EP0029881B1 - Durchzugkörper zum Messen der Biegung der Innenwand eines Rohres - Google Patents

Durchzugkörper zum Messen der Biegung der Innenwand eines Rohres Download PDF

Info

Publication number
EP0029881B1
EP0029881B1 EP80105449A EP80105449A EP0029881B1 EP 0029881 B1 EP0029881 B1 EP 0029881B1 EP 80105449 A EP80105449 A EP 80105449A EP 80105449 A EP80105449 A EP 80105449A EP 0029881 B1 EP0029881 B1 EP 0029881B1
Authority
EP
European Patent Office
Prior art keywords
housing
tube
accordance
measuring
beam position
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP80105449A
Other languages
English (en)
French (fr)
Other versions
EP0029881A1 (de
Inventor
Elmar Trost
Rudolf Reusch
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rheinmetall Industrie AG
Original Assignee
Rheinmetall GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rheinmetall GmbH filed Critical Rheinmetall GmbH
Publication of EP0029881A1 publication Critical patent/EP0029881A1/de
Application granted granted Critical
Publication of EP0029881B1 publication Critical patent/EP0029881B1/de
Expired legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/26Measuring arrangements characterised by the use of optical techniques for measuring angles or tapers; for testing the alignment of axes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures

Definitions

  • the invention relates to a pull-through body for measuring the bending of the inner wall of a tube with the aid of a light source and an electro-optical detector, consisting of a body mounted centrally in the interior of the tube and displaceable in its longitudinal direction, equipped with a measuring means, with fitting rings on the inner wall of the Tube is axially slidably mounted.
  • the collimator works together with an escape telescope arranged outside the tube to be measured, the optics of which are also equipped with a crosshair before and after each gradual advance of the cylindrical housing is brought into line with the crosshairs of the collimator.
  • the crosshairs of the collimator may have deviations from the alignment line. From their size, a measured value can then be read on the crosshairs of the escape telescope provided with scales.
  • a laser beam is taken as the reference straight line and the deviation relative to the laser beam with the aid of a beam position detector, e.g. B. a photodiode.
  • a beam position detector e.g. B. a photodiode.
  • an evaluation unit supplies two measured values which indicate the deviations in the directions perpendicular to the beam. The straightness errors can then be determined in a computer.
  • the measuring method and the design of the associated components is known from Research Report No. 2719 by the State of North Rhine-Westphalia, author T. Pfeifer and C. A. Schneider, published by West Germanyr Verlag Opladen in 1978.
  • a passage body in a tube according to the preamble of claim 1 can be seen as known.
  • the measuring means is a prism assigned to the pull-through body, which is hit by a light beam from the outside.
  • US-A-4 026 371 describes a device for laying conduits horizontally in the ground.
  • a laser beam from outside the tube strikes transparent plates provided with a crosshair or the like at the other end of the tube in a body which is permanently installed there.
  • US-A-2 718 701 describes a device for determining the angle of inclination of pipes installed vertically in the ground.
  • a pendulum with an eccentrically attached weight is used, which bears against the inclination of the tube on the housing wall.
  • the object of the invention is to provide a pull-through body which makes it possible to use straightness measuring systems known from mechanical engineering, in particular using the new laser technology, and to adapt them to the specific requirements of pipe measurement.
  • a pull-through body is created which is capable of receiving a beam position detector and in which when the pull-through body is moved in the tube to be measured, the electrical axes of the beam position detector are automatically kept parallel with the horizontal and vertical measuring plane in order to avoid measuring errors. It should be easy to handle and have a small diameter so that it can be used in pipes of small diameter.
  • the weight ensures that the axes of the crosshairs of the detector always remain vertical or horizontal and therefore parallel to the measuring plane, because the detector always settles into the same position, even if the body housing rotates in the tube during feed. This leveling takes place in a very short time of 1 to 4 seconds, so that the measurements can be carried out in quick succession.
  • a pull-through body whose diameter is less than 9 cm. Only an active detector surface of 3 cm in diameter is required to record measured values.
  • the laser beam is about 1 cm thick and when measuring there are deviations up or down or to the side of up to 1 cm.
  • the detector In order to store the detector isolated from metal parts, it is held in an inner tube that can be inserted into the receiving housing via an insulating washer and an insulating ring.
  • a space-saving accommodation of the weight piece results from its arrangement between the ball bearings.
  • a protective filter e.g. B. made of glass, provided as the end of the end facing the laser beam towards the body housing.
  • an opening for the connecting lines of the detector and for the displacement of the pull-through body in the tube to be measured a further opening is provided for the connection of a positioning rod in the end wall of the body housing facing away from the laser beam. Since a swiveling of the detector up to an angle of 40 ° to both sides is required for the measuring process, the swiveling range of the weight piece is correspondingly limited by stop pieces on the inner wall of the body housing. This avoids twisting off the connecting lines to the detector.
  • a tube for. B. a gun barrel, in which the resulting from manufacturing errors (curvature) and from the sag of the tube bending, a pass-through body 25 with the beam position detector 28, which is acted upon by the laser beam 27 of the laser 26.
  • the laser is installed centrally in a conical part adjoining the pipe so that the laser beam lies exactly on the pipe axis.
  • the conical part can be the loading space of the gun, so that the measurements can be carried out without removing the barrel from the gun.
  • Connection lines 21 lead from the beam position detector 28 to an evaluation unit 30, in which the deviations in the vertical and horizontal directions dy and dz which result when the pull-through body 25 is pulled through the tube 24 can be displayed, from which the bend can then be made with the aid of a measuring program in the computer is calculated.
  • FIG. 2 shows how the laser beam 27 from the center of the coordinate system yz around in a specific measuring position. the distances dy and dz are avoided on the measuring plane 29.
  • FIG. 3 shows the body housing 1 of the pull-through body in the tube 24 to be measured, which is guided over fitting rings as caliber rings.
  • the fitting rings are held on the body housing by means of retaining rings 9 with an internal thread and are therefore easily replaceable.
  • the housing housing 2 for the detector 15 is rotatably mounted in the body housing 1 via the ball bearings 17.
  • the ball bearings 17 are kept at a distance by the spacer tube 3.
  • the left ball bearing is held on its free side by a ring nut 18 on the receiving housing 2.
  • the right ball bearing is connected to the body housing 1 via an intermediate ring 5 and is held in position by the fastening ring 6 provided with an external thread on the body housing 1. Between the ball bearings 17, the weight piece 4 can be seen below in FIG.
  • the radiation detector 15 is offset to the right and this housing 7, 16 is held in a housing formed from an inner tube 7 with a housing cover 16 by the insulating disk 14 and the insulating ring 13 out of contact with the walls.
  • This housing 7, 16 is inserted into the further part of the receiving housing 2 and is held therein by the eyebolt 10.
  • the measuring plane 29 lies at the level of the center of the right-hand caliber ring 8.
  • connection lines 21 which pass through the opening 22 can be led to the evaluation unit.
  • the cap 11 forming the right end wall of the body housing there is also an opening 23 for fastening a positioning rod for pushing the pull-through body through the tube to be measured.
  • a socket for a plug connection of the connecting lines 21 can optionally be fastened to the cap 11 with a washer 12.
  • a protective filter 19 which transmits the laser beam is attached in front of the opening of the left end wall of the body housing 1.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Description

  • Die Erfindung betrifft einen Durchzugkörper zum Messen der Biegung der Innenwand eines Rohres mit Hilfe einer Lichtquelle und eines elektrooptischen Detektors, bestehend aus einem im Inneren des Rohres zentrisch gelagerten und in dessen Längsrichtung verschiebbaren, mit einem Meßmittel ausgerüsteten Körpergehäuse, das mit Paßringen an der Innenwand des Rohres axial gleitbar gelagert ist.
  • Bei solchen bekannten Durchzugkörpern wird der Innenraum des z. B. zylindrischen Körpergehäuses von einem Kollimator eingenommen, der an beiden Enden mit je einem Fadenkreuz ausgerüstet ist. Der Kollimator arbeitet mit einem außerhalb des zu messenden Rohres angeordneten Fluchtfernrohr zusammen, dessen ebenfalls mit einem Fadenkreuz ausgerüstete Optik vor und nach jedem schrittweisen Vorschub des zylindrischen Gehäuses mit den Fadenkreuzen des Kollimators zur Deckung gebracht wird. Nach Vorschieben des Gehäuses und damit des Kollimators können die Fadenkreuze des Kollimators Abweichungen von der Fluchtlinie aufweisen. Aus deren Größe läßt sich dann ein Meßwert an dem mit Skalen versehenen Fadenkreuz des Fluchtfernrohres ablesen.
  • Mit derartigen, z. B. aus der DE-A-23 52 240 bekannten Durchzugkörpern ist nur ein umständliches Feststellen einzelner Werte nacheinander möglich, das Rohr muß vor der Messung ausgerichtet werden, und es treten erhebliche Meßfehler auf, da das Gehäuse beim Durchzug durch das Rohr die Tendenz zum Drehen hat. Bekannte Meßverfahren sind somit wegen hohen Zeitaufwandes und geringer Aussagekraft in der Praxis nicht einsetzbar.
  • Bei Lasergeradheitsmeßverfahren wird ein Laserstrahl als Referenzgerade genommen und die Abweichung relativ zum Laserstrahl mit Hilfe eines Strahllagedetektors, z. B. einer Photodiode, bestimmt. Aufgrund der von Detektor ausgehenden Signale liefert eine Auswerteinheit zwei Meßwerte, die die Abweichungen in den zum Strahl rechtwinkligen Richtungen angeben. Die Ermittlung der Geradheitsfehler kann dann in einem Rechner erfolgen. Das Meßverfahren und die Auslegung der zugehörigen Komponenten ist durch den Forschungsbericht Nr. 2719 des Landes Nordrhein-Westfalen, Verfasser T. Pfeifer und C. A. Schneider, erschienen im Westdeutschen Verlag Opladen 1978 bekannt.
  • Bekannte Durchzugkörper sind mangels eines Strahllagedetektors als Meßmittel und mangels der Möglichkeit, des Meßmittel beim Vorschub in der waagerechten und senkrechten Ebene parallel zu halten, für die neuen Meßverfahren nicht geeignet.
  • Aus der US-A-2864 280 ist ein Durchzugkörper in einem Rohr entsprechend dem Oberbegriff des Anspruchs 1 als bekannt zu entnehmen. Dort ist das Meßmittel ein dem Durchzugkörper zugeordnetes Prisma, das von außen von einem Lichtstrahl getroffen wird. Außerdem befindet sich außerhalb des Rohres ein elektrooptischer Detektor.
  • Die US-A-4 026 371 beschreibt eine Vorrichtung um Leitungsrohre waagerecht in der Erde zu verlegen. Hier trifft ein Laserstrahl von außerhalb des Rohres auf mit einem Fadenkreuz o. dgl. versehene durchsichtige Platten am anderen Rohrende in einem dort fest eingebauten Körper.
  • Die US-A-2 718 701 beschreibt eine Einrichtung, um den Neigungswinkel senkrecht in die Erde eingebauter Rohre festzustellen. Hierbei findet ein Pendel mit einem daran exzentrisch befestigten Gewicht Anwendung, das sich der Neigung des Rohres an die Gehäusewand anlegt.
  • Alle drei US-Patentschriften offenbaren nur Einzelmerkmale, geben aber keinen Hinweis auf die der vorliegenden Anmeldung zugrundeliegenden Aufgabe.
  • Aufgabe der Erfindung ist es, einen Durchzugkörper zu schaffen, der es erlaubt, aus dem Maschinenbau bekannte Geradheitsmeßsysteme, insbesondere unter Einsatz der neuen Lasertechnologie anzuwenden und den spezifischen Anforderungen einer Rohrvermessung anzupassen. Es wird ein Durchzugskörper geschaffen, der in der Lage ist, einen Strahllagedetektor aufzunehmen, und bei dem beim Verschieben des Durchzugkörpers im zu messenden Rohr die elektrischen Achsen des Strahllagedetektors mit der waagerechten und senkrechten Meßebene selbsttätig parallel gehalten werden, um Meßfehler zu vermeiden. Er soll leicht zu handhaben sein und einen geringen Durchmesser aufweisen, so daß er in Rohren geringen Durchmessers einsetzbar ist. Er soll leicht an unterschiedliche Durchmesser der zu vermessenden Rohre anpaßbar sein, er soll das Messen bis zum Rohrende hin möglich machen und er soll betriebssicher sein, das heißt, es soll neben dem Parallelhalten des Strahllagedetektors auch ein Abdrehen der Anschlußleitungen verhindert sein. Er soll große Meßbereiche ermöglichen und für das Meßverfahren eine automatisierte Datenerfassung und Auswertung mit Hilfe eines Rechners ermöglichen.
  • Dies wird bei einer Einrichtung nach dem Oberbegriff des Anspruchs 1 durch folgende Merkmale erreicht :
    • a) die Paßringe sind auswechselbar;
    • b) ein Aufnahmegehäuse für das Meßmittel ist ein abgesetztes zylindrisches Rohr, das in einem abgesetzten engeren Teil über außen an ihm angreifende, mit Abstand voneinander angeordnete Kugellager im Körpergehäuse drehbar gelagert ist, und das in einem weiteren Teil als Meßmittel den elektrooptischen Detektor als Strahllagedetektor aufnimmt ;
    • c) der Strahllagedetektor ist im weiteren Teil des Aufnahmegehäuses so gelagert, daß seine die Meßebene bildende aktive Fläche in der durch die Mitte des Paßrings an der von einem als Lichtquelle eingesetzten Laser abgewandten Seite des Körpergehäuses gehenden Ebene liegt ;
    • d) mit dem engeren Teil des Aufnahmegehäuses ist exzentrisch ein Gewichtsstück verbunden, dessen Schwenkbereich durch Anschlagstücke an der Innenwand des Körpergehäuses begrenzt ist.
  • Durch das Gewichtsstück wird erreicht, daß die Achsen des Achsenkreuzes des Detektors stets lotrecht bzw. waagerecht und damit parallel zur Meßebene bleiben, weil sich der Detektor stets in die gleiche Lage einpendelt, auch wenn sich das Körpergehäuse beim Vorschub im Rohr dreht. Dieses Einpendeln erfolgt in kürzester Zeit von 1 bis 4s, so daß die Messungen kurz aufeinanderfolgend vorgenommen werden können.
  • Unter Verwendung von im Handel verfügbaren kleinsten Kugellagern läßt sich ein Durchzugkörper bauen, dessen Durchmesser unter 9 cm liegt. Für die Aufnahme von Meßwerten ist nur eine aktive Detektorfläche von 3 cm Durchmesser erforderlich. Der Laserstrahl ist etwa 1 cm stark und beim Messen treten Abweichungen nach oben oder unten oder seitlich bis zu je einem cm auf.
  • Die Unteransprüche nennen Ausführungsarten der Erfindung :
    • Ein einfacher Einbau des Aufnahmegehäuses in das Körpergehäuse wird durch Halterung der über ein Distanzrohr auf Abstand voneinander gehaltenen Kugellager einerseits durch einen mit Außengewinde versehenen Befestigungsring an der Innenwand des Körpergehäuses und andererseits durch eine mit Innengewinde versehene Ringmutter an der Außenwand des Aufnahmegehäuses erreicht.
  • Um den Detektor isoliert von Metallteilen zu lagern, erfolgt seine Halterung in einem in das Aufnahmegehäuse einschiebgaren Innenrohr über eine Isolierscheibe und einen Isolierring.
  • Eine raumsparende Unterbringung des Gewichtsstückes ergibt sich durch seine Anordnung zwischen den Kugellagern. Um die Kugellager vor Staub zu schützen, ist ein den Laserstrahl durchlassendes Schutzfilter, z. B. aus Glas, als Abschluß der zum Laserstrahl hin gewandten Stirnwand des Körpergehäuses vorgesehen.
  • Für die Verbindung des Detektors mit der Auswerteinheit ist eine Öffnung für die Anschlußleitungen des Detektors und für das Verschieben des Durchzugkörpers im zu messenden Rohr eine weitere Öffnung für den Anschluß einer Positionierstange in der vom Laserstrahl abgewandten Stirnwand des Körpergehäuses vorgesehen. Da für den Meßvorgang eine Schwenkung des Detektors höchstens bis zu einem Winkel von 40° nach beiden Seiten erforderlich ist, ist der Schwenkbereich des Gewichtsstücks durch Anschlagstücke an der Innenwand des Körpergehäuses entsprechend begrenzt. Dadurch wird ein Abdrehen der Anschlußleitungen zum Detektor vermieden.
  • Der erfindungsgemäße Durchzugkörper wird nachstehend anhand der Beschreibung von Ausführungsformen, unter Bezugnahme auf die Zeichnung erläutert. Die Zeichnung zeigt in
    • Figur 1 schematisch den Meßaufbau mit einem Durchzugkörper in einem Rohr, in
    • Figur 2 in vergrößertem Maßstab einen Schnitt durch die Meßebene des Detektors und in
    • Figur 3 in noch größerem Maßstab einen Längsschnitt durch den Durchzugkörper.
  • Nach Fig. 1 befindet sich in einem Rohr, z. B. einem Geschützrohr, in dem die sich aus Fertigungsfehlern (Krümmung) und aus dem Durchhang ergebende Biegung des Rohres zu messen ist, ein Durchzugkörper 25 mit Strahllagedetektor 28, der vom Laserstrahl 27 des Lasers 26 beaufschlagt ist. Der Laser ist zentrisch in ein an das Rohr anschließenden konischen Teil so eingebaut, daß der Laserstrahl genau auf der Rohrachse liegt. Im Falle eines Geschützrohres kann das konische Teil der Laderaum des Geschützes sein, so daß die Messungen ohne Ausbau des Rohres aus dem Geschütz vorgenommen werden können. Von dem Strahllagedetektor 28 führen Anschlußleitungen 21 zu einer Auswerteinheit 30, in der die sich bei Durchziehen des Durchzugkörpers 25 durch das Rohr 24 ergebenden Abweichungen in lotrechter und waagerechter Richtung dy und dz angezeigt werden können, aus denen dann mit Hilfe eines Meßprogramms im Rechner die Biegung errechnet wird.
  • Figur 2 zeigt, wie bei einer bestimmten Meßstellung der Laserstrahl 27 aus der Mitte des Koordinatenkreuzes yz um. die Abstände dy und dz auf der Meßebene 29 ausgewichen ist.
  • Figur 3 zeigt in dem zu messenden Rohr 24, über Paßringe als Kaliberringe geführt, das Körpergehäuse 1 des Durchzugkörpers. Die Paßringe werden durch mit Innengewinde versehene Halteringe 9 auf dem Körpergehäuse gehalten und sind dadurch leicht auswechselbar. In dem Körpergehäuse 1 ist über die Kugellager 17 das Aufnahmegehäuse 2 für den Detektor 15 drehbar gelagert. Die Kugellager 17 sind durch das Distanzrohr 3 auf Abstand gehalten. Das linke Kugellager ist an seiner freien Seite durch eine Ringmutter 18 auf dem Aufnahmegehäuse 2 gehalten. Das rechte Kugellager ist über einen Zwischenring 5 mit dem Körpergehäuse 1 verbunden und wird durch den mit Außengewinde versehenen Befestigungsring 6 am Körpergehäuse 1 in seiner Lage gehalten. Zwischen den Kugellagern 17 ist unten in Fig. 3 das Gewichtsstück4 zu sehen, dessen Unterbringungsraum durch einen Deckel 20 im Körpergehäuse 1 zugängig ist. Der Strahilagedetektor15 ist nach rechts abgesetzt und in einem aus Innenrohr 7 mit Gehäusedeckel 16 gebildeten Gehäuse durch die Isolierscheibe 14 und den Isolierring 13 außer Berührung mit den Wänden diese Gehäuse 7, 16 gehalten wird. Dieses Gehäuse 7, 16 ist in den weiteren Teil des Aufnahmegehäuses 2 eingeschoben und wird darin durch die Ringschraube 10 gehalten. Die Meßebene 29 liegt auf der Höhe der Mitte des rechten Kaliberringes8. An der rechten Seite des Detektors 15 befinden sich Anschlußleitungen 21, die durch die Öffnung 22 zur Auswerteinheit geführt werden können. In der die rechte Stirnwand des Körpergehäuses bildenden Kappe 11 befindet sich weiterhin eine Öffnung 23 zum Befestigen einer Positionierstange zum Durchschieben des Durchzugkörpers durch das zu messende Rohr. Außerdem kann mit einer Scheibe 12 an der Kappe 11 ggf. eine Steckbuchse für eine Steckverbindung der Anschlußleitungen 21 befestigt sein. Vor der Öffnung der linken Stirnwand des Körpergehäuses 1 ist ein den Laserstrahl durchlassendes Schutzfilter 19 angebracht.
  • Figure imgb0001

Claims (6)

1. Durchzugkörper, der aus einem im Inneren eines Rohres zentrisch gelagerten und in dessen Längsrichtung verschiebbaren, mit einem Meßmittel ausgerüsteten Körpergehäuse besteht das mit PaBringen an der Innenwand des Rohrs axial gleitbar gelagert ist, zum Messen der Biegung der Innenwand des Rohres mit Hilfe einer Lichtquelle und eines elektrooptischen Detektors, gekennzeichnet durch die Merkmale :
a) die Pa8ringe (8) sind auswechselbar ;
b) ein Aufnahmegehäuse (2) für das Meßmittel ist ein abgesetztes zylindrisches Rohr, das in einem abgesetzten engeren Teil über außen an ihm angreifende, mit Abstand voneinander angeordnete Kugellager(17) im Körpergehäuse (1) drehbar gelagert ist, und das in einem weiteren Teil als Meßmittel den elektrooptischen Detektor als Strahllagedetektor (15) aufnimmt ;
c) der Strahllagedetektor (15) ist im weiteren Teil des Aufnahmegehäuses (2) so gelagert, daß seine die Meßebene bildende aktive Fläche in der durch die Mitte des Paßrings (8) an der von einem als Lichtquelle eingesetzten Laser abgewandten Seite des Körpergehäuses (1) gehenden Ebene liegt ;
d) mit dem engeren Teil des Aufnahmegehäuses (2) ist exzentrisch ein Gewichtsstück (4) verbunden, dessen Schwenkbereich durch Anschlagstücke an der Innenwand des Körpergehäuses (1) begrenzt ist.
2. Körper nach Anspruch 1, gekennzeichnet. durch Halterung der über ein Distanzrohr (3) auf Abstand gehaltenen Kugellager (17) einerseits durch einen mit Außengewinde versehenen Befestigungsring (6) an der Innenwand des Körpergehäuses (1) und andererseits durch eine mit Innengewinde versehene Ringmutter (18) an der Außenwand des Aufnahmegehäuses (2).
3. Körper nach Anspruch 1 oder 2, gekennzeichnet durch Halterung des Strahllagedetektors (15) in einem in das Aufnahmegehäuse (2) einschiebbaren Innenrohr (7) über eine Isolierscheibe (14) und einen Isolierring (13).
4. Körper nach einem der Ansprüche 1 bis 3, gekennzeichnet durch Anordnung des Gewichtsstücks (4) zwischen den Kugellagern (17).
5. Körper nach einem der Ansprüche 1 bis 4, gekennzeichnet durch ein Schutzfilter (19) als Abschluß der zum Laser hin gewandten Stirnwand des Körpergehäuses (1).
6. Körper nach einem der Ansprüche 1 bis 5, gekennzeichnet durch eine Öffnung (22) für die Anschlußleitung (21) des Strahllagedetektors (15) und eine Öffnung (23) für den Anschluß einer Positionierstange in der dem Laser abgewandten Stirnwand des Körpergehäuses (1).
EP80105449A 1979-11-09 1980-09-12 Durchzugkörper zum Messen der Biegung der Innenwand eines Rohres Expired EP0029881B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19792945290 DE2945290A1 (de) 1979-11-09 1979-11-09 Durchzugkoerper zum messen der biegung der innenwand eines rohres
DE2945290 1979-11-09

Publications (2)

Publication Number Publication Date
EP0029881A1 EP0029881A1 (de) 1981-06-10
EP0029881B1 true EP0029881B1 (de) 1983-11-16

Family

ID=6085586

Family Applications (1)

Application Number Title Priority Date Filing Date
EP80105449A Expired EP0029881B1 (de) 1979-11-09 1980-09-12 Durchzugkörper zum Messen der Biegung der Innenwand eines Rohres

Country Status (4)

Country Link
US (1) US4346993A (de)
EP (1) EP0029881B1 (de)
DE (2) DE2945290A1 (de)
IL (1) IL61182A (de)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4690563A (en) * 1985-08-16 1987-09-01 Grumman Aerospace Corporation Hole centration gage
WO1989000675A1 (en) * 1985-08-16 1989-01-26 Grumman Aerospace Corporation Hole centration gage
AU599824B2 (en) * 1988-08-19 1990-07-26 Kabushiki Kaisha Iseki Kaihatsu Koki Method and apparatus for inspecting pipeline
DE102004020406A1 (de) * 2004-04-23 2005-11-10 Prüftechnik Dieter Busch AG Messvorrichtung und Verfahren zum Ermitteln der Geradheit hohlzylindrischer oder hohlkegeliger Körper bzw. deren Orientierung relativ zueinander
DE102011054746B4 (de) * 2011-10-24 2013-09-26 Gsi Helmholtzzentrum Für Schwerionenforschung Gmbh Teilchenbeschleunigersegmenteinrichtung mit Positionsüberwachungsvorrichtung
DE102017107245B4 (de) * 2017-04-04 2024-07-25 Prüftechnik Dieter Busch GmbH Vorrichtung und Verfahren zur Vermessung von Hohlräumen sowie Verwendung der Vorrichtung zur Bestimmung von Walzenausrichtungen
CN109436962A (zh) * 2018-10-11 2019-03-08 阜阳鑫合服饰有限公司 一种分布机

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE474157C (de) * 1925-11-25 1929-03-27 Zeiss Carl Fa Verfahren und Einrichtung zum Pruefen der Richtung und des Abstands einander paralleler Achsenrichtungen
US2864280A (en) * 1956-04-04 1958-12-16 William E Keller Device for inspecting the straightness of bores
US4026371A (en) * 1975-12-22 1977-05-31 Kabushiki Kaisha Komatsu Seisakusho Pilot head for laying pipes in the ground
DE2633965A1 (de) * 1976-07-28 1978-02-02 Ernst Dipl Phys Dr Remy Justiereinrichtung fuer laseroptische geraete bzw. komponenten
DE2856158A1 (de) * 1978-12-27 1980-07-03 Artur Kuepper Kg Vorrichtung zur bestimmung von fluchtungsfehlern bei koaxialen bohrungen

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2718707A (en) * 1953-12-31 1955-09-27 Exxon Research Engineering Co Inclinometer
US3703682A (en) * 1968-10-30 1972-11-21 Us Navy Long axis gradiometer
US3634941A (en) * 1969-03-05 1972-01-18 Alignment Systems Inc Target system for laying sewer pipes
US3723013A (en) * 1970-10-23 1973-03-27 Atomic Energy Commission Alignment system
US3907435A (en) * 1972-09-29 1975-09-23 Laser Alignment Light beam alignment target and method
US4095347A (en) * 1975-09-16 1978-06-20 Steffan Walter J Sighting in apparatus for rifle mounted telescope gunsights
US4199258A (en) * 1978-04-14 1980-04-22 Electric Power Research Institute, Inc. Distance measuring device and method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE474157C (de) * 1925-11-25 1929-03-27 Zeiss Carl Fa Verfahren und Einrichtung zum Pruefen der Richtung und des Abstands einander paralleler Achsenrichtungen
US2864280A (en) * 1956-04-04 1958-12-16 William E Keller Device for inspecting the straightness of bores
US4026371A (en) * 1975-12-22 1977-05-31 Kabushiki Kaisha Komatsu Seisakusho Pilot head for laying pipes in the ground
DE2633965A1 (de) * 1976-07-28 1978-02-02 Ernst Dipl Phys Dr Remy Justiereinrichtung fuer laseroptische geraete bzw. komponenten
DE2856158A1 (de) * 1978-12-27 1980-07-03 Artur Kuepper Kg Vorrichtung zur bestimmung von fluchtungsfehlern bei koaxialen bohrungen

Also Published As

Publication number Publication date
DE3065619D1 (en) 1984-01-19
IL61182A (en) 1987-12-20
IL61182A0 (en) 1980-11-30
EP0029881A1 (de) 1981-06-10
DE2945290A1 (de) 1981-06-11
US4346993A (en) 1982-08-31

Similar Documents

Publication Publication Date Title
DE1598535B2 (de) Mehrstrahl-infrarot-gasanalysator
EP0029881B1 (de) Durchzugkörper zum Messen der Biegung der Innenwand eines Rohres
DE102006011814A1 (de) Werkzeugmessgerät zur Vermessung eines Werkzeugs in einem Werkzeughalter und Werkzeughalter
DE2831822C2 (de) Inspektionseinrichtung für ein Prüfgerät
DE3205610A1 (de) Optisches parallelitaets- und gleichlaufpruefgeraet
DE19827364B4 (de) Verfahren zum Messen kegeliger Gewinde
DE102016003043B4 (de) Messgerät zum Einmessen von Rotationskörper-Makrogeometrie
DE4000878C2 (de) Verfahren zum Prüfen der Koaxialitätsabweichung zwischen einer Meßstelle und einer Bezugsstelle an einem zu prüfenden Gewindeteil, insbesondere Schraube
DE102015109117B4 (de) Gerät und Verfahren zur Ausrichtung eines Rohrs bei einem Umspannvorgang
DE102014001151A1 (de) Messung der Positionen von Krümmungsmittelpunkten optischer Flächen eines mehrlinsigen optischen Systems
CH659887A5 (de) Kaliberstange.
DE301736C (de)
DE102013009258B4 (de) Kernanlagenmanipulatorsystem
DE102013102440B3 (de) Positioniermittel für eine Messzelle
DE2629820B2 (de) Vorrichtung zur parallelen Ausrichtung mehrerer optischer Achsen
DE731183C (de) Vorrichtung zum Pruefen von Schusswaffen auf Gleichachsigkeit von Lauf und Laufhuelse
DE4344998C2 (de) Verfahren zur Messung des Seitenrichtungsfehlers eines in Elevation schwenkbaren, auf Zielobjekte ausrichtbaren Elements, insbesondere eines Waffenrohres, in Abhängigkeit vom Elevationswinkel, sowie Einrichtung zur Durchführung des Verfahrens
DE3423813A1 (de) Einrichtung zur parallelitaetspruefung
DE718055C (de) Rechengeraet, insbesondere fuer artilleristische Zwecke
EP1221018A1 (de) Vorrichtung zur geometrievermessung von schwer zugänglichen aussparungen in einem werkstück
DE4425692C2 (de) Vorrichtung zur Überprüfung der Achslage optischer Achsen eines Waffensystems
DE519915C (de) Vorrichtung zum Einbringen des Brennfleckes einer Roentgenroehre in die gewuenschte Richtung mittels einer Tastgabel
WO2022184513A1 (de) Vorrichtung und verfahren zum messen von abbildungseigenschaften eines optischen systems
DE19935415A1 (de) Optisches Meßgerät zur hochgenauen Fluchtungs- und Entfernungsmessung
DE102007003253A1 (de) Messadapter für optische Messsysteme

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): CH DE FR GB IT SE

17P Request for examination filed

Effective date: 19810629

ITF It: translation for a ep patent filed
GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): CH DE FR GB IT LI SE

REF Corresponds to:

Ref document number: 3065619

Country of ref document: DE

Date of ref document: 19840119

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
ITTA It: last paid annual fee
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19920817

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19920819

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19920826

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19920828

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19920911

Year of fee payment: 13

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19930912

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19930913

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19930930

Ref country code: CH

Effective date: 19930930

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19930912

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19940531

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19940601

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

EUG Se: european patent has lapsed

Ref document number: 80105449.5

Effective date: 19940410