EP0015915B1 - Wärmeübertragersystem und verfahren zu seiner herstellung - Google Patents
Wärmeübertragersystem und verfahren zu seiner herstellung Download PDFInfo
- Publication number
- EP0015915B1 EP0015915B1 EP79900267A EP79900267A EP0015915B1 EP 0015915 B1 EP0015915 B1 EP 0015915B1 EP 79900267 A EP79900267 A EP 79900267A EP 79900267 A EP79900267 A EP 79900267A EP 0015915 B1 EP0015915 B1 EP 0015915B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- heat
- exchanger
- tube
- projections
- heat exchanger
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F21/00—Constructions of heat-exchange apparatus characterised by the selection of particular materials
- F28F21/08—Constructions of heat-exchange apparatus characterised by the selection of particular materials of metal
- F28F21/081—Heat exchange elements made from metals or metal alloys
- F28F21/084—Heat exchange elements made from metals or metal alloys from aluminium or aluminium alloys
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D7/00—Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D7/00—Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
- F28D7/04—Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being spirally coiled
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D7/00—Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
- F28D7/08—Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being otherwise bent, e.g. in a serpentine or zig-zag
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F1/00—Tubular elements; Assemblies of tubular elements
- F28F1/10—Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
- F28F1/12—Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F7/00—Elements not covered by group F28F1/00, F28F3/00 or F28F5/00
- F28F7/02—Blocks traversed by passages for heat-exchange media
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D21/00—Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
- F28D2021/0019—Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
- F28D2021/0054—Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for nuclear applications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F2215/00—Fins
- F28F2215/10—Secondary fins, e.g. projections or recesses on main fins
Definitions
- the invention relates to a heat exchanger system with at least two heat exchanger elements, each of which has at least one tube bent in one plane or in a cylinder surface for a first medium involved in the heat transfer, with adjacent sections of the tube or the tubes in each case forming a sealed heat exchanger element heat transfer wall are connected.
- the invention is based on the object, starting from the heat exchanger system according to DE-A-22 37 430, to provide a heat exchanger system which can be operated at moderate temperatures in the range from 0 to 200.degree. C. and which enables a compact construction which is on the side of the second medium has a very large heat transfer surface and thus ensures a large heat transfer and which is inexpensive to produce.
- the wall is formed by a metallic cast body that tightly envelops the sections of the tube or tubes, the heat-conducting projections, the surface of which is a multiple of the tube inner surface that they account for, preferably ribs that run approximately parallel to one another , and that at least two heat exchanger elements are arranged relative to one another in such a way that at least one closed channel, into which the projections protrude, is formed for a second medium involved in the heat transfer.
- This design results in a smaller, more compact heat exchanger system, which has the additional advantage that, in the case of corrosive properties of the second medium, the pipe material is protected from corrosion attacks by the cast body. This also ensures that the two media always remain separate.
- FR-A-1 031 374 describes a heat exchanger intended for a hot gas piston engine, in which a plurality of pipes through which liquid flows and each bent into a loop are distributed in a circular ring, each pipe loop lying in a radial plane of the ring. All pipes are enclosed in a uniform cast body that has slit-shaped channels that run parallel to the pipe loops and are open on the inside of the circular ring without projections. The channels are closed by a special sleeve that lies against the inner circumference of the circular ring.
- This known heat exchanger takes up a lot of space and is expensive to manufacture.
- the heat exchanger system is to have the shape of a cuboid, this is best achieved by the tube or tubes of each heat exchanger element running in a serpentine or meandering manner in a single plane. If the supply and discharge lines have circular or annular connection cross sections, the heat exchanger elements are expediently designed in such a way that the pipe or the pipes run along helical lines on a single, fictitious pipe cylinder. Such a design also has particular advantages if the second medium has a pressure which differs greatly from the atmospheric pressure, because then each heat exchanger element forms a load-bearing wall with its cast body because of the coiled tube.
- the projections are advantageously designed as radially projecting ribs, essentially extending along helical lines.
- the protrusions can preferably be formed as turns in the case of pipes wound according to helical lines, which rise in the opposite sense to the turns of the pipes.
- a significant improvement in the heat transfer on the side of the second medium can be achieved in that the projections have a tree-like branched cross section, the passage area for the heat flow decreasing with increasing distance from the base of the projection.
- the heat exchangers can be produced in a particularly simple manner by a method according to the invention in that the tube of each heat exchanger element is bent and placed in a casting mold, the mold is poured out with a metal and the projections are machined out of the cast body, and that at least two heat exchanger elements are added be connected to a heat exchanger system.
- the tube of each heat exchanger element is bent and placed in a casting mold, that the mold is poured out with a metal and the casting body is machined in such a way that recesses for anchoring the rib-like parts forming the projections Parts are created which are caulked, soldered or welded into these recesses and that at least two heat exchanger elements are connected to form a heat exchanger system.
- Figure 1 shows a longitudinal section through a box-shaped heat exchanger system with several flat heat exchanger elements.
- Figure 2 shows a cross section 11-11 through the heat exchanger system of FIG. 1.
- Figure 3 is a cross section through a heat exchanger system with two concentrically arranged, circular cylindrical heat exchanger elements.
- FIG. 4 shows, on an enlarged scale, a longitudinal section IV-IV of the heat transfer system according to FIG. 3.
- FIG. 5 is, analogously to FIG. 3, a cross section through a modified heat exchanger system with two concentrically arranged heat exchanger elements.
- FIG. 6 shows a longitudinal section of a variant of FIG. 5.
- FIG. 7 shows a longitudinal section through a heat exchanger system with a plurality of heat exchanger elements, in each of which a tube is arranged after a spiral.
- FIG. 8 is a horizontal section through a heat transfer element in the levels VIII 1, VII 2 and Vii1 3 of FIG. 7.
- Figure 9 illustrates the cross section through two ribs with branches.
- Figure 10 shows a cross section of another embodiment of branched ribs and their mutual arrangement.
- Figures 11 and 12 each represent a cross section through further branched ribs.
- FIG. 13 shows a cross section through part of a circular cylindrical heat exchanger element with simple ribs which run along helical lines.
- Figure 14 shows the development of a cylinder with helical, interrupted ribs.
- each of the heat exchanger elements consists of a tube 3 which is bent back and forth in a vertical plane.
- the adjacent sections of each tube 3 are each cast with an aluminum body 4, the two side faces of which have cast-in projections 5 in the form of ribs and are parallel to the bending plane.
- the outermost ribs 5 'of each element 1 are somewhat longer than the other ribs and are each connected by a weld 6 to an abutting rib 5' of an adjacent heat exchanger element, as a result of which the aforementioned box shape and channels closed between these elements are created.
- an end plate 8 is welded on the free side, which extends over the entire outer ribbed surface of the respective heat exchanger element.
- a discharge line for the second medium is connected to the funnel thus formed, which is not apparent from the drawing.
- An identical funnel with a feed line for the second medium is located at the lower end of the heat exchanger system 2.
- the tubes 3 emerge laterally from the top and bottom of the heat transfer system 2 and end Flanges 13.
- the flanges 13 are connected to flanges of pipe sockets 14, the upper of which open into a distributor 15 and the lower, not shown in the drawing, into a collector.
- the distributor 15 and the collector are divided by bellows 17 because of the thermal expansion differences between them on the one hand and the cast aluminum body 4 on the other.
- the channels between the two end plates 8 and their adjacent heat exchanger elements 1 and the channels between adjacent heat exchanger elements 1 are flowed through from bottom to top by the second, heat-emitting, gaseous medium.
- the large heat transfer surface formed by the fins 5 compensates for the relatively poor heat transfer coefficient of the gas, so that the temperature difference between the heat-emitting gas and the heat-absorbing surface of the fins 5 remains relatively small.
- the fins 5 are wedge-shaped, so that the increased heat flow in the region of the fin nozzle can flow to the pipe 3 with a relatively low temperature drop. Since the water flowing in the pipe 3 ensures good heat transfer, there are also no high temperature differences on the water side.
- tubes 3a and 3b are wound according to helical lines.
- Each tube coil formed in this way is encased by an aluminum body 4a or 4b and forms a circular cylindrical heat exchanger element 1a or 1b.
- the heat exchanger element 1 a has radial longitudinal ribs 5 on its inside, while its outside is smooth.
- the heat exchanger element 1b has a greatly widened fin 23, in which a pipe section 24 connected to the upper end of the coiled tubing runs downwards in an axially parallel manner. Below the heat exchanger system, the pipe section 24 leads outwards, piercing a funnel wall (not shown).
- a gas flows through the highly jagged ring channel delimited by the surfaces of the ribs 5 between the two heat exchanger elements 1a and 1b, while a liquid flows through the two tubes 3a and 3b, which are preferably connected in parallel.
- ribs 5 are also arranged on the inside of the heat exchanger element 1b.
- the flow channel for the gas is delimited on the inside by a circular-cylindrical displacer 25.
- the heat exchanger element 1 a could also be provided with ribs on the outside and surrounded by a circular cylindrical jacket.
- the exemplary embodiment according to FIG. 6 differs from that according to FIG.
- the inner heat exchanger element 1b has two coils 3c and 3d, both of which open at their upper end into a common collecting tube 26, which is surrounded by an aluminum cast body 27, through the wall of a funnel 28 leads and finally ends outdoors with a flange 29.
- the upper end of the tube coil 3a leaves the heat exchanger element 1a outside the funnel 28 and is provided with a flange 29 '.
- five heat exchanger elements are designed as circular, cast disks 4f to 4k and are arranged coaxially one above the other, within which tubes 3f ... 3k which are bent according to spirals run.
- the fins 5 are each perpendicular to the plane of the tubes and are bent according to involutes.
- the heat exchanger elements are surrounded on the outside by a cylindrical jacket 130, which is tightly connected to the cast bodies 4f, 4h and 4k by flat ring plates 31, 32 and 33.
- shut-off disks 35 and 36 are arranged in the bore of the cast bodies 4g and 4i.
- the involute-shaped ribs 5 On the second uppermost cast body 4g (FIG. 8), the involute-shaped ribs 5, if they are followed in the counter-clockwise direction, on the top of the element (section VIII 1 ) from the outside inwards and on the underside from the inside out (section VIII 3 ).
- the uppermost cast body 4f has ribs only on its underside, which run like those on the top of the adjacent pane 4g.
- the cast body 4i is designed in the same way as 4g, while the intermediate cast body 4h has ribs that run in reverse: on the top, always referring to the counterclockwise direction, they lead from the inside to the outside and on the bottom from the outside to the inside.
- the lowermost cast body 4k only carries ribs on its upper side, which run from the inside to the outside.
- This rib arrangement ensures that the gaseous medium, which enters the stack of heat exchanger elements centrally from below through the inlet 50 of the heat exchanger system, flows outward in the channel between the mutually facing ribs 5 of the cast bodies 4i and 4k, through the lower one Annulus 42 between the cast body 4i and the jacket 30, rotating further in the counterclockwise direction, rises and flows inward in the counterclockwise direction through the channel between the cast bodies 4h and 4i. Continuously rotating in the same direction, it flows outwards into the upper annular space 42 'in the channel between the cast bodies 4g and 4h and finally, flowing inward via the channel between the cast bodies 4f and 4g, reaches the outlet opening 51 of the heat transfer system.
- each of the pipes 3g to 3i initially extends radially from the outside to the associated one Cast body, wherein the radial portion 38 located within the shell 30 is cast with aluminum.
- each tube 3g to 3i extends as a spiral 40, preferably as an involute with a small radial part, wound up against the inner edge of the cast body.
- each of the tubes 3g to 3i in each case passes into the level of the fins 5 on the underside of the heat exchanger element in question, where it is cast in as an involute tube 41 in a thickened fin 23 'which, like the neighboring fins, runs in an involute manner.
- each involute tube 41 merges into a radial tube section 43 which penetrates the jacket 30 and is cast with aluminum within the jacket.
- the tubes 3f and 3k also each have a radial tube section 39, which is, however, located outside the annular spaces 42 and 42 '.
- the spiral tubes 3f and 3k are led up and down out of the cast body and set continues as tube 44 or 45.
- the changes in direction of the tube are chosen to be as small as possible by the water circling in the same way within a heat exchanger element in the spiral tube 40 as well as in the involute tube 41.
- the spiral tube 40 in the cast bodies 4g and 4i is wound from the outside inwards in the counterclockwise direction, while that of the cast bodies 4h and 4k runs clockwise from the outside inwards.
- the pipes 3f ... 3k are expediently connected in series, according to the countercurrent principle, which cannot be implemented consistently here.
- the pipe section 39 of the cast body 4f is therefore connected to the involute pipe 41 of the cast body 4g, the involute pipe 44 forming the water inlet.
- the pipe section 38 of the cast body 4g is connected to the section 38 of the cast body 4h, the involute tube of which is connected to the section of the cast body 4i and finally the involute pipe of the cast body 4i to the section 39 of the lowermost cast body 4k.
- Practical considerations as well as thermodynamic calculations can also lead to a different circuit.
- FIGS. 9 to 12 While simple ribs are always provided in the exemplary embodiments described so far, it may also be expedient to ramify the ribs, as shown in FIGS. 9 to 12.
- flat grooves 56 are screwed into the cast body 55, which tightly surrounds the tube 3, into each of which a rib 57 is soldered.
- the ribs 57 have a stem-shaped central rib 58, from each of which four branch ribs 59 branch off.
- the trunk rib 38 thickens in accordance with the increasing heat flow against the rib foot 54, and the astra ribs 59 are inclined so that the heat flow reaches the rib foot 54 in a shorter way.
- the astocks 59 are also arranged such that the spaces for the medium flowing around the fins have a hydraulic radius that changes as little as possible.
- Ribs according to Fig. 10 are easy to cast, while the extrusion presents difficulties due to the uneven cross-sectional distribution.
- the cross-sectional shapes according to FIGS. 11 and 12, which are assembled by soldering simple angle profiles 60, are more favorable. These can be formed by folding sheet metal or by extrusion.
- the profiles 60 are preferably joined together with a first, high-melting solder to form a branched rib, which is then soldered into the grooves 56 of the cast body 55 with a second, less high-melting solder.
- a plurality of ribs 61 extend radially inward from a circular cylindrical heat exchanger element 60, the ribs running along helical lines.
- one (70) of the trailing edges 70, 71 is rounded off with a large radius.
- the consequence of this is that the Coanda effect causes a thin layer of the medium flowing between the ribs to pass through the gap between two successive ribs into the adjacent flow path. This phenomenon can further improve the heat transfer.
- the ribs which are inclined in FIG. 14 can also run in the axial direction, in which case the interruptions between the ribs can follow a helical line.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Geometry (AREA)
- Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
Description
- Die Erfindung betrifft ein Wärmeübertragersystem mit mindestens zwei Wärmeübertragerelementen, von denen jedes mindestens ein in einer Ebene oder einer Zylinderfläche gebogenes Rohr für ein erstes an der Wärmeübertragung beteiligtes Medium aufweist, wobei benachbarte Abschnitte des Rohres oder der Rohre jeweils eines Wärmeübertragerelementes zu einer dichten, an der wärmeübertragung beteiligten Wand verbunden sind.
- Bei einem bekannten Wärmeübertragersystem dieser Art (DE-A-2237430). das insbesondere als Dampferzeuger in Kernkraftwerken dienen soll, sind die benachbarten Rohrabschnitte zum Bilden der dichte'n' Wand direkt oder über Stege miteinander verschweisst, um Rohrschwingungen zu vermeiden und die Aufhängung der Wärmeübertragerelemente zu erleichtern. Diese Vorteile kommen insbesondere bei hoher Temperatur voll zur Geltung.
- Soll ein solches Wärmeübertragersystem bei mässigen Temperaturen im Bereich von 0-200 °C betrieben werden, so ist es verhältnismässig kostspielig, insbesondere wenn das die Wand bestreichende, zweite Medium einen relativ schlechten Wärmeübergang und eventuelle korrosive Eigenschaften aufweist.
- Der Erfindung liegt die Aufgabe zugrunde, ausgehend von dem Wärmeübertragersystem nach der DE-A-22 37 430, ein bei mässigen Temperaturen im Bereich von 0 bis 200 °C zu betreibendes Wärmeübertragersystem zu schaffen, das eine kompakte Bauweise ermöglicht, das auf der Seite des zweiten Mediums eine sehr grosse Wärmeübertragungsfläche aufweist und damit einen grossen Wärmeübergang sicherstellt und das kostengünstig herstellbar ist.
- Diese Aufgabe wird erfindungsgemäss dadurch gelöst, dass die Wand durch einen die Abschnitte des Rohres oder der Rohre dicht umhüllenden, metallischen Gusskörper gebildet ist, der wärmeleitende Vorsprünge, deren Oberfläche ein Mehrfaches der auf sie entfallenden Rohrinnenfläche beträgt, vorzugsweise etwa parallel zueinander verlaufende Rippen, aufweist, und dass mindestens zwei Wärmeübertragerelemente derart zueinander angeordnet sind, dass mindestens ein geschlossener Kanal, in welchen die Vorsprünge hineinragen, für ein zweites an der Wärmeübertragung beteiligtes Medium gebildet wird. Durch diese Gestaltung ergibt sich ein kleineres, gedrungeneres Wärmeübertragersystem, das noch den zusätzlichen Vorteil hat, dass im Falle von korrosiven Eigenschaften des zweiten Mediums das Rohrmaterial durch den Gusskörper vor Korrosionsangriffen geschützt ist. Ausserdem wird hierdurch erreicht, dass die beiden Medien immer voneinander getrennt bleiben.
- Aus der GB-A-987739 ist es bekannt, zwei parallele Stahlrohre durch einen Gusskörper miteinander zu verbinden, wobei die Giessform derart ausgebildet ist, dass beim Giessen quer zu den Rohren sich erstreckende Gussrippen entstehen. Die so gebildeten Wärmeübertragerelemente werden z.B. als Economiser in Dampferzeugern verwendet, wobei die Stahlrohre durch den Gusskörper gegen Korrosion geschützt werden sollen. Der Gusskörper hat hier offenbar keinerlei tragende Funktion.
- In der FR-A-1 031 374 wird ein für einen Heissgaskolbenmotor bestimmter Wärmeübertrager beschrieben, in dem mehrere flüssigkeitsdurchströmte, je zu einer Schleife gebogene Rohre in einem Kreisring verteilt angeordnet sind, wobei jede Rohrschleife in einer radialen Ebene des Ringes liegt. Dabei sind alle Rohre in einem einheitlichen Gusskörper eingeschlossen, der parallel zu den Rohrschleifen verlaufende, schlitzförmige, auf der Innenseite des Kreisringes offene Kanäle ohne Vorsprünge aufweist. Die Kanäle sind durch eine besondere, am Innenumfang des Kreisringes anliegende Hülse geschlossen. Dieser bekannte Wärmeübertrager beansprucht viel Raum und ist teuer in seiner Herstellung.
- Da hier keine aus einem Rohr und einem dieses umhüllenden Gusskörper bestehende Wärmeübertragerelemente vorhanden sind, die zu einem Wärmeübertragersystem zusammengebracht werden müssten, konnte der bekannte Wärmeübertrager kein Vorbild für die Erfindung sein, denn seine Konzeption steht in engem Zusammenhang mit den Erfordernissen eines Heissgaskolbenmotors.
- Soll das Wärmeübertragersystem die Form eines Quaders aufweisen, so wird dies am besten dadurch erreicht, dass das Rohr oder die Rohre jedes Wärmeübertragerelementes in einer einzigen Ebene schlangen- oder mäanderartig verläuft. Haben die Zu- und Abführleitungen kreis-oder kreisringförmige Anschlussquerschnitte, so wird man die Wärmeübertragerelemente zweckmässig derart ausbilden, dass das Rohr oder die Rohre nach Schraubenlinien auf einem einzigen, fiktiven Rohrzylinder verlaufen. Eine solche Ausbildung hat auch besondere Vorteile, wenn das zweite Medium einen vom Atmosphärendruck stark unterschiedlichen Druck aufweist, weil dann wegen der Rohrwendel mit ihrem Gusskörper jedes Wärmeübertragerelement eine tragende Wand bildet. Wird zur Verbesserung des Wärmeübergangs auf der Seite des zweiten Mediums eine hohe Strömungsgeschwindigkeit vorgesehen, so kann es im Falle einer Kreiszylindrischen Ausbildung der Wärmeübertragerelemente vorteilhaft sein, die Vorsprünge als radial ausspringende Rippen auszubilden, die im wesentlichen in Achsrichtung des Rohrzylinders verlaufen. Auf diese Weise kann der Gesamtdruckabfall verhältnismässig klein gehalten werden.
- Ist dagegen der Mengenstrom des zweiten Mediums relativ klein, und kann man, z.B. aus Verschmutzungsgründen, die Strömungsquerschnitte für das zweite Medium nicht beliebig verkleinern, so werden vorteilhaft die Vorsprünge als radial ausspringende, im wesentlichen nach Schraubenlinien verlaufende Rippen ausgebildet.
- Um die Temperaturdifferenz am Gussmaterial des Wärmeübertragers möglichst klein und gleichmässig zu halten, lassen sich bei nach Schraubenlinien gewundenen Rohren die Vorsprünge vorzugsweise als Windungen ausbilden, die in umgekehrtem Sinn zu den Windungen der Rohre ansteigen. Eine erhebliche Verbesserung des Wärmeübergangs auf der Seite des zweiten Mediums kann dadurch erzielt werden, dass die Vorsprünge einen baumartig verästelten Querschnitt aufweisen, wobei jeweils die Durchtrittsfläche für den Wärmestrom mit wachsender Entfernung von der Basis des Vorsprunges abnimmt.
- Die Wärmeübertrager lassen sich nach einem erfindungsgemässen Verfahren besonders einfach dadurch herstellen, dass das Rohr jedes Wärmeübertragerelementes gebogen und in eine Giessform eingelegt wird, dass die Form mit einem Metall ausgegossen wird und die Vorsprünge spanabhebend aus dem Gusskörper herausgearbeitet werden, und dass mindestens zwei Wärmeübertragerelemente zu einem Wärmeübertragersystem verbunden werden.
- Zur Verringerung der Zerspanungsarbeit kann es nach einem anderen Verfahren zweckmässig sein, dass das Rohr jedes Wärmeübertragerelementes gebogen und in eine Giessform eingelegt wird, dass die Form mit einem Metall ausgegossen und der Gusskörper derart spanabhebend bearbeitet wird, dass Vertiefungen zur Verankerung von die Vorsprünge bildenden rippenartigen Teilen entstehen, die in diese Vertiefungen eingestemmt, eingelötet oder eingeschweisst werden, und dass mindestens zwei Wärmeübertragerelemente zu einem Wärmeübertragersystem verbunden werden.
- Bei der Massenproduktion von Wärmeübertragern lassen sich nach einem weiteren Verfahren dadurch Einsparungen erzielen, dass das Rohr jedes Wärmeübertragerelementes gebogen und zusammen mit die Vorsprünge bildenden, rippenartigen Teilen in die Giessform eingelegt wird, die so mit Metall ausgegossen wird, dass die rippenartigen Teile ausschliesslich mit ihrem Fuss in den Gusskörper eingeschlossen werden, und dass mindestens zwei Wärmeübertragerelemente zu einem Wärmeübertragersystem verbunden werden.
- Die Erfindung wird nun an einigen in der Zeichnung schematisch dargestellten Ausführungsbeispielen näher erläutert.
- Figur 1 zeigt einen Längsschnitt durch ein kastenförmiges Wärmeübertragersystem mit mehreren, ebenen Wärmeübertragerelementen.
- Figur 2 stellt einen Querschnitt 11-11 durch das Wärmeübertragersystem nach Fig. 1 dar.
- Figur3 ist ein Querschnitt durch ein Wärmeübertragersystem mit zwei konzentrisch angeordneten, kreiszylindrischen Wärmeübertragerelementen.
- Figur4 zeigt, in vergrössertem Massstab, einen Längsschnitt IV-IV des Wärmeübertragersystems nach Fig.3.
- Figur 5 ist, analog zu Fig. 3, ein Querschnitt durch ein abgewandeltes Wärmeübertragersystem mit zwei konzentrisch angeordneten Wärmeübertragerelementen.
- Figur 6 stellt einen Längsschnitt einer Variante zu Fig. 5 dar.
- Figur 7 zeigt einen Längsschnitt durch ein Wärmeübertragersystem mit mehreren Wärmeübertragerelementen, in denen jeweils ein Rohr nach einer Spirale angeordnet ist.
- Figur 8 ist ein in den Ebenen VIII1, VII2 und Vii13 der Fig.7 verlaufender Horizontalschnitt durch ein Wärmeübertragerelement.
- Figur 9 veranschaulicht den Querschnitt durch zwei Rippen mit Aesten.
- Figur 10 zeigt einen Querschnitt einer anderen Ausführungsform von verästelten Rippen sowie deren gegenseitige Anordnung.
- Figuren 11 und 12 stellen je einen Querschnitt durch weitere verästelte Rippen dar.
- Figur 13 zeigt einen Querschnitt durch einen Teil eines kreiszylindrischen Wärmeübertragerelementes mit einfachen Rippen, die nach Schraubenlinien verlaufen.
- Figur 14 zeigt die Abwicklung eines Zylinders mit schraubenförmig verlaufenden, unterbrochenen Rippen.
- Im Ausführungsbeispiel nach den Fig. 1 und 2 sind mehrere ebene Wärmeübertragerelemente 1, von denen in Fig. 2 nur zwei gezeichnet sind, zu einem kastenförmigen Wärmeübertragersystem 2 zusammengefügt. Jedes der Wärmeübertragerelemente besteht aus einem Rohr 3, das in einer vertikalen Ebene hin und her gebogen ist. Die benachbarten Abschnitte jedes Rohres 3 sind je mit einem Aluminiumkörper 4 umgossen, dessen beide zur Biegeebene parallele Seitenflächen eingegossene Vorsprünge 5 in Rippenform aufweisen. Die äussersten Rippen 5' jedes Elementes 1 sind etwas länger als die übrigen Rippen und jeweils durch eine Schweissnaht 6 mit einer anstossenden Rippe 5' eines benachbarten Wärmeübertragerelementes verbunden, wodurch die erwähnte Kastenform und zwischen diesen Elementen geschlossene Kanäle entstehen. Bei den an den beiden Enden des Wärmeübertragersystems 2 befindlichen Wärmeübertragerelementen ist jeweils auf der freien Seite eine Endplatte 8 angeschweisst, die sich über die ganze äussere berippte Fläche des jeweiligen Wärmeübertragerelementes erstreckt. Am oberen Ende jeder Endplatte 8 ist eine Trichterwand 9 und an den beiden Querkanten der Wärmeübertragerelemente, die durch die oberen Enden der Rippen 5' gebildet werden, sind zwei Trichterflächen 10 und 11 angeschweisst. An den so gebildeten Trichter ist-was aus der Zeichnung nicht ersichtlich ist-eine Abfuhrleitung für das zweite Medium angeschlossen. Ein gleicher Trichter mit einer Zufuhrleitung für das zweite Medium befindet sich am unteren Ende des Wärmeübertragersystems 2.
- Die Rohre 3 treten oben und unten seitlich aus dem Wärmeübertragersystem 2 aus und enden an Flanschen 13. Die Flansche 13 sind mit Flanschen von Rohrstutzen 14 verbunden, von denen die oberen in einen Verteiler 15 und die unteren, auf der Zeichnung nicht ersichtlich, in einen Sammler münden. Der Verteiler 15 und der Sammler sind, wegen der Wärmedehnungsunterschiede zwischen ihnen einerseits und dem Aluminiumgusskörper 4 andererseits, durch Faltenbälge 17 unterteilt.
- Im Betrieb werden die Kanäle zwischen den beiden Endplatten 8 und den ihnen benachbarten Wärmeübertragerelementen 1 sowie die Kanäle zwischen einander benachbarten Wärmeübertragerelementen 1 von unten nach oben von dem zweiten, wärmeabgebenden, gasförmigen Medium durchströmt. Durch die Rohre 3 fliesst Wasser als erstes Medium von oben nach unten, das aus dem Verteiler 15 kommt und in den nicht gezeichneten Sammler gelangt. Durch die grosse, von den Rippen 5 gebildete Wärmeübertragungsfläche wird die relativ schlechte Wärmeübergangszahl des Gases kompensiert, sodass die Temperaturdifferenz zwischen dem wärmeabgebenden Gas und der wärmeaufnehmenden Oberfläche der Rippen 5 verhältnismässig klein bleibt. Die Rippen 5 sind keilförmig ausgebildet, sodass der im Bereich des Rippendusses erhöhte Wärmestrom mit verhältnismässig geringem Temperaturabfall zum Rohr 3 strömen kann. Da das Im Rohr 3 fiiessende Wasser einen guten Wärmeübergang gewährleistet, treten auch wasserseitig keine hohen Temperaturdifferenzen auf.
- Im Ausführungsbeispiel nach den Fig. 3 und 4 sind Rohre 3a und 3b nach Schraubenlinien gewunden. Jede so gebildete Rohrwendel ist durch einen Aluminiumkörper 4a bzw. 4b umgossen und bildet ein kreiszylindrisches Wärmeübertragerelement 1a bzw. 1b. Das Wärmeübertragerelement 1a weist auf seiner Innenseite radiale Längsrippen 5 auf, während seine Aussenseite glatt ist. Ausser den normalen Rippen 5 weist das Wärmeübertragerelement 1b eine stark verbreiterte Rippe 23 auf, in der ein mit dem oberen Ende der Rohrwendel verbundenes Rohrstück 24 achsparallei nach unten verläuft. Unterhalb des Wärmeübertragersystems führt das Rohrstück 24, eine nicht gezeichnete Trichterwand durchstossend, nach aussen.
- Im Betrieb wird der von den Oberflächen der Rippen 5 begrenzte, stark zerklüftete Ringkanal zwischen den beiden Wärmeübertragerelementen 1a und 1b in axialer Richtung von einem Gas durchströmt, während die beiden Rohre 3a und 3b, die vorzugsweise parallel geschaltet sind, von einer Flüssigkeit durchströmt werden. Im Ausführungsbeispiel nach Fig. 5 sind auch auf der Innenseite des Wärmeübertragerelementes 1b Rippen 5 angeordnet. Der Strömungskanal für das Gas wird innen durch einen kreiszyiindrischen Verdränger 25 begrenzt. Ebenso könnte auch das Wärmeübertragerelement 1a auf der Aussenseite mit Rippen versehen und von einem kreiszylindrischen Mantel umgeben sein. Das Ausführungsbeispiel nach Fig. 6 unterscheidet sich von demjenigen nach Fig. 5 dadurch, dass das innere Wärmeübertragerelement 1b zwei Rohrwendeln 3c und 3d aufweist, die beide an ihrem oberen Ende in ein gemeinsames Sammeirohr26 münden, das von einem Aiuminiumgusskörper27 umgeben ist, durch die Wand eines Trichters 28 führt und schliesslich im Freien mit einem Flansch 29 endet. Das obere Ende der Rohrwendel 3a verlässt das Wärmeübertragerelement 1a ausserhalb des Trichters 28 und ist mit einem Flansch 29' versehen.
- Im Ausführungsbeispiel nach den Fig. 7 und 8 sind fünf Wärmeübertragerelemente als kreisringförmige gegossene Scheiben 4f bis 4k ausgebildet und koaxial übereinander angeordnet, innerhalb denen nach Spiralen gebogene Rohre 3f...3k verlaufen. Die Rippen 5 stehen jeweils senkrecht zur Ebene der Rohre und sind nach Evolventen gebogen.
- Die Wärmeübertragerelemente sind aussen von einem zylindrischen Mante130 umgeben, der durch ebene Ringbleche 31, 32 und 33 mit den Gusskörpern 4f, 4h bzw. 4k dicht verbunden ist.
- Auf der Innenseite der Wärmeübertragerelemente sind zwei Absperrscheiben 35 und 36 in der Bohrung der Gusskörper 4g bzw. 4i angeordnet.
- Am zweitobersten Gusskörper 4g (Fig. 8) führen die evolventenförmigen Rippen 5, wenn man sie in Gegenzeigerrichtung verfolgt, an der Oberseite des Elementes (Schnitt VIII1) von aussen nach innen und auf der Unterseite von innen nach aussen (Schnitt VIII3). Der oberste Gusskörper 4f hat nur auf seiner Unterseite Rippen, die wie diejenigen auf der Oberseite der Nachbarscheibe 4g verlaufen. Der Gusskörper 4i ist gleich ausgebildet wie 4g, während der dazwischenliegende Gusskörper 4h umgekehrt verlaufende Rippen aufweist: auf der Oberseite führen sie - immer auf den Gegenzeigersinn bezogen - von innen nach aussen und auf der Unterseite von aussen nach innen. Der unterste Gusskörper 4k trägt nur auf seiner Oberseite Rippen, die von innen nach aussen verlaufen.
- Durch diese Rippenanordnung wird erreicht, dass das gasförmige Medium, das von unten durch den Eintritt 50 des Wärmeübertragersystems zentral in den Stapel der Wärmeübertragerelemente eintritt, in dem Kanal zwischen den einander zugewendeten Rippen 5 der Gusskörper4i und 4k im Gegenzeigersinn nach aussen strömt, durch den unteren Ringraum 42 zwischen dem Gusskörper 4i und dem Mantel 30, weiter im Gegenzeigersinn rotierend, aufsteigt und im Gegenzeigersinn durch den Kanal zwischen den Gusskörpern 4h und 4i nach innen strömt. Gleichsinnig weiterrotierend strömt es im Kanal zwischen den Gusskörpern 4g und 4h nach aussen in den oberen Ringraum 42' und gelangt schliesslich, über den Kanal zwischen den Gusskörpern 4f und 4g, nach innen strömend, zur Austrittsöffnung 51 des Wärmeübertragersystems.
- Jedes der Rohre 3g bis 3i erstreckt sich von aussen her zunächst radial bis zum zugehörigen Gusskörper, wobei der innerhalb des Mantels 30 befindliche radiale Abschnitt 38 mit Aluminium umgossen ist. Im scheibenförmigen Gusskörper verläuf jedes Rohr 3g bis 3i als Spirale 40, vorzugsweise als Evolvente mit geringer radialer Tei lung gewickelt, bis gegen den Innenrand des Gusskörpers. Dort tritt jedes der Rohre 3g bis 3i jeweils in die Etage der Rippen 5 auf der Unterseite des betreffenden Wärmeübertragerelementes über, wo es als Evolventenrohr 41 in einer verdickten Rippe 23' eingegossen ist, die - wie die Nachbarrippen - evolventenförmig verläuft. Am äusseren Rand des Gusskörpers geht jedes Evolventenrohr 41 in einen radialen Rohrabschnitt 43 über, der den Mantel 30 durchdringt und innerhalb des Mantels mit Aluminium umgossen ist. Die Rohre 3f und 3k haben ebenfalls je einen radialen, jedoch ausserhalb der Ringräume 42 und 42' befindlichen Rohrabschnitt 39. Am inneren Rand der beiden Gusskörper 4f und 4k sind die Spiralrohre 3f bzw. 3k nach oben bzw. unten aus dem Gusskörper herausgeführt und setzen sich als Rohr 44 bzw. 45 fort. Um die Strömungsverluste wasserseitig klein zu halten, sind die Richtungsänderungen des Rohres dadurch möglichst gering gewählt, dass das Wasser innerhalb eines Wärmeübertragerelementes im Spiralrohr40 wie auch im Evolventenrohr41 im gleichen Sinne kreist. Da die Richtung der Evolventenrohre 41 wegen der abwechselnden Richtung der aufeinanderfolgenden unteren Rippen abwechselt, wechseln auch die Drehrichtungen der Spiralrohre 40 aufeinanderfolgender Wärmeübertragerelemente. So ist das Spiralrohr 40 in den Gusskörpern 4g und 4i von aussen nach innen im Gegenzeigersinn gewunden, während dasjenige der Gusskörper 4h und 4k im Uhrzeigersinn von aussen nach innen läuft.
- Durch die Anordnung der Evolventenrohre 41 sowie des Rohres 45 auf der Unterseite der Gusskörper 4g bis 4i bzw. 4k wird erreicht, dass die Spiralabschnitte 40 der Rohre 3g bis 3k besser entwässerbar sind und dass die Gasquerschnitte gleichmässig verlaufen. Am obersten Gusskörper 4f ist auf diese beiden Vorteile verzichtet worden, da das Evolventenrohr 44 nach oben weggeführt ist. Hierdurch wird andererseits das Gewicht für den Aluminiumgusskörper 4f etwas herabgesetzt.
- Die Rohre 3f...3k werden zweckmässig in Serie geschaltet, und zwar nach dem Gegenstromprinzip, das sich allerdings hier nicht konsequent verwirklichen lässt. Nach einer zweckmässigen Schaltungsform ist deshalb der Rohrabschnitt 39 des Gusskörpers 4f mit dem Evolventenrohr 41 des Gusskörpers 4g verbunden, wobei das Evolventenrohr 44 den Wassereintritt bildet. Der Rohrabschnitt 38 des Gusskörpers 4g ist mit dem Abschnitt 38 des Gusskörpers 4h, dessen Evolventenrohr mit dem Abschnitt des Gusskörpers 4i und schliesslich das Evolventenrohr des Gusskörpers 4i mit dem Abschnitt 39 des untersten Gusskörpers 4k verbunden. Praktische Ueberlegungen wie auch thermodynamische Rechnungen können auch zu einer anderen Schaltung führen.
- Während in den bisher beschriebenen Ausführungsbeispielen stets einfache Rippen vorgesehen sind, kann es auch zweckmässig sein, die Rippen zu verästeln, wie dies in Fig. 9 bis 12 dargestellt ist. Gemäss Fig. 9 sind in den Gusskörper 55, der das Rohr 3 dicht umhüllt, flache Nuten 56 eingedreht, in die je eine Rippe 57 eingelötet ist. Die Rippen 57 weisen eine stammförmige Mittelrippe 58 auf, von denen beidseitig je vier Astrippen 59 abzweigen.
- Bei einer verbesserten Form verzweigter Rippen gemäss Fig. 10 verdickt sich die Stammrippe 38 entsprechend dem zunehmenden Wärmestrom gegen den Rippenfuss 54 hin, und die Astrippen 59 sind schräggestellt, sodass der Wärmestrom auf kürzerem Weg den Rippenfuss 54 erreicht. Die Astrippen 59 sind überdies so angeordnet, dass die Zwischenräume für das die Rippen umströmende Medium einen möglichst wenig sich ändernden, hydraulischen Radius aufweisen.
- Rippen nach Fig. 10 lassen sich leicht giessen, während das Strangpressen wegen der ungleichmässigen Querschnittverteilung Schwierigkeiten bietet. Diesbezüglich sind die Querschnittformen nach den Fig. 11 und 12 günstiger, die durch Verlöten einfacher Winkelprofile 60 zusammengesetzt sind. Diese können durch Abkanten von Blechen oder durch Strangpressen gebildet werden. Die Profile 60 werden vorzugsweise mit einem ersten, hochschmelzenden Lot zu einer verästelten Rippe zusammengefügt, die hernach mit einem zweiten weniger hochschmelzenden Lot in die Nuten 56 des Gusskörpers 55 eingelötet wird.
- Im Ausführungsbeispiel nach der Fig. 13 erstrecken sich von einem kreiszylindrischen Wärmeübertragerelement 60 mehrere Rippen 61 radial nach innen, wobei die Rippen nach Schraubenlinien verlaufen. Durch diese Anordnung wird der Strömungsweg für das zweite Medium länger und gleichzeitig der Strömungsquerschnitt geringer, was mithelfen kann, den Wärmeübergang zu optimieren.
- Bei den unterteilten Rippen gemäss Fig. 14 ist jeweils die eine (70) der Austrittskanten 70, 71 mit grossem Radius abgerundet. Dies hat zur Folge, dass durch den Coanda-Effekt jeweils eine dünne Schicht des zwischen den Rippen strömenden Mediums durch die Lücke zwischen zwei aufeinanderfolgenden Rippen in den benachbarten Strömungspfad hinüberwechselt. Durch dieses Phänomen kann der Wärmeübergang zusätzlich verbessert werden. Die in Fig. 14 geneigt verlaufenden Rippen können auch in axialer Richtung verlaufen, wobei dann die Unterbrüche zwischen den Rippen einer Schraubenlinie folgen können.
- Selbstverständlich lässt sich das in Fig. 14 dargestellte Prinzip auch an den ebenen Wärmeübertragerelementen nach Fig. anwenden.
Claims (11)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CH280078A CH625611A5 (de) | 1978-03-15 | 1978-03-15 | |
CH2800/78 | 1978-03-15 |
Publications (2)
Publication Number | Publication Date |
---|---|
EP0015915A1 EP0015915A1 (de) | 1980-10-01 |
EP0015915B1 true EP0015915B1 (de) | 1982-09-22 |
Family
ID=4241865
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP79900267A Expired EP0015915B1 (de) | 1978-03-15 | 1979-10-12 | Wärmeübertragersystem und verfahren zu seiner herstellung |
Country Status (7)
Country | Link |
---|---|
EP (1) | EP0015915B1 (de) |
JP (1) | JPS55500151A (de) |
AU (1) | AU526929B2 (de) |
CH (1) | CH625611A5 (de) |
DE (1) | DE2963708D1 (de) |
WO (1) | WO1979000766A1 (de) |
ZA (1) | ZA791190B (de) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE29604521U1 (de) * | 1996-03-11 | 1996-06-20 | SGL Technik GmbH, 86405 Meitingen | Aus Platten aufgebauter Wärmeaustauscherkörper |
EP3855104A4 (de) * | 2018-09-21 | 2021-11-10 | Sumitomo Precision Products Co., Ltd. | Wärmetauscher |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0149466B1 (de) * | 1984-01-10 | 1988-06-01 | Klöckner-Humboldt-Deutz Aktiengesellschaft | Wärmetauscher für zwei Medien, insbesondere ein Ladeluftkühler für eine Brennkraftmaschine |
WO1993017290A1 (en) * | 1992-02-28 | 1993-09-02 | Melanesia International Trust Company Limited | Heat exchanger assembly |
DE4302479A1 (de) * | 1993-01-29 | 1994-08-04 | Hans Dr Viesmann | Heizkessel für die Verbrennung flüssiger oder gasförmiger Brennstoffe |
EP0693171B1 (de) * | 1993-03-29 | 1999-10-27 | Melanesia International Trust Company Limited | Wärmetauscheranordnung |
AUPP502698A0 (en) * | 1998-08-04 | 1998-08-27 | Andale Repetition Engineering Pty. Limited | Beverage chiller |
EP2202475B1 (de) * | 2008-12-23 | 2012-05-02 | Ching-Sung Kuo | Flügelumspannende Wärmeableitungsvorrichtung |
CN103753161B (zh) * | 2013-12-30 | 2016-05-18 | 上海华谊集团装备工程有限公司 | 一种用于大型设备上的冷却加热盘管的加工工艺 |
JP6685290B2 (ja) * | 2014-10-07 | 2020-04-22 | ユニゾン・インダストリーズ,エルエルシー | らせん式クロスフロー熱交換器 |
US20170089643A1 (en) * | 2015-09-25 | 2017-03-30 | Westinghouse Electric Company, Llc. | Heat Exchanger |
Family Cites Families (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR741113A (de) * | 1933-02-04 | |||
FR550944A (fr) * | 1922-05-03 | 1923-03-23 | Leblanc Vickers Maurice Sa | échangeur de chaleur |
US1571068A (en) * | 1922-08-07 | 1926-01-26 | Stancliffe Engineering Corp | Heat interchanger |
GB426114A (en) * | 1934-08-11 | 1935-03-27 | Charles Adolphe Hubert | A process for converting gilled tubes into heat exchanger elements having continuous ducts of uniform cross-sectional area for a heat exchanging medium |
US2707096A (en) * | 1950-01-26 | 1955-04-26 | Hartford Nat Bank & Trust Co | Heat exchanger |
CH287676A (fr) * | 1950-12-07 | 1952-12-15 | Somo Societe Pour Les Metaux O | Echangeur thermique. |
FR1032286A (fr) * | 1951-02-09 | 1953-06-30 | Brandt Soc Nouv Ets | élément échangeur thermique pour réfrigérateurs et radiateurs |
GB864946A (en) * | 1958-01-30 | 1961-04-12 | Green & Son Ltd | Improvements in or relating to gilled tubes |
FR1230106A (fr) * | 1959-03-03 | 1960-09-13 | Griscom Russell Co | Fabrication de tubes munis d'ailettes |
FR1354623A (fr) * | 1962-04-23 | 1964-03-06 | Nihon Genshiryoku Kenkyujo | Perfectionnements aux tubes échangeurs de chaleur à ailettes |
FR1405807A (fr) * | 1963-03-21 | 1965-07-16 | Commissariat Energie Atomique | Procédé d'usinage d'éléments tubulaires à ailettes pour échangeurs de chaleur |
GB987739A (en) * | 1963-05-01 | 1965-03-31 | Senior Economisers Ltd | Improvements in and relating to heat exchanger elements |
DE1926187A1 (de) * | 1969-05-22 | 1970-11-26 | Schoell Dr Ing Guenter | Waermeaustauschelement aus Werkstoffen mit geringer Waermeleitfaehigkeit und Festigkeit |
GB1424532A (en) * | 1972-03-20 | 1976-02-11 | Brown Sons Ltd James | Components using cast-in cooling tubes |
DE2256439A1 (de) * | 1972-11-17 | 1974-05-22 | Fritz Fischer | Rippenheizkoerper aus aluminiumguss |
JPS607183B2 (ja) * | 1977-08-12 | 1985-02-22 | 株式会社日立製作所 | 熱交換器 |
JPS5496438A (en) * | 1978-01-17 | 1979-07-30 | Asahi Glass Co Ltd | Ultrasonic one-side hot dipping equipment |
-
1978
- 1978-03-15 CH CH280078A patent/CH625611A5/de not_active IP Right Cessation
-
1979
- 1979-03-14 WO PCT/CH1979/000040 patent/WO1979000766A1/de unknown
- 1979-03-14 JP JP50050079A patent/JPS55500151A/ja active Pending
- 1979-03-14 AU AU45112/79A patent/AU526929B2/en not_active Ceased
- 1979-03-14 ZA ZA791190A patent/ZA791190B/xx unknown
- 1979-03-14 DE DE7979900267T patent/DE2963708D1/de not_active Expired
- 1979-10-12 EP EP79900267A patent/EP0015915B1/de not_active Expired
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE29604521U1 (de) * | 1996-03-11 | 1996-06-20 | SGL Technik GmbH, 86405 Meitingen | Aus Platten aufgebauter Wärmeaustauscherkörper |
EP3855104A4 (de) * | 2018-09-21 | 2021-11-10 | Sumitomo Precision Products Co., Ltd. | Wärmetauscher |
US11802742B2 (en) | 2018-09-21 | 2023-10-31 | Sumitomo Precision Products Co., Ltd. | Heat exchanger |
Also Published As
Publication number | Publication date |
---|---|
DE2963708D1 (en) | 1982-11-04 |
WO1979000766A1 (en) | 1979-10-04 |
ZA791190B (en) | 1980-03-26 |
EP0015915A1 (de) | 1980-10-01 |
JPS55500151A (de) | 1980-03-21 |
CH625611A5 (de) | 1981-09-30 |
AU526929B2 (en) | 1983-02-10 |
AU4511279A (en) | 1979-09-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE2442420C3 (de) | Desublimator für die Gewinnung von Sublimationsprodukten, insbesondere von Phthalsäureanhydrid, aus Reaktionsgasen | |
EP0839308B1 (de) | Plattenwärmetauscher | |
EP0015915B1 (de) | Wärmeübertragersystem und verfahren zu seiner herstellung | |
EP0201665A1 (de) | Wärmeübertrager mit mehreren parallelen Rohren und auf diesen angebrachten Rippen | |
DE2126248A1 (de) | Anlage und Verfahren für den Wärme austausch von Flüssigkeiten | |
DE2721321A1 (de) | Waermeuebertrager mit einer wandartigen trennung fuer die beiden an der waermeuebertragung beteiligten medien | |
DE69600073T2 (de) | Spiral-Wärmetauscher | |
WO2010018187A2 (de) | Gliederheizkessel aus gusseisen oder aluminium | |
DE3318722A1 (de) | Waermetauscher | |
DE112011102352T5 (de) | Ringförmiger gerippter Axialströmungs-Wärmetauscher | |
DE2219479C3 (de) | Regeneratlv-Wärmetauscher | |
DE3153101C2 (de) | Kraftstoffkühler | |
DE3100021C2 (de) | Kraftstoffkühler für eine Brennkraftmaschine | |
DE2200826B2 (de) | Zylinderförmiger Wärmetauscher mit glatten Trennblechen, die Durchflußräume abtrennen | |
AT204056B (de) | Rohr mit Längsrippen für Röhrenwärmeaustauscher | |
CH209014A (de) | Wärmeaustauscher. | |
DE975537C (de) | Waermeaustauscher | |
DE1152715B (de) | Waermeaustauscher mit jeweils einen Stroemungskanal begrenzenden, radial durch Stirnleisten im Abstand gehaltenen Blechen | |
DE3249924C2 (en) | Heating element with cylindrical wall | |
CH637204A5 (en) | Heat exchanger for high temperatures and having a multiplicity of straight tube bundles | |
DE1907758C (de) | Wasserrohrkessel | |
DE19616034C2 (de) | Wärmetauscher zur Wetterkühlung in Arbeitsbereichen des Berg- und Tunnelbaus | |
AT80959B (de) | Gassparofen. Gassparofen. | |
AT148381B (de) | Aus batterieartig zusammengesetzten Rohrelementen bestehender Wärmeaustauscher. | |
DE3740811A1 (de) | Kraftstoffkuehler fuer eine brennkraftmaschine |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed | ||
AK | Designated contracting states |
Designated state(s): DE FR |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Designated state(s): DE FR |
|
REF | Corresponds to: |
Ref document number: 2963708 Country of ref document: DE Date of ref document: 19821104 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 19830304 Year of fee payment: 5 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 19841130 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 19910402 Year of fee payment: 13 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Effective date: 19921201 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |