EP0030376B1 - Verfahren und Vorrichtung zum Trocknen und Erhitzen von feuchter Kohle - Google Patents

Verfahren und Vorrichtung zum Trocknen und Erhitzen von feuchter Kohle Download PDF

Info

Publication number
EP0030376B1
EP0030376B1 EP19800107653 EP80107653A EP0030376B1 EP 0030376 B1 EP0030376 B1 EP 0030376B1 EP 19800107653 EP19800107653 EP 19800107653 EP 80107653 A EP80107653 A EP 80107653A EP 0030376 B1 EP0030376 B1 EP 0030376B1
Authority
EP
European Patent Office
Prior art keywords
inert gas
coal
circulation
drying
gas circulation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP19800107653
Other languages
English (en)
French (fr)
Other versions
EP0030376A2 (de
EP0030376A3 (en
Inventor
August Ing.Grad. Schaper
Heinrich Ing.Grad. Mohmeyer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CESSIONE;AMMAN IMA GMBH
Original Assignee
Alfelder Eisenwerke Carl Heise KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alfelder Eisenwerke Carl Heise KG filed Critical Alfelder Eisenwerke Carl Heise KG
Publication of EP0030376A2 publication Critical patent/EP0030376A2/de
Publication of EP0030376A3 publication Critical patent/EP0030376A3/de
Application granted granted Critical
Publication of EP0030376B1 publication Critical patent/EP0030376B1/de
Expired legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B11/00Machines or apparatus for drying solid materials or objects with movement which is non-progressive
    • F26B11/02Machines or apparatus for drying solid materials or objects with movement which is non-progressive in moving drums or other mainly-closed receptacles
    • F26B11/028Arrangements for the supply or exhaust of gaseous drying medium for direct heat transfer, e.g. perforated tubes, annular passages, burner arrangements, dust separation, combined direct and indirect heating
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10BDESTRUCTIVE DISTILLATION OF CARBONACEOUS MATERIALS FOR PRODUCTION OF GAS, COKE, TAR, OR SIMILAR MATERIALS
    • C10B57/00Other carbonising or coking processes; Features of destructive distillation processes in general
    • C10B57/08Non-mechanical pretreatment of the charge, e.g. desulfurization
    • C10B57/10Drying
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B21/00Arrangements or duct systems, e.g. in combination with pallet boxes, for supplying and controlling air or gases for drying solid materials or objects
    • F26B21/14Arrangements or duct systems, e.g. in combination with pallet boxes, for supplying and controlling air or gases for drying solid materials or objects using gases or vapours other than air or steam, e.g. inert gases

Definitions

  • the invention relates to a method for drying and heating moist coal, in particular fine and very fine coal, in which the coal to be dried is supplied with heat via an inert gas circuit, which can be heated with the aid of a heat exchanger, and the dried and heated coal with a Partial circuit of the inert gas is protected from the entry of oxygen.
  • the invention also shows an apparatus for performing this method.
  • DE-A 28 10 694 shows a method of the type described in the introduction, in which fine-grained hard coal is pre-dried and further processed to high-quality hard coal coke.
  • the fine-shaped hard coal is dried in a drying device by means of a low-oxygen cycle gas, which essentially consists of water vapor.
  • Water vapor is used as the inert gas for the cycle, which develops when the coal to be dried is heated from the moisture that is carried in by the moist coal.
  • the inert gas circuit is indirectly heated by a heat exchanger.
  • the inert gas circuit must also be cleaned with a dedusting system, whereby the entrained coal particles must be separated.
  • a cyclone is used as the dedusting system, the low weight of the coal and the high fines content result in insufficient cleaning. In addition, the fine parts of the coal are also deposited on the heat exchanger and considerably impair the heat transfer. If, on the other hand, a cloth filter is used, temperature problems arise, particularly when starting up and shutting down the system. If the temperature of the inert gas in the cloth filter is too high, there is a risk that the filter cloths will burn. If, on the other hand, the temperature is too low, condensate forms and the carbon particles are deposited with the condensate on the filter cloths, so that the filter resistance increases.
  • the known method works on the countercurrent principle. This is disadvantageous insofar as the inert gas heated in the heat exchanger hits the already dried coal at the outlet of the drying system with its hottest temperature. Symptoms of overheating can occur here. In addition, the hot fines from the coal are taken in countercurrent. These migrate back to the entrance of the drying facility and can be deposited there again on the wet coal particles. This results in an accumulation of the fine particles in the drying device, so that their resistance increases. This affects the inert gas cycle.
  • DE-A 16 29 117 shows a method and a device for the gentle and accelerated drying of oxidation-sensitive substances, in which a preheated inert gas, preferably nitrogen, is used. Even in the presence of the dry material, the air in the system is to be displaced by spraying water vapor and the water vapor is to be discharged via condensers. To an equivalent extent, the inert gas, preferably nitrogen, should be blown into the space of the dryer which has been freed by the condensation of the water vapor. In this known system, a heater is used, from which it is not possible to see how it should work.
  • a preheated inert gas preferably nitrogen
  • DE-A 26 59 335 shows a coal drying and heating system that works with an entrained-flow dryer and a downstream entrained-current heater for the coal and in which a directly fired gas circuit is initially operated by the entrained-current heater and gas circuit, first by the entrained-current heater and then by the entrained-air dryer because it is conducted in direct current. Air in the form of combustion air is also introduced into the gas-operated combustion chamber, so that the oxygen content in the circuit of the heat transfer medium is difficult to control. In spite of vapor recirculation, deflagration phenomena and explosions cannot be avoided with this known coal heating system. The system also works with an electrostatic precipitator, whereby the coal separated there is added to the dried coal.
  • two short-circuit lines are arranged, both of which bridge the entrained-flow dryer and serve to raise or regulate the temperature in a cyclone separator and in the electrostatic filter.
  • the fan provided in the circuit of the heat transfer medium conveys in addition to the vapor return immediately into the electrostatic filter and then into the chimney, so that there is an additional risk that air at leaky points in the system and thus oxygen will get into the circuit of the heat transfer medium.
  • a limit value of 14% is known for thermal drying systems from the “Preparation Technology”, Issue 12, 1978, pages 581 to 586 (584). H. the maximum permissible oxygen content in the hot gas is limited to 14%. In order to reach this limit, it is recommended to first fill the system with steam and then inject water, which is to be gradually replaced by coal sludge to be dried. This method of operation is problematic in that the water vapor condenses in the cold system and the water subsequently injected only increases the amount of water or condensate. A reduction in the oxygen content to less than 2% is hardly conceivable in this way and is not even attempted according to the limit value of 14% recommended there.
  • the invention has for its object to develop the method of the type described in such a way that a system can be started up and shut down without the risk of deflagration, burns and explosions, the coal and the system is not damaged by overheating and a lowering of the temperature with the risk of condensation of water vapor is also avoided. Furthermore, the problems associated with dedusting and maintaining the filter effect must be solved in such a coal drying plant.
  • the method according to the invention is characterized in that during the start-up process before the introduction of moist coal in the system, air present in the circuit is heated and thereby heated via a heat exchanger that the parts of the system coming into contact with the circuit by means of the heated air circuit to condensation of water vapor avoiding temperature are warmed up before water is sprayed into the heated air circuit or water vapor is introduced and the air circuit is enriched with water vapor, the oxygen content being reduced below 2% and the inert gas circuit being formed before moist coal is dried in cocurrent for drying Inert gas circuit is introduced.
  • the air in the system with its known oxygen content is thus initially heated indirectly and without coal coming into contact with it, so that all system parts that come into contact with the air circuit are heated to such an extent that condensation of water vapor is avoided that will.
  • Water is sprayed into this heated air circuit, i.e. introduced in a very fine distribution with a large surface area, so that this water actually has the possibility of evaporating and thus causing an enrichment with water vapor without a substantial reduction in the temperature of the air circuit, as a result of which the oxygen content of the Recycle gas is lowered. This reduction can be carried out safely for the plant until the oxygen content in the cycle gas has dropped below 2% and the vast majority of the cycle gas is formed from water vapor.
  • the start-up process only takes a few minutes, it can also be operated without further ado that the oxygen content in the inert gas circuit is reduced to below 1% by enriching with water vapor before moist coal is introduced for drying.
  • the inert gas circuit is initially maintained until the last coal has left the plant; water is sprayed in or water vapor is introduced to avoid local overheating on the system.
  • the burner is switched off and then the inert gas is gradually replaced by air until the system has cooled to 80 ° C.
  • the device for carrying out the method has a drying device, an inert gas circuit which can be heated indirectly via a heat exchanger and which is passed once through the drying device and in a partial circuit via a mixer for dried coal, such as a dedusting device, in the inert gas circuit and a heat source connected to the heat exchanger on.
  • the drying device is a driven drying drum connected in direct current to the inert gas circuit, which is followed by a pre-separator and cooler as well as a cloth filter dedusting device in the inert gas circuit, and that the inert gas circuit has a shut-off supply line for water or water vapor and another lockable supply line for air having.
  • the gas circuit is also passed through the plant in direct current during the start-up process, that is in the same direction in which the coal to be dried is also guided during the operating phase of the plant.
  • This then has the advantage during the operating phase that depletion of the fine fractions of coal in the drying device is avoided.
  • a drying drum in a direct current process as a drying device, the coal is gently dried, the highest temperature of the inert gas circuit acting on the wet coal, so that overheating at the outlet of the drying drum on the dried coal is avoided and the temperature profiles can be controlled more easily and better.
  • the lockable supply line for water or steam and a further lockable supply line for air make a significant contribution to this.
  • the first line is used for the start-up process, while the further lockable supply line for air is required when the system is switched off.
  • the better controllability of the temperatures also makes it possible to use a pre-separator and cooler in the inert gas circuit, as well as a cloth filter dedusting device, which, when working dry, can achieve the required cleaning of the inert gases.
  • the inert gas circuit has two short-circuit lines, each provided with controllable shut-off devices, one of which is connected between the heat exchanger and the drying drum and leads into the line between the drying drum and the pre-separator and cooler, while the other branches off after the cloth filter dedusting and after the downstream fan and in front of the heat exchanger and bridges the heat exchanger. While the first short-circuit line is used to increase the temperature in the cloth filter dedusting, the second short-circuit line serves to lower the temperature in the cloth filter dedusting. It is understood that in this way the cloth filter dedusting can be carried out in an optimal temperature range, so that the temperature falls below the dew point and thus the formation of sulphurous acid and the condensation of water are avoided.
  • the upstream pre-separator and cooler can also be used to reduce the temperature in the cloth filter dedusting will.
  • the cooling device on the pre-separator expediently consists of several fans which can be switched on or off accordingly.
  • the partial circuit of the inert gas circuit intended to protect the dried coal branches off after the fan and is returned to the inert gas circuit, bridging the drum between the drying drum and the pre-separator and cooler.
  • the dried coal is thus effectively protected against the entry of atmospheric oxygen even after it has left the drying drum until it has been subjected to a desired processing.
  • a desired processing e.g. B. inert the material silo, the weighing and mixing device and the conveyor line of the coal. This can be done by depositing in a silo. It is also possible to coat the dried coal with a binder, preferably a bituninous binder, this is particularly useful if the coal is then to be coked.
  • a controllable shut-off device is arranged in the inert gas circuit in front of the heat exchanger and in front of the branching of one short-circuit line, as well as in the branching circuit.
  • These two shut-off devices control the quantity distribution of the inert gas for the inert gas circuit on the one hand and for the partial circuit on the other. It goes without saying that this quantity control can also influence the temperatures at the respective parts of the system.
  • a mixer, a weighing device and an intermediate silo can be provided in the partial circuit of the inert gas.
  • other devices for the dried coal can also be provided here, which are then expediently also included in the partial circuit, provided that the temperature of the dried coal is still in a dangerous range in such plant parts.
  • the lockable supply line for water or water vapor is expediently provided at the entrance to the drying drum.
  • all you need is a water supply line and a shut-off device, while the drying drum itself can be used to evaporate the water, as will happen later for the main purpose of the system, namely the drying of the coal.
  • the shut-off supply line for air is expediently connected to the inert gas circuit between the dust filter and the fan, so that here air is sucked in and mixed with the inert gas in a simple manner.
  • the temperature in the dedusting system is initially not reduced, so that no condensation can occur.
  • the heat exchanger connected to the inert gas circuit is, on the other hand, connected to a heating circuit which has an exhaust gas recirculation system in which a controllable shut-off element is provided.
  • a heating circuit which has an exhaust gas recirculation system in which a controllable shut-off element is provided.
  • the system also has a pre-separator and cooler 5, and a cloth filter dedusting device 6 connected downstream of this.
  • a fan 7 is provided downstream for circulating the heat transfer medium or the inert gas circuit and the partial circuit.
  • a heat exchanger8 is used for indirect heating of the inert gas circuit.
  • the heat exchanger 8, on the other hand, is connected to a heating circuit 9, 11 from the line sections 9 and 11, which ultimately leads to the exhaust stack 10.
  • a mixed gas fan 12 and a controllable shut-off device 13 are arranged in this line section 11.
  • a burner 14 is heated with gas or another medium which is drawn off via a line or a storage tank 15. The combustion air for the burner 14 is brought in via the air fan 16.
  • a return of the exhaust gases after passing through the heat exchanger and mixing in a mixing chamber 17 with the combustion exhaust gases can take place via the line section 11.
  • the inert gas circuit leads with a line 18 from heat exchanger 8 to the entrance to the drying drum 4. After passing through the drying drum4, the inert gas circuit is completed by the line sections 19, 20, 21, 22 and 23. As can be seen, the line piece 19 is connected between the output of the drying drum 4 and the input of the pre-separator and cooler 5, which, moreover, can be blown with cooling air by a blower (not shown) according to the arrows 24 and thus the temperature of the inert gas can be reduced.
  • the line piece 20 connects the outlet of the pre-separator and cooler 5 with the cloth filter dedusting 6; the output of which is connected to the blower 7 via the line piece 21.
  • the inert gas circuit 18 to 23 is formed from the line 18 and the line sections 19, 20, 21, 22 and 23.
  • two short-circuit lines 26 and 27 are provided, in which controllable shut-off organs ne 28 and 29 are arranged.
  • a feed line 30 for water or steam and a control device 31 which is required for start-up purposes.
  • the feed line 32 is required when the system is switched off.
  • the dried coal passes from the exit of the drying drum 4 via an encapsulated conveyor device 34 into a bucket elevator 35 and from there into an intermediate silo 36, from which it can be transferred in batches to a weighing device 37, from which the coal in turn reaches the mixer 38.
  • the coal can then finally be deposited in a silo 39 or be used for the corresponding purpose.
  • the mixer 38 it is possible to coat the dried coal with a binder, preferably a bituminous binder. This is fed from the binder tank 40 into the mixer 38 via the injection device 41.
  • the binder tank 40 is kept at the desired processing temperature by a thermal oil heating unit 42.
  • the partial circuit 43 to 47 formed from the line sections 43 to 47 branches off from the line section 22. This subcircuit 43 to 47 of the inert gas protects the dried coal and the relevant parts of the plant over which it is guided.
  • the short-circuit line 27 branches off from the line piece 23, but also the inert gas outlet line 48, in which the adjustable pressure relief valve 49 is provided and which ultimately leads to the exhaust gas chimney 10.
  • An overpressure is always maintained in the inert gas circuit 18 to 23 and in the partial circuit 43 to 47 via this pressure relief valve 49.
  • gas is continuously released to the exhaust gas chimney 10 via the pressure relief valve 49 both during the start-up phase and during the operation of the installation, because water vapor is continuously enriched by the water introduced or by the water carried in by the coal.
  • the pre-separator and cooler 5 as well as the cloth filter dedusting 6 are connected to the bucket elevator 35 via screw conveyors 50, so that the dry coal separated in the pre-separator 5 and the cloth filter dedusting 6 is added again to the dried coal brought up via the conveying line 34.
  • the fan 7, the drying drum 4 and various other system parts are started.
  • the heating circuit 9, 11 is then released by igniting the burner 14 for the development of heat, the associated system parts such as air fan 16 and mixed gas fan 12 also having to be switched on.
  • Heat is transferred to the air-filled circuit via the heat exchanger.
  • water is sprayed into the drying drum 4 by the control device 31 for water via the feed line 30. The water evaporates through the hot inlet gases. The resulting steam increases the amount of vapors in circulation.
  • the controllable overpressure valve 49 is made ready for opening so that it can discharge a partial gas flow into the exhaust gas stack 10.
  • the amount of water supplied is measured so that the water vapor produced is sufficient to reduce the oxygen content in the circulating vapors below 2%, preferably below 1%. This start-up process will take about 5 minutes.
  • the drying of the coal can then be started by switching on the material conveyor 2 and removing moist coal from the material silo 1 and feeding it to the drying drum 4 via the cellular wheel sluice 3. It goes without saying that at this point in time no more water is inserted via the feed line 30.
  • the moist coal to be dried reaches the material silo 1 in some way, for example with the aid of a shovel loader.
  • the material conveyor 2 is equipped with a direct current control drive.
  • the quantity discharged can be measured volumetrically by hand or set manually from a control center.
  • the amount of coal to be dried should be kept constant during operation.
  • the interior of the drying drum 4 is largely airtight against the environment. Above all, no atmospheric oxygen can penetrate, since the inert gas circuit 18 to 23 is operated at the sealing points of the drying drum under a corresponding excess pressure.
  • the temperature of the dried coal present at the end of the drying drum 4 is specified as a setpoint and compared in a controller. When the value falls below the setpoint, the shut-off device 25 on the pressure side of the fan 7 is opened, so that the amount of vapors in the inert gas circuit 18 to 23 is increased. If the target value of the temperature of the coal at the outlet of the drying drum 4 is exceeded, the amount of vapors is reduced by the control devices described above.
  • the entry temperature of the hot vapors into the drying drum 4 should be about 450 ° C. If the value falls below this target value, the gas supply to the burner 14 is increased. By introducing more energy, the exhaust gas temperature of the heating circuit 9, 11 increases, so that the temperature of the inert gas circuit 18 to 23 is raised via the heat exchanger 8. When the setpoint of the temperature of the heating circuit 9, 11 is exceeded at the entrance to the heat exchanger, which is approximately 1 100 ° C., the shut-off element 13 in the heating circuit 9, 11 is opened. As a result, an increased recirculation of the exhaust gases at approximately 300 ° C. is initiated, whereby the exhaust gas temperature in the mixing chamber 17 is reduced to the setpoint.
  • the fan 7 can, for example, be designed in such a way that it produces a total pressure difference of 70 mbar at 20 ° C., so that this pressure cannot be exceeded at any point in the inert gas circuit.
  • the vapors and the inert gas circuit are cleaned with the cloth filter dedusting device 6 and the upstream indirect pre-separator and cooler 5.
  • Two control circuits are required to protect the filter cloths from over and under temperature. If the specified setpoint temperature of z. B. 128 ° C in the line section 20, the first half of the cooling fans is switched on according to the arrows 24. If the temperature continues to rise and reaches z. B. 132 ° C, all cooling fans are turned on. Nevertheless, the temperature continues to rise and reaches z. B. 135 ° C, the gas supply in the burner 14 is switched off and the shut-off device 29 in the short-circuit line 27 is opened.
  • the temperature in the inert gas circuit 18 to 23 is lowered with certainty.
  • the temperatures specified above depend on the permissible temperature for the filter cloth used in each case. If the specified setpoint temperature of 115 ° C. on the line section 20 is undershot, the shut-off device 28 in the short-circuit line 26 is opened, the material conveyor 2 being switched off at the same time. As a result, the temperature in the pre-separator and cooler 5 and in the cloth filter dedusting 6 is raised again to such a value that critical conditions with regard to falling below the dew point cannot occur.
  • the dried coal present at the end of the drying drum 4 is conveyed into the intermediate silo 36 via the conveying device 34 and via a bucket elevator 35.
  • the coal which is also dry and separated in the pre-separator 5 and in the cloth filter dedusting 6, is fed via the conveyor screws 50.
  • the coal is removed from the intermediate silo 36 by means of cellular wheel locks and fed to the weighing device 37.
  • the cellular wheel sluices are switched off and the coal is introduced into the mixer38.
  • the binder is injected into the mixer 38 by the injection device 41.
  • the mixer opens and the dried coated material, namely the coal, falls into a silo 39 or is used for further use.
  • the partial circuit 43-47 made of inert gas protects the other parts of the system after the drying drum4 and the heated, dry coal contained in them.
  • the ratio of the inert gas, which is introduced into the inert gas circuit 18 to 23 after the fan 7, in relation to the amount of inert gas of the partial circuit 43 to 47 is achieved by the settings of the shut-off devices 25 and 51.
  • the material conveyor 2 is first stopped. Since the drying drum 4 no longer consumes as much heat, the temperature of the dry coal rises at the outlet of the drying drum. Likewise, the temperature of the inert gas in line piece 19 also rises. Water is now input into drying drum 4 via control device 31 for water. Even now, atmospheric oxygen is prevented from entering the system. After the mixing of the coal in the mixer 38 has ended, the water supply to the drying drum 4 is switched off and the air supply via the second feed line 32 is made possible by opening the shut-off device 33. The amount of vapors circulating increases further by sucking in air. Exhaust gas is continuously released into the exhaust stack 10 via the open pressure relief valve 49. The proportion of water vapor is now constantly decreasing, while the proportion of air is increasing.

Description

  • Die Erfindung bezieht sich auf ein Verfahren zum Trocknen und Erhitzen von feuchter Kohle, insbesondere Fein- und Feinstkohle, bei dem der zu trocknenden Kohle Wärme über einen Inertgaskreislauf, der mit Hilfe eines Wärmetauschers aufheizbar ist, zugeführt wird und die getrocknete und erhitzte Kohle durch einen Teilkreislauf des Inertgases vor dem Zutritt von Sauerstoff geschützt wird. Die Erfindung zeigt gleichzeitig eine Vorrichtung zur Durchführung dieses Verfahrens.
  • Die DE-A 28 10 694 zeigt ein Verfahren der eingangs beschriebenen Art, bei dem feinkörnige Steinkohle vorgetrocknet und zu hochwertigem Steinkohlenkoks weiterverarbeitet wird. Dabei wird die feinkörmige Steinkohle in einer Trocknungseinrichtung mittels eines sauerstoffarmen Kreislaufgases, welches im wesentlichen aus Wasserdampf besteht, getrocknet. Als Inertgas für den Kreislauf dient Wasserdampf, der sich beim Erhitzen der zu trocknenden Kohle aus der Feuchtigkeit entwickelt, die von der feuchten Kohle mit eingeschleppt wird. Der Inertgaskreislauf wird durch einen Wärmetauscher indirekt beheizt. Der Inertgaskreislauf muß auch mit einer Entstaubungsanlage gereinigt werden, wobei die mitgerissenen Kohleteilchen abzuscheiden sind. Wird als Entstaubungsanlage ein Zyklon eingesetzt, dann ergibt sich aufgrund der geringen Wichte der Kohle und der hohen Feinanteile eine ungenügende Abreinigung. Darüber hinaus lagern sich die Feinanteile der Kohle auch am Wärmetauscher ab und verschlechtern den Wärmeübergang beträchtlich. Wird dagegen ein Tuchfilter eingesetzt, dann entstehen Temperaturprobleme, insbesondere beim Anfahren und Abstellen der Anlage. Ist die Temperatur des Inertgases im Tuchfilter zu hoch, dann besteht die Gefahr, daß die Filtertücher verbrennen. Ist die Temperatur dagegen zu niedrig, dann bildet sich Kondensat und die Kohleteilchen lagern sich mit dem Kondensat an den Filtertüchern ab, so daß der Filterwiderstand ansteigt.
  • Weiterhin bestehen bei dem bekannten Verfahren große Probleme beim Anfahren und Abstellen der Anlage ; denn es wird feuchte Kohle zunächst in die heiße Trocknungseinrichtung eingebracht. Beim Anfahren steht im Umlauf zunächst nur heiße Luft zur Verfügung, so daß deren Sauerstoffanteil sehrleicht zur Selbstentzündung der Kohle führen kann. In der Folge können Verpuffungen und Explosionen auftreten. Ist die Anlage beim Anfahren noch zu kalt, besteht die Gefahr, daß das aus der Kohle zunächst ausgetriebene Wasser an einem anderen Teil der Anlage wieder kondensiert und damit insbesondere eine Tuchfilterentstaubung beeinträchtigt. Ist dagegen die Temperatur in der Anlage zu hoch, dann können die Filtertücher verbrennen. Ähnliche Schwierigkeiten ergeben sich beim Abstellen der Anlage. Örtliche Temperaturerhöhungen infolge unterbrochenen Kohleeintrags können auch die empfindliche Tuchfilteranlage stören. Andererseits kann infolge Temperatursenkung an der Tuchfilteranlage Kondensat anfallen und eine Verschmutzung entstehen.
  • Das bekannte Verfahren arbeitet nach dem Gegenstromprinzip. Dies ist insofern nachteilig, als das im Wärmetauscher aufgeheizte Inertgas mit seiner heißesten Temperatur auf die schon getrocknete Kohle am Austritt der Trocknungsanlage auftrifft. Hier können Überhitzungserscheinungen auftreten. Darüber hinaus werden im Gegenstrom die heißen Feinanteile der Kohle mitgenommen. Diese wandern zum Eingang der Trocknungseinrichtung zurück und können sich dort an den nassen Kohleteilchen wieder ablagern. Hierdurch erfolgt eine Anreicherung der Feinanteile in der Trocknungseinrichtung, so daß deren Widerstand ansteigt. Hierdurch wird der Inertgaskreislauf beeinträchtigt.
  • Aus der US-A 4 008 042 ist ein einstufiger Flugstromtrockner bekannt, der kontinuierlich mit einem Heißgaserzeuger beheizt wird. Bei Ausfall der Kohleförderung soll in den Kreislauf Wasser eingespritzt werden, um eine Temperatursteigerung und eine nachfolgende Zerstörung der Anlage zu verhindern. Der Heißgaserzeuger kann mit Koksofengas betrieben werden und muß üblicherweise unter Luftüberschuß gefahren werden, um die Temperaturen nicht zu hoch steigen zu lassen und eine vollständige Verbrennung zu erreichen. Beim Anfahren der Anlage erscheint es somit allenfalls möglich, den Sauerstoffanteil im Kreislaufgas auf etwa 5 % zu erniedrigen, bevor feuchte Kohle eingebracht wird. Es wird zwar beschrieben, daß der Sauerstoffanteil normalerweise unterhalb 1 % gehalten werden soll, ohne daß allerdings erkennbar ist, wie dies erreicht werden könnte.
  • Die DE-A 16 29 117 zeigt ein Verfahren und eine Einrichtung zur schonenden und beschleunigten Trocknung von oxidationsempfindlichen Substanzen, bei dem ein vorgewärmtes Inertgas, vorzugsweise Stickstoff, benutzt wird. Bereits unter Anwesenheit des Trockengutes soll dabei die in der Anlage befindliche Luft durch Binsprühen von Wasserdampf verdrängt und der Wasserdampf über Kondensatoren abgeleitet werden. In äquivalentem Maße soll das Inertgas, vorzugsweise Stickstoff, in dem durch die Kondensation des Wasserdampfes frei gewordenen Raum des Trockners eingeblasen werden. In dieser bekannten Anlage findet auch ein Erhitzer Verwendung, von dem nicht erkennbar ist, wie er arbeiten soll.
  • Die DE-A 26 59 335 zeigt eine Kohletrocknungs- und Erhitzungsanlage, die mit einem Flugstromtrockner und einem nachgeschalteten Flugstromerhitzer für die Kohle arbeitet und bei der ein direkt befeuerter Gaskreislauf zunächst durch den Flugstromerhitzer und Gaskreislauf zunächst durch den Flugstromerhitzer und dann durch den Flugstromtrockner prinzipbedingt jeweils im Gleichstrom geführt ist. In die mit Gas betriebene Brennkammer wird auch Luft in Form der Verbrennungsluft eingeführt, so daß damit der Sauerstoffgehalt im Kreislauf des Wärmeträgermediums schlecht beherrschbar ist. Trotz Brüdenrückführung lassen sich bei dieser bekannten Kohleerhitzungsanlage Verpuffungserscheinungen und Explosionen nicht vermeiden. Die Anlage arbeitet im übrigen mit einem Elektrofilter, wobei die dort abgeschiedene Kohle der getrockneten Kohle hinzugefügt wird. Im Kreislauf des Wärmeträgermediums sind zwei Kurzschlußleitungen angeordnet, die beide den Flugstromtrockner überbrücken und zur Anhebung bzw. Regelung der Temperatur in einem Zyklonabscheider und in dem Elektrofilter dienen. Der im Kreislauf des Wärmeträgermediums vorgesehene Ventilator fördet außer in die Brüdenrückführung sofort in den Elektrofilter und anschließend in den Kamin, so daß die zusätzliche Gefahr besteht, daß Luft an undichten Stellen der Anlage und damit Sauerstoff in den Kreislauf des Wärmeträgermediums gelangt.
  • Aus der DE-B 26 26 653 ist ein zweistufiger Einrohr-Flugstromtrockner bekannt, der natürlich ebenfalls im Gleichstrom betrieben wird. Auch hierbei findet eine direkte Beheizung des Wärmeträgerkreislaufes statt, wobei über die Verbrennungsluft des Gasbrenners Sauerstoff überschüssig mit eingebracht wird. Auch hierbei besteht die Gefahr, daß der Sauerstoffanteil an dem Wärmeträgermedium leicht sich in solche Größenordnungen anreichert, daß Verpuffungserscheinungen, Brände und Explosionen auftreten können. Dies ist insbesondere während des Anfahrvorganges der Fall, wenn sich im Wärmeträgerkreislauf lediglich heiße Luft mit dem bekannt hohen Sauerstoffanteil befindet.
  • In der DE-A 2415 758 wird empfohlen, beim Anfahren den Trocknungsgaskreislauf mit Inertgas zu füllen. Dieses Inertgas wird als Verbrennungsgas von einem Brenner, der nur in der Anlaufphase arbeitet, erzeugt. Die vom Brenner erzeugten Abgase sollen die in der Anlage befindliche Luft verdrängen bis ein nicht genannter Sauerstoff-Grenzwert erreicht wird. Dieser zulässige Grenzwert wurde etwa Mitte 1980 bergamtsseitig auf 2 % festgesetzt. Um einen solchen Grenzwert zu erreichen, müßte der Brenner der bekannten Anlage ohne Luftüberschuß und ohne Mischgas gefahren werden. Die Abgase haben dann eine Temperatur von 1 200 bis 1 300 °C. Diese Temperatur liegt aber jenseits der zulässigen thermischen Belastung der Anlage. Außerdem würden beim Einbringen von Kohle in die Anlage mit Sicherheit Überhitzungserscheinungen am Kohlekorn auftreten.
  • Aus der « Aufbereitungs-Technik », Heft12, 1978, Seiten 581 bis 586 (584) ist für thermische Trocknungsanlagen ein Grenzwert von 14 % bekannt, d. h. der maximal zulässige Sauerstoffgehalt im Heißgas wird auf 14 % begrenzt. Um diesen Grenzwert zu erreichen, wird empfohlen, die Anlage zunächst mit Dampf zu füllen und anschließend Wasser einzuspritzen, das allmählich durch zu trocknenden Kohleschlamm ersetzt werden soll. Diese Arbeitsweise ist insofern problematisch, als in der kalten Anlage der Wasserdampf kondensiert und das anschließend eingespritzte Wasser die Wasser- bzw. Kondensatmenge nur vergrößert. Eine Absenkung des Sauerstoffgehaltes auf unter 2 % ist auf diesem Wege kaum vorstellbar und wird auch gemäß dem dort empfohlenen Grenzwert von 14% gar nicht angestrabt.
  • Aus der DE-A2748423 ist es bekannt, eine Kohleerhitzungsanlage sowie auch den Transport- und Bunkerungsanlageteil vor dem Anfahren mit einem Inertgas zu durchspülen, um einen Grenzwert von ca. 2% Sauerstoff zu erhalten. Dieses Inertgas soll einer benachbarten, im Betrieb befindlichen Erhitzungsanlage entnommen werden. Eine zweite Anlage wird aber normalerweise nicht vorhanden sein. Außerdem ist nicht dargelegt, wie die erste von mehreren benachbarten Anlagen angefahren werden soll.
  • Trotz dieser vielfältigen Vorschläge, Versuche und Bemühungen, den Sauerstoffgehalt zu erniedrigen, wurde bisher kein praktikabler Weg aufgezeigt, wie ein so niedriger Sauerstoffgehalt, wie er jetzt bergamtsseitig vorgeschrieben ist, beim Anfahren einer einzigen Trocknungs- und Erhitzungsanlage erreicht werden kann.
  • Der Erfindung liegt die Aufgabe zugrunde, das Verfahren der eingangs beschriebenen Art derart weiterzubilden, daß damit eine Anlage angefahren und auch abgestellt werden kann, ohne daß die Gefahr von Verpuffungen, Verbrennungen und Explosionen besteht, die Kohle und die Anlage nicht durch überhitzungen geschädigt wird und auch eine Temperaturerniedrigung mit der Gefahr der Kondensation von Wasserdampf vermieden wird. Weiterhin müssen bei einer solchen Kohletrocknungsanlage die Probleme gelöst werden, die mit der Entstaubung und Aufrechterhaltung der Filterwirkung verbunden sind.
  • Das erfindungsgemäße Verfahren kennzeichnet sich dadurch daß beim Anfahrvorgang vor dem Einbringen von feuchter Kohle in der Anlage vorhandene Luft im Kreislauf geführt und dabei über einen Wärmetauscher aufgeheizt wird, daß die mit dem Kreislauf in Berührung kommenden Teile der Anlage vermittels des aufgeheizten Luftkreislaufes auf eine die Kondensation von Wasserdampf vermeidende Temperatur erwärmt werden, bevor in den aufgeheizten Luftkreislauf Wasser eingesprüht oder Wasserdampf eingeführt und der Luftkreislauf mit Wasserdampf angereichert wird, wobei der Sauerstoffanteil unter Vol. 2 % abgesenkt und so der Inertgaskreislauf gebildet wird, bevor feuchte Kohle zur Trocknung im Gleichstrom in den Inertgaskreislauf eingebracht wird. Die in der Anlage vorhandene Luft mit ihrem bekannten Sauerstoffanteil wird also zunächst und ohne daß Kohle mit ihr in Berührung kommt, indirekt aufgeheizt, wodurch sämtliche Anlagenteile, die mit dem Luftkreislauf in Berührung kommen, so weit erwärmt werden, daß eine Kondensation von Wasserdampf vermieden wird. In diesem aufgeheizten Luftkreislauf wird Wasser eingesprüht, also in sehr feiner Verteilung mit großer Oberfläche eingebracht, so daß dieses Wasser auch tatsächlich die Möglichkeit hat, zu verdampfen und damit ohne wesentliche Senkung der Temperatur des Luftkreislaufes eine Anreicherung mit Wasserdampf zu bewirken, wodurch der Sauerstoffanteil des Kreislaufgases erniedrigt wird. Diese Erniedrigung kann gefahrlos für die Anlage so lange durchgeführt werden, bis der Sauerstoffanteil unter 2 % im Kreislaufgas erniedrigt ist und der bei weitem überwiegende Anteil des Kreislaufgases aus Wasserdampf gebildet ist. Es versteht sich, daß während dieses Anfahrprozesses laufend Kreislaufgas aus dem Kreislauf entfernt werden muß, weil das Volumen unter stetiger Erniedrigung des Sauerstoffanteils durch das Einsprühen des Wassers oder das Einführen des Wasserdampfes ansteigt. Dabei ist es auch notwendig, diesen bergamtsseitig jetzt vorgeschriebenen Grenzwert von 2% Sauerstoffanteil zu messen, und zwar an dem ungetrockneten Kreislaufgas. Erst nachdem dieser Grenzwert unterschritten ist, wird die feuchte Kohle zur Trocknung eingebracht. Während dieses Anfahrvorganges bleibt die Temperatur des Kreislaufgases und damit auch die Temperatur der von ihm beaufschlagten Anlagenteile bereits etwa konstant, und zwar auf einem Temperaturniveau, welches dem Dauerbetrieb der Anlage entspricht. Hierdurch besteht keine Beeinträchügung dieser Anlagenteile, insbesondere der Tuchfilterentstaubung.
  • Obwohl der Anfahrvorgang nur wenige Minuten in Anspruch nimmt, kann er ohne weiteres auch so betrieben werden, daß im Inertgaskreislauf durch Anreicherung mit Wasserdampf der Sauerstoffanteil unter 1 % abgesenkt wird, bevor feuchte Kohle zur Trocknung eingebracht wird.
  • Beim Abschalten der Anlage wird zunächst der Inertgaskreislauf so lange aufrechterhalten, bis die letzte Kohle die Anlage verlassen hat; dabei wird Wasser eingesprüht oder Wasserdampf eingeführt, um örtliche Überhitzungserscheinungen an der Anlage zu vermeiden. Der Brenner wird abgeschaltet und anschließend das Inertgas allmählich durch Luft ersetzt, bis die Anlage auf 80 °C abgekühlt ist.
  • Die Vorrichtung zur Durchführung des Verfahrens weist eine Trocknungseinrichtung, einen über einen Wärmetauscher indirekt aufheizbaren Inertgaskreislauf, der einmal durch die Trocknungseinrichtung und in einem Teilkreislauf über einen Mischer für getrocknete Kohle geführt wird, so wie eine Entstaubungseinrichtung, im Inertgaskreislauf und eine an den Wärmetauscher angeschlossene Wärmequelle auf. Er kennzeichnet sich dadurch, daß die Trocknungseinrichtung eine im Gleichstrom an den Inertgaskreislauf angeschlossene angetriebene Trockentrommel ist, der im Inertgaskreislauf ein Vorabscheider und Kühler sowie eine Tuchfilterentstaubung nachgeschaltet sind, und daß der Inertgaskreislauf eine absperrbare Zuleitung für Wasser oder Wasserdampf und eine weitere absperrbare Zuleitung für Luft aufweist. Der Gaskreislauf wird auch schon während des Anfahrvorganges im Gleichstrom durch die Anlage geführt, also in der gleichen Richtung, in der auch die zu trocknende Kohle während der Betriebsphase der Anlage geführt wird. Dies hat während der Betriebsphase dann den Vorteil, daß eine Abreicherung der Feinanteile der Kohle in der Trocknungseinrichtung vermieden wird. Gleichzeitig bedeutet dies eine schonende Behandlung der Kohle und es wird im Gegansatz zur Trocknung im Flugstromverfahren die Umwälzung beträchtlicher Gasmengen und die mechanische Beanspruchung der Kohle hierdurch vermieden. Durch die Verwendung einer Trockentrommel im Gleichstromverfahren als Trocknungseinrichtung wird die Kohle schonend getrocknet, wobei die höchste Temperatur des Inertgaskreislaufes auf die feuchte Kohle einwirkt, so daß sich Überhitzungserscheinungen am Ausgang der Trockentrommel an der getrockneten Kohle vermeiden und die Temperaturverläufe leichter und besser steuern lassen. Dies gilt auch während des Anfahrvorganges und während des Abstellens der Anlage. Hierzu tragen wesentlich die absperrbare Zuleitung für Wasser oder Wasserdampf und eine weitere absperrbare Zuleitung für Luft bei. Die erste Leitung dient dem Anfahrvorgang, während die weitere absperrbare Zuleitung für Luft beim Abstellen der Anlage erforderlich ist. Durch die bessere Beherrschbarkeit der Temperaturen wird es auch möglich, im Inertgaskreislauf einen Vorabscheider und Kühler sowie eine Tuchfilterentstaubung einzusetzen, die bei trockener Arbeitsweise die erforderliche Abreinigung der Inertgase erreichen läßt.
  • Der Inertgaskreislauf weist zwei jeweils mit steuerbaren Absperrorganen versehene Kurzschlußleitungen auf, von denen die eine zwischen Wärmetauscher und Trockentrommel angeschlossen und in die Leitung zwischen Trockentrommel und Vorabscheider und Kühler führt, während die andere nach der Tuchfilterentstaubung sowie nach dem nachgeschalteten Ventilator und vor dem Wärmetauscher abzweigt und den Wärmetauscher überbrückt. Während die zuerst genannte Kurzschlußleitung zur Erhöhung der Temperatur in der Tuchfilterentstaubung eingesetzt wird, dient die zweite Kurzschlußleitung der Erniedrigung der Temperatur in der Tuchfilterentstaubung. Es versteht sich, daß auf diese Weise die Tuchfilterentstaubung in einem optimalen Temperaturenbereich gefahren werden kann, so daß Taupunktsunterschreitungon und damit die Bildung von schwefliger Säure und das Kondensieren von Wasser vermieden werden. Eine solche Temperaturregelung kann insbesondere dann erforderlich werden, wenn beispielsweise ein Defekt in der Wasserzufuhr während des Anfahrvorganges vorliegt. Zur Temperaturerniedrigung in der Tuchfilterentstaubung kann auch der vorgeschaltete Vorabscheider und Kühler eingesetzt werden bzw. verwendet werden. Die Kühleinrichtung an dem Vorabscheider besteht zweckmäßig aus mehreren Ventilatoren, die entsprechend zu- bzw. abgeschaltet werden können.
  • Der zum Schutz der getrockneten Kohle bestimmte Teilkreislauf des Inertgaskreislaufes zweigt nach dem Ventilator ab und ist in den Inertgaskreislauf die Trommel überbrückend zwischen Trockentrommel und Vorabscheider und Kühler zurückgeführt. Damit wird die getrocknete Kohle auch nach dem Verlassen der Trockentrommel noch wirksam vor dem Zutritt von Luftsauerstoff geschützt, bis sie einer gewünschten Verarbeitung zugeführt worden ist. Somit werden z. B. das Materialsilo, die Wiege- und Mischeinrichtung sowie die Förderstrecke der Kohle inertisiert. Dies kann durch Ablagerung in einem Silo geschehen. Es ist auch möglich, die getrocknete Kohle mit einem Bindemittel, vorzugsweise einem bituninösem Bindemittel, zu umhüllen, dies ist dann besonders sinnvoll, wenn die Kohle anschließend verkokt werden soll. Ausgehend von dem Ventilator ist sowohl in dem Inertgaskreislauf vor dem Wärmetauscher und vor der Abzweigung der einen Kurzschlußleitung als auch in dem abzweigenden Teilkreislauf je ein steuerbares Absperrorgan angeordnet. Durch diese beiden Absperrorgane wird die Mengenaufteilung des Inertgases für den Inertgaskreislauf einerseits und für den Teilkreislauf andererseits eingesteuert. Es versteht sich, daß auch über diese Mengensteuerung Einfluß auf die Temperaturen an den jeweiligen Anlagenteilen genommen werden kann. In dem Teilkreislauf des Inertgases können ein Mischer, eine Wiegeeinrichtung und ein Zwischensilo vorgesehen sein. Es versteht sich, daß auch andere Einrichtungen für die getrocknete Kohle hier noch vorgesehen sein können, die dann zweckmäßig auch in den Teilkreislauf eingeschlossen werden, sofern an solchen Anlagenteilen die Temperatur der getrockneten Kohle noch in einem gefährlichen Bereich liegt.
  • Die absperrbare Zuleitung für Wasser oder Wasserdampf ist zweckmäßig am Eingang in die Trockentrommel vorgesehen. In diesem Fall benötigt man nur eine Wasserzuleitung und ein Absperrorgan, während die Trockentrommel selbst zur Verdampfung des Wassers herangezogen werden kann, wie dies ja auch später dann für den Hauptzweck der Anlage, nämlich der 'Trocknung der Kohle geschieht. Die absperrbare Zuleitung für Luft hingegen ist zweckmäßig zwischen Tuchfilterentstaubung und Ventilator an den Inertgaskreislauf angeschlossen, so daß hier in einfacher Weise Luft angesaugt und mit dem Inertgas vermischt wird. Die Temperatur in der Entstaubungsanlage wird dabei zunächst nicht abgesenkt, so daß keine Kondenserscheinung auftreten kann.
  • Der an dem Inertgaskreislauf angeschlossene Wärmetauscher ist andererseits mit einem Heizkreislauf verbunden, der eine Abgasrückführung aufweist, in der ein steuerbares Absperrorgan vorgesehen ist. Auf diese Weise kann die Wärme der Abgase dieses Heizkreislaufes durch Rückführung genutzt und in diesem Sinne Einfluß auf die Temperaturregelung des Heizkreislaufes genommen werden.
  • Die Erfindung wird anhand einer schematisiert in der Zeichnung wiedergegebenen Anlage verdeutlicht und weiter beschrieben :
    • Die Vorrichtung zum Trocknen und Erhitzen von feuchter Kohle weist ein Materialsilo 1 mit Dosiereinrichtung auf, von dem über einen Gutförderer 2 feuchte Kohle abgezogen werden kann. Am Ende des Gutförderers 2 befindet sich eine Zellenradschleuse 3 im Bereich des Einlauftrichters der Trockentrommel4, die um ihre Längsachse drehbar gelagert ist und angetrieben ist, so daß sich die Kohle beim Durchgang durch die Trockentrommel 4 immer in einer kaskadenförmigen Bewegung befindet.
  • Die Anlage weist weiterhin einen Vorabscheider und Kühler5, sowie diesem nachgeschaltet eine Tuchfilterentstaubung 6 auf. Nachgeschaltet ist ein Ventilator 7 zur Umwälzung des Wärmeträgermediums bzw. des Inertgaskreislaufes und des Teilkreislaufes vorgesehen. Ein Wärmetauscher8 dient der indirekten Beheizung des Inertgaskreislaufes. Der Wärmetauscher 8 ist andererseits an einen Heizkreislauf 9, 11 aus den Leitungsstücken 9 und 11 angeschlossen, der zum Abgaskamin 10 letztlich führt. In diesem Leitungsstück 11 ist ein Mischgasventilator 12 und ein steuerbares Absperrorgan 13 angeordnet. Ein Brenner 14 wird mit Gas oder einem anderen Medium beheizt, welches über eine Leitung oder einen Vorratstank 15 abgezogen wird. Die Verbrennungsluft für den Brenner 14 wird über den Luftventilator 16 herangeführt. Wie man sieht, kann über das Leitungsstück 11 eine Rückführung der Abgase nach dem Durchtritt durch den Wärmetauscher und eine Vermischung in einer Mischkammer 17 mit den Verbrennungsabgasen erfolgen.
  • Der Inertgaskreislauf führt mit einer Leitung 18 von Wärmetauscher 8 zum Eingang in die Trockentrommel4. Nach der Durchleitung durch die Trockentrommel4 wird der Inertgaskreislauf von den Leitungsstücken 19, 20, 21, 22 und 23 vervollständigt. Wie ersichtlich, ist das Leitungsstück 19 zwischen den Ausgang der Trockentrommel 4 und den Eingang des Vorabscheiders und Kühlers 5 geschaltet, der im übrigen durch ein nicht dargestelltes Gebläse gemäß den Pfeilen 24 mit Kühlluft angeblasen und somit die Temperatur des Inertgases herabgesetzt werden kann. Das Leitungsstück 20 verbindet den Ausgang des Vorabscheiders und Kühlers 5 mit der Tuchfilterentstaubung 6 ; deren Ausgang ist über das Leitungsstück 21 an das Gebläse 7 angeschlossen. Von diesem führt das Leitungsstück 22 zu einem steuerbaren Absperrorgan'25, von dem das Leitungsstück 23 zu dem Wärmetauscher8 führt. Aus der Leitung 18 und den Leitungsstücken 19, 20, 21, 22 und 23 wird der Inertgaskreislauf 18 bis 23 gebildet. Im Inertgaskreislauf sind zwei Kurzschlußleitungen 26 und 27 vorgesehen, in denen steuerbare Absperrorgane 28 und 29 angeordnet sind. Durch Offnen des Absperrorganes 28 kann die Temperatur des inertgases im Vorabscheider 5 und in der Tuchfilterentstaubung 6 erhöht werden. Durch Öffnen der Kurzschlußleitung 27 bzw. des Absperrorganes 29 kann dagegen die betreffende Temperatur erniedrigt werden, auch in der Trockentrommel 4.
  • Am Eingang der Trockentrommel4 ist eine Zuleitung 30 für Wasser oder Wasserdampf und eine Regeleinrichtung 31 vorgesehen, die zu Anfahrtzwecken benötigt wird. In das Leitungsstück 21 mündet eine weitere Zuleitung 32 für Luft, in welcher ein Absperrorgan 33 angeordnet ist. Die Zuleitung 32 wird beim Abstellen der Anlage benötigt. Die getrocknete Kohle gelangt vom Ausgang der Trockentrommel4 über eine gekapselte Fördereinrichtung 34 in ein Becherwerk 35 und von dort in ein Zwischensilo 36, aus welchem sie chargenweise in eine Wiegeeinrichtung 37 überführt werden kann, aus der wiederum die Kohle in den Mischer38 gelangt. Die Kohle kann dann schließlich in ein Silo 39 abgelagert oder dem entsprechenden Verwendungszweck zugeführt werden. Im Mischer 38 besteht die Möglichkeit, die getrocknete Kohle mit einem Bindemittel, vorzugsweise einem bituminösen Bindemittel, zu ummanteln. Dieses wird aus dem Bindemitteltank 40 über die Eindüsvorrichtung 41 in den Mischer 38 aufgegeben. Der Bindemitteltank 40 wird durch ein Thermalöl-Heizaggregat42 auf der gewünschten Verarbeitungstemperatur gehalten.
  • Neben dem Inertgaskreislauf 18 bis 23 als Hauptkreislauf zweigt von dem Leitungsstück 22 der aus den Leitungsstücken 43 bis 47 gebildete Teilkreislauf 43 bis 47 ab. Dieser Teilkreislauf 43 bis 47 des inertgases schützt die getrocknete Kohle und die betreffenden Anlagenteile, über die er geführt ist.
  • Von dem Leitungsstück 23 zweigt nicht nur die Kurzschlußleitung 27, sondern auch die Inertgas-AuslaBleitung 48 ab, in der das einstellbare Überdruckventil49 vorgesehen ist und die letztlich zum Abgaskamin 10 führt. Über dieses Überdruckventil 49 wird immer ein Überdruck in dem Inertgaskreislauf 18 bis 23 und in dem Teilkreislauf 43 bis 47 aufrechterhalten. Gleichzeitig wird über das Überdruckventil 49 sowohl während der Anfahrphase als auch während des Betriebes der Anlage laufend Gas an den Abgaskamin 10 abgegeben, weil durch das eingebrachte Wasser bzw. das durch die Kohle mit eingeschleppte Wasser laufend eine Anreicherung an Wasserdampf erfolgt.
  • Der Vorabscheider und Kühler 5 wie auch die Tuchfilterentstaubung 6 sind über Förderschnecken 50 mit dem Becherwerk 35 verbunden, so daß die in dem Vorabscheider 5 und der Tuchfilterentstaubung 6 abgeschiedene trockene Kohle zu der über die Förderleitung 34 herangeführten getrockneten Kohle wieder hinzugefügt wird.
  • Zum Anfahren der Anlage, ausgehend von mit Luft gefüllten Anlagenteilen, werden zunächst der Ventilator 7, die Trockentrommel 4 sowie verschiedene weitere Anlagenteile in Gang gesetzt. Anschließend wird der Heizkreislauf 9, 11 durch Zünden des Brenners 14 für die Wärmeentwicklung freigesetzt, wobei die zugehörigen Anlagenteile wie Luftventilator 16 und Mischgasventilator 12 ebenfalls eingeschaltet sein müssen. Über den Wärmetauscher wird Wärme an den mit Luft gefüllten Kreislauf übertragen. Bei Erreichen einer Temperatur von 180 °C vor dem Vorabscheider und Kühler 5 wird durch die Regeleinrichtung 31 für Wasser über die Zuleitung 30 Wasser in die Trockentrommel4 eingesprüht. Das Wasser verdampft durch die heissen Eintrittsgase. Der daraus entstehende Wasserdampf vergrößert die im Umlauf befindliche Brüdenmenge. Bei Erreichen eines bestimmten Überdruckes an der Trockentrommel wird das steuerbare Überdruckventil49 in Öffnungsbereitschaft versetzt, so daß es einen Teilgasstrom in den Abgaskamin 10 ableiten kann. Die zugeführte Wassermenge wird so bemessen, daß der entstehende Wasserdampf ausreicht, den Sauerstoffanteil in den umlaufenden Brüden unter 2 %, vorzugsweise unter 1 %, abzusenken. Dieser Anfahrvorgang wird etwa 5 Minuten in Anspruch nehmen. Danach kann mit dem Trocknen der Kohle begonnen werden, indem der Gutförderer 2 eingeschaltet und feuchte Kohle aus dem Materialsilo 1 entnommen und über die Zellenradschleuse 3 der Trockentrommel 4 zugeführt wird. Es versteht sich, daß zu diesem Zeitpunkt kein Wasser mehr über die Zuleitung 30 eingefügt wird. Die zu trocknende feuchte Kohle gelangt auf irgendeinem Wege in das Materialsilo 1, beispielsweise mit Hilfe eines Schaufelladers. Der Gutförderer 2 ist mit einem Gleichstrom-Regelantrieb ausgerüstet. Die ausgetragene Menge kann volumetrisch von Hand gemessen werden oder manuell von einer Schaltzentrale aus eingestellt werden. Während des Betriebes soll die Menge der zu trocknenden Kohle konstant gehalten werden. Der Innenraum der Trockentrommel 4 ist gegen die Umgebung weitgehend luftdicht abgeschlossen. Vor allen Dingen kann kein Luftsauerstoff eindringen, da der Inertgaskreislauf 18 bis 23 an den Dichtstellen der Trockentrommel unter entsprechendem Überdruck gefahren wird. Die Temperatur der am Ende der Trockentrommel4 vorliegenden getrockneten Kohle wird als Sollwert vorgegeben und in einem Regler verglichen. Bei Unterschreiten des Sollwertes wird das Absperrorgan 25 auf der Druckseite des Ventilators 7 geöffnet, so daß die Brüdenmenge in dem Inertgaskreislauf 18 bis 23 vergrößert wird. Bei Überschreiten des Sollwertes der Temperatur der Kohle am Austritt der Trockentrommel4 wird die Brüdenmenge durch die zuvor beschriebenen Regeleinrichtungen verringert.
  • Die Eintrittstemperatur der heißen Brüden in die Trockentrommel 4 soll etwa 450 °C betragen. Bei Unterschreiten dieses Sollwertes wird die Gaszufuhr am Brenner 14 erhöht. Durch dieses Einbringen von mehr Energie steigt die Abgastemperatur des Heizkreislaufes 9, 11 an, so daß auch die Temperatur des Inertgaskreislaufes18 bis 23 über den Wärmetauscher 8 angehoben wird. Bei Überschreiten des Sollwertes der Temperatur des Heizkreislaufes 9, 11 am Eintritt in den Wärmetauscher, der bei ca. 1 100°C liegt, wird das Absperrorgan 13 im Heizkreislauf 9, 11 geöffnet. Hierdurch wird eine erhöhte Rückführung der Abgase mit ca. 300 °C eingeleitet, wodurch die Abgastemperatur in der Mischkammer 17 auf den Sollwert reduziert wird.
  • Während des Trocknungsvorganges entsteht laufend Wasserdampf. Es muß also kontinuierlich oder chargenweise an dem Überströmventil 49 Inertgas in den Abgaskamin 10 abgeblasen werden. Der Ventilator7 kann beispielsweise so ausgelegt sein, daß er eine Gesamt-Druckdifferenz von 70 mbar bei 20 °C leistet, so daß an keiner Stelle im Inertgaskreislauf dieser Druck überschritten werden kann.
  • Die Reinigung der Brüden bzw. des Inertgaskreislaufes erfolgt mit der Tuchfilterentstaubung 6 und dem vorgeschalteten indirekt arbeitenden Vorabscheider und Kühler 5. Um die Filtertücher vor Über- und Untertemperatur zu schützen, sind zwei Regelkreise notwendig. Bei Überschreiten der vorgegebenen Sollwerttemperatur von z. B. 128 °C in dem Leitungsstück 20 wird die erste Hälfte der Kühlventilatoren gemäß den Pfeilen 24 eingeschaltet. Steigt die Temperatur weiter und erreicht z. B. 132 °C, werden sämtliche Kühlventilatoren eingeschaltet. Steigt trotzdem die Temperatur weiter und erreicht z. B. 135 °C, wird die Gaszufuhr in dem Brenner 14 abgeschaltet und das Absperrorgan 29 in der Kurzschlußleitung 27 geöffnet. Hierdurch erfolgt mit Sicherheit eine Absenkung der Temperatur im Inertgaskreislauf 18 bis 23. Die zuvor angegebenen Temperaturen richten sich nach der zulässigen Temperatur für das jeweils eingesetzte Filtertuch. Bei Unterschreiten der vorgegebenen Sollwerttemperatur von 115 °C an dem Leitungsstück 20 wird das Absperrorgan 28 in der Kurzschlußleitung 26 geöffnet, wobei gleichzeitig der Gutförderer 2 abgeschaltet wird. Hierdurch wird die Temperatur in dem Vorabscheider und Kühler 5 und in der Tuchfilterentstaubung 6 wieder auf einen solchen Wert angehoben, daß kritische Zustände bezüglich Taupunktsunterschreitung nicht auftreten können.
  • Die am Ende der Trockentrommel 4 vorliegende getrocknete Kohle wird über die Fördereinrichtung 34 und über ein Becherwerk 35 in das Zwischensilo 36 befördert. Gleichzeitig wird die ebenfalls trockene und in dem Vorabscheider 5 sowie in der Tuchfilterentstaubung 6 abgeschiedene Kohle über die Förderschnecken 50 zugeführt. Vermittels Zellenradschleusen wird die Kohle aus dem Zwischensilo 36 entnommen und der Wiegeeinrichtung 37 zugeführt. Beim Erreichen des vorgegebenen Gewichtes werden die Zellenradschleusen abgeschaltet und es erfolgt das Einbringen der Kohle in den Mischer38. Gleichzeitig mit dem Befüllen des Mischers 38 mit Kohle wird durch die Eindüsvorrichtung 41 das Bindemittel in den Mischer 38 eingedüst. Nach Ablauf der vorgeschriebenen Mischzeit öffnet der Mischer und das getrocknete umhüllte Material, nämlich die Kohle, fällt in ein Silo 39 bzw. wird der weiteren Verwendung zugeführt. Wie ersichtlich, schützt der Teilkreislauf 43-47 aus Inertgas die weiteren Anlagenteile nach der Trockentrommel4 und die in ihnen enthaltene erhitzte, trockene Kohle. Das Verhältnis des Inertgases, welches nach dem Ventilator 7 in den Inertgaskreislauf 18 bis 23 eingebracht wird, im Verhältnis zu der Menge Inertgas des Teilkreislaufes 43 bis 47 wird durch die Einstellungen der Absperrorgane 25 und 51 erreicht.
  • Beim Abstellen der Anlage wird zunächst der Gutförderer 2 stillgesetzt. Da in der Trockentrommei 4 nicht mehr so viel Wärme verbraucht wird, steigt die Temperatur der trockenen Kohle am Ausgang der Trockentrommel an. Ebenso erhöht sich auch die Temperatur des Inertgases im Leitungsstück 19. Über die Regeleinrichtung 31 für Wasser wird auch jetzt Wasser in die Trockentrommel4 eingegeben. Auch jetzt wird noch das Eindringen von Luftsauerstoff in das System verhindert. Nachdem das Mischen der Kohle im Mischer38 beendet ist, wird die Wasserzufuhr zur Trockentrommel4 abgeschaltet und die Luftzufuhr über die zweite Zuleitung 32 durch Öffnen des Absperrorganes 33 ermöglicht. Durch das Ansaugen von Luft vergrössert sich die umlaufende Brüdenmenge weiter. Es wird ständig über das geöffnete Überdruckventil49 Abgas in den Abgaskamin 10 abgegeben. Der Anteil des Wasserdampfes verringert sich jetzt ständig, während der Luftanteil ansteigt. Ein Kondensieren von Wasserdampf wird verhindert, weil die Anlage noch auf Temperatur ist. Schließlich wird die Gaszufuhr am Brenner 14 abgeschaltet, so daß keine weitere Energiezufuhr erfolgt und auch die Kreisläufe mit heißer Luft in ihrer Temperatur abgesenkt werden können. Dies wird so lange durchgeführt, bis die Temperatur der Luft an allen Temperaturmeßstellen etwa 80 °C unterschritten hat. Dann werden die Regeiantriebe der einzelnen Anlagenteile, soweit sie nicht bereits stillgesetzt sind, abgeschaltet.

Claims (11)

1. Verfahren zum Trocknen und Erhitzen von feuchter Kohle, insbesondere Fein- und Feinstkohle, bei dem der zu trocknenden Kohle Wärme über einen Inertgaskreislauf, der mit Hilfe eines Wärmetauschers aufheizbar ist, zugeführt wird und die getrocknete und erhitzte Kohle durch einen Teilkreislauf des Inertgases vor dem Zutritt von Sauerstoff geschützt wird, dadurch gekennzeichnet, daß beim Anfahrvorgang vor dem Einbringen von feuchter Kohle in der Anlage vorhandene Luft im Kreislauf geführt und dabei über einen Wärmetauscher aufgeheizt wird, daß die mit dem Kreislauf in Berührung kommenden Teile der Anlage vermittels des aufgeheizten Luftkreislaufes auf eine die Kondensation von Wasserdampf vermeidende Temperatur erwärmt wird, bevor in den aufgeheizten Luftkreislauf Wasser eingesprüht oder Wasserdampf eingeführt und der Luftkreislauf mit Wasserdampf eingeführt und der Luftkreislauf mit Wasserdampf angereichert wird, wobei der Sauerstoffanteil unter 2 Vol. % abgesenkt und so der Inertgaskreislauf gebildet wird, bevor feuchte Kohle zur Trocknung im Gleichstrom in den Inertgaskreislauf eingebracht wird.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß im Inertgaskreislauf durch Anreicherung mit Wasserdampf der Sauerstoffanteil unter 1 % abgesenkt wird, bevor feuchte Kohle zur Trocknung eingebracht wird.
3. Verfahren nach den Ansprüchen 1 oder 2, dadurch gekennzeichnet, daß beim Abschalten der Anlage zunächst der Inertgaskreislauf so lange aufrechterhalten wird, bis die letzte Kohle die Anlage verlassen hat, und dabei Wasser eingesprüht oder Wasserdampf eingeführt wird, der Brenner abgeschaltet wird und anschließend allmählich das Inertgas durch Luft ersetzt wird, bis die Anlage auf 80 °C abgekühlt ist.
4. Vorrichtung zur Durchführung des Verfahrens nach den Ansprüchen 1 bis 3, mit einer Trocknungseinrichtung, einem über einen Wärmetauscher indirekt aufheizbaren Inertgaskreislauf, der einmal durch die Trocknungseinrichtung und in einem Teilkreislauf über einen Mischer für getrocknete Kohle geführt wird, mit einer Entstaubungseinrichtung im Inertgaskreislauf und mit einer an den Wärmetauscher angeschlossenen Wärmequelle, dadurch gekennzeichnet, daß die Trocknungseinrichtung eine im Gleichstrom an den Inertgaskreislauf (18 bis 23) angeschlossene angetriebene Trockentrommel (4) ist, der im Inertgaskreislauf ein Vorabscheider und Kühler (5) sowie eine Tuchfilterentstaubung (6) nachgeschaltet sind, und daß der Inertgaskreislauf eine absperrbare Zuleitung (30) für Wasser oder Wasserdampf und eine weitere absperrbare Zuleitung (32) für Luft aufweist.
5. Vorrichtung nach Anspruch 4, dadurch gekennzeichnet, daß der Inertgaskreislauf (18 bis 23) zwei jeweils mit steuerbaren Absperrorganen (28, 29) versehene Kurzschlußleitung (26, 27) aufweist, von denen die eine (26) zwischen Wärmetauscher (8) und Trockentrommel (4) angeschlossen und in die Leitung (19) zwischen Trockentrommel (4) und Vorabscheider und Kühler (5) führt, während die andere (27) nach der Tuchfilterentstaubung (6) sowie nach dem nachgeschalteten Ventilator (7) und vor dem Wärmetauscher (8) abzweigt und den Wärmetauscher überbrückt.
6. Vorrichtung nach Anspruch 4 und 5, dadurch gekennzeichnet, daß der zum Schutz der getrockneten Kohle bestimmte Teilkreislauf (43 bis 47) des Inertgaskreislaufes nach dem Ventilator (7) abzweigt und in den Inertgaskreislauf die Trommel (4) überbrückend zwischen Trockentrommel (4) und Vorabscheider und Kühler (5) zurückgeführt ist.
7. Vorrichtung nach Anspruch 6, dadurch gekennzeichnet, daß ausgehend von dem Ventilator (7) sowohl in dem Inertgaskreislauf (18 bis 23) vor dem Wärmetauscher (8) und vor der Abzweigung der einen Kurzschlußleitung (27) als auch in dem abzweigenden Teilkreislauf (43-47) je ein steuerbares Absperrorgan (25, 51) angeordnet ist.
8. Vorrichtung nach Anspruch 6 und 7, dadurch gekennzeichnet, daß in dem Teilkreislauf (43 bis 47) des Inertgases ein Mischer (38), eine Wiegeeinrichtung (37) und ein Zwischensilo (36) vorgesehen sind.
9. Vorrichtung nach Anspruch 4, dadurch gekennzeichnet, daß die absperrbare Zuleitung (30) für Wasser oder Wasserdampf am Eingang in die Trockentrommel (4) vorgesehen ist.
10. Vorrichtung nach Anspruch 4, dadurch gekennzeichnet, daß die absperrbare Zuleitung (32) für Luft zwischen Tuchfilterentstaubung (6) und Ventilator (7) an den Inertgaskreislauf angeschlossen ist.
11. Vorrichtung nach Anspruch 4 und 5, dadurch gekennzeichnet, daß der an den Inertgaskreislauf (18 bis 23) angeschlossene Wärmetauscher (8) andererseits mit einem Heizkreislauf (9, 11) verbunden ist, der eine Abgasrückführung aufweist, in der ein steuerbares Absperrorgan (13) vorgesehen ist.
EP19800107653 1979-12-11 1980-12-05 Verfahren und Vorrichtung zum Trocknen und Erhitzen von feuchter Kohle Expired EP0030376B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19792949720 DE2949720C2 (de) 1979-12-11 1979-12-11 Verfahren und Vorrichtung zum Trocknen und Erhitzen von feuchter Kohle
DE2949720 1979-12-11

Publications (3)

Publication Number Publication Date
EP0030376A2 EP0030376A2 (de) 1981-06-17
EP0030376A3 EP0030376A3 (en) 1981-08-19
EP0030376B1 true EP0030376B1 (de) 1983-10-05

Family

ID=6088112

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19800107653 Expired EP0030376B1 (de) 1979-12-11 1980-12-05 Verfahren und Vorrichtung zum Trocknen und Erhitzen von feuchter Kohle

Country Status (2)

Country Link
EP (1) EP0030376B1 (de)
DE (1) DE2949720C2 (de)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3033461C2 (de) * 1980-09-05 1982-11-04 Alfelder Eisenwerke Carl Heise, KG vorm. Otto Wesselmann & Cie., 3220 Alfeld Verfahren zur Trocknung und Vorerhitzung von feinfkörniger Steinkohle unter Verwendung nicht oder nur schwach backender Kohle und/oder Kohlenstoffträgern
CN100443840C (zh) * 2006-09-20 2008-12-17 山东天力干燥设备有限公司 高挥发性煤粉回转干燥工艺
DE102007010070A1 (de) 2007-02-28 2008-09-04 Alba Ag Vorrichtung zur Behandlung von Hausmüll oder hausmüllähnlichem Abfall
LU91450B1 (en) 2008-06-02 2009-12-03 Wurth Paul Sa Method for producing pulverized coal
LU91451B1 (en) * 2008-06-02 2009-12-03 Wurth Paul Sa Method for producing pulverized coal
CN102564067A (zh) * 2010-12-10 2012-07-11 天华化工机械及自动化研究设计院 回转圆筒干燥机催化剂干燥的方法及其设备
CN102042743A (zh) * 2010-12-31 2011-05-04 中国神华能源股份有限公司 一种煤炭低温干燥脱水的方法
DE102012012417B4 (de) * 2012-06-25 2019-06-13 Thyssenkrupp Industrial Solutions Ag Verfahren und Vorrichtung zur verbesserten Vorerhitzung von Kohle durch Wärmetausch mit dem Kühlgas einer Kokstrockenkühlanlage
CN106871631B (zh) * 2017-04-10 2023-12-12 内蒙古东日新能源材料有限公司 一种精煤烘干搅拌设备与方法
CN112728925B (zh) * 2020-12-09 2022-05-20 华电电力科学研究院有限公司 一种大容量循环加热干燥系统及其加热干燥方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1629117A1 (de) * 1966-06-01 1971-01-21 Weizenin Dresden Veb Verfahren und Einrichtung zur schonenden und beschleunigten Trocknung von insbesondere oxydationsempfindlichen und thermolabilen Substanzen
DE2434827A1 (de) * 1973-08-06 1975-02-27 Waagner Biro Ag Verfahren zur energierueckgewinnung bei gaserzeugungsprozessen
DE2415758A1 (de) * 1974-04-01 1976-02-26 Buettner Schilde Haas Ag Anlage zur kohletrocknung und vorerhitzung
DE2435500A1 (de) * 1974-07-24 1976-02-12 Hugo Dr Ing Schaefer Verfahren zur vorerhitzung von kokskohle unter benutzung von ueberhitztem abhitzedampf, der in einer trockenkokskuehlanlage in besonderer weise erzeugt wird
US4008042A (en) * 1974-08-16 1977-02-15 Coaltek Associates Coal heating temperature control
DE2626653C3 (de) * 1976-06-15 1982-01-07 Bergwerksverband Gmbh Verfahren und Vorrichtung zum Trocknen und Vorerhitzen von Kokskohle
DE2633789C3 (de) * 1976-07-28 1980-08-14 Wintershall Ag, 3100 Celle Verfahren und Vorrichtung zur Herstellung von Petrolkokskalzinat
DE2656046A1 (de) * 1976-12-10 1978-06-29 Babcock Bsh Ag Verfahren und einrichtung zur steuerung der trocknungstemperatur, insbesondere bei duesenrohrtrocknern
DE2659335C2 (de) * 1976-12-29 1985-10-24 Bergwerksverband Gmbh Betrieb einer Kohleerhitzungsanlage
DE2748423A1 (de) * 1977-10-28 1979-05-03 Bergwerksverband Gmbh Verfahren zur inertisierung von kohleerhitzungsanlagen
DE2810694C2 (de) * 1978-03-11 1985-06-27 Alfelder Eisenwerke Carl Heise, KG vorm. Otto Wesselmann & Cie., 3220 Alfeld "Verfahren zur Vortrocknung von feinkörniger Steinkohle und zur Weiterverarbeitung zu hochwertigem Steinkohlenkoks"

Also Published As

Publication number Publication date
EP0030376A2 (de) 1981-06-17
DE2949720A1 (de) 1981-06-19
DE2949720C2 (de) 1982-08-26
EP0030376A3 (en) 1981-08-19

Similar Documents

Publication Publication Date Title
EP0064617B1 (de) Verfahren und Vorrichtung zum Betrieb einer Kokereianlage
EP0067299B1 (de) Verfahren und Vorrichtung zum Betrieb einer Kokereianlage
EP0030376B1 (de) Verfahren und Vorrichtung zum Trocknen und Erhitzen von feuchter Kohle
DE2633789B2 (de) Verfahren und Vorrichtung zur . Herstellung von Petrolkokskalzinat
AT405644B (de) Verfahren zum indirekt beheizten trocknen von gut, insbesondere von schlämmen
DE3128865A1 (de) Verfahren und vorrichtung zum mahltrocknen von vorgebrochener rohbraunkohle zu braunkohlenstaub in einer ventilatormuehle
EP2352960B1 (de) Verfahren und vorrichtung zum erzeugen von prozessdampf durch verbrennung getrockneter braunkohle
DE4036666C2 (de) Verfahren und Vorrichtung für das Trocknen von organischen Stoffen, insbesondere von Holzteilchen
EP0491247B1 (de) Verfahren zur explosionssicheren Trocknung von Klärschlämmen
DE102012105431B3 (de) Anlage und Verfahren zur thermischen Behandlung eines Stoffstroms
DE2851005C2 (de) Verfahren und Vorrichtung zum Trocknen von Schlamm
DE1926485A1 (de) Anlage zur Waermebehandlung von mechanisch entwaessertem Material
DE2116444A1 (de) Verfahren und Vorrichtung zum Kühlen von heißem stückigem Gut
DE2812005C3 (de) Verfahren zur Herstellung von abtriebfesten Koksformlingen
DE2845980A1 (de) Verfahren und vorrichtung zur inertisierung eines brennbares gut enthaltenden anlagensystemes
DE3237992A1 (de) Verfahren und vorrichtung zur verarbeitung von rohmehl, insbesondere zementrohmehl, pulverisiertem kalkstein, aluminiumhydrat o.ae.
DE3530248C2 (de)
EP0058892B1 (de) Verfahren zur Trocknung von Körnerfrüchten mit Warmluft und Anlage zur Durchführung des Verfahrens
DE19623209C1 (de) Verfahren zum Betrieb eines mit Braunkohle befeuerten Kraftwerkes sowie ein derartiges Kraftwerk
DE1926216A1 (de) Verfahren zur Ausschaltung der Gefahr einer Flammenbildung oder Explosion in Anlagen zur Herstellung von Faserpressplatten,insbesondere Holzfaserplatten auf trockenem Wege
DE2228636A1 (de) Verfahren und vorrichtung zur kontinuierlichen aufarbeitung von phosphorhaltigen rueckstaenden
DE2337362A1 (de) Vorrichtung zum sintern von erz auf einer kette
DE3025512A1 (de) Verfahren zum an- und/oder abfahren von inert betriebenen mahltrocknungsanlagen
DE19542301B4 (de) Verfahren und Einrichtung zum Trocknen von schlammartigem Trockengut, insbesondere Klärschlamm
EP0118149A1 (de) Verfahren zum Hartbrennen von Grünpellets auf einer Pelletbrennmaschine

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): BE FR GB IT LU NL

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Designated state(s): BE FR GB IT LU NL

Kind code of ref document: A3

Designated state(s): BE FR GB IT LU NL

17P Request for examination filed

Effective date: 19811020

ITF It: translation for a ep patent filed

Owner name: DE DOMINICIS & MAYER S.R.L.

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): BE FR GB IT LU NL

Kind code of ref document: B1

Designated state(s): BE FR GB IT LU NL

ET Fr: translation filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19831231

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
NLS Nl: assignments of ep-patents

Owner name: AMMANN IMA GMBH TE ALFELD, BONDSREPUBLIEK DUITSLAN

ITPR It: changes in ownership of a european patent

Owner name: CESSIONE;AMMAN IMA GMBH

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732

ITTA It: last paid annual fee
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LU

Payment date: 19891011

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19891030

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19891130

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19891206

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19891231

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19901205

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Effective date: 19901231

BERE Be: lapsed

Owner name: AMMAN IMA G.M.B.H.

Effective date: 19901231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19910701

GBPC Gb: european patent ceased through non-payment of renewal fee
NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19910830

REG Reference to a national code

Ref country code: LU

Ref legal event code: TP

Owner name: AMMANN IMA GMBH ALFELD

Effective date: 19860618

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST