EP0024711B1 - Wässrige Tensidkonzentrate und Verfahren zur Verbesserung des Fliessverhaltens schwer beweglicher wässriger Tensidkonzentrate - Google Patents

Wässrige Tensidkonzentrate und Verfahren zur Verbesserung des Fliessverhaltens schwer beweglicher wässriger Tensidkonzentrate Download PDF

Info

Publication number
EP0024711B1
EP0024711B1 EP80105017A EP80105017A EP0024711B1 EP 0024711 B1 EP0024711 B1 EP 0024711B1 EP 80105017 A EP80105017 A EP 80105017A EP 80105017 A EP80105017 A EP 80105017A EP 0024711 B1 EP0024711 B1 EP 0024711B1
Authority
EP
European Patent Office
Prior art keywords
alkyl
molecular weight
viscosity
weight
sulfates
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP80105017A
Other languages
English (en)
French (fr)
Other versions
EP0024711B2 (de
EP0024711A1 (de
Inventor
Uwe Dr. Ploog
Ingo Wegener
Johann Dr. Glasl
Werner Dr. Erwied
Bernhard Bartnick
Rainer Dr. Höfer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Henkel AG and Co KGaA
Original Assignee
Henkel AG and Co KGaA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=25780820&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP0024711(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Priority claimed from DE19792935428 external-priority patent/DE2935428A1/de
Priority claimed from DE19803002993 external-priority patent/DE3002993A1/de
Application filed by Henkel AG and Co KGaA filed Critical Henkel AG and Co KGaA
Priority to AT80105017T priority Critical patent/ATE5778T1/de
Publication of EP0024711A1 publication Critical patent/EP0024711A1/de
Application granted granted Critical
Publication of EP0024711B1 publication Critical patent/EP0024711B1/de
Publication of EP0024711B2 publication Critical patent/EP0024711B2/de
Expired legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/37Polymers
    • C11D3/3703Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C11D3/3707Polyethers, e.g. polyalkyleneoxides
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/02Anionic compounds
    • C11D1/12Sulfonic acids or sulfuric acid esters; Salts thereof
    • C11D1/123Sulfonic acids or sulfuric acid esters; Salts thereof derived from carboxylic acids, e.g. sulfosuccinates
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/02Anionic compounds
    • C11D1/12Sulfonic acids or sulfuric acid esters; Salts thereof
    • C11D1/14Sulfonic acids or sulfuric acid esters; Salts thereof derived from aliphatic hydrocarbons or mono-alcohols
    • C11D1/146Sulfuric acid esters
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/02Anionic compounds
    • C11D1/12Sulfonic acids or sulfuric acid esters; Salts thereof
    • C11D1/22Sulfonic acids or sulfuric acid esters; Salts thereof derived from aromatic compounds
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/02Anionic compounds
    • C11D1/12Sulfonic acids or sulfuric acid esters; Salts thereof
    • C11D1/29Sulfates of polyoxyalkylene ethers
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D17/00Detergent materials or soaps characterised by their shape or physical properties
    • C11D17/0008Detergent materials or soaps characterised by their shape or physical properties aqueous liquid non soap compositions
    • C11D17/003Colloidal solutions, e.g. gels; Thixotropic solutions or pastes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S516/00Colloid systems and wetting agents; subcombinations thereof; processes of
    • Y10S516/01Wetting, emulsifying, dispersing, or stabilizing agents
    • Y10S516/03Organic sulfoxy compound containing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S516/00Colloid systems and wetting agents; subcombinations thereof; processes of
    • Y10S516/01Wetting, emulsifying, dispersing, or stabilizing agents
    • Y10S516/03Organic sulfoxy compound containing
    • Y10S516/05Organic amine, amide, or n-base containing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S526/00Synthetic resins or natural rubbers -- part of the class 520 series
    • Y10S526/911Emulsifying agents

Definitions

  • Alkyl ether sulfates are in particular sulfates of alkoxylated non-aromatic alcohols having 8 to 24 carbon atoms, in particular 8 to 18 carbon atoms.
  • Alcohols of this type can be obtained from raw materials of natural origin, for example coconut or palm kernel oil, or are available as synthetic materials, e.g. in the form of the well-known Ziegler or oxo alcohols.
  • the non-aromatic alcohols with saturated or unsaturated, optionally also branched alkyl radicals of the type mentioned are first alkoxylated with lower alkylene oxides, in particular with ethylene oxide and / or with propylene oxide, then sulfated and then converted into the corresponding water-soluble salts.
  • Detergents of this type are used for many purposes, for example in liquid cleaning agents, foam baths and shampoos.
  • Aqueous solutions with a comparatively low content of alkyl ether sulfate - for example with a content of about 10% by weight of washing-active substance (WAS) - show the special property of this class of detergents that it can be thickened again by adding neutral salts such as NaCl or Na 2 S0 4 . In practice, this ability of the class of detergents concerned here is often used.
  • Anionic surfactants also play a dominant role as emulsifiers for the technical production of polymer dispersions.
  • alkyl sulfates, alkyl ether sulfates and alkyl benzene sulfonates, alkylaryl polyglycol ether sulfates and sulfosuccinates of natural and synthetic alcohol polyglycol ethers or alkylphenol ethoxylates are mainly used today.
  • Emulsifiers of the type concerned are usually available in the form of dilute aqueous solutions. Highly concentrated mixtures can only be produced by adding up to 20% lower alcohols such as ethanol or isopropanol.
  • lower alcohols such as ethanol or isopropanol.
  • organic solvents for example the alcohols mentioned, is not always desirable in polymer dispersions for technical reasons, and because of their flammability they are associated with a considerable safety risk both in the preparation of the emulsifiers and during transport, storage and use . It is also known that even slight shifts in the water / alcohol ratio in such concentrates can lead to undesirable signs of sedimentation.
  • DE-A 2 251 405 describes the use of certain carboxylic acid salts.
  • the salts of hydroxycarboxylic acids e.g. Sodium citrate, recommended.
  • aromatic sulfonic acids and their salts are suitable for the same purpose.
  • DE-A 2 326 006 sulfonic acids or sulfates or the corresponding water-soluble salts with saturated or unsaturated aliphatic hydrocarbon radicals with 1 to 6 carbon atoms can be used as viscosity regulators.
  • all of these suggestions are limited to the group of linear alkyl polyglycol ether sulfates and their use as detergent surfactants.
  • the object of the invention is to provide aqueous surfactant concentrates of the type described, which can be pumped even in high concentrations and, when diluted with water, show no undesirable increase in the viscosity or thickening of the gel state.
  • the invention seeks to provide alcohol-free aqueous surfactant concentrates of alkyl ether sulfates, alkyl aryl ether sulfates, alkyl aryl sulfonates and sulfosuccinates of alkyl and alkyl aryl polyglycol ether alcohols, as well as fatty alcohols, which can be pumped even in high concentrations, and when diluted with water shows no undesirable increase in the viscosity or thickening of the gel state and without the addition of metal salts, for example as detergent surfactants, for shampoo production, for emulsifying natural fats or as polymerization emulsifiers.
  • metal salts for example as detergent surfactants, for shampoo production, for emuls
  • colloidal gel phases are to be counteracted in particular will. Nevertheless, it should be possible to effectively thicken alkyl ether sulfates in the diluted state at low concentrations of WAS by adding neutral salts such as sodium chloride or sodium sulfate.
  • the technical solution to this problem is based on the finding that water-soluble salts of mono- and / or disulfates of lower polyalkylene ether glycols - in particular of polyethylene glycol and / or of polypropylene glycol (here in particular of 1,2-polypropylene glycol) - effective viscosity regulators for aqueous surfactant concentrates here are affected. In particular, it was found that the effect of these viscosity regulators increases with the increase in the molecular weight of the underlying polyether glycol.
  • the invention relates to aqueous surfactant concentrates containing at least 20% by weight of water-soluble salts of one or more of the following surfactants together with small amounts of viscosity regulators: alkyl polyglycol ether sulfates, alkylaryl polyglycol ether sulfates, alkyl sulfates, alkylarylsulfonates, alkyl polyglycol ether sulfosulfosulfin sulfosulfosulfin sulfosulfosulfin sulfosulfin sulfosulfin sulfosulfin sulfosulfin sulfosulfin sulfosulfin sulfosulfin sulfosulfin sulfosulfin sulfosulfin sulfosulfin sulfosulf
  • the surfactants are preferably present in amounts of at least about 25% by weight, in particular at least about 30% by weight, e.g. in amounts of 50 to 80% by weight, based on the aqueous surfactant concentrate.
  • Lower polyalkylene ether glycols of the type concerned here are derived from straight-chain or branched glycols having a maximum of up to 5 carbon atoms.
  • the corresponding polyethylene ether glycols and / or polypropylene ether glycols are of particular importance - the polyether glycols derived from 1,2-propylene glycol being particularly important in the case of the last-mentioned compounds.
  • This information is also valid for the water-soluble salts of the mono- and / or disulfates of the lower polyalkylene ether glycols used as viscosity regulators according to the invention.
  • the invention relates to a method for improving the flow behavior of difficult to move aqueous surfactant concentrates of the type mentioned above in connection with the first embodiment of the invention, this method being characterized in that water-soluble salts of mono- and / or disulfates are used as the viscosity regulator uses lower polyalkylene ether glycols with a molecular weight of at least 600, preferably of at least 1000. If desired, the non-sulfated free, lower polyalkylene ether glycols with a molecular weight of at least 1500 can also be used in the viscosity regulator.
  • the sulfates and here in particular the disulfates of lower polyalkylene ether glycols, in particular of polyethylene oxide and / or of 1,2-polypropylene oxide, have proven to be particularly effective viscosity regulators for highly concentrated aqueous surfactant concentrates of the type concerned by the present invention.
  • the viscosity-reducing effect or the thickening state of the gel of these regulators increases with increasing molecular weight or increasing degree of polycondensation of the alkylene glycol.
  • the molecular weight of the base material for the viscosity regulator is preferably at least about 1000. Molecular weights of up to 6000 or even more can be considered.
  • Disulphates of polyalkylene glycols of the stated type with molecular weights in the range from 1500 to 4000 are particularly preferred.
  • the disulfates used according to the invention as viscosity regulators thus generally derive from polyether glycols which differ from the polyalkylene glycols, as they can be caused by the slight traces of water in the alkoxylation of alcoholic components.
  • the viscosity regulators can also be used in a determinable manner according to type and quantity, so that predeterminable targeted effects with regard to the reduction of the gel state are possible.
  • the viscosity regulators used according to the invention are themselves effective washing-active substances (WAS). An undesirable load with inactive components is avoided.
  • the surfactant mixtures according to the invention are not only pumpable as such in a highly concentrated form; when diluted with water, there is no increase in the gel state, but rather the desired dilution effect.
  • alkyl ether sulfates that after the surfactant content has been reduced to values of, for example, approximately 10 to 25% by weight, the addition of neutral salts effectively thickened the liquid aqueous solutions, which are now easily mobile.
  • any water-soluble salts of the viscosity regulators used according to the invention can be used.
  • Alkaline salts, soluble alkaline earth metal salts, for example corresponding magnesium salts, the ammonium salts and / or salts with organic amines are particularly suitable for practical use.
  • Suitable amine salts are, for example, alkylolamine salts.
  • the sodium salts are of particular importance.
  • the most important salt for practical use is the sodium salt of the disulfate of polyethylene ether glycols and / or 1,2 polypropylene ether glycols with the minimum molecular weights indicated in each case.
  • the statements made here regarding the salt-forming cations of the viscosity regulators can have corresponding validity for the salt-forming cations present in the surfactants.
  • the viscosity regulators can be used in the aqueous surfactant concentrates in amounts of up to 20% by weight, preferably in amounts of 0 to 10% by weight. Amounts of at least 1% by weight, in particular from 2 to 5% by weight, can be particularly preferred. These figures relate to the aqueous surfactant concentrate. In particular, the amount of the viscosity regulator is determined by the desired lowering of the gel point and / or by the thickening effect of the respective surfactant. In terms of the last point of view, the special structure of the surfactant can be significant. If surfactants of the type mentioned are present which contain polyalkoxy radicals, the extent of the polyalkoxylation of the alcohol on which they are based can be significant.
  • low alkoxylated alcohols can usually be effectively influenced even in high concentrations with 2 to 5% by weight of the viscosity regulator, while somewhat larger amounts of the viscosity regulator may be required together with highly polyalkoxylated alcohols (degree of polymerization of the polyalkoxy radical above 10 to 100, for example).
  • free polyethylene glycol and / or free polypropylene glycol can be used together with the sulfates of the polyethylene glycol and / or the polypropylene glycol as a viscosity-regulating component.
  • these free polyalkylene ether glycols should have a molecular weight of at least 1500, preferably their molecular weight is at least 2000 and is, for example, in the range from 2000 to 6000, in particular in the range from 3000 to 5000.
  • the mixing ratio of the sulfates of the lower polyalkylene ether glycols - especially the disulfates - to the free polyalkylene ether glycols is desirably in the range from 1: 0 to 1: 3.
  • the mixing range from 1: 0 to 1 1 is generally preferred.
  • the viscosity regulator can be added to the aqueous surfactant concentrate as a preformed compound or as a preformed compound mixture.
  • the viscosity regulator is expediently used as a concentrated aqueous solution (content of WAS for example 50 to 90% by weight) and mixed with the aqueous solution of the respective surfactant.
  • the viscosity regulator by sulfating the lower polyalkylene ether glycols in situ in the presence of the surfactant-forming basic components.
  • the sulfation can thus take place, for example, in the presence of an alkyl polyglycol ether alcohol or an alkyl aryl polyglycol ether alcohol.
  • the sulfation of both the alcoholic surfactant-forming component and the preformed lower polyalkylene ether glycols are expediently combined.
  • the desired mixing ratios of the surfactant-forming alcoholic components and the polyalkylene ether glycols forming the viscosity regulator are simply set here and this mixture of substances is then subjected to the sulfation known per se. Finally, the sulfates formed are converted into the desired water-soluble salt. The same cation is set in the surfactant and in the viscosity regulator.
  • alkyl ether sulfates are sulfates of alkoxylated C 8 -C 24 alcohols, preferably such derivatives with a carbon chain of 8 to 18 carbon atoms.
  • Non-aromatic alcohols with carbon chains of 10 to 16 links can be particularly preferred.
  • the carbon chain can be straight-chain and / or branched and saturated and / or unsaturated.
  • alcohols of the type mentioned are accessible both from natural products and by synthesis.
  • the alcohols are alkoxylated with lower alkylene oxides.
  • the low alkoxylated derivatives up to 10 or 12, preferably 1 to 4, in particular 2 to 3, alkoxy groups are added to the alcohol radical.
  • the highly alkoxylated derivatives polyalkoxy radicals with a number of members over 10 or 12, for example up to 100, in particular 20 to 80, are provided.
  • the most important alkoxylating agents are ethylene oxide and / or 1,2-propylene oxide.
  • Suitable salts are therefore in particular the alkali metal salts, soluble alkaline earth metal salts, ammonium salts and salts with organic amines.
  • the most important salt in practice is the sodium salt of alkyl ether sulfate.
  • the S0 3M group can also be interchanged within the succinic acid residue.
  • the sulfonic acid residue in succinic acid may also be interchanged in surfactants of this type.
  • the aqueous surfactant concentrates according to the invention can also contain other surface-active agents.
  • nonionic WAS for example alkylphenol polyglycol ethers, are suitable.
  • sity regulators are usually small amounts of inorganic salts such as sodium chloride and / or sodium sulfate in the aqueous concentrates of the invention, see also the details of the prior art.
  • Na-C12 / 14-fatty alcohol-2-EO sulfate is used as the surfactant in the starting solution.
  • Na-C12 / 14-2 sulfate is liquefied with 3% by weight or 6% by weight of the viscosity regulator and after dilution with water to a content of 10% by weight WAS is examined for its thickenability with sodium chloride.
  • WAS a content of 10% by weight
  • Tables a) and b) show that even small amounts of the viscosity regulators according to the invention have a liquefying effect on highly concentrated fatty alcohol ether sulfates. At the transition to lower concentrations i.e. when diluted, the viscosity is not increased abruptly, but a decrease occurs.
  • the aqueous solution of a Na-C12 / 14-fatty alcohol 50-EO-sulfate with an active substance content of 25% by weight has a gel point of + 12 ° C.
  • disodium polyethylene glycol disulfates based on polyethylene glycols with molecular weights 1550, 3000 and 4000 are used.
  • the gel point of the starting solution is reduced to the values shown in Table 5.
  • An adduct of 50 moles of ethylene oxide with one mole of C12 / 14 fatty alcohol is sulfated with chlorosulfonic acid alone and in the blends with polyethylene glycol given in Table 6 under customary conditions. 1.05 moles of chlorosulfonic acid are used per mole of hydroxyl groups (calculated according to the OH number). After neutralizing with sodium hydroxide solution and setting an active substance concentration of 25% by weight, the gel points listed in Table 6 are found.
  • the Höppler viscosity at 25 ° C of a 30% C 12 / C 15 oxo alcohol sulfate Na salt (abbreviated here with OAS) is approx. 8500 mPa.s.
  • OAS oxo alcohol sulfate Na salt
  • the viscosity-breaking influence of PEG disulfates on such aqueous alkyl sulfate concentrates is determined.
  • the following blends are made by OAS and the Höppler viscosity is measured.
  • ABS 50% n-dodecylbenzenesulfonate
  • ABS 50% n-dodecylbenzenesulfonate
  • the Brookfield viscosity spindle 6, 20 rpm, 25 ° C
  • the viscosity-breaking influence of polyethylene glycols and PEG disulfates on such aqueous ABS concentrates is determined.
  • the following mixes of ABS are produced and the Höppler viscosity is measured.
  • the di-Na-sulfosuccinic acid half-ester of octylphenol + 11 EO forms a non-pourable, immobile gel at 30% AS in aqueous solution, which only becomes fluid at 33 ° C (gel point).
  • the Höppler viscosity of the gel at 25 ° C is naturally not measurably high.
  • the gel point can be lowered to -2 ° C, the Höppler viscosity at 25 ° C is measurable and is only 80 - 100 mPa. s.
  • 10% PEG 4000 disulfate, Na salt as a 33% aqueous solution, the gel point can be lowered even further and is then ⁇ -10 ° C.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Detergent Compositions (AREA)

Description

  • Die Herstellung pumpbarer hochkonzentrierter AIkylethersulfate stellt bekanntlich nach wie vor ein schwer lösbares Problem dar. Alkylethersulfate sind dabei insbesondere Sulfate von alkoxylierten nicht-aromatischen Alkoholen mit 8 bis 24 C-Atomen, insbesondere 8 bis 18 C-Atomen. Alkohole dieser Art lassen sich aus Ausgangsmaterialien natürlichen Ursprungs, beispielsweise Kokosnus- oder Palmkern-öl gewinnen oder stehen als synthetisches Material z.B. in Form der bekannten Ziegler- oder OxoAlkohole zur Verfügung. Die nicht-aromatischen Alkohole mit gesättigten oder ungesättigten, gegebenenfalls auch verzweigten Alkylresten der genannten Art werden zur Herstellung von Detergentien zunächst mit niederen Alkylenoxyden, insbesondere mit Ethylenoxyd und/oder mit Propylenoxyd, alkoxyliert, anschliessend sulfatiert und dann in die entsprechenden wasserlöslichen Salze umgewandelt.
  • Detergentien dieser Art finden vielseitige Anwendung beispielsweise in flüssigen Reinigungsmitteln, Schaumbädern und Haarwaschmitteln. Wässrige Lösungen mit einem vergleichsweise geringen Gehalt an Alkylethersulfat - beispielsweise mit einem Gehalt an etwa 10 Gew.-% waschaktiver Substanz (WAS) - zeigen die besondere Eigenschaft dieser Detergentienstoffklasse durch Zusatz von Neutralsalzen wie NaCI oder Na2S04 wieder verdickt werden zu können. In der Praxis wird von dieser Fähigkeit der hier betroffenen Klasse von Detergentien häufig Gebrauch gemacht.
  • Eine weitere Besonderheit im rheologischen Verhalten entsprechender Tensidkonzentrate bringt jedoch für die Praxis schwerwiegende Schwierigkeiten mit sich. Hochkonzentrierte wässrige Tensidkonzentrate mit einem WAS-Gehalt von beispielsweise 50 Gew.-% oder mehr weisen die Konsistenz eines dicken Geles bzw. einer entsprechenden Paste auf und sind nicht pumpbar. Versucht man dieses Gel mit Wasser zu verdünnen, so sinkt nicht etwa erwartungsgemäss der Dickungszustand, er steigt vielmehr zunächst an. Verständlicherweise entstehen hieraus für den Verarbeiter des Materials beträchtliche Probleme.
  • Auch für die technische Herstellung von Polymerdispersionen spielen Anionentenside als Emulgatoren eine bei weitem dominierende Rolle. Neben Alkylsulfaten, Alkylethersulfaten und Alkylbenzolsulfonaten kommen heute hauptsächlich Alkylarylpolyglykolethersulfate und Sulfosuccinate natürlicher und synthetischer Alkoholpolyglykolether oder AIkylphenolethoxylate zum Einsatz.
  • Die Herstellung solcher Emulgatoren ist bekannt sowie in der Fachliteratur und insbesondere auch in Patentschriften ausführlich beschrieben. In diesem Zusammenhang wird auf K. Lindner: Tenside, Textilhilfsmittel, Waschrohstoffe, Stuttgart, 1964, sowie auf DE-C 834 245, BE-A 680 629, US-A 1970 578, FR-A 1079974, US-A 2 758 977, US-PS 2416254, US-PS 2 489 026 und US-PS 2 510 008 verwiesen.
  • Emulgatoren der betroffenen Art werden im Handel meist in Form verdünnter wässriger Lösungen angeboten. Hochkonzentrierte Gemische sind nur unter Zugabe von bis zu 20% niederer Alkohole wie Ethanol oder Isopropanol herstellbar. Die Anwesenheit organischer Lösungsmittel, beispielsweise die genannten Alkohole, ist jedoch in Polymerdispersionen aus anwendungstechnischen Gründen nicht immer erwünscht, ausserdem sind sie wegen ihrer leichten Entflammbarkeit sowohl bei der Herstellung der Emulgatoren als auch während des Transports, der Lagerung und des Einsatzes mit einem erheblichen Sicherheitsrisiko verbunden. Bekannt ist ausserdem, dass bereits leichte Verschiebungen im Verhältnis Wasser/Alkohol in solchen Konzentraten zu unerwünschten Sedimentationserscheinungen führen können.
  • Die bekannte Erscheinung, dass bei der Verdünnung nicht alkoholhaltiger wässriger Tensidkonzentrate häufig der Zustand eines nicht mehr pumpbaren dicken Gels durchlaufen wird, führt in der betrieblichen Praxis zu erheblichen Schwierigkeiten. Beispielweise ist es häufig nicht einfach, einmal gebildete Gelklumpen wieder in Lösung zu bringen. Die Ventile von Zulaufsgefässen können damit verstopft werden und Konzentrationsschwankungen bei der Dosierung sind nicht auszuschliessen. Schliesslich ist aus den genannten Gründen die Verdünnung solcher wässriger Tensidpasten ein sehr zeitraubender Arbeitsgang.
  • Es bestehen verschiedene Vorschläge zur Bewältigung dieser Schwierigkeiten. So beschreibt die DE-A 2 251 405 den Einsatz bestimmter Carbonsäuresalze. Insbesondere werden die Salze von Hydroxycarbonsäuren, z.B. Natriumcitrat, empfohlen. Nach der DE-OS 2 305 554 sind für den gleichen Zweck aromatische Sulfonsäuren und deren Salze geeignet. Der DE-A 2 326 006 zufolge kann man Sulfonsäuren oder Sulfate bzw. die entsprechenden wasserlöslichen Salze mit gesättigten oder ungesättigten aliphatischen Kohlenwasserstoffresten mit 1 bis 6 Kohlenstoffatomen als Viskositätsregulatoren verwenden. Alle diese Vorschläge beschränken sich jedoch auf die Gruppe der linearen Alkylpolyglykolethersulfate und deren Einsatz als Waschmitteltenside.
  • Aufgabe der Erfindung ist die Schaffung von wässrigen Tensidkonzentraten der geschilderten Art, die auch in hohen Konzentrationen pumpbar sind und beim Verdünnen mit Wasser kein unerwünschtes Ansteigen der Viskosität bzw. Eindicken des Gelzustandes zeigen. Insbesondere will die Erfindung alkoholfreie wässrige Tensidkonzentrate von Alkylethersulfaten, Alkylarylethersulfaten, Alkylarylsulfonaten sowie von Sulfosuccinaten von Alkyl- und Alkylarylpolyglykoletheralkoholen sowie Fettalkoholen zur Verfügung stellen, die auch in hohen Konzentrationen pumpbar sind, beim Verdünnen mit Wasser kein unerwünschtes Ansteigen der Viskosität bzw. Eindicken des Gelzustandes zeigen und ohne Zusatz von Metallsalzen, z.B. als Waschmitteltenside, für die Shampooherstellung, zur Emulgierung von Naturfetten oder als Polymerisationsemulgatoren geeignet sind. Gemäss der Erfindung soll insbesondere der Bildung kolloidaler Gelphasen entgegengewirkt werden. Gleichwohl sollen Alkylethersulfate im verdünnten Zustand bei niedrigen Konzentrationen an WAS durch Zusatz von Neutralsalzen wie Natriumchlorid oder Natriumsulfat wirkungsvoll eingedickt werden können.
  • Die technische Lösung dieser Aufgabe geht von der Feststellung aus, dass wasserlösliche Salze von Mono- und/oder Disulfaten niederer Polyalkylenetherglykole - insbesondere des Polyethylenglykols und/oder des Polypropylenglykols (hier insbesondere des 1,2-Polypropylenglykols) - wirkungsvolle Viskositätsregler für wässrige Tensidkonzentrate der hier betroffenen Art sind. Es wurde dabei insbesondere die Feststellung gemacht, dass die Wirkung dieser Viskositätsregler mit dem Ansteigen des Molekulargewichts des zugrunde liegenden Polyetherglykols zunimmt.
  • Gegenstand der Erfindung sind dementsprechend in einer ersten Ausführungsform wässrige Tensidkonzentrate, enthaltend wenigstens 20 Gew.-% an wasserlöslichen Salzen von einem oder mehreren der folgenden Tenside zusammen mit geringen Mengen Viskositätsreglern: Alkylpolyglykolethersulfate, AIkylarylpolyglykolethersulfate, Alkylsulfate, Alkylarylsulfonate, Alkylpolyglykolethersulfosuccinate, Alkylarylpolyglykolethersulfosuccinate und Alkylsulfosuccinate. Diese Tensidkonzentrate sind dadurch gekennzeichnet, dass sie als Viskositätsregler wasserlösliche Salze von Mono- und/oder Disulfaten eines niederen Polyalkylenetherglykols mit einem Molekulargewicht des Polyalkylenetherglykols von wenigstens 600 enthalten. Gewünschtenfalls können zusammen mit den wasserlöslichen Salzen der genannten Mono- und/oder Disulfate der niederen Polylakylenetherglykole nicht-ionische niedere Polyalkylenglykole eines Molekulargewichts von mindestens 1500 mitverwendet werden.
  • Die Tenside liegen vorzugsweise in Mengen von wenigstens etwa 25 Gew.-%, insbesondere wenigstens etwa 30 Gew.-%, z.B. in Mengen von 50 bis 80 Gew.-% - bezogen auf wässriges Tensidkonzentrat - vor.
  • Niedere Polyalkylenetherglykole der hier betroffenen Art leiten sich von geradkettigen oder verzweigten Glykolen mit maximal bis zu 5 Kohlenstoffatomen ab. Besondere Bedeutung besitzen die entsprechenden Polyethylenetherglykole und/oder Polypropylenetherglykole - wobei im Fall der zuletzt genannten Verbindungen wieder die sich vom 1,2-Propylenglykol ableitenden Polyetherglykole besondere Bedeutung besitzen. Diese Angaben sind auch gültig für die erfindungsgemäss als Viskositätsregler eingesetzten wasserlöslichen Salze der Mono- und/oder Disulfate der niederen Polyalkylenetherglykole.
  • In einer weiteren Ausführungsform betrifft die Erfindung ein Verfahren zur Verbesserung des Fliessverhaltens schwer beweglicher wässriger Tensidkonzentrate der zuvor im Zusammenhang mit der ersten Ausführungsform der Erfindung genannten Art, wobei dieses Verfahren dadurch gekennzeichnet ist, dass man als Viskositätsregler wasserlösliche Salze von Mono- und/oder Disulfaten niederer Polyalkylenetherglykole mit einem Molekulargewicht von wenigstens 600, vorzugsweise von wenigstens 1000 einsetzt. Auch hier können gewünschtenfalls im Viskositätsregler die nicht sulfatierten freien, niederen Polyalkylenetherglykole eines Molekulargewichts von mindestens 1500 mitverwendet werden.
  • Die Sulfate und hier insbesondere die Disulfate von niederen Polyalkylenetherglykolen, und zwar insbesondere des Polyethylenoxids und/oder des 1,2-Polypropylenoxids, haben sich als besonders wirkungsvolle Viskositätsregler für hochkonzentrierte wässrige Tensidkonzentrate der durch die vorliegende Erfindung betroffenen Art erwiesen. Die viskositätssenkende bzw. den Dickungszustand des Gels mindernde Wirkung dieser Regler nimmt mit steigendem Molekulargewicht bzw. steigendem Polykondensationsgrad des Alkylenglykols zu. Bevorzugt beträgt das Molekulargewicht des Basismaterials für den Viskositätsregler mindestens etwa 1000. Es können dabei Molekulargewichte bis zu 6000 oder auch darüber in Betracht kommen. Besonders bevorzugt sind Disulfate von Polyalkylenglykolen der angegebenen Art mit Molekulargewichten in dem Bereich von 1500 bis 4000.
  • Die erfindungsgemäss als Viskositätsregler eingesetzten Disulfate stammen damit in der Regel von Polyetherglykolen ab, die sich von den Polyalkylenglykolen unterscheiden, wie sie - bewirkt durch geringe Wasserspuren - bei der Oxalkylierung von alkoholischen Komponenten entstehen können. Durch die Lehre der Erfindung lassen sich zudem die Viskositätsregler in vorher bestimmbarer Weise nach Art und Menge einsetzen, so dass vorausbestimmbare gezielte Wirkungen bezüglich der Minderung des Gelzustandes möglich sind. Die erfindungsgemäss eingesetzten Viskositätsregler sind selber wirkungsvolle waschaktive Substanzen (WAS). Eine unerwünschte Belastung mit inaktiven Komponenten wird vermieden. Die erfindungsgemässen Tensidgemische sind nicht nur auch in hochkonzentrierter Form als solche pumpbar, beim Verdünnen mit Wasser tritt keine Steigerung des Gelzustandes, sondern die erwünschte Verdünnungswirkung ein.
  • Für Alkylethersulfate gilt, dass nach Absenkung des Tensidgehaltes auf Werte von beispielsweise ca. 10 bis 25 Gew.-% durch Zusatz von Neutralsalzen die jetzt an sich leicht beweglichen flüssigen wässrigen Lösungen sich wirkungsvoll wieder eindicken lassen.
  • Beliebige wasserlösliche Salze der erfindungsgemäss eingesetzten Viskositätsregler sind verwendbar. Für die praktische Anwendung kommen insbesondere Alkalisalze, lösliche Erdalkalisalze, beispielsweise entsprechende Magnesiumsalze, die Ammoniumsalze und/oder Salze mit organischen Aminen in Betracht. Geeignete Aminsalze sind beispielsweise Alkylolaminsalze. Besondere Bedeutung kommt den Natriumsalzen zu. Das für die praktische Anwendung wichtigste Salz ist das Natriumsalz des Disulfats von Polyethylenetherglykolen und/oder 1,2 Polypropylenetherglykolen mit den jeweils angegebenen Mindestmolekulargewichten. Die hier zu den salzbildenden Kationen der Viskositätsregler gemachten Aussagen können entsprechende Gültigkeit für die in den Tensiden vorliegenden salzbildenden Kationen haben.
  • Die Viskositätsregler können in den wässrigen Tensidkonzentraten in Mengen bis zu 20 Gew.-%, vorzugsweise in Mengen von 0, bis 10 Gew.-% vorliegen. Besonders bevorzugt können Mengen von wenigstens 1 Gew.-%, insbesondere von 2 bis 5 Gew.-% sein. Diese Zahlenangaben beziehen sich dabei jeweils auf das wässrige Tensidkonzentrat. Im einzelnen wird die Menge des Viskositätsreglers durch die erwünschte Senkung des Gelpunktes und/oder durch die Dickungswirkung des jeweiligen Tensides bestimmt. Zum letzten Gesichtspunkt kann die besondere Struktur des Tensides bedeutungsvoll sein. Liegen Tenside der genannten Art vor, die Polyalkoxyreste enthalten, so kann das Ausmass der Polyalkoxylierung des zugrundeliegenden Alkohols bedeutungsvoll sein. So lassen sich niedrig alkoxylierte Alkohole auch in hohen Konzentrationen gewöhnlich mit 2 bis 5 Gew.-% des Viskositätsreglers wirkungsvoll beeinflussen, während zusammen mit hochpolyalkoxylierten Alkoholen (Polymerisationsgrad des Polyalkoxyrestes oberhalb 10 bis beispielsweise 100) etwas grössere Mengen des Viskositätsreglers erforderlich sein können.
  • Wie zuvor angegeben, kann gewünschtenfalls zusammen mit den Sulfaten des Polyethylenglykols und/oder des Polypropylenglykols, freies Polyethylenglykol und/oder freies Polypropylenglykol als viskositätsregelnde Komponente mitverwendet werden. Auch hier hat sich gezeigt, dass die Wirkung dieser nicht-sulfatierten Polyalkylenetherglykole um so ausgeprägter in Erscheinung tritt, je höher das Molekulargewicht des Polyalkylenetherglykols ist. Diese ggf. mitzuverwendenden freien Polyalkylenetherglykole sollten mindestens ein Molekulargewicht von 1500 aufweisen, vorzugsweise beträgt ihr Molekulargewicht mindestens 2000 und liegt beispielsweise im Bereich von 2000 bis 6000, insbesondere im Bereich von 3000 bis 5000.
  • Das Mischungsverhältnis von den Sulfaten der niederen Polyalkylenetherglykole - insbesondere den Disulfaten - zu den freien Polyalkylenetherglykolen liegt wünschenswerterweise im Bereich von 1 : 0 bis 1 : 3. Der Mischungsbereich von 1 : 0 bis 1 1 ist im allgemeinen bevorzugt. Der Viskositätsregler kann im Rahmen der Erfindung als vorgebildete Verbindung bzw. als vorgebildetes Verbindungsgemisch dem wässrigen Tensidkonzentrat zugesetzt werden. Zweckmässigerweise wird dabei der Viskositätsregler als konzentrierte wässrige Lösung (Gehalt an WAS zum Beispiel 50 bis 90 Gew.-%) eingesetzt und mit der wässrigen Lösung des jeweiligen Tensids vermischt.
  • In einer besonderen Ausführungsform ist es jedoch in bestimmten, unter die Erfindung fallenden Fällen auch möglich, den Viskositätsregler durch Sulfatierung der niederen Polyalkylenetherglykole in situ in Gegenwart der tensidbildenden Grundkomponenten herzustellen. Die Sulfatierung kann also beispielsweise in Gegenwart eines Alkylpolyglykoletheralkohols oder eines Alkylarylpolyglykoletheralkohols erfolgen. Zweckmässigerweise werden in dieser Ausführungsform die Sulfatierung sowohl der alkoholischen tensidbildenden Komponente als auch der vorgebildeten niederen Polyalkylenetherglykole miteinander verbunden. Hier werden also einfach die gewünschten Mischungsverhältnisse des bzw. der tensidbildenden alkoholischen Komponenten und der den Viskositätsregler bildenden Polyalkylenetherglykole eingestellt und anschliessend dieses Stoffgemisch der an sich bekannten Sulfatierung unterworfen. Schliesslich werden die gebildeten Sulfate in das gewünschte wasserlösliche Salz umgewandelt. Hierbei wird das gleiche Kation im Tensid und im Viskositätsregler eingestellt.
  • Zur bestimmten chemischen Natur der im Rahmen der Erfindung zu verwendenden Tensidkomponenten wird auf die Angaben des genannten Standes der Technik verwiesen. In den genannten Stoffklassen werden dabei erfindungsgemäss bevorzugt Vertreter der folgenden Art eingesetzt:
  • I. Alkylpolyglykolethersulfate
  • Zur bestimmten chemischen Natur der Alkylethersulfate wird auf die Angaben des genannten Standes der Technik verwiesen. Grundsätzlich handelt es sich um Sulfate von alkoxylierten C8-C24-Alkoholen, vorzugsweise um solche Derivate mit einer Kohlenstoffkette von 8 bis 18 C-Atomen. Besonders bevorzugt können nicht-aromatische Alkohole mit Kohlenstoffketten von 10 bis 16 Gliedern sein. Die Kohlenstoffkette kann geradkettig und/oder verzweigt und gesättigt und/oder ungesättigt sein. Alkohole der genannten Art sind, wie eingangs angegeben, sowohl aus Naturprodukten als auf dem Syntheseweg zugänglich.
  • Die Alkohole sind in einer ersten Stufe mit niederen Alkylenoxyden alkoxyliert. Hierbei kann zwischen den zwei grossen Gruppen der niedrig alkoxylierten und der hoch alkoxylierten Derivate unterschieden werden. Bei den niedrig alkoxylierten Derivaten sind bis zu 10 oder 12, vorzugsweise 1 bis 4, insbesondere 2 bis 3 Alkoxygruppen an den Alkoholrest addiert. Bei den hoch alkoxylierten Derivaten sind Polyalkoxyreste einer Gliederzahl über 10 bzw. 12, beispielsweise bis 100, insbesondere 20 bis 80 vorgesehen. Die wichtigsten Alkoxylierungsmittel sind Ethylenoxyd und/oder 1,2-Propylenoxyd.
  • Als Gruppe geeigneter wasserlöslicher Salze der sulfatierten polyalkoxylierten Verbindungen eignet sich die zuvor im Zusammenhang mit dem Viskositätsregler genannte Gruppe von Kationen. Geeignete Salze sind insbesondere also die Alkalisalze, lösliche Erdalkalisalze, Ammoniumsalze und Salze mit organischen Aminen. Das für die Praxis wichtigste Salz ist das Natriumsalz des Alkylethersulfats.
  • 11. Alkylarylpolyglykolethersulfate
  • Die bevorzugten Tenside dieser Klasse können durch die allgemeine Formel
    Figure imgb0001
    gekennzeichnet werden. In dieser allgemeinen Formel bedeutet
    • R = Alkylrest, der geradkettig oder verzweigt und dabei gesättigt oder ungesättigt sein kann. Bevorzugt sind hier Alkylreste mit 4 bis 16 C-Atomen, insbesondere mit 6 bis 14 C-Atomen. Besondere Bedeutung kann Alkylresten mit 8 bis 12 C-Atomen zukommen.
    • m = 1 oder 2, wobei in der Regel 1 bevorzugt ist.
    • Ar = Phenylenrest oder Näphthylenrest. Bevorzugt ist hier der Phenylenrest.
    • A = niederer Alkylenrest, der geradkettig und/ oder verzweigt sein kann. Die bevorzugten niederen Alkylenreste sind Ethylen und/oder Propylen-(1,2).
    • n = 1 bis 100. Auch hier kann zwischen den zwei grossen Gruppen der niedrig-alkoxylierten und der hoch-alkoxylierten Derivate unterschieden werden. Bei den niedrig-alkoxylierten Derivaten sind bis zu 12, insbesondere 2 bis 10 Alkoxygruppen an den Alkoholrest addiert. Bei den hoch-alkoxylierten Derivaten sind Polyalkoxyreste einer Gliederzahl über 12, beispielsweise bis 100, insbesondere 20 bis 50, vorgesehen.
    • M = Kation eines löslichen Salzes, insbesondere Alkali, wasserlösliches Erdalkali, Ammonium oder organische Amine. Das besonders bevorzugte Kation ist Natrium.
    111. Alkylsulfate
  • Die Verbindungen entsprechen bevorzugt der allgemeinen Formel
    Figure imgb0002
    Hierin bedeuten
    • R-0- = Rest eines nicht-aromatischen Alkohols, der geradkettig oder verzweigt und dabei gesättigt oder ungesättigt sein kann und in der Regel 8 bis 24 Kohlenstoffatome, vorzugsweise 10 bis 18 Kohlenstoffatome aufweist.
    • M = Bedeutung wie bei 11.
    IV. Alkylarylsulfonate
  • Tenside dieser Klasse entsprechen der Formel
    Figure imgb0003
    In dieser Formel bedeuten:
    • R = Alkylrest, der geradkettig oder verzweigt und dabei gesättigt oder ungesättigt sein kann. Vorzugsweise besitzt dieser Alkylrest 4 bis 16, insbesondere 6 bis 14 Kohlenstoffatome. Besondere Bedeutung kann Alkylresten mit 8 bis 12 Kohlenstoffatomen zukommen.
    • Ar = Phenylen oder Naphthylen, bevorzugt ist der Phenylrest
    • M = Bedeutung wie bei II.
    V. Alkylpolyglykolethersulfosuccinate
  • Tenside dieser Klasse entsprechen der allgemeinen Formel
    Figure imgb0004
  • Dabei kann die S03M-Gruppe auch innerhalb des Bernsteinsäurerestes stellungsvertauscht sein.
  • Die Bedeutung der Elemente dieser formelmässigen Darstellung ist im einzelnen:
    • R = Rest eines nicht-aromatischen Alkohols, der geradkettig oder verzweigt und dabei gesättigt oder ungesättigt sein kann und vorzugsweise 4 bis 24 C-Atome aufweist.
  • Im Falle der Monoester enthält dieser Alkylrest bevorzugt mindestens 8 C-Atome, besonders bevorzugt können Reste mit 10 bis 18 Kohlenstoffatomen sein.
    • A = niederer Alkylenrest, der geradkettig und/oder verzweigt sein kann. Die bevorzugten Alkylenreste sind Ethylen und/oder Propylen-1,2.
    • n = Auch hier gilt, dass zwischen den zwei Klassen der niedrigalkoxylierten und der hoch-alkoxylierten Derivate unterschieden werden kann. Für die niedrigalkoxylierten Derivate ist n vorzugsweise 1 bis 12, insbesondere 2 bis 10. Für die hoch-alkoxylierten Derivate hat n einen Wert > 12 bis insbesondere 100, vorzugsweise 20 bis 50.
    • Z = -OM oder -[O-A]n-O-R. In diesem zuletzt genannten Fall liegen die Diester der Sulfobernsteinsäure vor.
    • M = Bedeutung wie bei II.
    VI. Alkylarylpolyglykolethersulfosuccinate
  • Die Verbindungen dieser Klasse entsprechen der allgemeinen Formel
    Figure imgb0005
  • Auch in Tensiden dieser Art kann der Sulfosäurerest in der Bernsteinsäure stellungsvertauscht vorliegen.
  • Für die Symbole dieser formelmässigen Darstellung gilt im einzelnen das folgende:
    • R = Bedeutung wie bei II
    • m = Bedeutung wie bei II
    • Ar = Bedeutung wie bei II
    • A = Bedeutung wie bei II
    • n = Bedeutung wie bei II
    • Z = -OM oder -[O-A]n-O-Ar-Rm. Im zuletzt Fall liegt wieder der Diester der Sulfobernsteinsäure vor.
    • M = Bedeutung wie bei 11.
    VII. Alkylsulfosuccinate
  • Tenside dieser Klasse entsprechen der allgemeinen Formel
    Figure imgb0006
  • Auch hier kann die Stellung des Restes S03M im Bernsteinsäurerest vertauscht sein.
  • Zur Bedeutung der Symbole dieser allgemeinen Formel gilt:
    • R = Rest eines nicht-aromatischen Alkohols, der geradkettig oder verzweigt und dabei gesättigt oder ungesättigt sein kann und vorzugsweise 4 bis 24 C-Atome und insbesondere 8 bis 18 C-Atome aufweist.
    • Z = -OM oder -OR (Diester der Sulfobernsteinsäure)
    • M = Bedeutung wie bei II.
  • Neben diesen anionischen Tensiden können die erfindungsgemässen wässrigen Tensidkonzentrate auch andere oberflächenaktive Mittel enthalten. Geeignet sind beispielsweise nichtionische WAS, beispielsweise Alkylphenolpolyglykolether.
  • Aus der Herstellung der Alkyl- und Alkylarylethersulfate sowie der beschriebenen Sulfosuccinate und/oder der erfindungsgemäss eingesetzten Viskositätsregler liegen üblicherweise geringe Mengen an anorganischen Salzen wie Natriumchlorid und/oder Natriumsulfat in den wässrigen Konzentraten der Erfindung vor, siehe auch hierzu die Angaben des Standes der Technik.
  • Beispiele Beispiel 1
  • In einer Reihe von Vergleichsversuchen werden die viskositätsregelnden Eigenschaften von Polyethylenglykoldisulfat und 1,2-Polypropylenglykoldisulfat auf wässrige 70%ige Alkylethersulfat-Konzentrate bestimmt. Dabei wird die Abhängigkeit der viskositätsregelnden Wirkung von den verschiedenartigsten Parametern ermittelt.
  • Die in diesem Beispiel eingesetzten Produkte weisen die folgenden Kennzahlen auf:
    • 1. Na-C 12/14-Fettalkohol-2-EO-Sulfat,
      • (abgekürzt C12/14-2-Sulfat)
      • 70 Gew.-% Waschaktivsubstanz
      • (ethanollösliche Anteile)
      • 0,4 Gew.-% NaCI
      • 0,9 Gew.-% Na2S04
    • 2. Na-C 12/14-Fettalkohol-3-EO-Sulfat,
      • (abgekürzt C12/14-3-Sulfat)
      • 70 Gew.-% Waschaktivsubstanz
      • (ethanollösliche Anteile)
      • 0,4 Gew.-% NaCI
      • 0,9 Gew.-% Na2S04
    • 3. Polyethylenglykoldisulfate auf Basis von Polyethylenglykolen der Molgewichte 600, 1550, 2000 und 3000, erhalten durch direkte Sulfatierung mit Chlorsulfonsäure und vorliegend als circa 70 gewichtsprozentige wässrige Lösung.
    • 4. Polypropylenglykoldisulfate auf Basis von Polypropylendiglykolen der Molgewichte 620, 1020, 2020, hergestellt ebenfalls nach herkömmlicher Methode durch Direktsulfatierung der entsprechenden Polypropylenglykole und vorliegend als circa 70 gewichtsprozentige Lösungen in Wasser.
      • a) In einer ersten Versuchsreihe wird die Abhängigkeit der Viskosität (bestimmt nach Höppler am Kugelfallviskosimeter bei 20°C) vom Molgewicht des eingesetzten Polyethylenglykoldisulfates ermittelt. In der folgenden Tabelle 1 und in den weiteren Tabellen dieses Beispiels sind dabei die Zahlenwerte für die Viskosität in mPa.s angegeben.
  • Als Tensid wird in der Ausgangslösung Na-C12/ 14-Fettalkohol-2-EO-Sulfat eingesetzt.
    Figure imgb0007
  • b) In einer nächsten Versuchsreihe wird die Abhängigkeit der Viskosität von der Art des zugrundeliegenden Alkylethersulfats bei Verwendung von Polypropylenglykoldisulfat (Molgewicht 1550) bestimmt.
    Figure imgb0008
  • c) In einer weiteren Versuchsreihe wird die Abhängigkeit der Viskosität von der Art des Polyglykols bzw. der entsprechenden wasserlöslichen Sulfatsalze bestimmt.
  • Eingesetztes Tensid: Na-C12/14-Fettalkohol-2--EO-Sulfat
    • Polyglykoldisulfat-Anteil: 2,8%
    • WAS: 65%
      Figure imgb0009
  • d) In einer abschliessenden Versuchsreihe wird die Wiederverdickbarkeit der durch Wasserzusatz verflüssigten Alkylethersulfatlösungen bestimmt.
  • Na-C12/14-2-Sulfat wird mit 3 Gew.-% bzw. 6 Gew.-% des Viskositätsreglers verflüssigt und nach dem Verdünnen mit Wasser auf einen Gehalt an 10 Gew.-% WAS auf seine Wiederverdickbarkeit mit Kochsalz untersucht. In der folgenden tabellarischen Zusammenstellung sind die erfindungsgemäss erhaltenen Ergebnisse mit entsprechenden Lösungen verglichen, die als Viskositätsregler Butylglykolsulfat oder Cumolsulfonat enthalten.
    Figure imgb0010
  • Die Tabellen zu a) und b) zeigen, dass bereits geringe Mengen der erfindungsgemässen Viskositätsregler verflüssigend auf hochkonzentrierte Fettalkoholethersulfate wirken. Beim Übergang zu geringeren Konzentrationen d.h. beim Verdünnen wird die Viskosität nicht sprungartig erhöht, sondern es tritt eine Erniedrigung auf.
  • Gegenüber kurzkettigen Alkylethersulfaten (Butylglykolsulfat) wird die Wiederverdickbarkeit der verdünnten Tensidlösungen weniger beeinträchtigt. Im verstärkten Masse gilt dies für den Vergleich mit Cumolsulfonat.
  • Beispiel- 2
  • Die wässrige Lösung eines Na-C12/14-Fettaiko- hol-50-EO-sulfats mit einem Aktivsubstanzgehalt von 25 Gew.-% hat einen Gelpunkt von + 12°C. Zur Erniedrigung des Gelpunktes werden Dinatriumpolyethylenglykoldisulfate auf Basis von Polyethylenglykolen der Molgewichte 1550, 3000 und 4000 eingesetzt. Durch Zusatz von jeweils 1,2 Gewichtsteilen Dinatriumpolyethylenglykoldisulfat auf 100 Gewichtsteile Fettalkohol-EO-sulfat wird der Gelpunkt der Ausgangslösung auf die in der Tabelle 5 wiedergegebenen Werte erniedrigt.
    Figure imgb0011
  • Diese Versuchsreihe zeigt, dass bereits der geringe Zusatz von 1,2 Gew.-%, bezogen auf Fettalkohol--EO-sulfat eine Gelpunktserniedrigung in der Grössenordnung von 10°C bewirkt.
  • Beispiel 3
  • Ein Anlagerungsprodukt von 50 Mol Ethylenoxid an ein Mol C12/14-Fettalkohol wird allein und in den in der Tabelle 6 angegebenen Abmischungen mit Polyethylenglykol unter üblichen Bedingungen mit Chlorsulfonsäure sulfatiert. Dabei werden 1,05 Mol Chlorsulfonsäure pro Mol Hydroxylgruppen (berechnet nach der OH-Zahl) eingesetzt. Nach dem Neutralisieren mit Natronlauge und Einstellen einer Aktivsubstanzkonzentration von 25 Gew.-% werden die in der Tabelle 6 verzeichneten Gelpunkte gefunden.
    Figure imgb0012
  • Beispiel 4
  • In diesem Beispiel wird der viskositätsregelnde Einfluss von Polyethylenglykoldisulfat auf alkoholfreie, wässrige 70%ige Alkylarylethersulfat-Konzentrate bestimmt.
  • Gemessen wurden die Viskositäten nach Höppler bei 50°C von
    • A Nonylphenol + 4 EO-Sulfat, NH4+-Salz hergestellt nach US-PS 2 758 977
    • B Mischungen dieses Produktes mit
      • 1) handelsüblichen Polyethylenglykolen (PEG) der mittleren Molgewichte 600, 1550, 3000 und 4000.
      • 2) Polyethylenglykolmono/disulfaten auf Basis von Polyethylenglykolen der Molgewichte 600,m 1550, 3000 und 4000 erhalten durch direkte Sulfatierung mit Chlorsulfonsäure und vorliegend als ca. 35 gewichtsprozentige wässrige Lösungen.
      • 3) Polyethylenglykol-4000-mono/disulfat, in situ hergestellt durch Sulfatierung eines Gemisches von Nonylphenol + 4 EO und Polyethylenglykol 4000.
  • Die Ergebnisse sind in der Tabelle 7 zusammengefasst.
    Figure imgb0013
  • Beispiel 5
  • In diesem Beispiel wird der Einsatz von Polyglykolen bzw. Polyglykoldisulfaten zur Senkung des Gelpunktes eines hochethoxylierten Alkylphenolethersulfats erläutert. Die wässrige Lösung eines Dodecylphenol + 40 EO-sulfat, Na-Salz, mit einem Aktivsubstanzgehalt von 30 Gew.-% hat einen Gelpunkt von +12,5°C. Zur Erniedrigung des Gelpunktes werden eingesetzt.
    • a) Polyethylenglykole (PEG) des mittleren Molgewichtes 4000
    • b) Polyethylenglykolmono/disulfate auf Basic eines Polyethylenglykols eines mittleren Molgewichts von 4000
      Figure imgb0014
    Beispiel 6
  • Die Viskosität nach Höppler bei 25°C eines 30%igen C12/C15-Oxoalkoholsulfat-Na-Salzes (hier mit OAS abgekürzt) beträgt ca. 8500 mPa.s. In diesem Beispiel wird der viskositätsbrechende Einfluss von PEG-disulfaten auf solche wässrigen Alkylsulfat-Konzentrate bestimmt. Dazu werden die folgenden Abmischungen von OAS hergestellt und die Höppler-Viskosität gemessen.
    Figure imgb0015
  • Beispiel 7
  • 50%iges n-Dodecylbenzolsulfonat (hier mit ABS bezeichnet) bildet bei Zimmertemperatur eine hochviskose, zähe, unbewegliche Paste, deren Höppler-Viskosität nicht messbar ist. Die Brookfield-Viskosität (Spindel 6, 20 UpM, 25°C) beträgt 23000 mPa.s. In diesem Beispiel wird der viskositätsbrechende Einfluss von Polyethylenglykolen und von PEG-disulfaten auf solche wässrige ABS-Konzentrate bestimmt. Dazu werden die folgenden Abmischungen von ABS hergestellt und die Höppler-Viskosität gemessen.
    Figure imgb0016
  • Beispiel 8
  • In diesem Beispiel wird der Einsatz von Polyglykoldisulfaten zur Senkung des Gelpunktes von Sulfobernsteinsäurehalbester erläutert.
  • Der Di-Na-Sulfobernsteinsäurehalbester von Octylphenol + 11 EO bildet bereits bei 30% AS in wässriger Lösung ein nicht giessbares, unbewegliches Gel, das erst bei 33°C (Gelpunkt) fliessfähig wird. Die Höppler-Viskosität des Gels bei 25°C ist naturgemäss nicht messbar hoch. Bereits durch Zusatz von 5% PEG 4000-disulfat, Na-Salz, als 33%ige wässrige Lösung kann der Gelpunkt auf -2°C gesenkt werden, die Höppler-Viskosität bei 25°C ist messbar und beträgt nur 80 - 100 mPa.s. Durch Zusatz von 10% PEG 4000-disulfat, Na-Salz, als 33%ige wässrige Lösung kann der Gelpunkt noch weiter gesenkt werden und liegt dann bei < -10° C.

Claims (11)

1. Wässrige Tensidkonzentrate, enthaltend wenigstens 20 Gew.-% an wasserlöslichen Salzen von einem oder mehreren der folgenden Tenside zusammen mit geringen Mengen Viskositätsreglern: Alkylpolyglykolethersulfate, Alkylarylpolyglykolethersulfate, Alkylsulfate, Alkylarylsulfonate, Alkylpolyglykolethersulfosuccinate, Alkylarylpolyglykolethersulfosuccinate und Alkylsulfosuccinate, dadurch gekennzeichnet, dass sie als Viskositätsregler wasserlösliche Salze von Mono- und/oder Disulfaten eines niederen Polyalkylenetherglykols mit einem Molekulargewicht von wenigstens 600 - gewünschtenfalls zusammen mit niederen Polyalkylenetherglykolen eines Molekulargewichts von mindestens 1500 - enthalten.
2. Wässrige Tensidkonzentrate nach Anspruch 1, dadurch gekennzeichnet, dass als Viskositätsregler wasserlösliche Salze von Mono- und/oder Disulfaten von Polyethylenetherglykolen und/oder Polypropylenetherglykolen des angegebenen Mindestmolekulargewichts - gewünschtenfalls zusammen mit Polyethylenetherglykolen und/oder Polypropylenetherglykolen des Molekulargewichts von mindestens 1500 - vorliegen.
3. Wässrige Tensidkonzentrate nach Anspruch 1 und 2"dadurch gekennzeichnet, dass das Molekulargewicht des dem salzförmigen Viskositätsregler zugrundeliegenden Polyalkylenetherglykols wenigstens 1000, vorzugsweise wenigstens 1500, beträgt und dabei z.B. im Bereich bis 6000 liegen kann.
4. Wässrige Tensidkonzentrate nach Ansprüchen 1 bis 3, dadurch gekennzeichnet, dass der Viskositätsregler und/oder die im Konzentrat vorliegenden Tensidsalze als Kation Alkalimetall, wasserlösliches Erdalkalimetall, Ammonium und/oder Aminkationen aufweist.
5. Wässrige Tensidkonzentrate nach Ansprüchen 1 bis 4,dadurch gekennzeichnet, dass die Viskositätsregler in Mengen von 0,1 bis 10 Gew.-%, vorzugsweise 2 bis 5 Gew.-% - bezogen auf wässriges Tensidkonzentrat - vorliegen.
6. Wässrige Tensidkonzentrate nach Ansprüchen 1 bis 5, dadurch gekennzeichnet, dass die Tensidsalze in Mengen von wenigstens 25 Gew.-% z.B. in Mengen von 50 bis 80 Gew.-% - bezogen auf wässriges Tensidkonzentrat - vorliegen.
7. Wässrige Tensidkonzentrate nach Ansprüchen 1 bis 6, dadurch gekennzeichnet, dass sie bei Normaltemperatur oder nur leicht erhöhten Temperaturen pumpbare, vorzugsweise frei fliessende Lösungen sind.
8. Wässrige Tensidkonzentrate nach Ansprüchen 1 bis 7, dadurch gekennzeichnet, dass sie zusätzliche oberflächenaktive Verbindungen, z.B. alkoxylierte Alkylphenole enthalten.
9. Verfahren zur Verbesserung des Fliessverhaltens schwer beweglicherTensidkonzentrate, enthaltend ein oder mehrere Tenside aus der Gruppe Alkylpolyglykolethersulfate, Alkylarylpolyglykolethersulfate, Alkylsulfate, Alkylarylsulfonate, Alkylpolyglykolethersulfosuccinate, Alkylarylpolyglykolethersulfosuccinate und Alkylsulfosuccinate durch Zusatz geringer Mengen eines Viskositätsreglers, dadurch gekennzeichnet, dass man als Viskositätsregler wasserlösliche Salze von Mono- und/oder Disulfaten niederer Polyalkyletherglykole mit einem Molekulargewicht von wenigstens 600, vorzugsweise von wenigstens 1000, einsetzt.
10. Verfahren nach Anspruch 9, dadurch gekennzeichnet, dass man als Viskositätsregler Mono-und/oder Disulfate von Polyethylenetherglykolen und/oder Polypropylenetherglykolen des angegebenen Molekulargewichts einsetzt, die vorzugsweise durch Sulfatierung der niederen Polyalkylenetherglykole in Gegenwart der noch nicht sulfatierten Tensidgrundkomponente zweckmässig unter gleichzeitiger Sulfatierung dieser Tensidgrundkomponente und des Viskositätsreglers mit anschliessender. Salzbildung hergestellt worden sind.
11. Verfahren nach Ansprüchen 9 und 10, dadurch gekennzeichnet, dass man den getrennt vorgebildeten Viskositätsregler - zweckmässig als konzentrierte wässrige Lösung - dem Tensidkonzentrat zusetzt.
EP80105017A 1979-09-01 1980-08-23 Wässrige Tensidkonzentrate und Verfahren zur Verbesserung des Fliessverhaltens schwer beweglicher wässriger Tensidkonzentrate Expired EP0024711B2 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT80105017T ATE5778T1 (de) 1979-09-01 1980-08-23 Waessrige tensidkonzentrate und verfahren zur verbesserung des fliessverhaltens schwer beweglicher waessriger tensidkonzentrate.

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
DE2935428 1979-09-01
DE19792935428 DE2935428A1 (de) 1979-09-01 1979-09-01 Waessrige tensidkonzentrate und verfahren zur verbesserung des fliessverhaltens schwer beweglicher waessriger tensidkonzentrate
DE19803002993 DE3002993A1 (de) 1980-01-29 1980-01-29 Waessrige tensidkonzentrate und verfahren zur verbesserung des fliessverhaltens schwerbeweglicher waessriger tensidkonzentrate
DE3002993 1980-01-29

Publications (3)

Publication Number Publication Date
EP0024711A1 EP0024711A1 (de) 1981-03-11
EP0024711B1 true EP0024711B1 (de) 1984-01-04
EP0024711B2 EP0024711B2 (de) 1989-02-08

Family

ID=25780820

Family Applications (1)

Application Number Title Priority Date Filing Date
EP80105017A Expired EP0024711B2 (de) 1979-09-01 1980-08-23 Wässrige Tensidkonzentrate und Verfahren zur Verbesserung des Fliessverhaltens schwer beweglicher wässriger Tensidkonzentrate

Country Status (4)

Country Link
US (2) US4384978A (de)
EP (1) EP0024711B2 (de)
CA (1) CA1152850A (de)
DE (1) DE3066054D1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0401642A1 (de) * 1989-06-05 1990-12-12 Henkel Kommanditgesellschaft auf Aktien Fettalkylsulfate und Fettalkyl-polyalkylenglycolethersulfate, Verfahren zu ihrer Herstellung und ihre Verwendung

Families Citing this family (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0024711B2 (de) * 1979-09-01 1989-02-08 Henkel Kommanditgesellschaft auf Aktien Wässrige Tensidkonzentrate und Verfahren zur Verbesserung des Fliessverhaltens schwer beweglicher wässriger Tensidkonzentrate
DE3265500D1 (en) * 1981-02-19 1985-09-26 Ici Plc Surface active compositions
DE3151679A1 (de) * 1981-12-28 1983-07-07 Henkel KGaA, 4000 Düsseldorf "verwendung von viskositaetsreglern fuer tensidkonzentrate"
DE3240403A1 (de) * 1982-11-02 1984-05-03 Henkel KGaA, 4000 Düsseldorf Verwendung von niedermolekularen organischen verbindungen als viskositaetsregler fuer hochviskose technische tensid-konzentrate
DE3305430A1 (de) * 1983-02-17 1984-08-23 Henkel KGaA, 4000 Düsseldorf Verwendung von alkoholen und deren derivaten als viskositaetsregler fuer hochviskose technische tensid-konzentrate
GB8404120D0 (en) * 1984-02-16 1984-03-21 Unilever Plc Liquid detergent compositions
DE3447859A1 (de) * 1984-12-31 1986-07-10 Henkel KGaA, 4000 Düsseldorf Verwendung von alkansulfonaten als viskositaetsregler fuer hochviskose aniontensid-konzentrate
EP0222557B1 (de) 1985-10-31 1993-10-13 The Procter & Gamble Company Flüssige Reinigungsmittelzusammensetzung
US4904359A (en) * 1985-10-31 1990-02-27 The Procter & Gamble Company Liquid detergent composition containing polymeric surfactant
US4765926A (en) * 1986-03-18 1988-08-23 Vista Chemical Company Surfactant compositions and method therefor
DE3622438A1 (de) * 1986-07-04 1988-01-07 Henkel Kgaa Kosmetischer waschrohstoff
DE3630533A1 (de) * 1986-09-08 1988-03-10 Henkel Kgaa Neue tensidgemische und ihre verwendung
US4758374A (en) * 1987-03-17 1988-07-19 Conoco Inc. Soluble oil concentrate and emulsifier system used therein
GB8718217D0 (en) * 1987-07-31 1987-09-09 Unilever Plc Liquid detergent compositions
GB8821763D0 (en) * 1988-09-16 1988-10-19 Unilever Plc Liquid detergents
GB2223611A (en) * 1988-10-07 1990-04-11 Nigel Anthony Collier Electronic bark suppressor
KR910004791A (ko) * 1989-08-31 1991-03-29 오노 알버어스 액체 계면 활성 조성물 및 그의 제조방법
GB8924478D0 (en) * 1989-10-31 1989-12-20 Unilever Plc Detergent compositions
DE4019172A1 (de) * 1990-06-15 1991-12-19 Henkel Kgaa Verwendung von salzen der sulfonierungsprodukte ungesaettigter fettsaeuren als viskositaetsminderer
DE4024657A1 (de) * 1990-08-03 1992-02-06 Henkel Kgaa Verfahren zur trocknung und granulierung waessriger pasten waschaktiver wirkstoffgemische
DE4032910A1 (de) * 1990-10-17 1992-04-23 Henkel Kgaa Verfahren zur herstellung von alkylsulfatpasten mit verbesserten fliesseigenschaften
DE4032909A1 (de) * 1990-10-17 1992-04-23 Henkel Kgaa Verfahren zur herstellung von alkylsulfatpasten mit verbesserter fliessfaehigkeit
DE4109250A1 (de) * 1991-03-21 1992-09-24 Henkel Kgaa Verfahren zur herstellung von hochkonzentrierten fettalkoholsulfat-pasten
US5538672A (en) * 1991-08-03 1996-07-23 Henkel Kommanditgesellschaft Auf Aktien Free-flowing water-containing alkyl sulfate pastes
ES2131524T3 (es) * 1992-03-10 1999-08-01 Procter & Gamble Pastas detergentes muy activas.
US5529722A (en) * 1992-03-10 1996-06-25 The Procter & Gamble Company High active detergent pastes
EP0618000B1 (de) * 1992-08-06 1996-03-20 Air Products And Chemicals, Inc. Wasserlösliche Netzmittelgemische
DE4325923A1 (de) * 1993-08-02 1995-02-09 Henkel Kgaa Sulfobernsteinsäurediester enthaltende flüssige Formulierungen
WO1996025482A1 (en) * 1995-02-13 1996-08-22 The Procter & Gamble Company Process for producing detergent agglomerates in which particle size is controlled
US5574005A (en) * 1995-03-07 1996-11-12 The Procter & Gamble Company Process for producing detergent agglomerates from high active surfactant pastes having non-linear viscoelastic properties
EP1969105B1 (de) * 2005-11-15 2009-06-17 The Procter and Gamble Company Flüssigdetergenzmittel mit natürlich basiertem alkyl- oder hydroxyalkylsulfat- oder sulfonattensid und mittkettig verzweigten aminooxidtensiden
DE102011015046A1 (de) * 2011-03-24 2012-09-27 Sasol Germany Gmbh Hochkonzentrierte fließfähige Salze von Alkylpolyalkoxysulfaten
WO2014072840A1 (en) 2012-11-12 2014-05-15 Galaxy Surfactants Ltd. Flowable, high active, aqueous fatty alkyl sulfates
CN113717008B (zh) * 2021-08-13 2022-10-14 四川鸿康科技股份有限公司 一种磷酸一铵防结块剂及其应用

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1970578A (en) * 1930-11-29 1934-08-21 Ig Farbenindustrie Ag Assistants for the textile and related industries
US2758977A (en) * 1951-05-25 1956-08-14 Gen Aniline & Film Corp Detergent composition and method of producing same
US2940936A (en) * 1953-04-07 1960-06-14 Monsanto Chemicals Preparing sulfonated products from sulfur trioxide
BE790362A (fr) * 1971-10-20 1973-02-15 Albright & Wilson Composants de detergents
BE795095A (fr) * 1972-02-07 1973-05-29 Albright & Wilson Concentrat aqueux pouvant etre utilise comme composant detergent
GB1437089A (en) 1972-05-26 1976-05-26 Albright & Wilson Detergent concentrates
FR2268069B1 (de) * 1974-04-19 1977-10-14 Procter & Gamble Europ
US3971815A (en) * 1974-11-13 1976-07-27 The Procter & Gamble Company Acid mix process
DE2501982A1 (de) * 1975-01-18 1976-07-22 Bayer Ag Konzentrierte fluessige einstellungen von alkylsulfonaten und ihre mischungen mit polyglykolaethern
DE2703998C3 (de) * 1977-02-01 1981-10-01 Henkel KGaA, 4000 Düsseldorf Flüssiges Waschmittelkonzentrat mit geringem Schaumvermögen
EP0024711B2 (de) * 1979-09-01 1989-02-08 Henkel Kommanditgesellschaft auf Aktien Wässrige Tensidkonzentrate und Verfahren zur Verbesserung des Fliessverhaltens schwer beweglicher wässriger Tensidkonzentrate

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0401642A1 (de) * 1989-06-05 1990-12-12 Henkel Kommanditgesellschaft auf Aktien Fettalkylsulfate und Fettalkyl-polyalkylenglycolethersulfate, Verfahren zu ihrer Herstellung und ihre Verwendung

Also Published As

Publication number Publication date
DE3066054D1 (en) 1984-02-09
EP0024711B2 (de) 1989-02-08
US4476037A (en) 1984-10-09
US4384978A (en) 1983-05-24
CA1152850A (en) 1983-08-30
EP0024711A1 (de) 1981-03-11

Similar Documents

Publication Publication Date Title
EP0024711B1 (de) Wässrige Tensidkonzentrate und Verfahren zur Verbesserung des Fliessverhaltens schwer beweglicher wässriger Tensidkonzentrate
EP0116905B1 (de) Verwendung von Alkoholderivaten als Viskositätsregler für hochviskose technische Tensid-Konzentrate
EP0084154B1 (de) Verwendung von Viskositätsreglern für Tensidkonzentrate
CH671026A5 (de)
DE2251405A1 (de) Wasserhaltiges tensid-konzentrat
WO2015117840A1 (de) WÄßRIGE TENSID-ZUSAMMENSETZUNGEN
DE2110030A1 (de) Flüssigwaschmittel
WO1995021905A1 (de) Reinigungsmittel für harte oberflächen
DE2632953A1 (de) Reinigungsmittelgemisch, enthaltend ein alkylaethersulfat-detergens
EP0608285A1 (de) Viskose wässrige tensidzubereitungen.
EP2655586A1 (de) Zusammensetzungen enthaltend sekundäres paraffinsulfonat und alkoholalkoxylat
EP0574448A1 (de) Flüssige reinigungsmittel mit einem gehalt an sulfoölsauren disalzen
EP0532549A1 (de) Flüssiges, fliess- und pumpfähiges tensidkonzentrat
DE3724500A1 (de) Alkylsulfat-ethersulfat-gemische und deren verwendung
WO2000071665A1 (de) Saures wässriges mehrphasiges reinigungsmittel
EP2655585A1 (de) Zusammensetzungen enthaltend sekundäres paraffinsulfonat und alkoholalkoxylat
DE2935428A1 (de) Waessrige tensidkonzentrate und verfahren zur verbesserung des fliessverhaltens schwer beweglicher waessriger tensidkonzentrate
EP0103696B1 (de) Wässrige Tensidkonzentrate und Verfahren zur Verbesserung des Fliessverhaltens schwerbeweglicher wässriger Tensidkonzentrate
DE2305554B2 (de) Komponenten für wäßrige Detergent-Konzentrate
WO1992014809A1 (de) Verfahren zur herstellung von alkyl- und/oder alkenylsulfat-pasten mit verbesserter fliessfähigkeit
DE60101225T2 (de) Hoch schäumende reinigungsmittel für harte oberflächen
DE2819455A1 (de) Fluessiges waschmittel und verfahren zu seiner herstellung
EP2782666B1 (de) Derivate von tris(2-hydroxyphenyl)methanen, deren herstellung und verwendung für die erdölförderung
DE2853136A1 (de) Waessriges, oberflaechenaktives mittel
DE3002993A1 (de) Waessrige tensidkonzentrate und verfahren zur verbesserung des fliessverhaltens schwerbeweglicher waessriger tensidkonzentrate

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): AT BE CH DE FR GB IT NL SE

17P Request for examination filed

Effective date: 19810727

ITF It: translation for a ep patent filed

Owner name: STUDIO JAUMANN

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): AT BE CH DE FR GB IT LI NL SE

REF Corresponds to:

Ref document number: 5778

Country of ref document: AT

Date of ref document: 19840115

Kind code of ref document: T

REF Corresponds to:

Ref document number: 3066054

Country of ref document: DE

Date of ref document: 19840209

ET Fr: translation filed
PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

26 Opposition filed

Opponent name: CHEMISCHE WERKE HUELS AG

Effective date: 19840918

26 Opposition filed

Opponent name: HOECHST AKTIENGESELLSCHAFT, FRANKFURT

Effective date: 19841003

PLAB Opposition data, opponent's data or that of the opponent's representative modified

Free format text: ORIGINAL CODE: 0009299OPPO

PLAB Opposition data, opponent's data or that of the opponent's representative modified

Free format text: ORIGINAL CODE: 0009299OPPO

R26 Opposition filed (corrected)

Opponent name: HUELS AKTIENGESELLSCHAFT * 841003 HOECHST AKTIENGE

Effective date: 19840918

R26 Opposition filed (corrected)

Opponent name: HUELS AKTIENGESELLSCHAFT * 841003 HOECHST AKTIENGE

Effective date: 19840918

NLXE Nl: other communications concerning ep-patents (part 3 heading xe)

Free format text: SHOULD BE MODIFIED INTO:HUELS AKTIENGESELLSCHAFT

PUAH Patent maintained in amended form

Free format text: ORIGINAL CODE: 0009272

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: PATENT MAINTAINED AS AMENDED

27A Patent maintained in amended form

Effective date: 19890208

AK Designated contracting states

Kind code of ref document: B2

Designated state(s): AT BE CH DE FR GB IT NL SE

ET3 Fr: translation filed ** decision concerning opposition
NLR2 Nl: decision of opposition
ITF It: translation for a ep patent filed

Owner name: STUDIO JAUMANN

NLR3 Nl: receipt of modified translations in the netherlands language after an opposition procedure
ITTA It: last paid annual fee
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19940718

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19940727

Year of fee payment: 15

EAL Se: european patent in force in sweden

Ref document number: 80105017.0

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19950816

Year of fee payment: 16

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Effective date: 19950823

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19950831

Ref country code: CH

Effective date: 19950831

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19960824

EUG Se: european patent has lapsed

Ref document number: 80105017.0

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19970811

Year of fee payment: 18

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990430

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19990818

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19990823

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19990830

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19991013

Year of fee payment: 20

BE20 Be: patent expired

Free format text: 20000823 *HENKEL K.G.A.A.

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20000822

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20000823

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Effective date: 20000822

NLV7 Nl: ceased due to reaching the maximum lifetime of a patent

Effective date: 20000823