EP0031002B1 - Winkelachsige Rotationskolbenmaschine - Google Patents

Winkelachsige Rotationskolbenmaschine Download PDF

Info

Publication number
EP0031002B1
EP0031002B1 EP80105799A EP80105799A EP0031002B1 EP 0031002 B1 EP0031002 B1 EP 0031002B1 EP 80105799 A EP80105799 A EP 80105799A EP 80105799 A EP80105799 A EP 80105799A EP 0031002 B1 EP0031002 B1 EP 0031002B1
Authority
EP
European Patent Office
Prior art keywords
disc rotor
rotor
housing
working space
groove
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP80105799A
Other languages
English (en)
French (fr)
Other versions
EP0031002A1 (de
Inventor
Wolfhart Dipl.-Phys. Willimczik
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Willimczik Wolfhart Dipl-Phys
Original Assignee
Willimczik Wolfhart Dipl-Phys
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Willimczik Wolfhart Dipl-Phys filed Critical Willimczik Wolfhart Dipl-Phys
Priority to AT80105799T priority Critical patent/ATE24346T1/de
Publication of EP0031002A1 publication Critical patent/EP0031002A1/de
Application granted granted Critical
Publication of EP0031002B1 publication Critical patent/EP0031002B1/de
Expired legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C3/00Rotary-piston machines or engines with non-parallel axes of movement of co-operating members
    • F01C3/06Rotary-piston machines or engines with non-parallel axes of movement of co-operating members the axes being arranged otherwise than at an angle of 90 degrees

Definitions

  • the invention relates to an angular-axis rotary piston machine with an axially vane rotor rotor arranged rotatably in a housing and a disk rotor having radial slots, the axes of rotation of which enclose an acute angle, the vanes reaching through the slots of the disk rotor and on the walls of the working space, from the Disc rotor is covered, run along, the outer diameter of the disc rotor is larger than the outer diameter of the vane rotor. It can be used as a pump, compressor, compressed air or hot gas engine, flow meter, hydrostatic coupling or retarder.
  • the object of the invention is to eliminate these disadvantages.
  • the aim is to simplify the rotary piston machine mentioned at the beginning and to solve the sealing problem so well that it is not only superior to all other rotary piston machines, but can even compete with the reciprocating piston system in terms of tightness.
  • the sealing problem can only be completely solved on one side of the disc rotor, the work area above the disc rotor is initially dispensed with.
  • the sealing lines on the disc rotor can be placed from its center plane in its end face, which at the same time forms a contact surface with the groove edges.
  • all sealing lines then lie in the plane of contact between the disc rotor and the obliquely cut groove edges.
  • the cross-section of the slits is V-shaped in such a way that the narrowest point lies in the plane of contact or surface so that the sealing lines on the groove edge, the wings and the slits converge exactly at one point.
  • Angular-axis rotary piston machines with vane rotor and disk rotor with only one-sided working space are known per se from DE-C-8 263 381 and GB-A-967 636.
  • the walls of the slots are slightly more inclined than the two axes of rotation to each other.
  • the wings also incline in the slots, which is why they are longer than the wings in the radial direction are wide.
  • a two-stage displacement machine can easily be implemented without increasing the number of moving parts by accommodating several or two coaxial axial ring grooves in the side of the housing.
  • the blades rotate here on different sized concentric circles.
  • the advantage here is that the cross-sectional shape, but above all the size of the two work rooms can be made different independently of one another.
  • Cylindrical walls can now be used as easy-to-produce walls due to the lack of radial blow holes.
  • (Claim 3) On the other hand, a simple automatic adjustment option with even sliding sealing for the wings relative to the walls of the work area is obtained if the cross-section of the annular groove tapers towards the floor, e.g. the lateral walls are conical surfaces or the annular groove is toroidal. If you press the axially displaceable vane rotor against the groove base, for example by an axially working spring (the delivery pressure itself could also generate pressure), the vanes have a very good sealing effect and wear is automatically compensated. (Claim 8) This pressure can, if you want, even during the operation of the machine, be set to the desired level (including zero pressure) and remains independent of the speed and the delivery pressure!
  • the bottom of the ring groove can, because its cross-sectional shape is also freely selectable, e.g. be frustoconical. If the oblique angle of this cone coincides with the angle between the two axes of rotation and if the cone tip of the completed cone lies at the intersection of the two axes of rotation in the inclined plane, the surface of the bottom of the annular groove merges with the oblique plane of the housing at a circumferential point, So where the ring groove is interrupted, that is, the fixed separation point between the suction and pressure chamber. In this case there is no dead volume.
  • the sloping groove edges can in any case be milled to such an extent that in a more or less long circumferential area (this length is basically also arbitrary) the cross section of the ring groove disappears completely. Since the disc rotor only has a sealing function in the circumferential direction at this circumferential point, where there is no ring groove at all, it is clear that its shape can also be selected independently of the shape of the ring groove.
  • the surface of the disc rotor located on the housing wall can e.g.
  • the number of wings is basically arbitrary and can be adapted to the respective problem. For good tightness in the slots, however, it must be taken into account that even fixed angles between the vanes in the oblique disc rotor plane constantly change somewhat depending on the angle of rotation. (For an observer in the disk rotor plane, the penetration points of rigid wings through the disk rotor move back and forth somewhat.) To solve this problem, only movable seals or elastic wings have been proposed so far, which makes this machine unsuitable for many applications. The simplest and best solution is of course the one in which these shifts do not occur. This is exactly the case with a wing spacing of 180 °, because this is the only angle (except 0 °) that remains invariant when projected onto an inclined plane, i.e. it does not change. (A straight line remains a straight line for any projection onto another plane). So if you only use two diametrically positioned wings, the problem is completely solved and the seal in the slots is good. (Claim 7)
  • This principle has a very high variability and can meet all conditions for the applications already mentioned.
  • Figs. 1 and 2 shows e.g. a simple pump.
  • the power unit is the vane rotor 4, which is rigidly connected to the shaft 3. It consists of a disk-shaped base body 4a, to which four vanes 13 are rigidly fastened on a concentric circle, which completely fill the cross section of the annular or working space 11.
  • the disc rotor 7 has only a sealing function; it lies on the inclined plane 6 with its flat end face 7d and seals the working space 11 towards the open side at least on the pressure or suction side and is carried along by the wings 13 which penetrate it through the radial slots 14.
  • the working space is worked into the housing part 1 in the form of an annular groove 11 with cylindrical wall parts 11b, 11c and a cone-shaped groove bottom 11a and is delimited at the top by the inclined plane 6, which is just inclined so that the inclined plane 6 in at a circumferential point 11e the surface of the groove base 11a merges where a linear or areal seal is created between the suction and pressure chamber.
  • the axes of rotation and symmetry 9, 10 of the disk rotor 7 and vane rotor 4 intersect at the intersection S in the inclined plane 6 and form an acute angle a.
  • the disc rotor 7 is held on the surface 6 by a retaining screw 8. In operation, it is already pressed on the suction side onto surface 6 by the pressure prevailing in space 5, which is sufficient for sealing.
  • the slots 14 of the planar disk rotor 7 are cross-sectioned in a V-shape in order to intercept the angle of rotation of the blades 13, which is dependent on the angle of rotation, and to prevent blowholes from being created.
  • FIG. 2 shows a plan view of the division of the annular space or the annular groove 11 or the working space.
  • the actual conveying area is 13 90 ° long with four blades 13. This is followed on both sides by large-area inlet and outlet channels 12a, b, which extend as far as the separation point 11e.
  • FIG. 3 shows the longitudinal section of a pump similar to the first, only that the surface 6 of the housing part 1 is formed by an obliquely lying cone and the end face 7d of the disk rotor 7 is correspondingly conical.
  • the bottom 11 of the annular space 11 is flat and touches a surface line of the conical disk rotor 7 at a circumferential point. If one wishes to dispense with elastic slot edges, the other two rigid vanes 13b must be compared with the first rigid diametrical pair of vanes 13a via circumferentially elastic arms 13 Connect 'b to the remaining vane rotor 4 or shaft 3.
  • the two wings 13b can then follow the displacements of the slots 14.
  • the seal 15 of Fig.5-7 consists of two plates 15a, b, which form the slot edges in a recess of the disc rotor 7 in the slot 14, are elastically connected by two arcuate parts 15c and otherwise have so much play together in the circumferential direction that they can follow the displacements of the slots 14.
  • the seal 15 'of Figures 8 and 9 is housed in a circular recess in the disc rotor 7.
  • Two half disks 15'a and 15'b are stretched around the wings 13 by a circular wave spring 15'c and at the same time are supported against the wall 7a of the recess.
  • 11 e.g. shows a two-stage compressor for oil-free compressed air.
  • the disc rotor 7 runs here without contact because it is also supported by a shaft 18 which leads to the outside. (The disc rotor 7, however, requires only a very small drive power to overcome the bearing friction, since it is not a power part).
  • the vane rotor 4 consists of the base body 4a, on each of which a diametrical pair of vanes 13b, 13c for an annular space 11 or 11 'is arranged along a diameter.
  • Two wings 13 and 13c reach through a common slot 14a.
  • the outlet 12b of the first stage lies next to the annular groove and is only connected to the annular groove 11 after a certain internal compression by the groove 17a in the disk rotor 7.
  • the gas passes through the inlet 12'a into the inner second stage, the annular or working space 11 'and finally through the control groove 17 to the outlet 12'b in the indicated direction of rotation 16.
  • the seal 15 in the slot 14a is not absolutely necessary, since with this arrangement of the wings there are no displacements between the wings and the slots.
  • FIG. 12 shows a machine running with contact between the moving parts, for example a compressor.
  • the four wings 13 of the wing rotor 4 are tapered by the spring 19 on the shaft 3 into the bottom Ring groove 11 pressed.
  • the disc rotor 7 is guided in the radial groove 20.
  • the housing part 2 is enlarged by the cylindrical piece 2a, which has been turned out obliquely and receives the oblique groove 20.
  • An annularly offset part of the disc rotor 7 also runs in a flat axial annular groove, whereby the flat pin la of the housing part 1 is also formed.
  • the slot edges of a slot 14 are not parallel because the cross-section of the wing 13 is not rectangular here, but trapezoidal. The wearing parts automatically adjust themselves here.
  • the inlet and outlet channels 12a and 12b lie behind or in front of the fixed separation point between the suction and pressure space, where the cross-section of the annular groove disappears.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Rotary Pumps (AREA)
  • Press Drives And Press Lines (AREA)
  • Treatment Of Fiber Materials (AREA)
  • Preliminary Treatment Of Fibers (AREA)
  • Reciprocating Pumps (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Description

  • Die Erfindung betrifft eine winkelachsige Rotationskolbenmaschine mit einem in einem Gehäuse drehbar angeordneten, axiale Flügel aufweisenden Flügelrotor und einem radiale Schlitze aufweisenden Scheibenrotor, deren Drehachsen einen spitzen Winkel einschließen, wobei die Flügel durch die Schlitze des Scheibenrotors hindurchgreifen und an den Wandungen des Arbeitsraumes, der vom Scheibenrotor abgedeckt ist, entlanglaufen, wobei der äußere Durchmesser des Scheibenrotors größser als der äußere Durchmesser des Flügelrotors ist. Sie ist als Pumpe, Verdichter, Druckluft- bzw. Heißgasmotor, Mengenmesser, hydrostatische Kupplung oder Retarder verwendbar.
  • Derartige Maschinen sind schon aus folgenden Druckschriften bekannt: US-A-2828695 und US-A-2242058.
  • Bei diesen Rotationskolbenmaschinen sind beiderseits des Scheibenrotors Arbeitsräume angeordnet und keine kommt ganz ohne schwer herzustellende sphärische Wandungen aus, denn durch die notwendigerweise ballig geformten Kanten der Schlitze vom Scheibenrotor entstünden an ihren radialen Enden Blaslöcher, die dort durch sphärische Wandungsteile abgedeckt werden, denn die Berührungspunkte zwischen Flügel- und Scheibenrotor liegen bei Ihrer Bewegung alle auf einer Kugeloberfläche. Nur bei einem mathematisch dünnen Scheibenrotor könnten die radialen Blaslöcher vermieden werden. Da aber jeder herstellbare Scheibenrotor eine endliche Dicke hat, sind diese Verdrängermaschinen entweder undicht oder schwer herstellbar. Andere Probleme, die sich aus der Schrägachsigkeit beider Drehachsen zueinander ergeben, wurden bisher auch noch nicht in einfacher Weise gelöst. So ändert sich ständig drehwinkelabhängig der notwendige Winkelabstand der Schlitze für starre Flügel bzw. umgekehrt, weil sich im allgemeinen ein Winkel bei der Projektion auf eine geneigte Ebene ändert. Ausnahmen sind nur die Winkel 0° und 180°.
  • Aufgabe der Erfindung ist es, diese Nachteile zu beseitigen.
  • Ziel ist es, die eingangs genannte Rotationskolbenmaschine so zu vereinfachen und das Abdichtproblem so gut zu lösen, daß sie nicht nur allen anderen Rotationskolbenmaschinen bauarten überlegen ist, sondern hinsichtlich der Dichtheit sogar mit dem Hubkolbensystem konkurrieren kann.
  • Die gestellte Aufgabe ist erfindungsgemäß durch die im kennzeichnenden Teil des Patentanspruchs 1 in Verbindung mit den im Oberbegriff wiedergegebenen Merkmale gelöst.
  • Da das Abdichtproblem nur auf einer Seite des Scheihenrotors vollständig gelöst werden kann, wird zunächst auf den Arbeitsraum oberhalb des Scheibenrotors verzichtet. Dadurch können die Dichtlinien am Scheibenrotor aus seiner Mittelebene heraus in seine Stirnfläche gelegt werden, die gleichzeitig eine Berührungsfläche mit den Nuträndern bildet. Im einfachsten Fall liegen dann alle Dichtlinien in der Berührungsebene zwischen Scheibenrotor und den schräg abgeschnittenen Nuträndern. Die Schlitze sind in ihrem Querschnitt derart V-förmig ausgebildet, daß die engste Stelle in der Berührungsebene bzw -fläche liegt, damit die Dichtlinien am Nutrand, den Flügeln und von den Schlitzen exakt in einem Punkt zusammenlaufen.
  • Winkelachsige Rotationskolbenmaschinen mit Flügelrotor und Scheibenrotor mit nur einseitegem Arbeitsraum sind an sich aus der DE-C- 8 263 381 und der GB-A- 967 636 bekannt.
  • Um die Schrägstellung der Flügel in den Schlitzen aufnehmen zu können sind die Wandungen der Schlitze etwas mehr geneigt, als es die beiden Drehachsen zueinander sind. In radialer Richtung neigen sich die Flügel auch in den Schlitzen, deshalb sind sie auch länger als die Flügel in radialer Richtung breit sind.
  • Damit nicht uhnötige drehwinkelabhängige Verschiebungen der Flügel relativ zu den Schlitzen in der Dichtebene des Scheibenrotors entstehen muß der Schnittpunkt der Drehachsen beider Rotoren in der Dichtfläche bzw. -ebene liegen. (Anspr.1)
  • Obwohl auf zwei sich gegenüberliegende Arbeitsräume verzichtet wird kann leicht eine zweistufige Verdrängermaschine ausgeführt werden,ohne daß sich die Zahl der beweglichen Teile erhöht, indem mehrere bzw. zwei koaxial ineinanderliegende axiale Ringnuten in der seitlichen Gehäusewandung untergebracht werden.(Anspr.2) Die Flügel rotieren hierbei auf verschieden großen konzentrischen Kreisen. Gegenüber den übereinander angeordneten Arbeitsräumen hat man hier den Vorteil, daß man die Querschnittsform, aber vorallem die Größe der beiden Arbeitsräume unabhängig voneinander unterschiedlich gemacht werden können.
  • Als einfach herzustellende Arbeitsraumwandungen können jetzt wegen des Fehlens der radialen Blaslöcher innen und außen zylindrische Wandungen verwendet werden. (Anspr.3) Andererseits gewinnt man eine einfache automatische Nachstellmöglichkeit bei sogar gleitender Abdichtung für die Flügel gegenüber den Arbeitsraumwandungen, wenn sich der Querschnitt der Ringnut zum Boden hin verjüngt, z.B. die seitlichen Wandungen Kegelmantelflächen sind oder die Ringnut torusförmig gestaltet ist. Drückt man den axial verschiebbaren Flügelrotor z.B. durch eine axial arbeitende Feder (der Förderdruck selbst könnte auch den Andruck erzeugen) an den Nutgrund, haben die Flügel eine sehr gute Dichtwirkung und der Verschleiß wird automatisch ausgeglichen. (Anspr.8) Dieser Andruck kann, wenn man will sogar während des Betriebes der Maschine, auf das gewünschte Maß eingestellt werden (also auch der Andruck Null) und bleibt unabhängig von der Drehzahl und vom Förderdruck!
  • Der Boden der Ringnut kann, weil seine Querschnittsform ebenfalls frei wählbar ist, z.B. kegelstumpfartig ausgebildet sein. Stimmt der Schrägwinkel dieses Kegels mit dem Winkel überein, den beide Drehachsen miteinander einschließen und liegt die Kegelspitze des vervollständigten Kegels im Schnittpunkt beider Drehachsen in der schrägen Ebene, so geht die Fläche des Bodens der Ringnut an einer Umfangsstelle in die schräge Ebene des Gehäuses über, wo also die Ringnut unterbrochen ist, sich also die ortsfeste Trennstelle zwischen Saug und Druckraum befindet. In diesem Fall gibt es kein totes Volumen. (Verschwindet der Querschnitt der Ringnut nicht vollständig an einer Umfangsstelle, so entsteht ein gewisses totes Volumen und die Fördermenge einer pumpe wäre kleiner.) Die schrägen Nutränder können in jedem Fall so weit abgefräst werden, daß in einem mehr oder weniger langen Umfangsbereich (diese Länge ist grundsätzlich auch beliebig) der Querschnitt der Ringnut vollständig verschwindet. Da der Scheibenrotor nur an dieser Umfangsstelle eine Dichtfunktion in Umfangsrichtung hat, dort, wo es also gar keine Ringnut gibt, ist klar, daß seine Form auch unabhängig von der Form der Ringnut gewählt werden kann. So kann die an der Gehäusewand befindliche Fläche des Scheibenrotors z.B. kegelförmig ausgebildet sein, daß eine Mantellinie den dann aus praktischen Gesichtspunkten eben ausgeführten Boden der Ringnut an einer Umfangsstelle berührt (Anspr.6) Ein ebener Scheibenrotor läßt sich allerdings am leichtesten verwirklichen. Die schräge Fläche des Gehäuses muß natürlich der des Scheibenrotors angepaßt werden.
  • Die Anzahl der Flügel ist grundsätzlich beliebig und kann dem jeweiligen Problem angepaßt werden. Es muß aber für eine gute Dichtheit in den Schlitzen berücksichtigt werden, daß sich auch feste Winkel zwischen den Flügeln in der schrägen Scheibenrotorebene ständig drehwinkelabhängig etwas verändern. (Für einen Beobachter in der Scheibenrotorebene wandern die Durchstoßstellen starrer Flügel durch den Scheibenrotor etwas in Umfangsrichtung hin und her.) Zur Lösung diese Problems wurden bisher nur bewegliche Dichtungen oder elastische Flügel vorgeschlagen, wodurch diese Maschine für viele Anwendungen untauglich wird. Die einfachste und beste Lösung ist natürlich diejenige, bei der diese Verschiebungen gar nicht auftreten. Das ist genau bei einem Flügelabstand von 180° der Fall, denn das ist der einzige Winkel (außer 0°), der bei der Projektion auf eine geneigte Ebene invariant bleibt, sich also nicht ändert. (Eine Gerade bleibt bei einer beliebigen Projektion auf eine andere Ebene eine Gerade). Verwendet man also nur zwei genau diametral liegende Flügel ist das Problem vollständig gelöst und die Abdichtung in den Schlitzen gut. (Anspr.7)
  • Die wesentlich geringere Aufweitung der Schlitze durch die Schrägstellung der Flügel ist ein anderes Problem und kann in diesem Fall leicht aufgefangen werden, indem der Scheibenrotor aus zwei getrennten Halbscheiben besteht, die durch eine geeignete Spannvorrichtung zusammengehalten und gleichzeitig etwas elastisch nach innen an die Flügel angestellt werden. (Anspr.10)
  • So erhält man tatsächlich so dichte Arbeitskammern, daß diese Verdrängermaschine sogar mit dem Hubkolbensystem konkurrieren kann, ohne daß zusätzliche bewegliche Dichtteile oder elastische Teile verwendet werden. Das gilt auch bei der Verwendung mehrerer konzentrischer Ringräume. (Anspr.2)
  • Will man mehr als ein diametrales Flügelpaar verwenden, hat man wieder das Problem der Verschiebungen der Flügel relativ zu den Schlitzen für alle weiteren Flügel, was man wieder durch verschiebbare bzw. elastische Dichtteile, oder dadurch lösen kann, indem man die weiteren starren Flügel elastisch am Grundkörper des Flügelrotors anbringt. (im Gegensatz zu schon vorgeschlagenen elastischen Flügeln).(Anspr.9) Auch brauchten alle weiteren Flügelpaare gegenüber dem ersten nur etwas verdrehbar angeordnet zu sein.
  • Dieses Prinzip besitzt eine sehr hohe Variationsfähigkeit und kann alle Dedingungen für die schon genannten Anwendungen erfüllen.
  • So lassen sich z.B. nicht nur sehr dichte Arbeitskammern verwirklichen, sondern auch ein berührungsloser Lauf bei extern gelagertem Scheibenrotor, was die Anwendungsbreite dieses Prinzips stark erhöht. So lassen sich nicht nur trocken laufende Verdichter, Druckluftmotoren u.a. bauen; auch eine Pumpe wird absolut trockenlaufsicher, wobei sie drucksteigernd und selbstansaugend bleibt. Dabei kann sie sehr fremdkörperunempfindlich ausgeführt werden, besitzt keinerlei Quetschstellen und kann sogar mitgeführte Feststoffe zerkleinern; Faserstoffe werden gehäckselt, Steine o.a. gebrochen.
  • Nachstehend werden einige Ausführungsbeispiele dieser Erfindung anhand von Zeichnungen näher erläutert.
  • Es zeigen:
    • Fig.1 eine Rotationskolbenmaschine in einem Längsschnitt;
    • Fig.2 einen Querschnitt nach der Linie 11-11 von Fig.l;
    • Fig.3 den Längsschnitt einer veränderten Maschine;
    • Fig.4 einen Flügelrotor in einer Draufsicht;
    • Fig.5 eine Dichtung in einer perspektivischen Ansicht;
    • Fig.6 dieselbe Dichtung im eingebauten Zustand nach einem Querschnitt VI-VI von Fig.7;
    • Fig.7 die Draufsicht VII von Fig.6;
    • Fig.8 eine Draufsicht einer anderen eingebauten Dichtung
    • Fig.9 einen Querschnitt derselben eingebauten Dichtung nach der Linie IX-IX von Fig.8;
    • Fig.10 eine zweistufige Rotationskolbenmaschine im längsschnitt X-X von Fig.11;
    • Fig.11 dieselbe Maschine im Querschnitt von Fig.10 mit teilweise eingezeichnetem Scheibenrotor;
    • Fig.12 eine andere Ausführung eines Verdichters in einem Längsschnitt;
    • Fig.13 denselben Verdichter im Querschnitt XIII-XIII von Fig.12.
  • Das Ausführungsbeispiel von Fig.1 und 2 zeigt z.B. eine einfache Pumpe. In einem zylindrischen Gehäuse 1 mit einem Deckel 2 sind die beiden ineinandergreifenden und schrägachsig zueinander angeordneten Rotoren untergebracht. Das Leistungsteil ist der Flügelrotor 4, der starr mit der Welle 3 verbunden ist. Er besteht aus einem scheibeförmigen Grundkörper4a, an dem auf einem konzentrischen Kreis vier Flügel 13 starr befestigt sind, die den Querschnitt des Ring- bzw. Arbeitsraumes 11 ganz ausfüllen.
  • Der Scheibenrotor 7 hat nur Dichtfunktion; er liegt auf der schrägen Ebene 6 mit seiner ebenen Stirnseite 7d auf und dichtet den Arbeitsraum 11 zur offenen Seite hin zumindest druck- oder saugseitig ab und wird durch die Flügel 13 mitgenommen, die ihn durch die radialen Schlitze 14 durchdringen.
  • Der Arbeitsraum ist in Form einer Ringnut 11 mit zylindrischen Wandungsteilen 11b, 11c und kegelmantelförmigen Nutgrund 11a in das Gehäuseteil 1 eingearbeitet und wird nach oben durch die schräge Ebene 6 begrenzt, die gerade so geneigt ist, daß an einer Umfangsstelle 11e die schräge Ebene 6 in die Fläche des Nutgrundes 11 a übergeht, wo eine linien- bzw. flächenhafte Abdichtung zwischen dem Saug-und Druckraum entsteht. Gleichzeitig schneiden sich die Dreh- und Symmetrieachsen'9, 10 vom Scheibenrotor 7 und Flügelrotor 4 im Schnittpunkt S in der schrägen Ebene 6 und bilden einen spitzen Winkel a. Der Scheibenrotor 7 wird durch eine Halteschraube 8 auf der Fläche 6 gehalten. Im Betrieb wird er schon durch den über ihm im Raum 5 herrschenden Druck saugseitig auf die Fläche 6 gedrückt, was zur Abdichtung schon genügt.
  • Die Schlitze 14 des ebenen Scheibenrotors 7 sind im Querschnitt V-förmig ausgebüdet um die drehwinkelabhängige Schrägstellung der Flügel 13 abzufangen und keine Blaslöcher entstehen zu lassen.
  • In Fig.2 ist in einer Draufsicht die Einteilung des Ringraumes bzw. der Ringnut 11 oder des Arbeitsraumes zu erkennen. Der eigentliche Förderbereich ist bei vier Flügeln 13 90° lang. An diesen schließen sich beiderseits großflächige Ein- und Auslaßkanäle 12a, b an, die bis an die Trennstelle 11e heranreichen.
  • Fig.3 zeigt den Längsschnitt einer der ersten ähnlichen Pumpe, nur daß die Fläche 6 des Gehäuseteiles 1 durch einen schräg liegenden Kegel gebildet wird und die Stirnfläche 7d des Scheibenrotors 7 entsprechend kegelförmig ausgebildet ist. Der Boden 11 des Ringraumes 11 ist eben ausgebildet und berührt an einer Umfangsstelle eine Mantellinie des kegelförmigen Scheibenrotors 7. Wenn man auf elastische Schlitzkanten verzichten will, muß man die übrigen beiden starren Flügel 13b gegenüber dem ersten starren diametralen Flügelpaar 13a über in Umfangsrichtung elastische Arme 13'b mit dem übrigen Flügelrotor4 bzw. der Welle 3 verbinden. Die beiden Flügel 13b können dann den Verschiebungen der Schlitze 14 folgen.
  • Will man starre Teile verwenden, kann man die Dichtungen von Fig.5, 6, 7, 8, und 9 verwenden, die zwei getrennte Aufgaben gleichzeitig erfüllen; sie lassen sich in Umfangsrichtung verschieben und liegen gleichzeitig elastisch um den jeweiligen Flügel an, um einmal die Verschiebungen der Schlitze, zum anderen deren Aufweitung abzufangen.
  • Die Dichtung 15 von Fig.5-7 besteht aus zwei Platten 15a, b, die in einer Aussparung des Scheibenrotors 7 im Schlitz 14 die Schlitzkanten bilden, durch zwei bogenförmige Teile 15c elastisch verbunden sind und ansonsten gemeinsam in Umfangsrichtung so viel Spiel haben, daß sie den Verschiebungen der Schlitze 14 folgen können.
  • Die Dichtung 15' von Fig.8 und 9 ist in einer kreisförmigen Aussparung im Scheibenrotor 7 untergebracht. Zwei Halbscheiben 15'a und 15'b werden durch eine kreisförmige Wellfeder 15'c um die Flügel 13 gespannt und gleichzeitig gegen die Wandung 7a der Aussparung abgestützt.
  • In Fig.10, 11 z.B. ist ein zweistufiger Verdichter für ölfrere Druckluft gezeigt. Zwei Ringnuten 11 und 11' sind konzentrisch ineinander im Gehäuseteil 1 angeordnet. Der Scheibenrotor 7 läuft hier berührungslos, weil er ebenfalls durch eine Welle 18 gelagert ist, die nach außen führt. (Der Scheibenrotor 7 benötigt aber nur eine ganz geringe Antriebsleistung zur Überwindung der Lagerreibung, da er kein Leistungsteil ist).
  • Der Flügelrotor 4 besteht aus dem Grundkörper 4a, an dem entlang eines Durchmessers je ein diametrales Flügelpaar 13b,13c für je einen Ringraum 11 bzw.11' angeordnet ist.
  • Je zwei Flügel 13 bzw. 13c greifen durch einen gemeinsamen Schlitz 14a.
  • Das Gas gelang durch den großen Einlaß 12a in den äußeren Ringraum 11 der Breite B. Der Auslaß 12b der ersten Stufe liegt neben der Ringnut und wird erst nach einer bestimmten inneren Verdichtung durch die Nut 17a im Scheibenrotor 7 mit der Ringnut 11 verbunden. Darant gelangt das Gas durch den Einlaß 12'a in die innen liegende zweite Stufe, den Ring- bzw. Arbeitsraum 11' und schließlich durch die Steuernut 17 zum Auslaß 12'b bei der angegebenen Drehrichtung 16.
  • Die Dichtung 15 im Schlitz 14a ist nicht unbedingt erforderlich, da bei dieser Anordnung der Flügel keine Verschiebungen zwischen den Flügeln und den Schlitzen auftreten.
  • In Fig. 12 ist eine mit Berührung zwischen den beweglichen Teilen laufende Maschine, z.B. ein Verdichter gezeigt. Die vier Flügel 13 des Flügelrotors 4 werden durch die Feder 19 an der Welle 3 in die sich zum Boden hin verjüngende Ringnut 11 gedrückt. Der Scheibenrotor 7 wird in der radialen Nut 20 geführt. Das Gehäuseteil 2 ist dazu durch das zylindrische Stück 2a vergrößert, das schräg ausgedreht wurde und die schräge Nut 20 aufnimmt.
  • Ein ringförmig abgesetzter Teil des Scheibenrotors 7 läuft außerdem in einer flachen axialen Ringnut, wodurch auch der flache Zapfen la des Gehäuseteiles 1 entsteht.
  • Die Schlitzkanten eines Schlitzes 14 sind nicht parallel, weil der Querschnitt- der Flügel 13 hier nicht rechteckförmig, sondern trapezförmig ist. Die verschleißenden Teile stellen sich hier automatisch nach.
  • Die Ein- bzw. Auslaßkanäle 12a bzw. 12b liegen hinter bzw. vor der festen Trennstelle zwischen Saug- und Druckraum, wo der Querschnift der Ringnut verschwindet.

Claims (8)

1. Winkelachsige Rotationskolbenmaschine mit einem in einen Gehäuse drehbar angeordneten, axiale Flügel (13) aufweisenden Flügelrotor (4) und einem radiale Schlitze (14) aufweisenden Scheibenrotor (7), deren Drehachsen einen spitzen Winkel einschließen, wobei die Flügel (13) durch die Schlitze des Scheibenrotors (7) hindurchgreifen und an der Wand des Arbeitsraumes, der vom Scheibenrotor abgedeckt ist, entweder mit Spiel oder gleitend dichtend geführt werden und wobei der äußere Durchmesser des Scheibenrotors (7) größer als der äußere Durchmesser des Flügelrotors (4) ist, dadurch gekennzeichnet, daß
a) der Arbeitsraum einseitig als in der Gehäusewand angeordnete, axiale ringförmige Nut (11,11') ausgebildet ist;
b) die radialen Schlitze (14) des Scheibenrotors (7) im Querschnitt derart V-förmig ausgebildet sind, daß ihre schrägen Wandungen zur Mittelebene mindestens so stark geneigt sind, wie die beiden Rotorachsen zueinander geneigt sind und die engsten Stellen der Schlitze an der Berührungsfläche (6) des Scheibenrotors (7) mit dem Gehäuse (1) liegen;,
c) der Schnittpunkt (S) beider Drehachsen an der Berührungsfläche (6) zwischen Scheibenrotor (7) und den Gehäuse (1) liegt.(Fig.1,2,3,12,13)
2. Winkelachsige Rotationskolbenmaschine mit einen in einen Gehäuse drehbar angeordneten, axiale Flügel (13) aufweisenden Flügelrotor (4) und einem radiale Schlitze (14) aufweisenden Scheibenrotor (7), deren Drehachsen einen spitzen Winkel einschließen, wobei die Flügel (13) durch die Schlitze des Scheibenrotors (7) hindurchgreifen und an den Wandungen von Arbeitsräumen, die von Scheibenrotor abgedeckt sind, entweder mit Spiel oder gleitend dichtend geführt werden und wobei der äußere Durchmesser des Scheibenrotors (7) größer als der äußere Durchmesser des Flügelrotors (4) ist, dadurch gekennzeichnet, daß
a) die Arbeitsräume einseitig als in der Gehäusewand angeordnete, axiale ringförmige Nuten (11, 11,) ausgebildet sind;,
b) die radialen Schlitze (14) des Scheibenrotors (7) in Querschnitt derart V-förmig ausgebildet sind, daß ihre schrägen Wandungen zur Mittelebene mindestens so stark geneigt sind, wie die beiden Rotorachsen zueinander geneigt sind und die engsten Stellen der Schlitze an der Berührungsfläche (6) des Scheibenrotors (7) mit den Gehäuse (1) liegen;
c) der Schnittpunkt (S) beider Drehachsen an der Berührungsfläche (6) zwischen Scheibenrotor (7) und dem Gehäuse (1) liegt;
d) die Flügel (13) am Grundkörper (4a) dea Flügelrotors (4) in konzentrischen Kreisen angeordnet sind, die in die entsprechend angeordneten Nuten (11, 11') hineinragen. (Fig.10 u. 11)
3. Winkelachsige Rotationskolbenmaschine nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß die ringförnigen Nuten (11, 11') durch je eine radial innere und radial äußere zylindrische Wandung (11b, 11c) begrenzt wird. (Fig.1, 2, 3, 10 u. 11)
4. Winkelachsige Rotationskolbenmaschine nach Anspruch 1, dadurch gekennzeichnet, daß sich die ringförnige Nut (11) nach ihren Boden (11 a) hin verjüngt. (Fig. 12)
5. Winkelachsige Rotationskolbenmaschine nach einem der Ansprüche 1-4, dadurch gekennzeichnet, daß der Boden (11a) der Nut derart kegelstumpfförmig ausgebildet ist, daß die Spitze des vervollständigten Kegels im Schnittpunkt S beider Drehachsen (9) und (10) liegt. (Fig. 1,2,10,11,12 u. 13)
6. Winkelachsige Rotationskolbenmaschine nach Anspruch 1, dadurch gekennzeichnet, deß der Boden 11a der ringförmigen Nut eben und die an der Gehäusewand befindliche Fläche des Scheibenrotors (7) kegelförmig ausgebildet ist und die die Nut aufweisende Gehäusewand entsprechend kegelförmig ausgebildet ist. (Fig.3)
7. Winkelachsige Rotationskolbenmaschine nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß zwei diametral gegenüberliegende Flügel (13) in einer Nut vorgesehen sind. (Fig. 10 u. 11)
8. Winkelachsige Rotationskolbenmaschine nach Anspruch 4, dadurch gekennzeichnet, daß eine den Flügelrotor (4) gegen den Nutgrund drückende Feder (19) vorgesehen ist. (Fig. 12)
EP80105799A 1979-11-16 1980-09-25 Winkelachsige Rotationskolbenmaschine Expired EP0031002B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT80105799T ATE24346T1 (de) 1979-11-16 1980-09-25 Winkelachsige rotationskolbenmaschine.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE2946304A DE2946304C2 (de) 1979-11-16 1979-11-16 Drehkolbenartige Rotationskolbenmaschine
DE2946304 1979-11-16

Publications (2)

Publication Number Publication Date
EP0031002A1 EP0031002A1 (de) 1981-07-01
EP0031002B1 true EP0031002B1 (de) 1986-12-17

Family

ID=6086163

Family Applications (1)

Application Number Title Priority Date Filing Date
EP80105799A Expired EP0031002B1 (de) 1979-11-16 1980-09-25 Winkelachsige Rotationskolbenmaschine

Country Status (4)

Country Link
US (1) US4548559A (de)
EP (1) EP0031002B1 (de)
AT (1) ATE24346T1 (de)
DE (2) DE2946304C2 (de)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3676711D1 (de) * 1986-07-11 1991-02-07 Willimczik Wolfhart Verdraengermaschine.
US8834140B2 (en) 2004-05-25 2014-09-16 Cor Pumps + Compressors Ag Leakage loss flow control and associated media flow delivery assembly
DE102004026048A1 (de) * 2004-05-25 2005-12-29 Cor Pumps + Compressors Ag Spaltverluststromsteuerung

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US173030A (en) * 1876-02-01 Improvement in rotary engines and water-wheels
US167146A (en) * 1875-08-24 Improvement in disk steam-engines
US764551A (en) * 1904-05-13 1904-07-12 William Hero Bot Jr Rotary engine.
GB267509A (en) * 1926-03-11 1928-04-19 Farid Riz Camel Improvements in rotary pumps
US2101051A (en) * 1935-07-20 1937-12-07 Cunward Inc Rotary fluid displacement device
US2242058A (en) * 1937-11-05 1941-05-13 Ernest A Cuny Rotary fluid displacement device
US2232599A (en) * 1939-09-16 1941-02-18 Frank P Fehn Rotary fluid power device
DE826331C (de) * 1950-04-22 1951-12-27 Rudolf Bock Geblaese, bestehend aus zwei in einem Gehaeuse angeordneten, aufeinander abrollenden Drehkoerpern und radialen Scheidewaenden
US2828695A (en) * 1954-02-04 1958-04-01 Marshall John Wilmott Rotary machine
US3034445A (en) * 1958-01-14 1962-05-15 Standard Res Consultants Inc Pump
GB967636A (en) * 1960-03-11 1964-08-26 Pietro Mongitore Rotary fluid engines and pumps
DE1553106A1 (de) * 1966-04-25 1970-07-16 Lusztig Dipl Ing Gavril Drehkolbenpumpe
FR1503746A (fr) * 1966-10-12 1967-12-01 Pompe double corps à palettes
DE1628123A1 (de) * 1967-10-23 1971-09-16 Rudolf Jacob Zweikreis-Hydrostatmotor
US3487787A (en) * 1967-12-06 1970-01-06 Thompson Wendell L Vane type rotary fluid displacement device
US3528242A (en) * 1968-03-21 1970-09-15 Michael D Hartmann Rotary positive displacement machines
US3622255A (en) * 1969-08-07 1971-11-23 Gavril T Lusztig Pump
GB1423673A (en) * 1973-11-19 1976-02-04 Simpson J N Rotary fluid pump

Also Published As

Publication number Publication date
DE2946304C2 (de) 1983-02-03
ATE24346T1 (de) 1987-01-15
US4548559A (en) 1985-10-22
DE3071865D1 (en) 1987-01-29
DE2946304A1 (de) 1981-05-21
EP0031002A1 (de) 1981-07-01

Similar Documents

Publication Publication Date Title
DE3432915C2 (de) Innenachsige Drehkolbenmaschine
CH656185A5 (de) Seitenkanalpumpe.
DE19509913A1 (de) Umlaufkolbenmaschine
DE2835457C2 (de)
EP0031002B1 (de) Winkelachsige Rotationskolbenmaschine
CH675896A5 (de)
DE4017760A1 (de) Drehkolbenbrennkraftmaschine
DE1653921C3 (de) Rotationskolbenpumpe
EP0137421B1 (de) Aussenachsige Rotationskolbenmaschine
DE3727281C2 (de)
DE3519170C2 (de)
EP1005604A1 (de) Drehkolbenmaschine
DE2913608A1 (de) Verdraengermaschine
EP0024006B1 (de) Rotationskolbengebläse
EP1118773A2 (de) Flügelzellenpumpe oder Flügelzellenmotor
DE3634094A1 (de) Hydraulische oder pneumatische arbeits- und kraftmaschine
DE2448982A1 (de) Ls pumpe oder motor arbeitende drehkolbenmaschine
DE1803362A1 (de) Drehkolbenmaschine
CH578677A5 (en) Rotating hydraulic motor with rotor and vanes - has curved vanes able to slide within curved guides within rotor
EP0277114A1 (de) Verdrängermaschine.
DE1813216A1 (de) Stroemungsmittel-Rotationspumpe
DE650691C (de) Pumpe oder Verdichter mit unter ungleichfoermiger Winkelgeschwindigkeit umlaufenden Doppelfluegelkolben
DE3513073A1 (de) Starrfluegelverdraengermaschine
WO1997013957A1 (de) Drehkolbenmaschine
CH430027A (de) Rotationskolbenmaschine

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): AT CH DE FR GB IT NL SE

RBV Designated contracting states (corrected)

Designated state(s): AT CH DE FR GB IT LI NL SE

17P Request for examination filed

Effective date: 19811119

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: WILLIMCZIK, WOLFHART, DIPL.-PHYS.

ITF It: translation for a ep patent filed
GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT CH DE FR GB IT LI NL SE

REF Corresponds to:

Ref document number: 24346

Country of ref document: AT

Date of ref document: 19870115

Kind code of ref document: T

REF Corresponds to:

Ref document number: 3071865

Country of ref document: DE

Date of ref document: 19870129

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19880401

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19880925

Ref country code: AT

Effective date: 19880925

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19880926

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19880930

Ref country code: CH

Effective date: 19880930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19890531

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee
REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19891103

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19910702

EUG Se: european patent has lapsed

Ref document number: 80105799.3

Effective date: 19890614