EP0033262A1 - Diaphragme pour électrolyse et son procédé de préparation - Google Patents

Diaphragme pour électrolyse et son procédé de préparation Download PDF

Info

Publication number
EP0033262A1
EP0033262A1 EP81400058A EP81400058A EP0033262A1 EP 0033262 A1 EP0033262 A1 EP 0033262A1 EP 81400058 A EP81400058 A EP 81400058A EP 81400058 A EP81400058 A EP 81400058A EP 0033262 A1 EP0033262 A1 EP 0033262A1
Authority
EP
European Patent Office
Prior art keywords
diaphragm according
microporous
parts
carboxylic acid
divinylbenzene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP81400058A
Other languages
German (de)
English (en)
Other versions
EP0033262B1 (fr
Inventor
Jean Bachot
Jean Grosbois
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pall Corp
Original Assignee
Atochem SA
Elf Atochem SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Atochem SA, Elf Atochem SA filed Critical Atochem SA
Priority to AT81400058T priority Critical patent/ATE24550T1/de
Publication of EP0033262A1 publication Critical patent/EP0033262A1/fr
Application granted granted Critical
Publication of EP0033262B1 publication Critical patent/EP0033262B1/fr
Expired legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B13/00Diaphragms; Spacing elements
    • C25B13/04Diaphragms; Spacing elements characterised by the material

Definitions

  • the present invention relates to a diaphragm for electrolysis, based on fluorinated resins, having a marked hydrophilic character, as well as the process for preparing this diaphragm.
  • hydrophilic diaphragms ie diaphragms which are easily wetted with an electrolyte, can be obtained by a simple process which gives them properties favorable for electrolysis, particularly in contact with concentrated detergents.
  • One of the objects of the invention is a microporous diaphragm based on fluorinated resin, intended in particular for the electrolysis of alkali metal halide, coated on at least part of the internal surface of the pores with a carboxylic acid copolymer unsaturated and non-ionic unsaturated monomer.
  • Another object of the invention is the process for obtaining this diaphragm comprising the formation of a porous sheet based on fluorinated resin, the impregnation of this sheet by a mixture containing at least one unsaturated carboxylic acid, at least one nonionic monomer and at least one polymerization initiator, this mixture having a low viscosity, the copolymerization of this mixture, the draining of the sheet after impregnation and copolymerization of the comonomers in said sheet .
  • microporous sheet can be prepared by a wide variety of methods, many of these methods being well known today.
  • the fluorinated resins which may be used are in particular polytetrafluoroethylene, polytrifluoroethylene, polyhexafluoropropylene, polyvinyl fluoride, polyvinylidene fluoride,. polyperfluoroalkoxyethylene, polyhaloethylenes comprising one or two chlorine atoms and three or two fluorine atoms on each ethylene unit and in particular polychlorotrlfluoroethylene, the corresponding polyhalopropylenes, copolymers of ethylene and / or propylene and unsaturated hydrocarbons halogens, at least partially fluorinated having 2 or 3 carbon atoms.
  • These resins can be reinforced with various fibers, either mineral, such as asbestos, glass, zirconia or carbon quartz, or organic, such as polypropylene or optionally halogenated, and especially fluorinated, polyhalovinylidene, etc. fibers. ...
  • the proportion of reinforcing fibers can be from 0 to 200% of the weight of the resin. As already mentioned above when a relatively high proportion of asbestos is present, greater than 30% of the weight of resin, the diaphragm generally has satisfactory wettability without additional treatment.
  • the overall porosity should preferably be 50 to 95% and the equivalent average pore diameter is between 0.1 and 12 micrometers and preferably between 0.2 and 6 micrometers, this equivalent diameter being the diameter of a cylindrical pore theoretical which allows the same speed of passage of a liquid weakly viscous, under a determined pressure, than the real pore.
  • the carboxylic acid monomers used carry one or two carboxylic groups. It can be acrylic, methacrylic acids and their halogenated, phenylacrylic, ethylacrylic, maleic, itaconic, butyl acrylic, vinyl benzoic acids, etc. Acrylic and methacrylic acids are preferred.
  • the nonionic monomers can carry a single ethylenic bond, such as styrene, methylstyrene, ethylvinylbenzene, chloro- or fluorostyrenes, or-methylstyrenes, as well as vinylpyridine or pyrrolidone. They can have several unsaturations and also promote crosslinking of the polymer layer formed.
  • divinylbenzenes and in particular the para isomer which is preferred, trivinylbenzene, divinylnaphthalenes, divinylethyl or methylbenzenes, trivinyl 1-3-4 cyclohexane, etc.
  • At least one non-ionic monounsaturated monomer and one pluri-unsaturated monomer is then between 0.1 and 10 and preferably between 0.4 and 2.5.
  • the commercially available divinylbenzene ethylvinylbenzene mixture is advantageously used.
  • the proportion by weight of unsaturated acid on all of the carboxylic and nonionic comonomers is between 40 and 98% by weight and preferably between 70 and 95% and it is important that this mixture of monomers optionally and preferably added with diluent, present a low viscosity preferably less than 2 cp so as to be able to penetrate under a slight depression (from 1 to 100 mmHg below atmospheric pressure) in the pores of the microporous substrate.
  • an inert diluent is added to the mixture of monomers, in particular methanol, ethanol, isopropanol, butanols, acetone, methyl isobutyl ketone, dioxane , chloro or dibromomethane, optionally halogenated aliphatic hydrocarbons having from 2 to 10 carbon atoms, dimethylformamide, dimethylacetamide, dimethylsulfoxide etc ...
  • Ethanol is the preferred diluent; in general the diluents must have a tension relatively low values at room temperature and be miscible with comonomers and possibly with water.
  • comonomers preferably 1600 to 30 parts of diluent are used.
  • the copolymer formed from the diluted aln ⁇ comonomers will be present in an at least monolecular layer on at least part of the internal surface of the pores.
  • a radical polymerization initiator is added to the mixture of comonomers; it must not cause significant polymerization at room temperature in the absence of activating radiation (ultraviolet), but cause polymerization of the comonomers in a time preferably less than 12 h, at a temperature below that of softening of the fluorinated polymer put in use, and preferably less than 100 ° C. Mention may be made, among the polymerization initiators, of benzoyl, lauroyl, t-butyl, cumyl peroxides, t-butyl peracetate or perbenzoate and also azobisisobutyronitrile.
  • the polymerization temperature conditions can be adapted to the choice of diluent so as to prevent it from leaving too quickly during the in situ polymerization.
  • Activators can be used for this, for example dimethylaniline which, combined with benzoyl peroxide, makes it possible to obtain a polymerization around 40 ° C.
  • the process for preparing these wettable microporous diaphragms therefore comprises in its first phase the preparation of a microporous sheet.
  • a porophore filler into a latex of fluorinated resin and in particular of polytetrafluoroethylene containing a plasticizing agent, 900 to 1200 and preferably 400 to 900 parts by weight of porophores, 0.5 to 2 parts of plasticizing agent and 1 to 20 parts of water being added to 100 parts of resin of a latex containing 40 to 60% by weight of dry matter, to mix the whole in a kneader moderately agitated, that is to say of which the rotor turns unless at 100 revolutions / min, to preform by rolling a sheet using the paste obtained, to dry it and then to sinter it at a temperature of the order of the melting point of the polymer used.
  • the porophore agent which is preferably calcium carbonate is then removed by immersion in acid which is preferably acetic acid in aqueous solution at 15-20% by weight.
  • porous sheets in particular in the case where the fluoropolymer used is a copolymer of ethylene and chlorotrifluoroethylene, or a PTFE latex, associated with mineral or organic fibers (asbestos, zirconia, fibrillated polyolefins) by dispersing the copolymer in an amount of 5 to 50% of the weight of fibers in the electrolyte, that is to say containing about 15% of sodium hydroxide and 15% of sodium chloride to which a surfactant is added.
  • the fluoropolymer used is a copolymer of ethylene and chlorotrifluoroethylene, or a PTFE latex, associated with mineral or organic fibers (asbestos, zirconia, fibrillated polyolefins) by dispersing the copolymer in an amount of 5 to 50% of the weight of fibers in the electrolyte, that is to say containing about 15% of sodium hydroxide and 15% of sodium chloride to which a surfactant
  • This suspension is deposited on a surface allowing filtration; this surface can in particular be a perforated cathode. After spinning and drying, the sheet formed during filtration is heated to 260 ° C temperature which is maintained from 30 min to 1 hour.
  • the porous sheet thus formed is then impregnated with a mixture of comonomers and of polymerization initiator and, in general of inert diluent.
  • the proportion of diluent mentioned above must be chosen according to various other parameters and in particular, the proportion of the crosslinking agent comonomer, in particular divinylbenzene, relative to the unsaturated carboxylic acids and the proportion of polymerization initiator in particular. benzoyl peroxide.
  • the overall condition which must be respected, and which leads to a choice in the combination of the various other parameters, is that 0.1 to 6% of the total pore volume, before the in situ copolymerization, of the microporous support sheet, are occupied by of the carboxylic copolymer.
  • the proportion by weight of divinylbenzene can be between 2.5 and 25 parts per 100 parts of unsaturated carboxylic acid. It is also good to use only small amounts of polymerization initiator, for example, less than 5 parts by weight of benzoyl peroxide per 100 parts of comonomers and little or no accelerator of copolymerization such as dimethylaniline (less than 2 parts).
  • This impregnation can be done for example by immersion in a tank containing this liquid mixture and filtration under vacuum from 10 to 100 mmHg.
  • the sheet optionally on its support, and in particular on a cathode, is then introduced into an enclosure where the temperature, or actinic rays, in particular ultraviolet rays, allow the action of the polymerization initiators. It can be immersed in a liquid, water for example. It is important that the temperature is not too high, generally less than 150 ° C. and does not substantially modify the structure of the microporous sheet by too rapid departure of the diluent or destruction of the deposited copolymer.
  • the polymerization time (which corresponds approximately to the half-life of the initiator used) is preferably less than 12 hours.
  • a preferred means of polymerization is immersion in water between 40 ° C and 100 ° C.
  • Table I given with the examples below clearly illustrates the influence of various factors such as the porosity of the diaphragm or, which is directly the cause, the proportion of porophore agent, the weight ratio between the carboxylic acids and the non-ionic monomers and the amount of diluent added on the pressure drop of the electrolyte through the diaphragm or in other words on the hydrostatic pressure, due to the anolyte, necessary to ensure satisfactory percolation and on the electrical voltage in the cell.
  • the factors mentioned can be chosen to achieve a specific goal.
  • the mixture is homogenized for 5 minutes in a mixer WERNER type whose Z-shaped rotors rotate at a speed of 45 rpm.
  • the dough obtained is put into sheets using a LESCUYER type roller mixer.
  • the thickness is reduced to 1.2 mm.
  • the initial speed of rotation of the cylinders by 15 rpm is gradually reduced to 5 rpm in 2 to 4 minutes.
  • the sheet thus formed is dried for 15 hours at 90 ° C then 2 hours at 120 ° C and then sintered in a hot air circulation oven whose temperature has risen, at a rate of 100 ° C / h, to 360 ° C where it is kept for 15 minutes.
  • the calcium carbonate is eliminated by immersion for 72 hours in an aqueous solution of acetic acid at 25% by weight added with 2 g / 1 of fluorinated surfactant brand "ZONYL FSN from EI Du Pont De Nemours Co . "
  • the diaphragm is then rinsed with water and then immersed for 12 hours in ethanol.
  • divinylbenzene contains 45% by weight of ethylvinylbenzene and 55% of divinylbenzene.
  • the copolymerization is brought about by immersion for 2 hours in water at 80 ° C.
  • This diaphragm which has been given remarkable wettability, is kept in water until it is used. It is then placed, in contact with a cathode, in braided laminated iron from the company "GANTOIS", an electrolysis cell.
  • the anode is made of expanded titanium coated with Pt-Ir alloy.
  • the distance between the electrodes is 5.5 mm; it is held in place by a rubber seal.
  • the electrolyte introduced into the anode compartment is a brine containing 300 g / l of sodium chloride.
  • the temperature is 85 ° C.
  • the current density is 25 A / dm 2
  • the electric voltage is 3.35 V
  • the electrolyte charge is 40 cm.
  • the sodium hydroxide of the catholyte has a concentration of 123 g / l
  • the faradaic yield (OH ion) is 94%.
  • Example 1 The test of Example 1 is repeated by varying the quantity of calcium carbonate and the proportion of the diluent and peroxide comonomers of the impregnation mixture.
  • test 235 The first two control tests (1 and 2) had to be stopped after 25 hours, which is the time when the load h and voltage U measurements were made. The same is true of test 235.
  • the electrolyte charge R is the hydrostatic pressure on the diaphragm expressed in cm or the electrolyte height of density 1.2 approximately, multiplied by this last figure.
  • the amount of NaOH is expressed in grams / liter.
  • the yield R (OH)% is a faradaic yield calculated from the sodium hydroxide formed.
  • T% is the percentage of the pore volume occupied by the dry polymer.

Abstract

Diaphragme microporeux mouillable pour électrolyse, à base de résine fluorée. Ce diaphragme est préparé en provoquant dans les pores, le dépôt d'un copolymère porteur de groupes carboxyliques. Ce diaphragme est destiné en particulier à l'électrolyse des chlorures de métaux alcalins.

Description

  • La présente invention concerne un diaphragme pour électrolyse, à base de résines fluorées, présentant un caractère hydrophile marqué, ainsi que le procédé de préparation de ce diaphragme.
  • Depuis un certain nombre d'années, les diaphragmes conventionnels en amiante, pour électrolyse, déposés sur les cathodes des cellules destinées notamment à l'obtention de chlore et de soude, sont progressivement remplacés par des diaphragmes à base de résines fluorées contenant éventuellement des fibres de renforcement. De tels diaphragmes présentent de nombreux avantages dûs en particulier aux propriétés chimiques des résines fluorées mais aussi un inconvénient notable, également inhérent à ces résines, qui tient à leur faible mouillabilité. Ce défaut est atténué lorsque des fibres telles que l'amiante sont incorporées en proportions importantes dans les diaphragmes, mais l'on sait le danger que présente cette matière pour ses utilisateurs. De nombreuses solutions ont été proposées pour pallier cet inconvénient ; outre l'emploi de charges particulières telles que les oxydes ou hydroxydes de titane, zirconium ou aluminium ou l'amiante, on a aussi suggéré l'introduction de groupes contenant du soufre, des groupes sulfoniques en particulier, soit par traitement in situ de la résine mise en oeuvre, comme le décrit le brevet US 4.153.520, soit par addition de résine préalablement sulfonée, décrite notamment dans le brevet français publié sous le n° 2.152.988.
  • On a maintenant trouvé que des diaphragmes hydrophiles, c'est-à-dire facilement- mouillés par un électrolyte, pouvaient être obtenus par un procédé simple qui leur confère des propriétés favorables pour l'électrolyse, particulièrement au contact de lessives concentrées.
  • Un des objets de l'invention est un diaphragme microporeux à base de résine fluorée, destiné notamment à l'électrolyse d'halogénure de métaux alcalins, revêtu sur au moins une partie de la surface interne des pores d'un copolymère d'acide carboxylique insaturé et de monomère insaturé non ionique.
  • Un autre objet de l'invention est le procédé d'obtention de ce diaphragme comprenant la formation d'une feuille poreuse à base de résine fluorée, l'imprégnation de cette feuille par un mélange contenant au moins un acide carboxylique insaturé, au moins un monomère non ionique et au moins un initiateur de polymérisation, ce mélange présentant une faible viscosité, la copolymérisation de ce mélange, l'égouttage de la feuille après imprégnation et copolymérisation des comonomères dans ladite feuille.
  • La feuille microporeuse peut être préparée par des procédés très divers, beaucoup de ces procédés étant aujourd'hui bien connus.
  • Les résines fluorées susceptibles d'être utilisées sont notamment le polytétrafluoroéthylène, le polytrifluoroéthylène, le poly- hexafluoropropylène, le polyfluorure de vinyle, le polyfluorure de vinylidène, le . polyperfluoroalcoxyéthylène, les polyhalogéno- éthylènes comprenant un ou deux atomes de chlore et trois ou deux atomes de fluor sur chaque motif éthylène et notamment le poly- chlorotrlfluoroéthylène, les polyhalogénopropylènes correspondants, les copolymères d'éthylène et/ou de propylène et d'hydrocarbones insaturés halogènes, au moins partiellement fluorés ayant 2 ou 3 atomes de carbone. Parmi ces composés, on peut citer notamment les produits connus sous les marques "TEFLON" de Du Pont de Nemours, "SOREFLON" de la Société Produits Chimiques Ugine Kuhlmann, "HALAR" de Allied Chemicals Co.
  • Ces résines peuvent être renforcées par différentes fibres soit minérales telles que les fibres d'amiante, de verre, de quartz de zircone ou de carbone, soit organiques telles que les fibres de polypropylène ou de polyéthylène éventuellement halogéné et notamment fluorés, de polyhalogénovinylidène etc....
  • La proportion des fibres de renforcement peut être de 0 à 200 % du poids de la résine. Comme cela a déjà été signalé ci-dessus lorsqu'une proportion d'amiante relativement élevée est présente, supérieure à 30 % du poids de résine, le diaphragme a généralement une mouillabilité satisfaisante sans traitement additionnel.
  • La porosité globale doit être de 50 à 95 % de préférence et le diamètre moyen équivalent des pores est compris entre 0,1 et 12 micromètres et de préférence entre 0,2 et 6 micromètres, ce diamètre équivalent étant le diamètre d'un pore cylindrique théorique qui permet la même vitesse de passage d'un liquide faiblement visqueux, sous une pression déterminée, que le pore réel.
  • Les monomères acides carboxyliques mis en oeuvre sont porteurs d'un ou deux groupes carboxyliques. Ce peut être les acides acrylique, méthacrylique et leurs dérivés halogénés, phénylacrylique, êthylacrylique, maléique, itaconique, butyl-acrylique, vinylben- zoique etc.....Les acides acrylique et méthacrylique sont préférés.
  • Les monomères non ioniques peuvent être porteurs d'une seule liaison éthylénique, tels que le styrène, le méthylstyrène, l'éthylvinylbenzène, les chloro- ou fluorostyrènes, ou-méthylstyrènes, ainsi que la vinylpyridine ou pyrrolidone. Ils peuvent présenter plusieurs insaturations et favoriser aussi une réticulation de la couche de polymère formée. On peut citer à titre d'exemples, les divinylbenzènes et notamment l'isomère para qui est préféré, le trivinylbenzène, les divinylnaphtalènes, les divinyléthyl ou mé- thylbenzènes, le trivinyl 1-3-4 cyclohexane etc...
  • On peut et préfère utiliser à la fois au moins un monomère non ionique mono-insaturé et un monomère pluri-insaturé. La proportion numérique des molécules ou motifs de ces deux types de monomères est alors comprise entre 0,1 et 10 et de préférence entre 0,4 et 2,5. Le mélange divinylbenzène éthylvinylbenzène disponible dans le commerce est employé avantageusement.
  • La proportion pondérale d'acide insaturé sur l'ensemble des comonomères carboxyliques et non ioniques est comprise entre 40 et 98 % en poids et de préférence entre 70 et 95 % et il importe que ce mélange de monomères additionné éventuellement et préférentiellement de diluant, présente une faible viscosité de préférence inférieure à 2 cp de façon à pouvoir pénétrer sous une légère dépression (de 1 à 100 mmHg en-dessous de la pression atmosphérique) dans les pores du substrat microporeux. De façon à contrôler la quantité de monomères introduite et la dispersion dans la porosité, un diluant inerte est additionné au mélange de monomères, notamment le méthanol, l'éthanol, l'isopropanol, les butanols, l'acétone, la méthylisobutylcétone, le dioxane, les chloro ou dibromométhane, les hydrocarbures aliphatiques éventuellement halogénés ayant de 2 à 10 atomes de carbone, le diméthylformamide, le diméthylacétamide, le diméthylsulfoxyde etc.....L'êthanol est le diluant préféré ; en général les diluants doivent avoir une tension de valeurs relativement faible à la température ambiante et être miscibles avec les comonomères et éventuellement avec l'eau. Pour 100 parties en poids de comonomères, on met en oeuvre de préférence de 1600 à 30 parties, de diluant. Le copolymère formé à partir des comonomères alnε dilués sera présent en une couche au moins mono- moléculaire sur au moins une partie de la surface interne des pores.
  • Un initiateur de polymérisation radicalaire est ajouté dans le mélange de comonomères ; il ne doit pas causer de polymérisation sensible à température ambiante en l'absence de radiation activante (ultraviolet), mais causer une polymérisation des comonomères en un temps de préférence inférieur à 12 H, à une température inférieure à celle de ramollissement du polymère fluoré mis en oeuvre, et de préférence inférieure à 100 °C. On peut citer parmi les initiateurs de polymérisation les peroxydes de benzoyle, de lauroyle, de t-butyle, de cumyle, les peracétate ou perbenzoate de t-butyle ainsi que l'azobisisobutyronitrile.
  • Les conditions de température de la polymérisation peuvent être adaptées au choix du diluant de façon à éviter son départ trop rapide au moment de la polymérisation in situ. On peut utiliser pour cela des activateurs, par exemple la diméthylaniline qui, associée au peroxyde de benzoyle, permet d'obtenir une polymérisation vers 40°C.
  • Le procédé de préparation de ces diaphragmes microporeux mouillables comprend donc dans sa première phase la préparation d'une feuille microporeuse. Parmi les procédés préférés pour ce faire, on peut citer ceux mettant en oeuvre des charges porophores tels que décrits dans les brevets français publiés sous les numéros 2.229.739 ; 2.280.435 ; 2.280.609 et 2.280.435 dont les descriptions sont incorporées ici par référence. Il est également possible d'introduire une charge porophore dans un latex de résine fluorée et notamment de polytétrafluoroéthylène contenant un agent plastifiant, 900 à 1200 et de préférence 400 à 900 parties en poids de porophores, 0,5 à 2 parties d'agent plastifiant et 1 à 20 parties d'eau étant ajouté dans 100 parties de résine d'un latex contenant 40 à 60 % en poids de matière sèche, de mélanger l'ensemble dans un malaxeur agité modérément c'est-à-dire dont le rotor tourne à moins de 100 tours/mn, de préformer par laminage une feuille à l'aide de la pâte obtenue, de la sécher puis de la fritter à une température de l'ordre du point de fusion du polymère mis en oeuvre. L'agent porophore qui est de préférence du carbonate de calcium est ensuite éliminé par immersion dans de l'acide qui est de préférence de l'acide acétique en solution aqueuse à 15-20 % en poids.
  • On peut aussi obtenir des feuilles poreuses, notamment dans le cas où le polymère fluoré mis en oeuvre est un copolymère d'éthylène et de chlorotrifluoroéthylène, ou un latex de PTFE, associé à des fibres minérales ou organiques (amiante, zircone, polyoléfines fibrillés) en dispersant le copolymère à raison de 5 à 50 % du poids de fibres dans de l'électrolyte, c'est-à-dire contenant environ 15 % de soude et 15 % de chlorure de sodium auquel on ajoute un agent tensio-actif.
  • Cette suspension est déposée sur une surface permettant la filtration ; cette surface peut être notamment une cathode perforée. Après essorage et séchage, la feuille formée lors de la filtration est chauffée jusqu'à 260°C température qui est maintenue de 30 mn à 1 heure.
  • La feuille poreuse ainsi formée est ensuite imprégnée d'un mélange de comonomères et d'initiateur de polymérisation et, en général de diluant inerte. La proportion de diluant mentionnée plus haut doit être choisie en fonction de différents autres paramètres et en particulier, de la proportion du comonomère agent de la réticulation, notamment le divinylbenzène, par rapport aux acides carboxyliques insaturés et de la proportion d'initiateur de polymérisation notamment de peroxyde de benzoyle. La condition globale qui doit être respectée, et qui entraîne un choix dans la combinaison des divers autres paramètres, est que 0,1 à 6 % du volume poreux total, avant la copolymérisation in situ, de la feuille microporeuse-support, soient occupés par du copolymère carboxylique. La proportion pondérale divinylbenzène peut être comprise entre 2,5 et 25 parties pour 100 parties d'acide carboxylique insaturé. Il est bon également de ne mettre en oeuvre que de faibles quantités d'initiateur de polymérisation, par exemple, moins de 5 parties en poids de peroxyde de benzoyle pour 100 parties de comonomères et pas ou peu d'accélérateur de copolymérisation telle que la diméthylaniline (moins de 2 parties).
  • Cette imprégnation peut se faire par exemple par immersion dans un bac contenant ce mélange liquide et filtration sous dépression de 10 à 100 mmHg.
  • La feuille éventuellement sur son support, et notamment sur une cathode, est alors introduite dans une enceinte où la température, ou des rayons actiniques, notamment ultraviolets, permettent l'action des initiateurs de polymérisation. Elle peut être immergée dans un liquide, l'eau par exemple. Il importe que la température ne soit pas trop élevée, généralement inférieure à 150°C et ne modifie pas sensiblement la structure de la feuille microporeuse par départ trop rapide du diluant ou destruction du copolymère déposé. La durée de polymérisation (qui correspond environ à la durée de demi-vie de l'intiateur mis en oeuvre) est de préférence inférieure à 12 heures.
  • Un moyen préféré de polymérisation est l'immersion dans de l'eau entre 40°C et 100°C.
  • Le tableau I donné avec les exemples ci-après illustre clairement l'influence de divers facteurs tels que le porosité du diaphragme ou, ce qui en est directement la cause, la proportion d'agent porophore, le rapport pondéral entre les acides carboxyliques et les monomères non ioniques et la quantité de diluant ajouté sur la perte de charge de l'électrolyte à travers le diaphragme ou en d'autres termes sur la pression hydrostatique, dûe à l'anolyte, nécessaire pour assurer une percolation satisfaisante et sur la tension électrique dans la cellule. On verra aussi que les facteurs évoqués peuvent être choisis pour atteindre un but déterminé.
  • Des exemples de mise en oeuvre de l'invention sont donnés ci-après aux seules fins d'illustration de celle-ci.
  • Exemple 1
  • On introduit dans 167 g de latex de polytétrafluoroéthylène à 60 % d'extrait sec, marque "SOREFLON", de la Société "Produits Chimiques Ugine Kuhlmann", 700 g de carbonate de calcium pulvérulent, appellation commerciale "CALIBRITE 1400" de la Société OMYA et 42 g de PEROLENE (PEROLENE S P Z) en solution aqueuse à 62 g/1.
  • Le mélange est homogénéisé pendant 5 minutes dans un malaxeur de type WERNER dont les rotors en forme de Z tournent à une vitesse de 45 tours/mn.
  • La pâte obtenue est mise en feuille au moyen d'un mélangeur à cylindres de type LESCUYER. L'épaisseur est réduite à 1,2 mm La vitesse intiale de rotation des cylindres de 15 tours/mn est réduite progressivement à 5 tours/mn en 2 à 4 minutes.
  • La feuille ainsi formée est séchée 15 heures à 90°C puis 2 heures à 120°C et ensuite frittée dans un four à circulation d'air chaud dont la température est montée, à raison de 100°C/h, à 360°C où elle est maintenue 15 minutes.
  • Le carbonate de calcium est éliminé par immersion pendant 72 heures dans une solution aqueuse d'acide acétique à 25 % en poids additionné de 2 g/1 d'agent .tensio-actif fluoré de marque "ZONYL F.S.N. de E-I Du Pont De Nemours Co."
  • Le diaphragme est alors rincé à l'eau puis immergé pendant 12 heures dans de l'éthanol.
  • 0n filtre ensuite à travers le diaphragme microporeux formé la solution ci-dessous, sous une dépression de 50 mm de mercure :
    • - éthanol 330 parties
    • - acide méthacrylique 100 parties
    • - divinylbenzène commercial 10 parties
    • - peroxyde de benzoyle 2 parties
  • Les parties mentionnées sont exprimées en poids.
  • Le divinylbenzène commercial contient 45 % en poids d'éthylvinylbenzène et 55 % de divinylbenzène.
  • On provoque la copolymérisation par immersion pendant 2 heures dans de l'eau à 80°C.
  • Ce diaphragme auquel a été conférée une mouillabilité remarquable, est conservé dans de l'eau jusqu'à son utilisation. Il est alors disposé, au contact d'une cathode, en fer tressé laminé de la Société "GANTOIS", d'une cellule d'électrolyse.
  • L'anode est en titane déployé revêtu d'alliage Pt-Ir.
  • La distance entre électrode est 5,5 mm ; elle est maintenue par un joint de caoutchouc.
  • L'électrolyte introduit dans le compartiment anodique est une saumure à 300 g/1 de chlorure de sodium.
  • Après 200 heures de fonctionnement, les conditions de marche étant alors stables, la température est 85°C, la densite de courant est 25 A/dm2, la tension électrique est 3,35 V, la charge d'électrolyte est 40 cm. La soude du catholyte a une concentration de 123 g/l, le rendement faradique (ion OH) est 94 %.
  • Exemple comparatif
  • Un diaphragme microporeux préparé comme ci-dessus à l'exception du traitement par les comonomères acide carboxylique, monomères non ioniques qui ne lui est pas appliqué, est utilisé dans les mêmes conditions que celles de l'exemple 1.
  • Après 15 heures de fonctionnement, la tension monte à 4,0 V et la charge s'élève à 60 cm. Elle augmente ensuite très rapidement et l'électrolyse doit être arrêtée.
  • Exemple 2
  • On reproduit l'essai de l'exemple 1 en faisant varier la quantité de carbonate de calcium et la proportion des comonomères de diluant et de peroxyde du mélange d'imprégnation.
  • Les diverses données sont mentionnées dans le tableau I dans lequel :
    • - A.M = acide méthacrylique
    • - DVB = mélange commercial à 55 % en poids de divinylbenzène et 45 % d'éthylvinylbenzène
    • - PB = peroxyde de benzoyle.
  • Les résultats indiqués sont relevés après 200 heures de marche, sauf indication contraire.
  • Les deux premiers essais témoins (1 et 2) ont dû être arrêtés après 25 heures qui est le temps où ont été effectuées les mesures de charge h et de tension U. Il en est de même de l'essai 235.
  • Les chiffres concernant les matières mises en oeuvre sont des parties en poids, celles de carbonates de calcium sont rapportées à 100 parties de polymère fluoré (sec).
  • La charge d'électrolyte R est la pression hydrostatique sur le diaphragme exprimée en cm ou la hauteur d'électrolyte de densité 1,2 environ, multipliée par ce dernier chiffre.
  • La quantité de NaOH est exprimée en gramme/litre.
  • Le rendement R(OH)% est un rendement faradique calculé d'après la soude formée.
  • T % est le pourcentage du volume poreux occupé par le polymère sec.
    Figure imgb0001

Claims (8)

1. Diaphragme poreux, à base de polymères fluorés, pour électrolyse, caractérisé en ce qu'il est microporeux et revêtu sur au moins une partie de la surface interne de ses pores d'un copolymère d'acide carboxylique insaturé et de monomère insaturé non ionique.
2. Diaphragme poreux selon 1 caractérisé en ce que sa porosité est comprise entre 50 et 95 % et que le diamètre moyen équivalent des pores est compris entre 0,1 et 12 micromètres et de préférence entre 0,2 et 6 micromètres, 0,1 à 6 % du volume poreux étant occupé par du polymère sec.
3. Diaphragme poreux selon 1 ou 2 caractérisé en ce que le copolymère présent dans les pores est un copolymère d'un acide pris dans le groupe formé par les acides acrylique et méthacrylique et d'au moins deux monomères non ioniques l'un au moins étant pris dans le groupe formé par le styrène et l'éthylbenzène et l'autre étant le divinylbenzène.
4. Procédé de préparation de diaphragme poreux selon 1 caractérisé en ce que l'on forme une feuille microporeuse à base de polymères fluorés, que l'on imprègne cette feuille à l'aide d'un mélange liquide comprenant au moins un acide carboxylique insaturé, un monomère non ionique et un initiateur de polymérisation et que l'on provoque la copolymérisation.
5. Procédé de préparation de diaphragme poreux selon 1 caractérisé en ce que l'on met en oeuvre un mélange comprenant au moins un acide pris dans le groupe formé par l'acide acrylique et l'acide méthacrylique, au moins un comonomère non ionique pris dans le groupe formé par le styrène, le divinylbenzène et un diluant.
6. Procédé de préparation de diaphragme microporeux selon 5 caractérisé en ce que le diluant mis en oeuvre est l'éthanol.
7. Procédé de préparation de diaphragme microporeux selon l'une quelconque des revendications 4 à 6 caractérisé en ce que la proportion pondérale d'acide carboxylique insaturé dans le mélange des comonomères est comprise entre 40 et 98 % et de préférence entre 70 et 95 %, et que 1600 à 30 parties de diluant sont mises en oeuvre pour 100 parties en poids de comonomères, le rapport pondéral entre le divinylbenzène et l'acide carboxylique étant tel que pour 100 parties d'acide carboxylique insaturé, 2,5 à 25 parties de divinylbenzène sont mises en oeuvre.
8. Procédé de préparation de diaphragme microporeux selon l'une quelconque des revendications 4 à 7 caractérisé en ce que l'imprégnation de la feuille microporeuse se fait par filtration sous légère dépression du mélange liquide contenant les comonomères à travers la dite feuille.
EP81400058A 1980-01-29 1981-01-19 Diaphragme pour électrolyse et son procédé de préparation Expired EP0033262B1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT81400058T ATE24550T1 (de) 1980-01-29 1981-01-19 Diaphragma fuer die elektrolyse und verfahren zu seiner herstellung.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR8001843 1980-01-29
FR8001843 1980-01-29

Publications (2)

Publication Number Publication Date
EP0033262A1 true EP0033262A1 (fr) 1981-08-05
EP0033262B1 EP0033262B1 (fr) 1986-12-30

Family

ID=9237978

Family Applications (1)

Application Number Title Priority Date Filing Date
EP81400058A Expired EP0033262B1 (fr) 1980-01-29 1981-01-19 Diaphragme pour électrolyse et son procédé de préparation

Country Status (6)

Country Link
US (2) US4341615A (fr)
EP (1) EP0033262B1 (fr)
JP (1) JPS5932550B2 (fr)
AT (1) ATE24550T1 (fr)
CA (1) CA1165276A (fr)
DE (1) DE3175761D1 (fr)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2505879A1 (fr) * 1981-05-15 1982-11-19 Chloe Chemie Diaphragme, son procede de preparation et le procede d'electrolyse le mettant en oeuvre
US4647360A (en) * 1985-10-04 1987-03-03 The Dow Chemical Company Inert carbon fiber diaphragm
GB2181158A (en) * 1985-10-08 1987-04-15 Electricity Council Electrolytic process for the manufacture of salts

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4505797A (en) * 1983-03-24 1985-03-19 Ionics, Incorporated Ion-exchange membranes reinforced with non-woven carbon fibers
JPS61130347A (ja) * 1984-11-30 1986-06-18 Asahi Glass Co Ltd 新規な電解用複層隔膜
US4689134A (en) * 1985-04-18 1987-08-25 Dorr-Oliver Inc. Non ion selective membrane in an EAVF system
US4879316A (en) * 1987-02-26 1989-11-07 The University Of Tennessee Research Corporation Interpenetrating polymer network ion exchange membranes and method for preparing same
US5152898A (en) * 1989-10-23 1992-10-06 Texaco Inc. Separation of organic oxygenates
US5198505A (en) * 1991-04-11 1993-03-30 Pall Corporation Uniform polyvinylidene difluoride membranes
US5196508A (en) * 1991-04-11 1993-03-23 Pall Corporation Method for making uniform polyvinylidene difluoride membranes
US5458719A (en) * 1993-03-24 1995-10-17 Pall Corporation Method for bonding a porous medium to a substrate
JP2999365B2 (ja) * 1994-05-10 2000-01-17 倉敷紡績株式会社 フッ素樹脂製多孔質体の親水化法
US6254978B1 (en) * 1994-11-14 2001-07-03 W. L. Gore & Associates, Inc. Ultra-thin integral composite membrane
USRE37701E1 (en) * 1994-11-14 2002-05-14 W. L. Gore & Associates, Inc. Integral composite membrane
USRE37307E1 (en) 1994-11-14 2001-08-07 W. L. Gore & Associates, Inc. Ultra-thin integral composite membrane
US5599614A (en) * 1995-03-15 1997-02-04 W. L. Gore & Associates, Inc. Integral composite membrane
US5547551A (en) * 1995-03-15 1996-08-20 W. L. Gore & Associates, Inc. Ultra-thin integral composite membrane
US6054230A (en) * 1994-12-07 2000-04-25 Japan Gore-Tex, Inc. Ion exchange and electrode assembly for an electrochemical cell
US6635384B2 (en) * 1998-03-06 2003-10-21 Gore Enterprise Holdings, Inc. Solid electrolyte composite for electrochemical reaction apparatus
US6689501B2 (en) 2001-05-25 2004-02-10 Ballard Power Systems Inc. Composite ion exchange membrane for use in a fuel cell
US6613203B1 (en) 2001-09-10 2003-09-02 Gore Enterprise Holdings Ion conducting membrane having high hardness and dimensional stability
AU2008273918B2 (en) * 2007-07-07 2011-09-29 Itm Power (Research) Ltd. Electrolysis of salt water
US20120202135A1 (en) 2009-09-03 2012-08-09 E.I. Du Pont De Nemours And Company Improved catalyst coated membranes having composite, thin membranes and thin cathodes for use in direct methanol fuel cells
CN109415827B (zh) * 2016-06-27 2021-07-02 西门子股份公司 用于电化学转化过程的无机纤维增强的气体隔板

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3694281A (en) * 1969-04-28 1972-09-26 Pullman Inc Process for forming a diaphragm for use in an electrolytic cell

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1371843A (fr) * 1963-06-25 1964-09-11 Centre Nat Rech Scient Perfectionnements apportés aux membranes semi-perméables
US3291632A (en) * 1963-09-16 1966-12-13 Pittsburgh Plate Glass Co Method of preparing a membrane of divinyl benzene, styrene and maleic anhydride
CA845032A (en) * 1966-12-03 1970-06-23 Hacker Heinz Gas-tight diaphragms for electrochemical cells
DE1959147C3 (de) * 1968-11-26 1979-12-06 E.I. Du Pont De Nemours And Co., Wilmington, Del. (V.St.A.) Oberflächenaktiver Fluorkohlenstoffpolymerisat-Gegenstand
US3887499A (en) * 1971-12-06 1975-06-03 Ionics Cation exchange membranes having carboxylic and sulfonic acid functionality
US4007138A (en) * 1972-05-25 1977-02-08 Badische Anilin- & Soda-Fabrik Aktiengesellschaft Manufacture of ion-exchanging shaped articles
FR2250793B1 (fr) * 1973-11-09 1978-12-29 Commissariat Energie Atomique
US4178218A (en) * 1974-03-07 1979-12-11 Asahi Kasei Kogyo Kabushiki Kaisha Cation exchange membrane and use thereof in the electrolysis of sodium chloride
US4056447A (en) * 1975-03-06 1977-11-01 Oronzio De Nora Impianti Elettrochimici S.P.A. Electrolyzing alkali metal chlorides using resin bonded asbestos diaphragm
US4153520A (en) * 1975-05-20 1979-05-08 E. I. Du Pont De Nemours And Company Method for the electrolytic production of chlorine from brine
US4057481A (en) * 1976-05-24 1977-11-08 Allied Chemical Corporation High performance, quality controlled bipolar membrane
GB1538810A (en) * 1976-08-10 1979-01-24 Sumitomo Electric Industries Hydrophilic porous fluorocarbon structures and process for their production
JPS5329290A (en) * 1976-08-31 1978-03-18 Toyo Soda Mfg Co Ltd Production of cation exchange membrane
JPS5336643A (en) * 1976-09-17 1978-04-05 Fujikura Ltd Method of producing battery separator
US4262041A (en) * 1978-02-02 1981-04-14 Kanegafuchi Kagaku Kogyo Kabushiki Kaisha Process for preparing a composite amphoteric ion exchange membrane
IT1110461B (it) * 1978-03-01 1985-12-23 Oronzio De Nora Impianti Membrane anioniche costituite da copolimeri di (2) o (4)-vinilpiridina con divinilbenzene o con monomeri vinilici alogenati
EP0004237A1 (fr) * 1978-03-14 1979-09-19 Elf Atochem S.A. Membranes échangeuses d'ions; leur préparation; leur utilisation dans l'électrolyse du chlorure de sodium
US4243508A (en) * 1979-04-26 1981-01-06 Dankese Joseph P Electrochemical apparatus
US4255240A (en) * 1979-06-04 1981-03-10 E. I. Du Pont De Nemours And Company Ion-exchange structures of copolymer blends
US4292146A (en) * 1979-08-07 1981-09-29 Hooker Chemicals & Plastics Corp. Porous polyfluoroalkylene sheet useful for separating anolyte from catholyte in electrolytic cells
NZ195570A (en) * 1979-12-28 1983-05-31 Ici Australia Ltd Cation exchange resin based on perhalogenated fluorine-containing polymer

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3694281A (en) * 1969-04-28 1972-09-26 Pullman Inc Process for forming a diaphragm for use in an electrolytic cell

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2505879A1 (fr) * 1981-05-15 1982-11-19 Chloe Chemie Diaphragme, son procede de preparation et le procede d'electrolyse le mettant en oeuvre
US4647360A (en) * 1985-10-04 1987-03-03 The Dow Chemical Company Inert carbon fiber diaphragm
GB2181158A (en) * 1985-10-08 1987-04-15 Electricity Council Electrolytic process for the manufacture of salts
GB2181158B (en) * 1985-10-08 1989-11-15 Electricity Council Electrolytic process for the manufacture of salts

Also Published As

Publication number Publication date
US4341615A (en) 1982-07-27
ATE24550T1 (de) 1987-01-15
JPS56152985A (en) 1981-11-26
EP0033262B1 (fr) 1986-12-30
CA1165276A (fr) 1984-04-10
US4410638A (en) 1983-10-18
JPS5932550B2 (ja) 1984-08-09
DE3175761D1 (en) 1987-02-05

Similar Documents

Publication Publication Date Title
EP0033262B1 (fr) Diaphragme pour électrolyse et son procédé de préparation
CA1182257A (fr) Diaphragme, son procede de preparation et le procede d'electrolyse le mettant en oeuvre
JPH034627B2 (fr)
CN85109358A (zh) 电解用多层隔膜
CH617724A5 (fr)
FR2650843A1 (fr) Diaphragme, association d'un tel diaphragme a un element cathodique et leur procede d'obtention
FR2498197A1 (fr) Membrane echangeuse d'ions, cellule electrochimique et procede d'electrolyse mettant en oeuvre cette membrane
CN88103588A (zh) 制备碱金属氢氧化物的方法
FR2477162A1 (fr) Procede pour rendre mouillables des separateurs de cellules electrolytiques en polymeres hydrophobes et separateurs obtenus
CA1125464A (fr) Membranes
EP0037140B1 (fr) Procédé d'électrolyse de solutions aqueuses d'halogénure de métal alcalin, dans lequel on met en oeuvre un diaphragme perméable en matière polymérique organique hydrophobe
EP0007674B1 (fr) Procédé d'électrolyse d'une solution aqueuse de chlorure de métal alcalin dans une cellule à diaphragme
EP0222671A1 (fr) Matériau microporeux, procédé pour son obtention, et applications notamment à la réalisation d'éléments cathodiques
EP0214066B1 (fr) Matériau consolidé microporeux, procédé pour son obtention, et applications notamment à la réalisation d'éléments cathodiques
CH621583A5 (fr)
FR2478132A1 (fr) Diaphragme microporeux a basse tension stable pour cellules electrolytiques
WO1994023093A1 (fr) Procede de preparation de diaphragme microporeux
JP2623571B2 (ja) 水酸化アルカリの製造方法
RU2267498C1 (ru) Линейный статистический терполимер тетрафторэтилена с функциональными перфторированными сомономерами и способ его получения
CH654318A5 (en) Cation exchange resin
JPS5927386B2 (ja) 塩化アルカリ水溶液の電解方法
JP2024505339A (ja) 電池用セパレータコーティング
BE891862A (fr) Resines echangeuses de cations et leur utilisation comme membranes dans les cellules electrolytiques
EP0018034A1 (fr) Procédé de fabrication d'un diaphragme perméable pour cellule d'électrolyse
JPS6145715B2 (fr)

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): AT BE CH DE FR GB IT LI NL SE

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: RHONE-POULENC RECHERCHES

17P Request for examination filed

Effective date: 19820105

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: CHLOE CHIMIE

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ATOCHEM

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ATOCHEM

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ATOCHEM

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE FR GB IT LI NL SE

REF Corresponds to:

Ref document number: 24550

Country of ref document: AT

Date of ref document: 19870115

Kind code of ref document: T

REF Corresponds to:

Ref document number: 3175761

Country of ref document: DE

Date of ref document: 19870205

ITF It: translation for a ep patent filed

Owner name: ING. A. GIAMBROCONO & C. S.R.L.

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: 732

REG Reference to a national code

Ref country code: CH

Ref legal event code: PLI

Owner name: PALL CORPORATION

ITPR It: changes in ownership of a european patent

Owner name: CONTRATTO DI LICENZA;PALL CORPORATION

ITTA It: last paid annual fee
REG Reference to a national code

Ref country code: FR

Ref legal event code: CL

EAL Se: european patent in force in sweden

Ref document number: 81400058.4

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19991231

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20000107

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20000110

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20000112

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20000119

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20000127

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20000131

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20000315

Year of fee payment: 20

BE20 Be: patent expired

Free format text: 20010119 *ATOCHEM

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20010118

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20010118

Ref country code: CH

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20010118

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20010119

Ref country code: AT

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20010119

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY

Effective date: 20010130

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Effective date: 20010118

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

NLV7 Nl: ceased due to reaching the maximum lifetime of a patent

Effective date: 20010119

EUG Se: european patent has lapsed

Ref document number: 81400058.4