit arrangement shown in FIG. 4 makes it possible to actually save only the curve shape A 3 and to repeat it several times.
  • This attack envelope occurs, for example, with instruments such as mandolin or banjo.
  • the associated decay envelope R 6 is the extension of the decay envelope A 6 to zero, starting from the amplitude value reached at R in each case.
  • FIGS. 2a to 2d represent the audio frequency in its temporal course.
  • the same applies analogously to what was already stated for the scales in FIG. 1; it also applies here that the externally specified time scales can be used to call up the frequency swings recorded in the read-only memory at one and the same memory address.
  • FIG. 2a shows an attack envelope A 7 , in which the frequency f oscillates with a gradually increasing stroke around a carrier frequency f o . After a maximum stroke f max has been reached , the process is repeated as long as the sound is stored: so-called normal delayed vibrato. As will be explained with reference to FIG. 4, it is also possible in this case to implement this envelope repetition with simple circuit measures.
  • FIG. 2b shows an envelope curve A 8 typical for guitars: starting from a frequency which is slightly too high compared to the nominal frequency f o , this gradually falls to the value f o , which is followed by a similar curve as shown in FIG. 2a.
  • 2c shows the approximately reversed course A 9 of the frequency when blowing on a brass instrument.
  • FIG. 2d finally shows the chorus effect, that is to say the simultaneous sounding A of several nominally identical, but in reality slightly slightly detuned vibrations.
  • FIG. 3 shows, as three examples, further possible effects.
  • FIG. 3a shows the so-called Lesley effect which arises when a loudspeaker is driven to circulate. The listener then has the impression that the frequency oscillates around the nominal frequency with a stroke f L in the sine curve.
  • this effect can also be brought about by means of envelope control, in that two audio channels are controlled with a 180 ° phase shift and the frequency deviation f L is introduced as a frequency modulation envelope. Envelope repetition is also possible with the circuit arrangement according to FIG. 4.
  • FIG. 3b shows that this Lesley effect can also be implemented in a time-variable manner in accordance with the simulated start-up and run-down of a rotating loudspeaker, the frequency deviation F L also having to be varied.
  • the harmony of several stringed instruments for example several guitars or a piano, in which several keys are assigned to each key, can be simulated by introducing a phase shift of 120 ° for the frequency modulation of each individual tone.
  • This is also with the envelope control according to the Erfin to implement, again using the envelope repetition technique.
  • Fig. 4 shows a block diagram of a circuit arrangement with which the method according to the invention can be carried out. It is assumed that there is a music synthesis instrument, for example according to the FR-A mentioned at the outset, with circuits in which a phase counter block is assigned to each individual tone and digital signals AM P or FRE can determine the respective envelope of the respective individual block with regard to amplitude or frequency.
  • the single tone blocks work in time multiplex.
  • the signals generated by the circuit arrangement according to the invention include the number of the synthesis block in question (ie its address) and the envelope data AMP / FRE to be transmitted to this block (this address).
  • Known parts of a music synthesis instrument are also provided on the input side of the circuit arrangement according to the invention, namely the operating elements for the player, such as manuals, pedals, switches, buttons, register adjusters and so on, as well as coding circles which result from the switch positions effected by these elements form associated control signals.
  • the control signals are transmitted directly to the synthesis blocks, they can be disregarded here since they are not essential to the invention.
  • the signals that are to be supplied to the envelope control according to the invention must be explained.
  • each random memory has 256 memory locations, all of which have homologous addresses.
  • the addresses are the numbers of the corresponding sound synthesis circuit blocks.
  • the four-microsecond cycle was determined in consideration of the fact that for a musically satisfactory envelope curve development, an envelope curve sample value has to be recalculated approximately every millisecond; this means that the 256 memory locations of the random memories should all be addressed once within this millisecond. This is almost achieved with four microseconds. With modern circuit components, this clock will be regarded as relatively slow.
  • the addresses (AD) or the addresses output by the counter 18 run via a multiplexer 21 which has a control input SE. It must be avoided that data is entered simultaneously because of AD and data is called up because of the counter addressing. For this reason, a comparator 22 generates a BUSY signal for signals coming simultaneously from the counter 18 and from AD, which then blocks the multiplexer 21 for counter addressing via the control logic unit 20.
  • the binary words which have been entered as INT are stored in the random access memory 10.
  • the random addresses 12 store the current addresses of envelope sample values stored in a read-only memory 24, specifically in the section HK-CT indicated on the left, where the address amounts of the read-only memory are renewed to the left of the comma.
  • the address fractions of the read-only memory are continuously adjusted to the right of the comma.
  • this desired real-time is stored in random memory 10 in the form of an address fraction, that is to say as a complement.
  • the envelope should last twice as long as the number of samples in the read-only memory on the one hand and the number of samples in the read-only memory on the other hand, the next sample is not called up for the next address pulse for this memory location, but only for the next but one, and so on .
  • the circuit naturally works in the binary system, it is more descriptive to illustrate this sequence with decimal numbers.
  • the fractional part 0.25 is stored in the random access memory 10, which according to the above means that the envelope curve should last four times longer than normal.
  • this variable is fed to an arithmetic logic unit 26 as an input. Its other input is the current value of HK-BR in the random access memory 12.
  • the logic unit adds the fractional values, and the result of the addition is again entered as content into the random access memory 12 via the multiplexer 28, where to the right of the comma one by one from the random access memory 10 extracted value, a larger fraction is registered.
  • the addresses of the envelope curve samples in the fixed value memory 24, however, are integers.
  • the next address for the read-only memory - in section HK-BR of the random access memory 12 - will only appear after the address 18 has been addressed four times, which means that a changed sample value is only called up from the read-only memory after about four milliseconds , this is then called up four times in succession, only then the new address value is entered and so on.
  • the start address of the read-only memory, under which the start of the envelope in question is stored, is of course first entered into the random access memory 12 (signal H K-IN), specifically via the multiplexer 28 under the control of the MU by the control logic unit 20, which in turn is based on the MAN signal reacts.
  • the multiplexer 28 is designed as a three-channel multiplexer. In fact, read-only memory addresses can be input back to the HK-BR section of the random access memory 12 from the read-only memory 24 itself.
  • the read-only memory 24 is addressed and gives on the line 32
  • the stored data have the meaning of a read-only memory address if they are transmitted to line memory 34 via line branch 34 and via multiplexer 28.
  • the read-only values in read-only memory 24 are the envelope curve or - in the case of frequency modulation - the modulation stroke values.
  • a signal EN is also output when an envelope has been completely called up from the read-only memory; this end signal causes the logic unit 20 to delete the memory locations at the relevant address, after which - depending on the level of MAN - either the unmodulated tone continues to sound or the relevant single tone is no longer generated.
  • unmodulated only relates to envelope modulation introduced by the circuit of FIG. 4; elsewhere in the overall circuit, other modulation of a continuous tone can also be carried out.
  • this envelope data is fed to a two's complement binary adder 38.
  • the envelope data are unsigned sample values in the case of pure amplitude modulation, and signed stroke values in the case of frequency modulation. Since the addition circuit 38 is signaled via line 40 whether frequency modulation is present or not - the associated carrier frequencies f o for each of the 256 envelopes to be generated (FR-IN) or zero, if only amplitude modulation is required, appear in the random access memory 16 at its output the envelope values belonging to the respective single tone. These are to be fed to the amplitude modulation or frequency modulation blocks of the synthesis circuit. The assignment is carried out by the control logic unit 20, to which a signal AM is then supplied via a gate 42 only when it is about amplitude modulation.
  • the last sample value of the terminating envelope curve must therefore be recorded and that memory location of the continuing envelope curve must be sought in the read-only memory 24 where an at least approximately the same sample value is present; the associated address must then be entered as the starting address in the random access memory 12.
  • the circuit arrangement according to FIG. 4 has the random memory 14, in which the current sample value VL, which is present after the adding circuit 38, is written for the memory location addressed in each case by counter 18.
  • the same value VL is at an input of a comparator 50, at the other input of which is the immediately preceding value VL ', which is called up from the corresponding memory location when addressed by counter 18.
  • the comparator delivers a logic signal at its output, here designated VLK, as long as the later sample value VL is smaller than the previous sample value VL '. This logic signal is fed to the control logic unit 20.
  • the control logic unit only requires this information at the point in time when a jump in the MAN signal signals that a new envelope is required. It is initially assumed that a decay envelope is to be terminated by changing the MAN from 1 to zero and to continue with a decay envelope. HK-IN then enters the associated read-only memory address, under which - as the initial sample value of an attack envelope - the sample value zero is called up. This appears after adding circuit 38 as a new value VL. However, since the word VL 'previously stored in random storage 14 originates from the aborted decay envelope and is therefore larger, the comparator 50 outputs the logic signal VLK.
  • control logic unit 20 This now causes the control logic unit 20 to generate a control logic signal OP, which transmits the command to the arithmetic logic unit 26 to increase the stored address HK-CT of the read-only memory by one.
  • This process is repeated with the system clock until the logic signal VLK changes VLK because the comparator 50 can no longer determine a difference in size.
  • the address H K-CT at this point in time in the random access memory 12 is then the start address of the continuing envelope.
  • the complementary logic level VLK must initiate the catch-up process; the control logic unit 20 can make this distinction because it differentiates between jumps 0-1 and 1-0 for the MAN input.
  • FIGS. 5a and 5b summarize the processes described again.
  • FIG. 5c shows the sequence when clocking counter 18 for the normal case; the associated explanation has already been given above.
  • the organization of the read-only memory 24 is indicated schematically in FIG. 6.
  • the envelope samples are drawn as analog equivalents, although of course they are actually binary words. From top to bottom, the envelope curves of slow response, decay, percussion with repetition and delayed vibrato with repetition are shown as examples.
  • the first bit is the logic signal REp, the second bit the logic signal EN.
  • the dash-dotted arrows in FIG. 6 indicate the address to which, for example, to return.
  • the address at which an envelope curve begins is - as explained above - entered externally as HK-IN.
  • control logic unit can comprise a further read-only memory 60, to which the above-mentioned logic signals are supplied as addresses and which is queried via a sequence register 62, which in turn is switched on by the system clock and into which the logic sequence to be run from the read-only value memory itself is entered.
  • the control signals required by the logic unit are then called up at its addresses.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Acoustics & Sound (AREA)
  • Multimedia (AREA)
  • Electrophonic Musical Instruments (AREA)

Description

  • Die Erfindung betrifft ein Verfahren zur digitalen Hüllkurvensteuerung eines polyphonen Musiksyntheseinstruments sowie eine Schaltungsanordnung zur Durchführung des Verfahrens.
  • Digital arbeitende elektronische Musikinstrumente, sogenannte Musiksyntheseinstrumente, sind bekannt und beispielsweise beschrieben in den FR-A Nr. 7915337 und Nr. 8003892. Sie beruhen auf dem Prinzip, die zu Gehör zu bringenden Frequenzen durch Abstastung von Phasenzählern und Integration der Ausgangsimpulse zu synthetisieren. Damit lassen sich die hörbaren Frequenzen polyphon erzeugen, wobei man davon ausgehen kann, dass auf dem Instrument gleichzeitig acht Töne spielbar sein können. Unter Ton soll dabei eine einzelne Grundfrequenz plus dem Oberwellengehaltverstanden werden, der für ein beispielsweise zu simulierendes traditionelles Musikinstrument typisch ist. Der Oberwellenanteil kann bis zu acht oder sogar zehn Harmonische umfassen, und die Einzelfrequenzen sollen hier und im folgenden als Einzeltöne bezeichnet werden. Ein Ton mit fünf Oberwellenanteilen umfasst demgemäss sechs Einzeltöne.
  • Der Oberwellengehalt ist jedoch nicht das alleinige zu berücksichtigende Kriterium. Ebenso bedeutsam ist der Verlauf der Hüllkurve, also das Anklingen und Abklingen, das wiederum typisch ist für einzelne zu simulierende traditionelle Musikinstrumente; dabei gibt es nicht nur charakteristische Amplitudentransitionen, sondern auch Frequenzvariationen, zum Beispiel das typische Vibrato bei Saiteninstrumenten.
  • Von einem Musiksyntheseinstrument sollten daher bis zu 200 und mehr unterschiedliche Hüllkurven gleichzeitig erzeugt werden können, um alle misikalischen Möglichkeiten und Wünsche zu verwirklichen.
  • Bei einigen bisher bekannten Musiksyntheseinstrumenten erzeugt man eine Hüllkurve für das Anklingen und Abklingen nur eines Einzeltones, während die übrigen gleichzeitig gespielten Einzeltöne hinsichtlich Amplitude und Frequenz unbeeinflusst bleiben. Um auch für die übrigen Einzeltöne Hüllkurven zu erzeugen, wird die Zahl der Hüllkurvenschaltkreise entsprechend vervielfacht.
  • In der als DE-A Nr. 3003385 veröffentlichten älteren deutschen Patentanmeldung wird ein elektronisches Musikinstrument beschrieben, bei dem digital Hüllkurven mittels Verfahrensschritten erzeugt werden, wie sie im Oberbegriff des Patentanspruchs 1 genannt sind. Dies ermöglicht eine erhebliche Verringerung der Anzahl der Komponenten, obwohl doch eine grosse Anzahl von Einzeltönen hinsichtlich ihrer Hüllkurve unabhängig voneinander steuerbar sind.
  • Beim Spielen eines Musikinstruments kommt es häufig vor, dass eine gerade erklingende Hüllkurve abgebrochen wird und dafür eine neue Hüllkurve zu erzeugen ist. Wird beispielsweise ein Ton nur kurz angespielt, so wird seine Anklinghüllkurve begonnen, soll aber sofort wieder in eine Abkling- hüllkurve übergehen, ohne dass dazwischen eine bei längerem Aushalten des Tons vorgesehene Endamplitude erreicht wird. Die Simulation eines solchen Vorgangs bei einem Verfahren gemäss dem Oberbegriff des Patentanspruchs 1 zu ermöglichen, ist die Aufgabe der vorliegenden Erfindung. Gegenstand der Erfindung ist auch eine Schaltungsanordnung, die die Durchführung des Verfahrens mit relativ einfachen Mitteln ermöglicht.
  • Der kennzeichnende Teil des Patentanspruchs 1 bzw. des Patentanspruchs 4 nennt die erfindungsgemäss zur Lösung dieser Aufgabe vorgesehenen Merkmale.
  • Die Wirkungsweise des Gegenstandes der Erfindung lässt sich am besten unter Bezugnahme auf die beigefügten Zeichnungen erläutern.
    • Fig. 1a-1g zeigen Beispiele für Hüllkurven mit zeitabhängiger Amplitudenänderung, wie sie bei elektronischen Musikinstrumenten häufig gewünscht werden;
    • Fig. 2a-2d zeigen Beispiele für Hüllkurven mit zeitabhängiger Frequenzänderung, wie sie bei elektronischen Musikinstrumenten häufig gewünscht werden;
    • Fig. 3a-3c zeigen weitere Beispiele für Hüllkurven, die typischerweise bei elektronischen Musikinstrumenten gewünscht werden;
    • Fig. 4 stellt ein Blockschaltbild einer Schaltungsanordnung dar, mittels der die in Fig. 1 bis 3 dargestellten Hüllkurven erzeugt werden können;
    • Fig. 5a-5c sind Flussdiagramme zur Erläuterung der Schaltung nach Fig. 4;
    • Fig. 6 stellt schematisch den Speicherinhalt des Festwertspeichers aus Fig. 4 dar, und
    • Fig. 7 zeigt schematisch die Blockschaltung der Steuerlogik.
  • In Fig. 1 a bis 1 g ist die Amplitude eines Einzeltones über der Zeit aufgetragen dargestellt. Dabei stellt ein Einzelton natürlich eine Sinusschwingung dar; ein aus einer Grundschwingung (Einzeltron) und Oberwellen bestehender Ton hat dann Rechteck-, Dreieck- oder sonstige Impulsformen, die aber hier nicht zur Diskussion stehen; dargestellt ist in den Diagrammen vielmehr nur die Änderung der jeweiligen Spitzenamplitude. Es ist ferner daran zu erinnern, dass das Anklingen und Abklingen eines Tones normalerweise einer Exponentialfunktion folgt, da es sich ja um die Simulation von Einschwingvorgängen handelt, die periodisch verlaufen können (Vibraphon) oder aperiodisch. Schliesslich ist daran zu erinnern, dass die dargestellten und zu erzeugenden Hüllkurven nichts mit der vom Spieler gegebenenfalls willkürlich veränderbaren Lautstärke zu tun haben, diese vielmehr allenfalls den Ordinatenmassstab der Diagramme verändern würde.
  • Was den Abszissenmassstab angeht, also die Zeitdauer eines Einschwingvorgangs, so ist dieser für verschiedene zu simulierende Instrumente durchaus unterschiedlich und kann auch für die Einzeltöne, aus denen ein (Gesamt-)Ton besteht, unterschiedlich sein. Es sei bereits hier angemerkt, dass ein wesentlicher Vorteil des Gegenstandes der Erfindung darin liegt, dass in dem Festwert- speicher tatsächlich nur die Hüllkurvenform gespeichert zu werden braucht, während die zugehörige Zeitdauer ihres Durchlaufs je nach dem zu simulierenden Instrument extern vorgegeben wird. Damit wird erheblich an Speicherkapazität gespart.
  • In den Diagrammen ist daher kein Massstab eingetragen, weder für Abszisse noch für Ordinate. Nur die Zeitpunkte, zu denen ein Auslösebefehl für eine Hüllkurve vom Spieler gegeben wird, sind markiert, wobei A den Zeitpunkt des Beginns eines Einzeltons angibt und R den Zeitpunkt des Endes. Beginn bedeutet dabei die Betätigung des zugehörigen Organs durch den Spieler, etwa das Niederdrücken einer Taste, und Ende bedeutet, dass die Betätigung aufhört, also etwa die Taste losgelassen wird. Beide Befehle A und R lösen jeweils eine unterschiedliche Hüllkurve aus.
  • Der einfachste Fall ist in Fig. 1 a gezeigt. Vom Zeitpunkt A an steigt die Amplitude, einer Exponentialfunktion im aperiodischen Grenzfall folgend, also entsprechend einer ersten Hüllkurve A,, bis auf die Maximalamplitude H an. Die Amplitude bleibt auf diesem Wert bis zum Zeitpunkt R, von dem aus die Amplitude, wiederum gemäss einem aperiodischen Exponentialverlauf der Hüllkurve R, folgend, auf Null abfällt. Obwohl A, und R, spiegelbildlich ähnlich sein können, werden sie getrennt im Festwertspeicher gespeichert.
  • Das Diagramm 1 b zeigt den Fall, dass der Speicher den Befehl Ende bereits auslöst, bevor die Anklinghüllkurve bis zum Nominalwert H der Amplitude durchlaufen worden ist. Es ergibt sich eine verkürzte Anklinghüllkurve A2, der aber nicht etwa die Abklinghüllkurve R, folgen darf, da sich dann ein Amplitudensprung ergäbe. Vielmehr muss die Hüllkurve A2 mindestens annähernd genau in eine entsprechend verkürzte Abklinghüllkurve R2 übergehen. Wie dies bewirkt wird, soll weiter unten erläutert werden.
  • Fig. 1 c zeigt eine Anklinghüllkurve A3, wie sie etwa typisch ist für ein Klavier: Die Amplitude steigt sprunghaft auf einen Maximalwert und fällt dann gemäss einer Exponentialfunktion ab. Lässt der Spieler die Klaviertaste los, so wird die Schwingung gedämpft, und die Kurve A3 muss - ohne Amplitudensprung - in die Abklinghüllkurve R3 übergehen. Dies ist ein Sonderfall des Diagramms 1 b.
  • Ähnlich liegen die Verhältnisse, wenn ein beendeter Ton erneut begonnen wird, bevor seine Abklinghüllkurve vollständig durchlaufen ist: Wie Fig. 1 d zeigt, muss dann die Abklinghüllkurve R4 zumindestens annähernd amplitudengleich in die Anklinghüllkurve A4 übergehen.
  • Eine andere Form der Hüllkurve A6 mit Überschwingung ist in Fig. 1 e dargestellt; dieser Verlauf ist typisch für Blechbläser.
  • Fig. 1 zeigt eine Abklinghüllkurve R6 mit Subaudio-Amplitudenmodulation: Diese Hüllkurve wird für Vibraphon benötigt.
  • Fig. 1g schliesslich zeigt eine Abklinghüllkurvenform As, die eingentlich aus der mehrmaligen Wiederholung einundderselben Kurvenform, die man als A3 mit verkürztem Zeitmassstab wiedererkennt, besteht. Die in Fig. 4 dargestellte Schaltungsanordnung ermöglicht, tatsächlich nur die Kurvenform A3 zu speichern und diese mehrmals zu wiederholen. Diese Anklinghüllkurve tritt beispielsweise bei Instrumenten wie Mandoline oder Banjo auf. Die zugehörige Abklinghüllkurve R6 ist die Verlängerung der Anklinghüllkurve A6 bis auf Null, ausgehend vom jeweils bei R erreichten Amplitudenwert.
  • Die Diagramme in Fig. 2a bis 2d stellen die Audiofrequenz in ihrem zeitlichen Verlauf dar. Hinsichtlich des Zeitmassstabes und des Frequenzhubes gilt sinngemäss dasselbe, was zu den Massstäben in Fig. 1 bereits festgehalten wurde; es gilt auch hier, dass die jeweils extern vorgegebenen Zeitmassstäbe den Abruf der im Festwertspeicher unter einundderselben Speicheradresse festgehalten Frequenzhübe dienen kann.
  • Fig. 2a zeigt eine Anklinghüllkurve A7, bei der die Frequenz f mit allmählich zunehmendem Hub um eine Trägerfrequenz fo pendelt. Nach Erreichen eines maximalen Hubes fmax wiederholt sich der Verlauf solange, wie der Ton gespeichert wird: Sogenanntes normales verzögertes Vibrato. Wie anhand der Fig. 4 noch zu erläutern, ist es auch in diesem Falle möglich, diese Hüllkurvenrepetition mit einfachen Schaltungsmassnahmen zu realisieren.
  • Fig. 2b stellt einen für Gitarren typischen Hüllkurvenverlauf A8 dar: Ausgehend von einer geringfügig gegenüber der Nominalfrequenz fo zu hohen Frequenz fällt diese allmählich auf den Wert fo, wonach sich ein ähnlicher Verlauf wie in Fig. 2a dargestellt anschliesst. Fig. 2c zeigt den in etwa umgekehrten Verlauf A9 der Frequenz beim Anblasen eines Blechblasinstruments. Fig. 2d schliesslich zeigt den Choruseffekt, das heisst das gleichzeitige Erklingen A, mehrerer nominell gleichgestimmter, in Wirklichkeit aber geringfügig gegeneinander verstimmter Schwingungen.
  • Fig. 3 schliesslich stellt als drei Beispiele weitere mögliche Effekte dar. Fig. 3a zeigt den sogenannten Lesley- Effekt, der entsteht, wenn ein Lautsprecher zum Umlauf angetrieben wird. Der Höhrer hat dann den Eindruck, als würde die Frequenz mit einem Hub fL im Sinusverlauf um die Nominalfrequenz pendeln. Dieser Effekt kann aber auch mittels Hüllkurvensteuerung hervorgerufen werden, indem zwei Audiokanäle mit 180° Phasenverschiebung angesteuert werden und der Frequenzhub fL als Frequenzmodulations- Hüllkurve eingeführt wird. Die Hüllkurvenrepetition ist ebenfalls mit der Schaltungsanordnung nach Fig. 4 möglich. Fig. 3b zeigt, dass dieser Lesley- Effekt auch zeitlich variabel realisiert werden kann entsprechend dem simulierten Anlauf und Auslauf eines rotierenden Lautsprechers, wobei auch der Frequenzhub FL variiert werden muss.
  • In ähnlicher Weise kann man gemäss Fig. 3c den Zusammenklang mehrerer Saiteninstrumente, etwa nehrerer Gitarren oder eines Klaviers, bei dem ja jeder Taste mehrere gleichgestimmte Saiten zugeordnet sind, simulieren, indem für die Frequenzmodulation jedes Einzeltones eine Phasenverschiebung um 120° eingeführt wird. Auch dies ist mit der Hüllkurvensteuerung gemäss der Erfindung zu realisieren, wobei wiederum von der Hüllkurvenrepetitionstechnik Gebrauch gemacht wird.
  • Fig. 4 zeigt in Blockdarstellung eine Schaltungsanordnung, mit der das Verfahren gemäss der Erfindung ausführbar ist. Dabei wird vorausgesetzt, dass ein Musiksyntheseinstrument etwa nach den eingangs genannten FR-A vorliegt mit Schaltkreisen, bei denen jedem Einzelton ein Phasenzählerblockzugeordnet ist und digitale Signale AM P bzw. FRE die jeweilige Hüllkurve des betreffenden Einzelblocks hinsichtlich Amplitude bzw. Frequenz festlegen können. Die Einzeltonblöcke arbeiten im Zeitmultiplex.
  • Da dieser Teil der Schaltungsanordnung mithin selbst bekannt ist und keinen Teil der vorliegenden Erfindung bildet, ist er auch in Fig. 4 nicht dargestellt und rechts jenseits der strichpunktierten Linie zu denken; die von der erfindungsgemässen Schaltungsanordnung erzeugten Signale umfassen die Nummer des betreffenden Syntheseblocks (also dessen Adresse) und die jeweils an diesen Block (diese Adresse) zu übertragenden HüllkurvendatenAMP/FRE.
  • Auf der Eingangsseite der erfindungsgemässen Schaltungsanordnung sind ebenfalls an sich bekannte Teile eines Musiksyntheseinstruments vorgesehen, nämlich die Bedienungsorgane für den Spieler, wie Manuale, Pedale, Schalter, Knöpfe, Registereinsteller und so weiter, sowie Kodierkreise, die aus den jeweils mittels dieser Organe bewirkten Schalterstellungen die zugehörigen Steuersignale bilden. Soweit diese Steuersignale direkt zu den Syntheseblöcken übertragen werden, können sie hier ausser acht bleiben, da sie für die Erfindung nicht wesentlich sind. Wohl aber sind die Signale zu erläutern, die dererfindungsgemässen Hüllkurvensteuerung zuzuführen sind.
  • Für die Hüllkurvensteuerung werden die folgenden Eingangsdaten benötigt:
    • AD: Dies ist die laufende Adresse, die bestimmt, welcher Syntheseblock N R im gegebenen Zeitpunkt des Zeitmultiplexrahmens die Steuersignale von der Hüllkurvensteuerschaltung erhalten muss.
    • INT: Dieser Digitalwert legt das Realzeit-Intervall fest, innerhalb dessen eine vorgegebene (gespeicherte) Hüllkurvenform zu durchlaufen ist, das heisst, mit diesem Signal wird der Abszissenmassstab für die Abläufe gemäss Fig. 1 -3 bestimmt.
    • FR-IN: Dieser Digitalwert definiert die Frequenz fo im Falle von Frequenzmodulations-Hüllkurven. In einfacher Weise dient dieser Eingang auch dazu, überhaupt zwischen Frequenz- und reiner Amplitudenmodulation zu unterscheiden: Die Schaltung ist so ausgelegt, dass bei FR-IN gleich Null nur Amplitudenmodulation erfolgt.
    • HK-IN: Dieser Digitaiwertgibtan, weiche Hüllkurvenform zur Anwendung gelangen soll. Wie später noch zu erläutern, hat er die Form einer Festwertspeicher-Adresse, unter der der Beginn der Hüllkurvenabtastung abgespeichert ist.
    • MAN: Dieses Signal gibt an, ob ein bestimmter Einzelton erzeugt werden soll oder nicht. Die Schaltung ist so ausgelegt, dass dieses Signal logisch -0 ist, wenn der Ton erzeugt werden soll, und auf logisch -1 geht, wenn er enden soll. Das bedeutet, dass der Sprung 0-1 das Kommando für eine Abkling-Hüllkurve bedeutet und der Sprung 1 -0 das Kommando für eine Anklinghüllkurve.
    • EAS: Dies sind die Anschlüsse für Eingangs-und Ausgangssignale der Steuerlogik für die Schaltungsanordnung.
  • MitAD werden vier Randomspeicher 10,12,14 und 16 adressiert. Die vier Randomspeicher haben eine Speicherkapazität gleich der oder grösser als die Zahl der gleichzeitig zu erzeugenden Hüllkurven; wie oben ausgeführt, kann diese Zahl grösser als zweihundert sein. Im Ausführungsbeispiel weist jeder Randomspeicher 256 Speicherplätze auf, die alle homologe Adressen besitzen. Die Adressen sind die Nummern der entsprechenden Tonsynthese-Schaltungsblöcke.
  • Erfolgt die Adressierung der Randomspeicher durch AD, so können unter den betreffenden Adressen extern zugeführte Daten entsprechend INT, FR-IN, HK-CT (noch zu erläutern) eingegeben werden. Der Datenabruf erfolgt dagegen bei Adressierung durch einen Zähler 18, der in regelmässigen Zeitintervallen von - im Ausführungs- beispie!―4 Mikrosekunden getaktet wird. Dieser Takt soll als Hüllkurventakt bezeichnet werden zum Unterschied vom Systemtakt, der an der Steuerlogikeinheit 20 liegt und auf dem der Zeitmultiplex des Gesamtinstruments beruht; der Systemtakt arbeitet im Ausführungsbeispiel mit etwa 500 Nanosekunden. Von beiden Werten kann natürlich abgewichen werden. Der Vier-Mikrosekunden-Takt wurde in der Erwägung festgelegt, dass für eine musikalisch befriedigende Hüllkurvenentwicklung etwa alle Millisekunden ein Hüllkurvenabtastwert neu berechnet werden muss; das heisst, dass die 256 Speicherplätze der Randomspeicher innerhalb dieser Millisekunde sämtlich einmal adressiert werden sollen. Mit vier Mikrosekunden wird dies annähernd verwirklicht. Mit modernen Schaltungskomponenten wird dieser Takt als relativ langsam anzusehen sein.
  • Die extern (AD) bzw. vom Zähler 18 ausgegebenen Adressen laufen über einen Multiplexer 21, der einen Steuereingang SE aufweist. Es muss nämlich vermieden werden, dass gleichzeitig wegen AD Daten eingegeben werden und wegen der Zähleradressierung Daten abgerufen werden. Deshalb wird mittels Komparator 22 bei gleichzeitig vom Zähler 18 und von AD kommenden Signalen ein BELEGT-Signal erzeugt, das über die Steuerlogikeinheit 20 dann den Multiplexer 21 für die Zähleradressierung sperrt.
  • Im Randomspeicher 10 werden die Binärworte abgespeichert, welche als INT eingegeben worden sind. Im Randomspeicher 12 werden die laufenden Adressen von in einem Festwertspeicher 24 abgespeicherten Hüllkurven-Abtastwerten gespeichert, und zwar im links angedeuteten Abschnitt HK-CT, wo die Adressenbeträge des Festwertspeichers links vom Komma erneuert werden. Im rechten Abschnitt HK-BR dagegen werden die Adressenbruchteile des Festwertspeichers rechts vom Komma laufend nachgestellt. Um nun die nur einmal im Festwertspeicher vorliegenden Hüllkurvenabtastwerte mit unterschiedlichen Realzeit-Intervallen gemäss INT zu reproduzieren, wird im Randomspeicher 10 diese gewünschte Realzeit in Form eines Adressen-Bruchteils gespeichert, also als Komplement. Soll beispielsweise die Hüllkurve doppelt so lange dauern wie sonst durch den Takt des Zählers 18 einerseits, die Zahl der Abtastwerte im Festwertspeicher andererseits vorgegeben, so wird der nächste Abtastwert nicht auch beim nächsten Adressenimpuls für diesen Speicherplatz abgerufen, sondern erst beim übernächsten, und so weiter. Obwohl selbstverständlich die Schaltung im Binärsystem arbeitet, ist es anschaulicher, diesen Ablauf mit Dezimalzahlen zu verdeutlichen.
  • Im Randomspeicher 10 sei der Bruchteil 0,25 gespeichert, was nach obigem bedeutet, dass die Hüllkurve viermal länger als normal dauern soll. Bei Adressierung durch Zähler 18 wird diese Grösse einer arithmetischen Logikeinheit 26 als ein Eingang zugeführt. Ihr anderer Eingang ist der laufende Wert von HK-BR im Randomspeicher 12. Die Logikeinheit addiert die Bruchteilwerte, und das Ergebnis der Addition wird über den Multiplexer 28 wieder als Inhalt in den Randomspeicher 12 eingegeben, wo rechts vom Komma dann ein um den aus Randomspeicher 10 entnommenen Wert vergrösserter Bruchteil eingeschrieben wird. Die Adressen der Hüllkurvenabtastwerte im Festwert- speicher 24 sind dagegen ganzzahlig. Im hier betrachteten Beispiel wird also die nächste Adresse für den Festwertspeicher - im Abschnitt HK-BR des Randomspeichers 12 - erst nach viermaliger Adressierung durch den Zähler 18 erscheinen, was bedeutet, dass ein geänderter Abtastwert erst nach ca. vier Millisekunden aus dem Festwertspeicher abgerufen wird, dieser dann wieder viermal nacheinander abgerufen wird, dann erst der neue Adressenwert eingegeben wird und so weiter. Die Anfangsadresse des Festwertspeichers, unter der der Beginn der betreffenden Hüllkurve abgespeichert ist, wird natürlich als erstes in den Randomspeicher 12 eingegeben (Signal H K-IN), und zwar über den Multiplexer 28 unter Steuerung MU durch die Steuerlogikeinheit 20, die wiederum auf das Signal MAN reagiert.
  • Der Multiplexer 28 ist als Drei-Kanal-Multiplexer ausgebildet. In der Tat können Festwertspeicher-Adressen in den Abschnitt HK-BR des Randomspeichers 12 auch von dem Festwertspeicher 24 selbst zurück eingegeben werden.
  • (Eine Klarstellung scheint an dieser Stelle angebracht. Für den Festwertspeicher 24 wird zwischen den Adressen der Speicherplätze und den in diesen Speicherplätzen abgespeicherten Daten, oder dem Inhalt des Speichers, unterschieden. Über die Leitung 30 wird der Festwertspeicher 24 adressiert und gibt auf der Leitung 32 die Daten aus. In dem hier zur Diskussion stehenden Fall haben die abgespeicherten Daten dann die Bedeutung einer Festwertspeicheradresse, wenn sie über Leitungszweig 34 und über Multiplexer 28 zum Randomspeicher 12 übertragen werden. Dies ist jedoch der Ausnahmefall; im allgemeinen sind im Festwertspeicher 24 die Abtastwerte der Hüllkurve oder - im Falle einer Frequenzmodulation - die Modulationshubwerte abgelegt.)
  • Das Ergebnis ist dann, dass bei Durchlauf des Zählers 18 diejenige Hüllkurve oder Teil derselben zu durchlaufen begonnen wird, die von der betreffenden zurückgeführten Adresse beginnt, wobei nach wie vor die Realzeit durch Entnahme der betreffenden Daten aus dem Randomspeicher 10 vorgegeben bleibt. Diese Operation ist für die Repetition einer bereits einmal durchlaufenen Hüllkurve oder Teilhüllkurve vorgesehen. Wenn nämlich eine Hüllkurve Repetitionen haben soll, ist das entsprechende Kommando im Festwert-Speicher unter der entsprechenden Adresse abrufbar und erscheint auf Ausgang REP des Festwertspeichers, von dem das Signal zur Logikeinheit 20 übertragen wird, die den Multiplexer 28 auf den betreffenden Kanal umschaltet. Es sei gleich an dieser Stelle angemerkt, dass auch ein Signal EN ausgegeben wird, wenn eine Hüllkurve vollständig aus dem Festwertspeicher abgerufen worden ist; dieses Endesignal veranlasst die Logikeinheit 20, die Speicherplätze unter der betreffenden Adresse zu löschen, wonach-je nach dem Pegel von MAN - entweder der unmodulierte Ton weiter erklingt oder der betreffende Einzelton gar nicht mehr erzeugt wird. Unmoduliert bezieht sich selbstverständlich nur auf eine durch den Schaltkreis nach Fig. 4 eingeführte Hüllkurvenmodulation; an anderer Stelle der Gesamtschaltung kann auch eine sonstige Modulation eines Dauertons vorgenommen werden.
  • Bevor der Fall erörtert wird, dass eine nicht vollständig durchlaufene Hüllkurve in eine andere Hüllkurve übergeht, soll noch die Weiterverarbeitung der Inhalte aus dem Festwertspeicher 24 betrachtet werden. Auf Leitung 36 werden diese Hüllkurvendaten einem Zweierkomplement-Binäraddierkreis 38 zugeführt. Die Hüllkurvendaten sind im Falle reiner Amplitudenmodulation vorzeichenlose Abtastwerte, im Falle von Frequenzmodulation vorzeichenbehaftete Hubwerte. Da dem Addierkreis 38 über Leitung 40 signalisiert wird, ob Frequenzmodulation vorliegt oder nicht - im Randomspeicher 16 sind zu jeder der 256 zu erzeugenden Hüllkurven die zugehörigen Trägerfrequenzen fo abgespeichert-(FR-IN) oder Null, wenn nur Amplitudenmodulation verlangt wird -, erscheinen an seinem Ausgang die zu dem jeweiligen Einzelton gehörigen Hüllkurvenwerte. Diese sind den Amplitudenmodulations- oder aber den Frequenzmodulationsblöcken der Syntheseschaltung zuzuführen. Die Zuordnung erfolgt durch die Steuerlogikeinheit 20, der über ein Gatter 42 dann und nur dann ein Signal AM zugeführt wird, wenn es sich um Amplitudenmodulation handelt.
  • Funktion und Arbeitsweise der Schaltungsanordnung bezüglich unterbrochener Hüllkurve solten im folgenden erläutert werden; dabei wird auch auf die Flussdiagramme nach Fig. 5 verwiesen, in denen der Ablauf übersichtlich dargestellt ist.
  • Es ist klar, dass dann, wenn eine laufende Hüllkurve abgebrochen werden und eine andere einsetzen soll, ein Adressenwechsel im Festwertspeicher 24 erfolgen muss. Es ist ferner klar, dass in diesem Falle nicht die neue Hüllkurvenform unter der neuen Adresse HK-IN beginnen darf, da unter dieser der Abtastwert Null für Anklinghüllkurven und der Abtastwert H für Ablinghüllkurven abgerufen wird. Erforderlich ist aber ein Einsetzen bei einer Adresse, unter der ein Abtastwert gespeichert ist, welcher mindestens annähernd demjenigen gleich ist, bei dem die vorhergehende Hüllkurve abgebrochen wurde. Dies ist anschaulich in Fig. 2b dargestellt.
  • Es muss also der letzte Abtastwert der abbrechenden Hüllkurve festgehalten werden und im Festwertspeicher 24 muss derjenige Speicherplatz der fortsetzenden Hüllkurve gesucht werden, wo ein mindestens annähernd gleicher Abtastwert vorliegt; die zugehörige Adresse muss dann als Anfangsadresse in den Randomspeicher 12 eingegeben werden.
  • Hierfür weist die Schaltungsanordnung nach Fig. 4 den Randomspeicher 14 auf, in welchem für den jeweils durch Zähler 18 adressierten Speicherplatz der laufende Abtastwert VL eingeschrieben wird, der hinter dem Addierkreis 38 ansteht. Derselbe Wert VL liegt an einem Eingang eines Komparators 50, an dessen anderem Eingang der unmittelbar vorhergehende, aus dem entsprechenden Speicherplatz bei Adressierung durch Zähler 18 abgerufene Wert VL' liegt. Der Komparator liefert an seinem Ausgang ein Logiksignal, hier mit VLK bezeichnet, solange der spätere Abtastwert VL kleiner ist als der vorhergehende AbtastwertVL'. Dieses Logiksignal wird der Steuerlogikeinheit 20 zugeführt.
  • Die Steuerlogikeinheit benötigt diese Angabe nur in dem Zeitpunkt, in welchem durch einen Sprung des Signals MAN signalisiert wird, dass eine neue Hüllkurve benötigt wird. Es sei zunächst angenommen, dass eine Abklinghüllkurve durch einen MAN-Wechsel von 1 auf Null abgebrochen und mit einer Anklinghüllkurve fortgesetzt werden soll. HK-IN gibt dann die zugehörige Festwertspeicheradresse ein, unter der - als Anfangsabtastwert einer Anklinghüllkurve - der Abtastwert Null abgerufen wird. Dieser erscheint hinter Addierkreis 38 als neuer Wert VL. Da aber der unmittelbar vorher in Randomspeicher 14 abgelegte Wort VL' aus der abgebrochenen Abklinghüllkurvestammte und mithin grösser ist, gibt der Komparator 50 das Logiksignal VLK ab. Dies bewirkt nun in der Steuerlogikeinheit 20 die Erzeugung eines Steuerlogiksignals OP, welches der arithmetischen Logikeinheit 26 das Kommando übermittelt, die gespeicherte Adresse HK-CT des Festwertspeichers um eine zu erhöhen. Dieser Vorgang wiederholt sich mit dem Systemtakt solange, bis das Logiksignal VLK wechselt VLK, weil der Komparator 50 keine Grössendifferenz mehr feststellen kann. Diezu diesem Zeitpunkt im Randomspeicher 12 stehende Adresse H K-CT ist dann die Anfangsadresse der fortsetzenden Hüllkurve.
  • Dieses Aufaddieren der Festwertspeicheradresse führt zu dem gewünschten Ergebnis, weil für Anklinghüllkurven die grösseren Abtastwerte auch unter grösseren Adressen des Festwertspeichers abgelegt sind.
  • Dies trifft nicht zu für Abklinghüllkurven, wo bei höheren Adressen des Festwertspeichers niedrigere Abtastwerte vorliegen. Deshalb muss in dem Falle der komplementäre Logikpegel VLK den Aufholvorgang einleiten; diese Unterscheidung kann die Steuerlogikeinheit 20 treffen, weil sie zwischen den Sprüngen 0-1 und 1-0 für den MAN-Eingang unterscheidet.
  • Die Flussdiagramme Fig. 5a bzw. 5b fassen die geschilderten Vorgänge noch einmal zusammen. In Fig. 5c schliesslich ist der Ablauf beim Takten des Zählers 18 für den Normalfall dargestellt; die zugehörige Erläuterung wurde bereits oben gegeben.
  • In Fig. 6 ist schematisch die Organisation des Festwertspeichers 24 angedeutet. Die H üllkurvenabtastwerte sind als Analog-Äquivalente gezeichnet, obwohl es sich natürlich in Wirklichkeit um Binärworte handelt. Von oben nach unten sind die Hüllkurven Langsames Anklingen, Abklingen, Perkussion mit Wiederholung und Verzögert einsetzendes Vibrato mit Wiederholung als Beispiele dargestellt. Das erste Bit ist das Logiksignal REp, das zweite Bit das Logiksignal EN. Die folgenden Bits definieren die Abtastwerte oder, in Verbindung mit REP=1 die Adresse, von der aus die Abtastwerte erneut abzurufen sind. In Fig. 6 ist durch die strichpunktierten Pfeile angedeutet, zu welcher Adresse beispielsweise zurückzukehren ist. Die Adresse, unter der eine Hüllkurve beginnt, wird - wie oben erläutert - extern als HK-IN eingegeben.
  • Die Steuerlogikeinheit kann gemäss Fig. 7 einen weiteren Festwertspeicher 60 umfassen, dem als Adressen die oben erwähnten Logiksignale zugeführt werden und der über ein Sequenzregister 62 abgefragt wird, das seinerseits von dem Systemtakt weitergeschaltet wird und in das die jeweils zu durchlaufende Logiksequenz aus dem Festwert- speicher selbst eingegeben wird. Unter dessen Adressen werden dann die von der Logikeinheit benötigten Steuersignale abgerufen.

Claims (6)

1. Verfahren zur digitalen Hüllkurvenerzeugung bei einem polyphonen Musiksyntheseinstrument mit einem Festwertspeicher, in welchem Hüllkurvenabtastwerte unter Hüllkurvenadressen gespeichert sind, während die Hüllkurvenadressen aller Einzeltöne in Kurven-Randomspeichern gespeichert werden, welche sequentiell ausgelesen werden, wonach die ausgelesenen Hüllkurvenabtastwerte zu Modulationsblöcken der Syntheseschaltung übertragen werden, wobei jede Hüllkurvenform nur einmal im Festwertspeicher eingeschrieben ist und die Realzeit des Hüllkurvenverlaufs durch Verkürzen bzw. Verlängern der Speicherdauer der betreffenden Adressen im Kurven-Randomspeicher bestimmt wird, während alle Speicherplätze des Kurven-Randomspeichers mit gleichem Takt ausgelesen werden, dadurch gekennzeichnet, dass der jeweils für eine Hüllkurve aus dem Festwertspeicher ausgelesene Abtastwert mit dem bei der unmittelbar vorhergehenden Auslesesequenz ausgelesenen Abtastwert verglichen und ein Logiksignal gebildet wird, und dass bei Auftreten eines Hüllkurvenwechsel-Befehls als Anfangsadresse diejenige Festwertspeicher- adresse der nunmehr durchlaufenden Hüllkurve durch schnelles Takten des Kurven-Randomspeichers gesucht wird, bei der das komplementäre Logiksignal auftritt.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die im Kurven-Randomspeicher abgelegten Adressen des Festwertspeichers unter Steuerung durch ein dem letzteren selbst entnehmbares Repetitionskommando mehrmals nacheinander ausgelesen werden.
3. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass während des Taktens die Auslesesequenz des Kurven-Randomspeichers für den betreffenden Einzelton unterbrochen wird.
4. Schaltungsanordnung zur Durchführung des Verfahrens nach Anspruch 1, umfassend Randomspeicher (10, 12, 14, 16) mit ebensovielen Speicherplätzen wie gleichzeitig zu erzeugenden Hüllkurven, und mit einem Adressenzähler (18), mittels dem alle Randomspeicher parallel zu entsprechenden Tonerzeugungs-Syntheseblöcken adressierbar sind, gekennzeichnet durch einen Werte-Randomspeicher (14), in den die aus dem Festwertspeicher ausgelesenen Abtastwerte eingegeben und zugleich mit dem unmittelbar vorher gespeicherten Abtastwert mittels eines Komparators (50) verglichen werden, an dessen Ausgang das Logiksignal erscheint, wobei eine Steuerlogikeinheit (20) bei Anstehen eines Hüllkurvenwechsei-Befehls einen Addierschaltkreis (26), der für schnelles Erhöhen der im Kurven-Randomspeicher (12) stehenden Adresse um ganze Einheiten ausgebildet ist, solange aktiviert, bis am Komparatorausgang das zum Logiksignal (VLK) komplementäre Signal (OCK) erscheint.
5. Schaltungsanordnung nach Anspruch 4, gekennzeichnet durch einen Intervall-Randomspeicher (10), in welchem Adressenbruchteile der aus dem Kurven-Randomspeicher (12) zu entnehmenden Festwertspeicheradressen geladen sind, die mittels des in diese Funktion von der Steuerlogikeinheit (20) umschaltbaren Addierschaltkreises (26) zu ganzen Adressenworten ergänzbar sind.
6. Schaltungsanordnung nach Anspruch 5, gekennzeichnet durch einen Multiplexer (28), über den - gesteuert durch Steuersignale (MU) einer Steuerlogikeinheit (20) - wahlweise eine Hüllkurven-Anfangsadresse (HK-IN), der laufende vom Addierschaltkreis (26) gelieferte Adressenwert (HK-CT+HK-BR) oder eine aus dem Festwertspeicher (24) rückgeführte Festwertspeicher- Adresse dem Kurven-Randomspeicher (12) zugeführt wird.
EP81104526A 1980-06-24 1981-06-12 Verfahren zur digitalen Hüllkurvensteuerung eines polyphonen Musiksyntheseinstruments und Schaltungsanordnung zur Durchführung des Verfahrens Expired EP0042555B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT81104526T ATE7428T1 (de) 1980-06-24 1981-06-12 Verfahren zur digitalen huellkurvensteuerung eines polyphonen musiksyntheseinstruments und schaltungsanordnung zur durchfuehrung des verfahrens.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3023581 1980-06-24
DE3023581A DE3023581C2 (de) 1980-06-24 1980-06-24 Verfahren zur digitalen Hüllkurvensteuerung eines polyphonen Musiksyntheseinstruments und Schaltungsanordnung zur Durchführung des Verfahrens

Publications (2)

Publication Number Publication Date
EP0042555A1 EP0042555A1 (de) 1981-12-30
EP0042555B1 true EP0042555B1 (de) 1984-05-09

Family

ID=6105334

Family Applications (1)

Application Number Title Priority Date Filing Date
EP81104526A Expired EP0042555B1 (de) 1980-06-24 1981-06-12 Verfahren zur digitalen Hüllkurvensteuerung eines polyphonen Musiksyntheseinstruments und Schaltungsanordnung zur Durchführung des Verfahrens

Country Status (6)

Country Link
US (1) US4422363A (de)
EP (1) EP0042555B1 (de)
JP (1) JPS5748793A (de)
AT (1) ATE7428T1 (de)
DE (2) DE3023581C2 (de)
SU (1) SU1145940A3 (de)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59173097U (ja) * 1983-05-09 1984-11-19 株式会社ケンウッド 楽音合成回路
JPS6022185A (ja) * 1983-07-18 1985-02-04 松下電器産業株式会社 ビブラ−ト信号発生装置
JPS6060693A (ja) * 1983-09-14 1985-04-08 ヤマハ株式会社 電子楽器
JP2642331B2 (ja) * 1984-08-09 1997-08-20 カシオ計算機株式会社 ビブラート付与装置
JPS61128296A (ja) * 1984-11-27 1986-06-16 ヤマハ株式会社 楽音発生装置
JPS61188593A (ja) * 1985-02-18 1986-08-22 カシオ計算機株式会社 タツチレスポンス装置
JPS62186296A (ja) * 1986-02-12 1987-08-14 京王技研工業株式会社 エンベロ−プ発生装置
JPH0731501B2 (ja) * 1986-08-08 1995-04-10 カシオ計算機株式会社 タッチデータ生成装置
JPH0720713Y2 (ja) * 1986-08-08 1995-05-15 カシオ計算機株式会社 タッチデータ生成装置
US5548080A (en) * 1986-11-06 1996-08-20 Casio Computer Co., Ltd. Apparatus for appoximating envelope data and for extracting envelope data from a signal
US5200567A (en) * 1986-11-06 1993-04-06 Casio Computer Co., Ltd. Envelope generating apparatus
US4928569A (en) * 1986-11-15 1990-05-29 Yamaha Corporation Envelope shape generator for tone signal control
JP2525853B2 (ja) * 1988-03-17 1996-08-21 ローランド株式会社 電子楽器の連打処理装置
KR920000764B1 (ko) * 1988-05-18 1992-01-21 삼성전자 주식회사 전자악기의 adsr데이터 출력 제어시스템
US5256831A (en) * 1990-07-10 1993-10-26 Yamaha Corporation Envelope waveform generation apparatus
US20130163787A1 (en) * 2011-12-23 2013-06-27 Nancy Diane Moon Electronically Orbited Speaker System

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3610799A (en) * 1969-10-30 1971-10-05 North American Rockwell Multiplexing system for selection of notes and voices in an electronic musical instrument
US3930429A (en) * 1973-06-08 1976-01-06 Arp Instruments, Inc. Digital music synthesizer
US4083285A (en) * 1974-09-27 1978-04-11 Nippon Gakki Seizo Kabushiki Kaisha Electronic musical instrument
JPS5237028A (en) * 1975-09-17 1977-03-22 Nippon Gakki Seizo Kk Electronical music instrument
US4166405A (en) * 1975-09-29 1979-09-04 Nippon Gakki Seizo Kabushiki Kaisha Electronic musical instrument
JPS52121313A (en) * 1976-04-06 1977-10-12 Nippon Gakki Seizo Kk Electronic musical instrument
JPS589958B2 (ja) * 1976-09-29 1983-02-23 ヤマハ株式会社 電子楽器のエンベロ−プ発生器
US4336736A (en) * 1979-01-31 1982-06-29 Kabushiki Kaisha Kawai Gakki Seisakusho Electronic musical instrument

Also Published As

Publication number Publication date
DE3163483D1 (en) 1984-06-14
DE3023581C2 (de) 1983-11-10
ATE7428T1 (de) 1984-05-15
EP0042555A1 (de) 1981-12-30
SU1145940A3 (ru) 1985-03-15
DE3023581A1 (de) 1982-01-07
US4422363A (en) 1983-12-27
JPS5748793A (en) 1982-03-20

Similar Documents

Publication Publication Date Title
EP0042555B1 (de) Verfahren zur digitalen Hüllkurvensteuerung eines polyphonen Musiksyntheseinstruments und Schaltungsanordnung zur Durchführung des Verfahrens
DE3528719C2 (de)
DE2362050C3 (de) Elektronisches Musikinstrument
DE3936693C2 (de) Vorrichtung zum Erzeugen digitaler Audiosignale
DE3221447C2 (de)
DE3049294A1 (de) Automatisches rhythmusbegleitsystem
DE3015455C2 (de)
DE3689928T2 (de) Effektvorrichtung für elektronisches Musikinstrument.
DE2712226A1 (de) Tongeneratoranordnung, insbesondere fuer ein elektronisches musikinstrument
DE2920298A1 (de) Binaere interpolatorschaltung fuer ein elektronisches musikinstrument
DE3032609A1 (de) Elektronisches tastenmusikinstrument mit mehreren tonerzeugungskanaelen.
DE3630611A1 (de) Elektronisches musikinstrument
DE2828919C2 (de) Schaltungsanordnung für ein polyphones elektronisches Musikinstrument
DE3785625T2 (de) Tonerzeugungsvorrichtung mit Wellenformspeicher.
DE2801933A1 (de) Elektronisches musikinstrument
DE2513127C2 (de) Verfahren zum künstlichen Erzeugen eines musikalischen Klangs
DE2641452A1 (de) Elektronisches musikinstrument
DE4232642B4 (de) Solenoid-Ansteuersystem für ein Gerät zur automatischen musikalischen Darbietung
DE2639606A1 (de) Automatisches arpeggiogeraet fuer elektronische musikinstrumente
DE69618907T2 (de) Verfahren und Vorrichtung zur Tonerzeugung
DE2748422A1 (de) Elektronisches musikinstrument
DE69521731T2 (de) Tonsignalerzeuger mit einer Klangeffektfunktion
DE2901969A1 (de) Elektronisches musikinstrument mit einer einrichtung zur erzeugung variabler impulse
DE69129507T2 (de) Vorrichtung zur Musiktonerzeugung, wobei Parameter mit hoher Geschwindigkeit geschrieben und gelesen werden können
DE2952459C2 (de)

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): AT DE FR GB IT NL

17P Request for examination filed

Effective date: 19820121

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: MATTH. HOHNER AG

ITF It: translation for a ep patent filed
GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): AT DE FR GB IT NL

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19840509

Year of fee payment: 4

REF Corresponds to:

Ref document number: 7428

Country of ref document: AT

Date of ref document: 19840515

Kind code of ref document: T

REF Corresponds to:

Ref document number: 3163483

Country of ref document: DE

Date of ref document: 19840614

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19840618

Year of fee payment: 4

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19850613

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Effective date: 19860612

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19860630

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19880101

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19880226

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19880301

GBPC Gb: european patent ceased through non-payment of renewal fee
REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19881118