EP0118149A1 - Verfahren zum Hartbrennen von Grünpellets auf einer Pelletbrennmaschine - Google Patents

Verfahren zum Hartbrennen von Grünpellets auf einer Pelletbrennmaschine Download PDF

Info

Publication number
EP0118149A1
EP0118149A1 EP84200152A EP84200152A EP0118149A1 EP 0118149 A1 EP0118149 A1 EP 0118149A1 EP 84200152 A EP84200152 A EP 84200152A EP 84200152 A EP84200152 A EP 84200152A EP 0118149 A1 EP0118149 A1 EP 0118149A1
Authority
EP
European Patent Office
Prior art keywords
hot gases
drying
pellets
pellet
stage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP84200152A
Other languages
English (en)
French (fr)
Other versions
EP0118149B1 (de
Inventor
Karl-Heinz Boss
Walter Hastik
Erich Pfaff
Heinz Dr. Walden
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GEA Group AG
Original Assignee
Metallgesellschaft AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Metallgesellschaft AG filed Critical Metallgesellschaft AG
Publication of EP0118149A1 publication Critical patent/EP0118149A1/de
Application granted granted Critical
Publication of EP0118149B1 publication Critical patent/EP0118149B1/de
Expired legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B1/00Preliminary treatment of ores or scrap
    • C22B1/14Agglomerating; Briquetting; Binding; Granulating
    • C22B1/24Binding; Briquetting ; Granulating
    • C22B1/2413Binding; Briquetting ; Granulating enduration of pellets
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B21/00Open or uncovered sintering apparatus; Other heat-treatment apparatus of like construction
    • F27B21/06Endless-strand sintering machines

Definitions

  • the invention relates to a method for hard burning green pellets on a pellet burning machine with hot gases being passed through the pellet bed, the pellets first being dried in a drying zone with the gas flow directed downwards.
  • pellet burning machines have - seen in the direction of travel - different treatment zones, namely drying zone, thermal treatment zone and cooling zone. These zones can be subdivided, for example into pre-drying and post-drying zones, heating zone, pre-firing zone, main firing zone, post-firing zone, first and second cooling zones.
  • the green pellets made from the material to be agglomerated, aggregates and possibly solid fuel under humidification have a low strength and are therefore carefully loaded onto the traveling grate. In the drying zone, the difficulty then arises that the hot G receives as during the drying of the first layers according to its inlet temperature water, then in the adjacent
  • drying as suction drying be carried out as slowly as possible.
  • Such a process is known, for example, from GB-PS 690 668, in which drying is carried out with hot gases of approximately 260 ° C. This drying can largely prevent bursting, but not the strong condensation of water in the lower layers.
  • DE-PS 10 31 328 it was proposed to carry out drying up to about 300 C by means of an upstream unit, such as a feed bunker or conveyor belt.
  • an upstream unit such as a feed bunker or conveyor belt.
  • strong condensation cannot be avoided if these moist gases cool down in cold pellet layers.
  • the invention is based on the object of avoiding the impermissible over-moistening of layers of the pellet bed and bursting of pellets when drying the green pellets as far as possible and with as little effort as possible.
  • This object is achieved according to the invention by drying in a first stage using hot gases at 60-180 ° C. and then increasing the temperature of the hot gases to 280-400 ° C. within 2 to 5 minutes.
  • the gas temperature always refers to the entry temperature of the gas into the p ellet bed.
  • the time always refers to the start of drying.
  • the top layer of the pellet bed is first dried and with an inlet temperature of the gas of 60-180 ° C T-drying front moves into the next layer of the pellet bed.
  • the increase in the inlet temperature of the gases after this first stage is regulated in such a way that the gases give off so much heat to the already dried pellets that they always arrive at the drying front at approximately the same temperature as possible. Ideally, this would require a continuous increase in the temperature profile of the gases across the drying zone. However, such a continuous increase is complex in practice, so that a gradual increase is carried out.
  • Cooling air or exhaust gas from the combustion zone are generally used as hot gases, which are selected at the appropriate temperature or cooled to the required temperature by mixing with cold air or colder gases.
  • the drying zone extends a certain length beyond the point where the hot gases with the highest entry temperature first enter the bed. The usual hard firing then takes place at temperatures from above 1000 ° C to above 1300 ° C.
  • a preferred embodiment is that the temperature of the hot gases is increased in several stages. An approximation to a continuous increase in the temperature profile can thus be achieved in a simple manner.
  • the number of stages is selected depending on the respective operating conditions in such a way that inadmissible over-moistening of layers of the pellet bed is avoided. This can be determined empirically by tests on a sintering pan, since these results can be transferred to the traveling grate.
  • the setting of the temperatures in the individual stages is possible, for example, by arranging a gas hood above the drying zone, which is divided into several sections in the running direction of the traveling grate. A stream of hot gases is introduced into the gas hood and the desired gas temperature is set in the individual sections by controlled addition of colder gases. It is also possible to arrange a common gas hood over the entire moving grate and the one in the second K endeavourease resulting warmed cooling air under the ceiling of the G ashaube to conduct under adjustment of the desired temperatures in the drying step.
  • a preferred embodiment consists of drying in the first stage for up to 60 seconds using hot gases at 60-120 ° C., in a second stage up to 120 seconds using hot gases in the range of 120-180 ° C., in a third stage up to 180 sec using hot gases from 180 - 220 ° C and in a final stage using hot gases from 280 - 350 ° C. This gives particularly good results.
  • the tests were carried out on a pan with a diameter of 26 cm.
  • the green pellets were produced on a pelletizing plate with a moisture content of 8.75% and an average diameter of 12.5 mm, and were placed in a layer height of 30 cm on a 10 cm rust coating from pellets which had already been fired.
  • the pan was equipped with a gas hood and a wind box for supplying and discharging the gases.
  • the pellets were made from a mixture of iron ore concentrate with the addition of bentonite, olivine and coke breeze and had the following chemical analysis and grain size:
  • B was racing shows a pelletizing plant as precisely as possible traced.
  • Pressure drying of 4.5 minutes at 350 ° C. gas temperature was started, followed by suction drying of 4 minutes with likewise 350 ° C. gas temperature.
  • the firing took place at a temperature of 1320 ° C, then the pellets were cooled to an average drop temperature of 120 ° C.
  • the quality characteristics of the pellets produced in this way largely correspond to the values obtained in the trailing operating system.
  • the advantages of the invention are that drying without inadmissible over-moistening of pellet layers and without bursting of the pellets is possible in a simple manner only in the suction process.
  • the quality of the pellets produced is at least as good as that of the processes using the combined pressure-suction drying.
  • the length of the drying zone can be shortened, thereby increasing the throughput of the machine. Good use of the heat of the exhaust gas is possible.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Geology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Materials Engineering (AREA)
  • Environmental & Geological Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

Vor dem Hartbrennen der Pellets mittels hindurchgeleiteter heißer Gase müssen die Pellets getrocknet weden. Zur Vermeidung von unzulässiger Überfeuchtung von Schichten des Pelletbettes und zur Vermeidung des Zerplatzens von Pellets bei der Trocknung mit möglichst geringem Aufwand wird die Trocknung im Saugzug durchgeführt, wobei sie in einer Stufe mittels heißer Gase von 60 - 180°C erfolgt und danach die Temperatur der heißen Gase innerhalb von 2 bis 5 min auf 280 - 400°C gesteigert wird.

Description

  • Die Erfindung betrifft ein Verfahren zum Hartbrennen von Grünpellets auf einer Pelletbrennmaschine unter Hindurchleiten von heißen Gasen durch das Pelletbett, wobei die Pellets zunächst in einer Trockenzone mit abwärts gerichteter Gasströmung getrocknet werden.
  • Die thermische Behandlung von Pellets, insbesondere das Hartbrennen von Eisenerzpellets, erfolgt meistens auf Wanderrosten mit Gashauben, die als Pelletbrennmaschinen bezeichnet werden. Die Pelletbrennmaschinen haben - in Laufrichtung gesehen - verschiedene Behandlungszonen, nämlich Trockenzone, thermische Behandlungszone und Kühlzone. Diese Zonen können unterteilt sein, wie z.B. in Vortrocknungs- und Nachtrocknungszone, Aufheizzone, Vorbrennzone, Hauptbrennzone, Nachbrennzone, erste und zweite Kühlzone.
  • Die aus dem zu agglomerierenden Material, Zuschlagstoffen und eventuell festem Brennstoff unter Befeuchtung hergestellten Grünpellets haben eine geringe Festigkeit und werden deshalb in schonender Weise auf den Wanderrost chargiert. In der Trockenzone tritt dann die Schwierigkeit auf, daß das heiße Gas bei der Trocknung der ersten Schichten entsprechend seiner Eintrittstemperatur Wasser aufnimmt, dann in benachbarten
  • Schichten der Taupunkt des feuchten Gases infolge Abkühlung unterschritten wird und Wasser in diesen Schichten auskondensiert. Dadurch kann in diesen Schichten die Gesamtfeuchtigkeit so stark erhöht werden, daß eine starke Verformung der Pellets erfolgt, die bis zum Zerquetschen führen kann. Dies gilt insbesondere für die Saugzugtrocknung, weil die Kondensation in unteren Schichten erfolgt, auf denen das Gewicht der oberen Schichten und der Druck des Gases lastet. Außerdem führt ein schnelles Trocknen bei manchen Pellets zu einem starken Zerfall infolge starker Dampfentwicklung innerhalb der Pellets. Dies hat zur Folge, daß kein einwandfreies Produkt erzeugt wird und ein großer Teil wieder zurückgeführt werden muß.
  • Es wurde deshalb bereits vorgeschlagen, die Trocknung als Saugzugtrocknung möglichst langsam durchzuführen. Ein solches Verfahren ist z.B. aus der GB-PS 690 668 bekannt, bei dem die Trocknung mit heißen Gasen von etwa 260 °C erfolgt. Diese Trocknung kann zwar ein Zerplatzen weitgehend verhindern, aber nicht die starke Kondensation von Wasser in unteren Schichten. In der DE-PS 10 31 328 wurde vorgeschlagen, die Trocknung bis zu etwa 300 C mittels eines vorgeschalteten Aggregates, wie z.B. einem Aufgabebunker oder Transportband, durchzuführen. Auch hier kann eine starke Kondensation nicht vermieden werden, wenn diese feuchten Gase sich in kalten Pelletschichten abkühlen. Für die Direktreduktion von Pellets auf einem Wanderrost wurde vorgeschlagen, zunächst metallisierte Pellets von geringem Durchmesser herzustellen, diese als Kern zu verwenden und Erz auf diese Kerne zu pelletieren und dann erneut auf den Wanderrost zu chargieren. Die Trocknung erfolgt mit inerten Gasen von 149 - 316 °C (US-PS 3 333 951). Abgesehen von der erforderlichen Rückführung der kleinen Pellets, kann auch hier eine starke Kondensation in den unteren Schichten nicht vermieden werden. In der DE-PS 20 41 533 wurde vorgeschlagen, die Grünpellets an mindestens zwei hintereinander liegenden Stellen aufzugeben und jede Schicht vor Aufgabe der nächsten Schicht mit heißen Gasen von 200 - 350 C zu trocknen. Dadurch wird zwar eine Kondensation von Wasser in den unteren Schichten weitgehend vermieden, es sind jedoch mehrere Aufgabestellen erforderlich.
  • Zur Verhinderung der unzulässigen, starken Kondensation wird deshalb in der Praxis weitgehend mit einer Trocknung gearbeitet, bei der zunächst in einer ersten Drucktrocknungsstufe heiße Gase von unten nach oben durch das Pelletbett geleitet werden und danach in einer zweiten Saugzugtrocknungsstufe heiße Gase von oben nach unten durch das Bett geleitet werden (US-PS 3 333 770, US-PS 3 172 754). Dadurch wird zwar die unzulässige Uberfeuchtung durch starke Kondensation weitgehend vermieden, es ist aber ein größerer Aufwand erforderlich.
  • Eine weitere Möglichkeit, die Überfeuchtung von Pelletschichten zu vermeiden, besteht darin, die Pellets vorgewärmt mit einer Temperatur von etwa 40 - 70 C auf die Maschine aufzugeben. Dies bedingt aber einen beträchtlichen Aufwand.
  • Der Erfindung liegt die Aufgabe zugrunde, die unzulässige Uberfeuchtung von Schichten des Pelletbettes und ein Zerplatzen von Pellets bei der Trocknung der Grünpellets möglichst weitgehend und mit möglichst geringem Aufwand zu vermeiden.
  • Die Lösung dieser Aufgabe erfolgt erfindungsgemäß dadurch, daß die Trocknung in einer ersten Stufe mittels heißer Gase von 60 - 180 °C erfolgt und danach die Temperatur der heißen Gase innerhalb von 2 bis 5 min auf 280 - 400 °C gesteigert wird.
  • Die Gastemperatur bezieht sich immer auf die Eintrittstemperatur des Gases in das pelletbett. Die Zeit bezieht sich immer auf den Beginn der Trocknung. In der ersten Stufe wird zunächst die oberste Schicht des Pelletbettes mit einer Eintrittstemperatur des Gases von 60 - 180 C getrocknet und die Trocknungsfront wandert in die nächste Schicht des Pelletbettes. Die Steigerung der Eintrittstemperatur der Gase nach dieser ersten Stufe wird so geregelt, daß die Gase an die bereits getrockneten Pellets so viel Wärme abgeben, daß sie an der Trocknungsfront immer mit möglichst etwa der gleichen Temperatur ankommen. Im Idealfall wäre dazu eine kontinuierliche Steigerung des Temperaturprofils der Gase über die Trocknungszone erforderlich. Eine solche kontinuierliche Steigerung ist jedoch in der Praxis aufwendig, so daß eine gestufte Steigerung durchgeführt wird. Als heiße Gase werden im allgemeinen Kühlluft oder Abgas aus der Brennzone verwendet, die mit entsprechender Temperatur ausgewählt oder durch Vermischen mit Kaltluft oder kälteren Gasen auf die erforderliche Temperatur abgekühlt werden. Die Trocknungszone erstreckt sich noch eine gewisse Länge über die Stelle hinaus, wo die heißen Gase mit der höchsten Eintrittstemperatur zuerst in das Bett eintreten. Anschließend erfolgt das übliche Hartbrennen bei Temperaturen von über 1000 °Cbis zu über 1300 °C.
  • Eine vorzugsweise Ausgestaltung besteht darin, daß die Steigerung der Temperatur der heißen Gase in mehreren Stufen erfolgt. Dadurch kann auf einfache Weise eine Annäherung an eine kontinuierliche Steigerung des Temperaturprofils erzielt werden. Die Anzahl der Stufen wird in Abhängigkeit von den jeweiligen Betriebsbedingungen so gewählt, daß eine unzulässige Uberfeuchtung von Schichten des Pelletbettes vermieden wird. Dies kann durch Versuche auf einer Sinterpfanne empirisch ermittelt werden, da sich diese Ergebnisse auf den Wanderrost übertragen lassen. Die Einstellung der Temperaturen in den einzelnen Stufen ist z.B. in der Weise möglich, daß eine Gashaube über der Trocknungszone angeordnet ist, die in Laufrichtung des Wanderrostes in mehrere Abschnitte unterteilt ist. In die Gashaube wird ein Strom von heißen Gasen eingeleitet und in den einzelnen Abschnitten durch geregelte Zugabe von kälteren Gasen die dort gewünschte Gastemperatur eingestellt. Weiterhin ist es möglich, über dem gesamten Wanderrost eine gemeinsame Gashaube anzuordnen und die in der zweiten Kühlstufe anfallende erwärmte Kühlluft unter der Decke der Gashaube unter Einstellung der gewünschten Temperaturen in die Trocknungsstufe zu leiten.
  • Eine vorzugsweise Ausgestaltung besteht darin, daß die Trocknung in der ersten Stufe bis zu 60 sec mittels heißer Gase von 60 - 120 °C erfolgt, in einer zweiten Stufe bis zu 120 sec mittels heißer Gase von 120 - 180 °C, in einer dritten Stufe bis zu 180 sec mittels heißer Gase von 180 - 220 °C und in einer Endstufe mittels heißer Gase von 280 - 350 °C. Dadurch werden besonders gute Ergebnisse erzielt.
  • Die Erfindung wird anhand von Beispielen näher erläutert.
  • Die Versuche wurden auf einer Pfanne von 26 cm Durchmesser durchgeführt. Die Grünpellets wurden auf einem Pelletierteller unter Einstellung einer Feuchtigkeit von 8,75 % mit einem mittleren Durchmesser von 12,5 mm hergestellt und in-einer Schichthöhe von 30 cm auf 10 cm Rostbelag aus bereits gebrannten Pellets aufgegeben. Die Pfanne war mit einer Gashaube und einem Windkasten zur Zuführung bzw. Ableitung der Gase ausgerüstet.
  • Die Pellets wurden aus einer Mischung von Eisenerzkonzentrat unter Zusatz von Bentonit, Olivin und Koksgrus hergestellt und hatte folgende chemische Analyse und Korngröße:
    Figure imgb0001
    Im Versuch Nr. 1 wurde das Brennschema einer Pelletieranlage möglichst genau nachgefahren. Dabei wurde mit einer Drucktrocknung von 4,5 min Dauer bei 350 °C Gastemperatur begonnen, der eine Saugtrocknung von 4 min mit ebenfalls 350 °C Gastemperatur folgte. Das Brennen erfolgte bei einer Temperatur von 1320 °C, anschließend wurden die Pellets auf eine mittlere Abwurftemperatur von 120 °C abgekühlt. Die Qualitätsmerkmale der so erzeugten Pellets stimmen mit den in der nachgefahrenen Betriebsanlage erhaltenen Werten weitgehend überein.
  • Im Versuch Nr. 2 wurde die Trocknung in der erfindungsgemäßen Weise durchgeführt. Alle anderen Parameter wurden beibehalten. Die Trocknung wurde in folgenden Stufen durchgeführt:
    Figure imgb0002
    wobei die Temperatursteigerung in den einzelnen Stufen möglichst schnell durchgeführt wurde.
    Figure imgb0003
    Figure imgb0004
  • Der Wärmeverbrauch für den Versuch Nr. 2 lag gegenüber dem Versuch Nr. 1 um 6,9 % niedriger.
  • Die Vorteile der Erfindung bestehen darin, daß eine Trocknung ohne unzulässige Uberfeuchtung von Pelletschichten und ohne Zerplatzen der Pellets in einfacher Weise lediglich im Saugzugverfahren möglich ist. Die Qualität der erzeugten Pellets ist mindestens so gut wie die der mit der kombinierten Druck-Saugzug-Trocknung arbeitenden Verfahren. Die Länge der Trocknungszone kann verkürzt werden und dadurch die Durchsatzleistung der Maschine erhöht werden. Es ist eine gute Ausnutzung der Wärme des Abgases möglich.

Claims (3)

1. Verfahren zum Hartbrennen von Grünpellets auf einer Pelletbrennmaschine unter Hindurchleiten von heißen Gasen durch das Pelletbett, wobei die Pellets zunächst in einer Trockenzone mit abwärts gerichteter Gasströmung getrocknet werden, dadurch gekennzeichnet, daß die Trocknung in einer ersten Stufe mittels heißer Gase von 60 - 180 °C erfolgt und danach die Temperatur der heißen Gase innerhalb von 2 bis 5 min auf 280 - 400 °C gesteigert wird.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß die Steigerung der Temperatur der heißen Gase in mehreren Stufen erfolgt.
3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß die Trocknung in der ersten Stufe bis zu 60 sec mittels heißer Gase von 60 - 120 °C erfolgt, in einer zweiten Stufe bis zu 120 sec mittels heißer Gase von 120 - 180 °C, in einer dritten Stufe bis zu 180 sec mittels heißer Gase von 180 - 220 °C und in einer Endstufe mittels heißer Gase von 280 - 350 °C.
EP84200152A 1983-02-25 1984-02-03 Verfahren zum Hartbrennen von Grünpellets auf einer Pelletbrennmaschine Expired EP0118149B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3306684 1983-02-25
DE19833306684 DE3306684A1 (de) 1983-02-25 1983-02-25 Verfahren zur thermischen behandlung von gruenpellets auf einer pelletbrennmaschine

Publications (2)

Publication Number Publication Date
EP0118149A1 true EP0118149A1 (de) 1984-09-12
EP0118149B1 EP0118149B1 (de) 1986-09-03

Family

ID=6191856

Family Applications (1)

Application Number Title Priority Date Filing Date
EP84200152A Expired EP0118149B1 (de) 1983-02-25 1984-02-03 Verfahren zum Hartbrennen von Grünpellets auf einer Pelletbrennmaschine

Country Status (7)

Country Link
EP (1) EP0118149B1 (de)
AU (1) AU563419B2 (de)
BR (1) BR8400801A (de)
DE (2) DE3306684A1 (de)
IN (1) IN160995B (de)
MX (1) MX160178A (de)
ZA (1) ZA841333B (de)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0204355A1 (de) * 1985-06-01 1986-12-10 Metallgesellschaft Ag Verfahren zum Hartbrennen von Eisenerzpellets auf einem Wanderrost
WO2000039351A1 (en) * 1998-12-23 2000-07-06 L & C Steinmuller (Africa) (Proprietary) Limited Eaf dust treatment by pelletising and fluidised-bed reduction
WO2014015403A1 (en) * 2012-07-23 2014-01-30 Vale S.A. Process for the optimized production of iron ore pellets

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EA011459B1 (ru) * 2007-03-28 2009-04-28 Открытое Акционерное Общество "Научно-Исследовательский Институт Металлургической Теплотехники" Оао "Вниимт" Способ термообработки железорудных окатышей

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3172754A (en) * 1965-03-09 anthes
DE1209132B (de) * 1962-06-07 1966-01-20 Dravo Corp Verfahren zum Agglomerieren von feinteiligen Eisenerzen
DE2041533A1 (de) * 1970-08-21 1972-03-30 Metallgesellschaft Ag Pelletherstellung
US4049435A (en) * 1976-04-22 1977-09-20 Valery Efimovich Lotosh Method for obtaining a lump product
EP0003665A1 (de) * 1978-02-03 1979-08-22 Nippon Kokan Kabushiki Kaisha Verfahren zur Herstellung von ungebrannten Agglomeraten zur Eisenerzeugung

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3172754A (en) * 1965-03-09 anthes
DE1209132B (de) * 1962-06-07 1966-01-20 Dravo Corp Verfahren zum Agglomerieren von feinteiligen Eisenerzen
DE2041533A1 (de) * 1970-08-21 1972-03-30 Metallgesellschaft Ag Pelletherstellung
US4049435A (en) * 1976-04-22 1977-09-20 Valery Efimovich Lotosh Method for obtaining a lump product
EP0003665A1 (de) * 1978-02-03 1979-08-22 Nippon Kokan Kabushiki Kaisha Verfahren zur Herstellung von ungebrannten Agglomeraten zur Eisenerzeugung

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0204355A1 (de) * 1985-06-01 1986-12-10 Metallgesellschaft Ag Verfahren zum Hartbrennen von Eisenerzpellets auf einem Wanderrost
WO2000039351A1 (en) * 1998-12-23 2000-07-06 L & C Steinmuller (Africa) (Proprietary) Limited Eaf dust treatment by pelletising and fluidised-bed reduction
WO2014015403A1 (en) * 2012-07-23 2014-01-30 Vale S.A. Process for the optimized production of iron ore pellets

Also Published As

Publication number Publication date
IN160995B (de) 1987-09-05
AU2502684A (en) 1984-08-30
DE3460581D1 (en) 1986-10-09
AU563419B2 (en) 1987-07-09
DE3306684A1 (de) 1984-08-30
MX160178A (es) 1989-12-19
ZA841333B (en) 1985-10-30
EP0118149B1 (de) 1986-09-03
BR8400801A (pt) 1984-10-02

Similar Documents

Publication Publication Date Title
DE4000358C2 (de)
DE3923061C1 (de)
DE2821770A1 (de) Getreidetrockner
DE2544343C3 (de) Verfahren zur Herstellung von weißem Zement und Anlage zur Durchführung des Verfahrens
EP0064617A2 (de) Verfahren und Vorrichtung zum Betrieb einer Kokereianlage
DE2404086C3 (de) Verfahren und Vorrichtung zum Kühlen von heißem, körnigem Material
DE1191299B (de) Verfahren zur kontinuierlichen Trocknung von Schnitzelgut aus organischen Hochpolymeren
DE3045253A1 (de) Verfahren und vorrichtung zum brennen von pellets
DE3407052C2 (de) Verfahren und Vorrichtung zur kontinuierlichen Herstellung von ungebrannten Pellets
DE3215140C2 (de) Verfahren und Vorrichtung zur Herstellung ungebrannter eisenhaltiger Pellets
DE4036666C2 (de) Verfahren und Vorrichtung für das Trocknen von organischen Stoffen, insbesondere von Holzteilchen
EP0118149B1 (de) Verfahren zum Hartbrennen von Grünpellets auf einer Pelletbrennmaschine
DE2949720C2 (de) Verfahren und Vorrichtung zum Trocknen und Erhitzen von feuchter Kohle
DE3421102A1 (de) Verfahren und vorrichtung zum wiederordnen von expandiertem tabak
DE2812005C3 (de) Verfahren zur Herstellung von abtriebfesten Koksformlingen
DE1433339B2 (de) Verfahren und vorrichtung zum hartbrennen von pellets
DE2041533C3 (de) Pelletherstellung
CH656779A5 (de) Konditionierung von sojabohnenbruch.
DE3009565A1 (de) Trocknungsanlage
DE2143372C3 (de) Verfahren zur Herstellung gebrannter Eisenerzpellets und Vorrichtung zur Durchführung des Verfahrens
DE3314439A1 (de) Verfahren und einrichtung zum trocknen von rieselfaehigem gut
DE2606272B2 (de) Verfahren zur Beseitigung des Feuchtigkeits- und Fettgehaltes eines Walzwerkschlammes
DE970862C (de) Trockner fuer landwirtschaftliche Erzeugnisse
DE2700485A1 (de) Verfahren und vorrichtung zum brennen von stueckigem gut, insbesondere eisenerzpellets
EP0341417A2 (de) Verfahren und Anlage zur Trocknung feuchter Materialien wie z.B. Zementrohstoffe mittels eines Gasstromes

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): DE FR GB IT NL SE

17P Request for examination filed

Effective date: 19841031

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT NL SE

REF Corresponds to:

Ref document number: 3460581

Country of ref document: DE

Date of ref document: 19861009

ET Fr: translation filed
ITF It: translation for a ep patent filed

Owner name: ING. C. GREGORJ S.P.A.

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19881028

GBPC Gb: european patent ceased through non-payment of renewal fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19881122

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19920302

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19921210

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19930228

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19931103

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19940204

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19940901

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
EUG Se: european patent has lapsed

Ref document number: 84200152.1

Effective date: 19940910