EP0008763B1 - Aminomethyl-cyclododecane, ein Verfahren zu ihrer Herstellung und ihre Verwendung als Korrosionsschutzmittel - Google Patents

Aminomethyl-cyclododecane, ein Verfahren zu ihrer Herstellung und ihre Verwendung als Korrosionsschutzmittel Download PDF

Info

Publication number
EP0008763B1
EP0008763B1 EP79103157A EP79103157A EP0008763B1 EP 0008763 B1 EP0008763 B1 EP 0008763B1 EP 79103157 A EP79103157 A EP 79103157A EP 79103157 A EP79103157 A EP 79103157A EP 0008763 B1 EP0008763 B1 EP 0008763B1
Authority
EP
European Patent Office
Prior art keywords
aminomethyl
cyclododecanes
catalyst
hydrogen
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP79103157A
Other languages
English (en)
French (fr)
Other versions
EP0008763A1 (de
Inventor
Rudolf Dr. Braden
Kuno Dr. Wagner
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bayer AG
Original Assignee
Bayer AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bayer AG filed Critical Bayer AG
Publication of EP0008763A1 publication Critical patent/EP0008763A1/de
Application granted granted Critical
Publication of EP0008763B1 publication Critical patent/EP0008763B1/de
Expired legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M133/00Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing nitrogen
    • C10M133/02Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing nitrogen having a carbon chain of less than 30 atoms
    • C10M133/04Amines, e.g. polyalkylene polyamines; Quaternary amines
    • C10M133/06Amines, e.g. polyalkylene polyamines; Quaternary amines having amino groups bound to acyclic or cycloaliphatic carbon atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C45/00Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
    • C07C45/49Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by reaction with carbon monoxide
    • C07C45/50Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by reaction with carbon monoxide by oxo-reactions
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/10Prepolymer processes involving reaction of isocyanates or isothiocyanates with compounds having active hydrogen in a first reaction step
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/50Amines
    • C08G59/5026Amines cycloaliphatic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/0014Use of organic additives
    • C08J9/0028Use of organic additives containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/22Organic compounds containing nitrogen
    • C10L1/222Organic compounds containing nitrogen containing at least one carbon-to-nitrogen single bond
    • C10L1/2222(cyclo)aliphatic amines; polyamines (no macromolecular substituent 30C); quaternair ammonium compounds; carbamates
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/02Amines, e.g. polyalkylene polyamines; Quaternary amines
    • C10M2215/04Amines, e.g. polyalkylene polyamines; Quaternary amines having amino groups bound to acyclic or cycloaliphatic carbon atoms
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/26Amines

Definitions

  • the present invention relates to aminomethylcyclododecanes selected from the group consisting of aminomethyl cyclododecanes, bis (aminomethyl) cyclododecanes, tris (aminomethyl) cyclododecanes and mixtures thereof.
  • the present invention also relates to a process for the preparation of these new compounds, which is characterized in that cyclododecatriene-1,5,9 in the presence of a rhodium-containing catalyst with carbon monoxide and hydrogen at temperatures from 80 to 180 ° C. and pressure of 30 to 900 bar, the catalyst is separated from the hydroformulation product and the hydroformulation products, if appropriate after their separation by distillation into the individual components, are treated with hydrogen in the presence of ammonia and a hydrogenation catalyst at 50 to 150.degree.
  • the present invention also relates to the use of the new compounds as anti-corrosion agents in heating oils, lubricants or propellants based on hydrocarbons.
  • Hydroxymethylcyclododecanes are always obtained as the main product. Even under conditions in which cyclooctadiene-1,5 formylcyclooctane is obtained in 56.7% yield, cyclododecatriene-1,5,9 is almost exclusively hydroxymethylcyclododecane.
  • n is an integer from 1 to 3
  • a rhodium- and optionally cobalt-containing hydroformylation catalyst which contains ligands with P, N or S as hetero atom , reacted at 80 to 180 ° C. with a mixture of carbon monoxide and hydrogen under a pressure of 30 to 900 bar, the resulting formylcyclododecanes of the general formula (1), in which n is an integer from 1 to 3, from the reaction mixture, in particular separated from the hydroformylation catalyst and reductively aminated with an excess of ammonia in the presence of a hydrogenation catalyst at 50 to 150 ° C.
  • the monofunctional formylcyclododecane can be separated off by distillation before the reductive amination and, if appropriate, fed separately to a reductive amination.
  • the cyclododecatriene to be used as the starting product in the process according to the invention is known. It can be produced, for example, by trimerization of butadiene with metal catalysts, as described in Angewandte Chemie vol. 69, page 397 (1957).
  • the cyclododecatriene-1,5,9 can be used in the cis-trans-trans, and in the trans-trans-trans form.
  • carbon monoxide and hydrogen are generally at least in the stoichiometric ratio, but advantageously in excess, e.g. up to 1000 mol%.
  • the mixture of carbon monoxide and hydrogen generally contains carbon monoxide and hydrogen in a volume ratio of 1: 4 to 4: 1, in particular in a ratio of 2: 1 to 1: 2.
  • the hydroformylation is carried out at a temperature of 80 to 180 ° C. Temperatures of 90 to 165 ° C have proven particularly useful. Furthermore, a pressure of 30 to 900 bar is maintained during the reaction. A pressure in the range from 200 to 400 bar is advantageously used.
  • the reaction temperature is set according to the desired reaction product. This gives, in the temperature range from 80 to 120 ° C., preferably the monoaldehyde from which the monoamine is produced, while at temperatures above 150 ° C., preferably the trisformylcyclododecane is obtained.
  • the reaction time depends on the reaction temperature. To obtain the trisformylcyclododecane, it is necessary to keep the concentration of the cyclododecantriene in the reaction mixture low by metering the triene slowly into the reaction mixture.
  • Suitable catalysts for the hydroformylation are rhodium complexes which have one or more nitrogen-, phosphorus- and / or sulfur-containing ligands.
  • Preferred rhodium complexes used as catalysts have the formulas XRh (CO) L2 , XRh (CO) La , RhXLa , [Rh (CO) L z ] 2 , (Rh (OCOCH 3 ) (CO) L] 2 , where X is a chlorine, bromine or iodine atom and L is an organic ligand.
  • Suitable organic ligands can be tertiary organic phosphines, phosphites, dialkyl sulfides and tertiary amines.
  • Suitable ligands are, for example: tertiary organic phosphines or organic phosphites, which are identical or different alkyl radicals as organic radicals with 1 to 20 carbon atoms, cycloalkyl radicals with 5 to 12 carbon atoms, aralkyl radicals with 7 to 10 carbon atoms and at least one aryl radical with 6 to 10 carbon atoms
  • the radicals mentioned can have inert substituents under reaction conditions, for example 1 to 2 hydroxyl groups, alkoxy or carboalkoxy groups with 1 to 4 carbon atoms, amino groups or halogen atoms, such as triphenylphosphine, diethylphenylphosphine, tritolylphosphine, trinaphthylphosphine, diphe nylmethylphosphine, diphenylbutylphosphine, tris- (p-chorphenyl) -phosphine, tris- (p-carb
  • the phosphorus-containing ligands used are most suitably selected from the group of triarylphosphines, triarylphosphites and triarylphosphates, the triarylphosphines and triarylphosphites normally being the most suitable.
  • Complex ligands in the form of triorganophophins partially substituted by ferrocene can also be used according to the invention (cf. DE-OS 2617306).
  • any triorganophosphorus ligand which is known to be suitable for rhodium-catalyzed hydroformylation reaction systems can be used.
  • the method by which the catalytic complex of rhodium with the ligand and carbon monoxide is introduced into the hydroformylation reaction system is insignificant for its applicability.
  • the quantitative ratio of ligand to rhodium in the catalyst complex can be within a wide range; however, the liquid reaction medium normally contains at least about 1 mole of the ligand (e.g. triphenylphosphine) per gram atom of rhodium. However, the ligand can also be added in a large excess.
  • the rhodium catalyst is used in an amount in the reaction of the cyclododecatriene with carbon monoxide and hydrogen which corresponds to 1 to 1000 mg of Rh metal per kg of cyclododecatriene. If cobalt is additionally used as a catalyst, the amount of rhodium to be used can be reduced to one tenth to one hundredth. Cobalt is used corresponding to 0.1 to 10 g Co per kg cyciododecatriene.
  • the hydroformylation is carried out in the liquid phase. It is possible to fix the homogeneous catalyst on a solid support, as described for example by P.I. Davidson e.a. in Catalysis Vol 1, (1976), pages 391-393.
  • the liquid reaction medium can either be a mixture of liquids present per se (i.e. reaction products, excess ligand etc.) or, if appropriate, also be an added solvent which is inert under the reaction conditions and in which the homogeneous catalyst and the excess ligand are soluble. If no separate solvent is used, the reaction medium usually contains an excess of the ligand (e.g. triphenylphosphine) as well as reaction products, in particular those by-products that are less volatile than the carbonyl reaction product itself.
  • the ligand e.g. triphenylphosphine
  • inert liquids can be used in a known manner, for example alkyl-substituted benzenes, pyridine or alkyl-substituted pyridines, tertiary amines, high-boiling esters such as dialkyl dicarboxylates, triorganophosphates or esters of polyols (such as Trimethylolpropane or pentaerythritol), ketones, alcohols, such as the butanols, nitriles, such as acetonitrile or hydrocarbons, for example saturated aliphatic or cycloaliphatic hydrocarbons.
  • inert liquids for example alkyl-substituted benzenes, pyridine or alkyl-substituted pyridines, tertiary amines, high-boiling esters such as dialkyl dicarboxylates, triorganophosphates or esters of polyols (such as Tri
  • Solvents are preferably used, which can also be used in the subsequent reductive amination, such as benzene, toluene, xylene, isopropanol, methylcyclohexane, decalin, dioxane, tetrahydrofuran, ethylene glycol monoethyl ether or diethylene glycol dimethyl ether.
  • the aldehydes obtained by hydroformylation can be prepared in a known manner, e.g. by distillation, separated from the catalyst and then subjected to the reductive amination. It is often advisable, for example in the production of pure monoamines or in the production of polyamines not containing monoamines, to separate the hydroformylation product by distillation into the corresponding components before the reductive amination. It is also possible to reductively aminate the mixture of the hydroformylation products and then to separate mono- and polyamines by distillation.
  • the solvent optionally used in the hydroformylation can also be used in the reductive amination.
  • the reductive amination is carried out in the presence of a hydrogenation catalyst and at least 3 moles of ammonia per mole of the formylcyclododecane. It is also possible to carry out the reductive amination without solvent or in the aminomethylcyclododecanes according to the invention or in a large excess of ammonia. A molar ratio of ammonia / formyl compound of more than 10 is preferred. It may be advantageous to add an acid in a catalytic amount. The addition of 0.1 to 3% by weight of phosphoric acid, propionic acid or succinic acid is preferred.
  • the reductive amination is carried out at temperatures from 50 to 150 ° C., in particular at 90 to 135 ° C.
  • the hydrogen pressure should be more than 10, in particular 50 to 200 bar.
  • Suitable catalysts for reductive amination are hydrogenation catalysts which contain metals with the atomic numbers 23 to 29 in metallic and / or oxidic form as the active component.
  • Suitable catalysts are, for example, nickel or cobalt catalysts, such as nickel-supported supports, inorganic materials such as diatomaceous earth, silicas, aluminum oxides, silicates, aluminum silicates, montomorillonite, zeolites, spinels, dolomite, kaolin, magnesium silicates, zirconium oxide, iron oxide being used as supports.
  • Raney cobalt catalysts Raney copper, Raney nickel iron, Raney cobalt nickel, Raney cobalt iron, metal catalysts produced by reduction of nickel or cobalt salts, such as Urushibara nickel or nickel or cobalt salts reduced with metal alkyl compounds, alkali metal hydrides, hydrazine, boranates or hydrogen boride, catalysts prepared by reducing the metal oxides or metal oxide mixtures, the metal oxides or metal oxide mixtures.
  • the reduction of the metal oxides or metal salts can also take place with hydrogen, if appropriate at elevated temperature and pressure or under the conditions of the process or during the process.
  • Particularly preferred hydrogenation catalysts are Raney catalysts, such as Raney nickel, Raney cobalt and Raney nickel iron.
  • the amines according to the invention can be separated from the reaction mixture by distillation after the hydrogenation catalyst has been removed in a known manner, for example by filtration or centrifugation.
  • the amines according to the invention are aminomethyl-substituted cyclododecanes with 1 to 3 aminomethyl substituents per molecule.
  • the process products according to the invention are obtained as a mixture containing mono-, di- and triamines, in which the content of mono-, di- and triamines, for example — as already stated — can be adjusted within certain limits by choosing the hydroformylation temperature.
  • the pure preparation of mono-, di- or triamines or of mixtures containing exclusively di- and triamines can be carried out by appropriate distillative pure preparation on the intermediate stage of the hydroformylation product, since the composition of the process products according to the invention corresponds to the composition of this intermediate stage.
  • the di- and triamines according to the invention are each mixtures of isomers, the exact composition of which is irrelevant for the industrial usability of the amines according to the invention.
  • the amines according to the invention are valuable corrosion protection agents which, owing to their high hydrocarbon content, are particularly well tolerated by heating oils, lubricants and blowing agents based on hydrocarbons.
  • the di- and triamines or their mixtures according to the invention are also interesting crosslinkers or chain extenders for epoxy resins or NCO prepolymers, as are used in a manner known per se for the production of polyurethane-polyureas.
  • the catalyst 75 mg of tris (dibenzyl sulfide) tris chloro-rhodium and 2.4 g of dicobalt octacarbonyl and 500 g of toluene are introduced into an autoclave made of stainless steel.
  • the autoclave is flushed several times with a 1: 1 gas mixture of carbon monoxide and hydrogen and this gas mixture is injected up to 100 bar.
  • the autoclave is heated to 170 ° C. with stirring and the pressure is increased to 200 bar with the same gas mixture and the pressure is then kept constant by further pressing CO / H 2 when the pressure drops. After 1 hour, the temperature is reduced to 110 ° C.
  • Bisformylcyclododecane was obtained in a purity of about 95% from the thin-layer distilled reaction mixture of Example 2 by redistillation, boiling point: 102 ° C. at 0.7 Pa. C 14 H 24 0 2 , MW 224.3.
  • the monoformylcyclododecane was obtained in more than 95% purity from the reaction mixture of Example 6 by redistillation; Boiling point 91 to 93 ° C at 13 Pa, n 2 0 1.4853.
  • reaction mixture gave 435 g of amine mixture, which was transferred in a thin-film evaporator at 25 Pa and 170 ° C wall temperature. Based on the gas chromatogram, this mixture contained 8.5% mono-, 76.3% di- and 13.4% tri- (aminomethyl) cyclododecane.
  • the di (aminomethyl) cyclododecane (purity 99%) boils at 1.3 Pa and 108 ° C; 1.5163.

Description

  • Gegenstand der vorliegenden Erfindung sind Aminomethylcyclododecane ausgewählt aus der Gruppe bestehend aus Aminomethyl-cyclododecan, Bis-(aminomethyl)-cyclododecanen, Tris-(aminomethyl)-cyclododecanen und deren Gemischen.
  • Gegenstand der vorliegenden Erfindung ist auch ein Verfahren zur Herstellung dieser neuen Verbindungen, welches dadurch gekennzeichnet ist, dass man Cyclododecatrien-1,5,9 in Gegenwart eines Rhodium-haltigen Katalysators mit Kohlenmonoxid und Wasserstoff bei Temperaturen von 80 bis 180°C und Drucken von 30 bis 900 bar umsetzt, den Katalysator von dem Hydroformulierungsprodukt abtrennt und die Hydroformulierungsprodukte, gegebenenfalls nach ihrer destillativen Auftrennung in die einzelnen Komponenten, in Gegenwart von Ammoniak und einem Hydrierkatalysator bei 50 bis 150°C mit Wasserstoff behandelt.
  • Gegenstand der vorliegenden Erfindung ist auch die Verwendung der neuen Verbindungen als Korrosionsschutzmittel in Heizölen, Schmierstoffen oder Treibmitteln auf Kohlenwasserstoff-Basis.
  • Die Hydroformulierung des Cyclododecatriens-1,5,9 ist bereits bekannt (vgl. US-PS 2089904, US-PS 3354229, FR-PS 1411448 oder GB-PS 1161147). Nach diesen Patentschriften können unter Verwendung von Kobaltkatalysatoren aus Cyclododecatrien entsprechende C13-A1- kohole, Gemische, die Formylcyclodocan neben Formylcyclodocen, Formylcyclodocadien und dem C13-Alkohol enthalten, hergestellt werden. Die Ausbeute an Formylcyclododecan übersteigt dabei selbst unter besonders kontrollierten Bedingungen nicht 40% der Theorie.
  • Als Hauptprodukt werden stets Hydroxymethylcyclododecane gewonnen. Selbst unter Bedingungen, unter denen aus Cyclooctadien-1,5 Formylcyclooctan in 56,7% Ausbeute gewonnen wird, entsteht aus Cyclododecatrien-1,5,9 nahezu ausschliesslich Hydroxymethylcyclododecan.
  • Die Herstellung von Di- und Tri-Formylcyclododecanen sollte noch grössere Schwierigkeiten erwarten lassen.
  • Die Verwendung von Kobaltkomplexen mit Trialkylphosphitliganden bei der Hydroformylierung des Cyclododecatrien ergab ebenfalls in erster Linie Hydroxymethylcyclododecan.
  • Es wurde nun gefunden, dass Aminomethylcyclododecane mit 13 bis 15 C-Atomen, die durch die allgemeine Formel (2) dargestellt werden können,
    Figure imgb0001
  • in der n eine ganze Zahl von 1 bis 3 bedeutet, hergestellt werden können, indem man Cyclododecatrien-1,5,9 in Gegenwart eines Rhodium- und gegebenenfalls Kobalt-haltigen Hydroformylierungskatalysators, der Liganden mit P, N oder S als Hetero-Atom enthält, bei Temperaturen von 80 bis 180°C mit einem Gemisch aus Kohlenmonoxid und Wasserstoff unter 30 bis 900 bar Druck umsetzt, die entstehenden Formylcyclododecane der allgemeinen Formel (1), in der n eine ganze Zahl von 1 bis 3 ist, aus dem Reaktionsgemisch, insbesondere von dem Hydroformylierungskatalysator abtrennt und in Gegenwart eines Hydrierkatalysators bei 50 bis 150°C und 10 bis 200 bar Wasserstoffdruck mit einem Ammoniaküberschuss reduktiv aminiert, wobei vor der reduktiven Aminierung auch eine destillative Reindarstellung der im Reaktionsgemisch vorliegenden Formylcyclododecane erfolgen kann. Insbesondere kann bei der gegebenenfalls erwünschten Herstellung von mindestens 2 Aminogruppen aufweisenden erfindungsgemässen Verfahrensprodukten vor der reduktiven Aminierung das monofunktionelle Formylcyclododecan destillativ abgetrennt und gegebenenfalls getrennt einer reduktiven Aminierung zugeführt werden.
  • Das als Ausgangsprodukt beim erfindungsgemässen Verfahren einzusetzende Cyclododecatrien ist bekannt. Es kann beispielsweise durch Trimerisierung von Butadien mit Metallkatalysatoren, wie in Angewandte Chemie Bd. 69, Seite 397 (1957) beschrieben ist, hergestellt werden. Das Cyclododecatrien-1,5,9 kann in der cis-trans-trans-, und in der trans-trans-trans-Form verwendet werden.
  • Bei der Hydroformylierung werden Kohlenmonoxid und Wasserstoff in der Regel mindestens im stöchiometrischen Verhältnis, vorteilhaft jedoch im Überschuss, z.B. bis zu 1000 Mol-%, angewandt. Das Gemisch aus Kohlenmonoxid und Wasserstoff enthält Kohlenmonoxid und Wasserstoff in der Regel im Volumenverhältnis von 1:4 bis 4:1, insbesondere im Verhältnis von 2:1 bis 1:2.
  • Die Hydroformylierung führt man bei einer Temperatur von 80 bis 180°C durch. Besonders bewährt haben sich Temperaturen von 90 bis 165°C. Ferner hält man bei der Reaktion einen Druck von 30 bis 900 bar ein. Vorteilhaft wendet man einen Druck im Bereich von 200 bis 400 bar an. Die Reaktionstemperatur wird entsprechend dem gewünschten Reaktionsprodukt eingestellt. So erhält man im Temperaturbereich von 80 bis 120°C, bevorzugt den Monoaldehyd, aus dem das Monoamin hergestellt wird, während bei Temperaturen oberhalb 150°C, bevorzugt das Trisformylcyclododecan gewonnen wird. Die Reaktionszeit ist abhängig von der Reaktionstemperatur. Zur Gewinnung des Trisformylcyclododecans ist es erforderlich, die Konzentration des Cyclododecantriens im Reaktionsgemisch gering zu halten, indem man das Trien nur langsam in das Reaktionsgemisch eindosiert.
  • Für die Hydroformylierung geeignete Katalysatoren sind Rhodiumkomplexe die einen oder mehrere stickstoff-, phosphor- und/oder schwefelhaltige Liganden besitzen. Bevorzugte, als Katalysatoren verwendete Rhodium komplexe haben die Formeln XRh(CO)L2,XRh(CO)La,RhXLa, [Rh (CO)Lz]2, (Rh(OCOCH3)(CO)L]2, wobei X für ein Chlor-, Brom- oder Jodatom und Lfüreinen organischen Liganden steht. Geeignete organische Liganden können tertiäre organische Phosphine, Phosphite, Dialkylsulfide und tertiäre Amine sein. Geeignete Liganden sind beispielsweise: Tertiäre organische Phosphine oder organische Phosphite, die als organische Reste gleiche oder verschiedene Alkylreste mit 1 bis 20 Kohlenstoffatomen, Cycloalkylreste mit 5 bis 12 Kohlenstoffatomen, Aralkylreste mit 7 bis 10 Kohlenstoffatomen und mindestens einen Arylrest mit 6 bis 10 Kohlenstoffatomen haben. Die genannten Reste können unter Reaktionsbedingungen inerte Substituenten haben, z.B. 1 bis 2 Hydroxylgruppen, Alkoxy- oder Carboalkoxygruppen mit 1 bis 4 Kohlenstoffatomen, Aminogruppen oder Halogenatome, wie Triphenylphosphin, Diäthylphenylphosphin, Tritolylphosphin, Trinaphthylphosphin, Diphenylmethylphosphin, Diphenylbutylphosphin, Tris-(p-chorphenyl)-phosphin, Tris-(p-carbmethoxyphenyl)-phosphin. Tris-(p-cyanophenyl)-phosphin, Diphenyl-phosphonig-säurephenylester, Benzol-phosphonigsäure-di-phenylester und Triphenyl phosphit,
    Figure imgb0002
    Figure imgb0003
    Figure imgb0004
    Figure imgb0005
    Figure imgb0006
    Figure imgb0007
    Figure imgb0008
    Figure imgb0009
    Figure imgb0010
    Figure imgb0011
    und
    Figure imgb0012
  • Die verwendeten phosphorhaltigen Liganden werden am zweckmässigsten aus der Gruppe der Triarylphosphine, Triarylphosphite und Triarylphosphate ausgewählt, wobei die Triarylphosphine und Triarylphosphite normalerweise am besten geeignet sind. Ebenfalls gemäss der Erfindung verwendbar sind komplexe Liganden in Form von teilweise durch Ferrocen substituierten Triorganophophinen (vgl. die DE-OS 2617306).
  • Generell ist jedoch jeder Triorganophosphorligand, der eine bekannte Eignung für rhodiumkatalysierte Hydroformylierungs-Reaktionssysteme besitzt, verwendbar.
  • Geeignete stickstoffhaltige Liganden sind beispielsweise:
    • Pyridin, Picoline, Äthylpyridine, N-Methylpyrolidin, N-Methylpyrrol, N,N'-Dimethylpiperazin, Dimethylcyclohexylamin, Triäthylamin, N,N-Dimethylanilin, N-Methylmorpholin, N-Methylindol, Chinolin, Isochinolin, N-Methylpyrrolidon und 3-Dimethylaminopropionitril.
  • Geeignete schwefelhaltige Liganden sind beispielsweise:
    • Dibenzylsulfid, Di-n-butylsulfid, Dimethylsulfoxid, Diethylsulfid, Di-(4-Chlor-benzyl)-sulfid, Di-(4-Cyanobenzyl)-sulfid, Bis-(4-Dimethylamino- benzyl)-sulfid, Di-(4-diäthylaminobenzyl)-sulfid, Di-(a-naphthylmethyl)-sulfid, Di-(2,6-dichlorbenzyl)-sulfid, Di-(3,4-dichlorbenzyl)-sulfid, Di-(2-chlorbenzyl)-sulfid, Di-(5,6,7,8-tetrahydronaph- thyl-2-methyl)-sulfid, Benzyl-methylsulfid, Benzyl-dodecyl-sulfid, 4-Dimethylaminobenzylmethyl-sulfid, Benzyl-butyl-sulfid, Bis-(4-carboxy- benzyl)-sulfid, Di-(4-methylbenzyl)-sulfid, Di-(3-methylbenzyl)-sulfid, Di-(2-methylbenzyl)-sulfid.
  • Die Methode, nach welcher der katalytische Komplex des Rhodiums mit dem Liganden und Kohlenmonoxid in das Hydroformylierungs-Reaktionssystem eingeführt wird, ist für die Anwendbarkeit unwesentlich. Das Mengenverhältnis des Liganden zum Rhodium im Katalysatorkomplex kann innerhalb eines breiten Bereichs liegen; normalerweise enthält das flüssige Reaktionsmedium jedoch mindestens etwa 1 Mol des Liganden (z.B. Triphenylphosphin) pro Grammatom Rhodium. Der Ligand kann aber auch in hohem Überschuss zugesetzt werden.
  • Es ist möglich, im Katalysatorsystem das Rhodium teilweise durch Kobalt zu ersetzen.
  • Der Rhodiumkatalysator wird in einer Menge bei der Umsetzung des Cyclododecatriens mit Kohlenmonoxid und Wasserstoff verwendet, die 1 bis 1000 mg Rh-Metall je kg Cyclododecatrien entspricht. Wird zusätzlich Kobalt als Katalysator verwendet, so kann sich die aufzuwendende Menge Rhodium auf ein Zehntel bis ein Hundertstel verringern. Kobalt wird entsprechend 0,1 bis 10g Co je kg Cyciododecatrien verwendet.
  • Insbesondere werden 10 bis 600 mg Rh/kg Cyclododecatrien verwendet. Der Katalysator kann nach den bekannten Methoden wiedergewonnen und erneut verwendet werden.
  • Die Hydroformylierung wird in der flüssigen Phase durchgeführt. Es ist möglich, den homogenen Katalysator auf einen festen Träger zu fixieren, wie es beispielsweise von P.I. Davidson e.a. in Catalysis Vol 1, (1976), Seiten 391-393 beschrieben wurde.
  • Das flüssige Reaktionsmedium kann entweder ein Gemisch von an sich vorhandenen Flüssigkeiten (d.h. Reaktionsprodukten, überschüssigem Ligand etc.) darstellen oder gegebenenfalls auch ein zugesetztes Lösungsmittel sein, das bei den Reaktionsbedingungen inert ist und in dem der homogene Katalysator und der überschüssige Ligand löslich sind. Wenn kein gesondertes Lösungsmittel verwendet wird, enthält das Reaktionsmedium zumeist einen Überschuss des Liganden (z.B. von Triphenylphosphin) sowie Reaktionsprodukte, zu denen insbesondere jene Nebenprodukte gehören, die weniger flüchtig als das Carbonyl-Reaktionsprodukt selbst sind. Wenn die Umsetzung in Gegenwart einer getrennt zugesetzten Lösungsmittelart durchgeführt wird, kann man dafür in bekannter Weise die verschiedensten inerten Flüssigkeiten verwenden, beispielsweise alkylsubstituierte Benzole, Pyridin bzw. alkylsubstituierte Pyridine, tertiäre Amine, hochsiedende Ester, wie Dialkyldicarboxylate, Triorganophosphate oder Ester von Polyolen (wie Trimethylolpropan oder Pentaerythrit), Ketone, Alkohole, wie die Butanole, Nitrile, wie Acetonitril oder Kohlenwasserstoffe, z.B. gesättigte aliphatische oder cycloaliphatische Kohlenwasserstoffe.
  • Bevorzugt werden Lösungsmittel verwendet, die auch in der nachfolgenden reduktiven Aminierung verwendet werden können, wie Benzol, Toluol, Xylol, Isopropanol, Methylcyclohexan, Dekalin, Dioxan, Tetrahydrofuran, Äthylenglykolmonoethyläther oder Diäthylenglykoldimethyl- äther.
  • Die durch Hydroformylierung gewonnenen Aldehyde können in bekannter Weise, z.B. durch Destillation, vom Katalysator abgetrennt und dann der reduktiven Aminierung unterworfen werden. Oft empfiehlt es sich, beispielsweise bei der Herstellung von reinen Monoaminen oder bei der Herstellung von keine Monoamine aufweisenden Polyaminen, das Hydroformylierungsprodukt vor der reduktiven Aminierung destillativ in die entsprechenden Komponenten zu zerlegen. Es ist ebenso möglich, das Gemisch der Hydroformylierungsprodukte reduktiv zu aminieren und anschliessend Mono- und Polyamine destillativ zu trennen. Bei der reduktiven Aminierung kann das bei der Hydroformylierung gegebenenfalls verwendete Lösungsmittel ebenfalls Verwendung finden. Die reduktive Aminierung wird in Gegenwart eines Hydrierkatalysators und von wenigstens 3 Mol Ammoniak je Mol des Formylcyclododecans durchgeführt. Es ist auch möglich, die reduktive Aminierung ohne Lösungsmittel oder in den erfindungsgemässen Aminomethylcyclododecanen oder in einem grossen Ammoniaküberschuss durchzuführen. Bevorzugt wird ein Molverhältnis Ammoniak/Formylverbindung von mehr als 10. Es kann von Vorteil sein, eine Säure in katalytischer Menge zuzusetzen. Bevorzugt wird der Zusatz von 0,1 bis 3 Gew.-% Phosphorsäure, Propionsäure oder Bernsteinsäure.
  • Die reduktive Aminierung wird bei Temperaturen von 50 bis 150°C, insbesondere bei 90 bis 135°C, durchgeführt. Der Wasserstoffdruck sollte mehr als 10, insbesondere 50 bis 200 bar betragen.
  • Geeignete Katalysatoren für die reduktive Aminierung sind Hydrierkatalysatoren, die als aktive Komponente Metalle mit den Atomnummern 23 bis 29 in metallischer und/oder oxidischer Form enthalten. Geeignete Katalysatoren sind beispielsweise Nickel- oder Kobalt-Katalysatoren, wie Nickel-auf-Träger, wobei als Träger anorganische Materialien wie Kieselgur, Kieselsäuren, Aluminiumoxide, Silikate, Aluminiumsilikate, Montomorillonit, Zeolithe, Spinelle, Dolomit, Kaolin, Magnesiumsilikate, Zirkonoxid, Eisenoxid, Zinkoxid, Calciumcarbonat, Siliziumcarbid, Aluminiumphosphat, Borphosphat, Asbest oder Aktiv-Kohle und als organische Katalysatorträger natürlich vorkommende oder synthetische Verbindungen mit hohem Molgewicht wie Seide, Polyamide, Polystyrole, Zellstoff oder Polyurethane verwendbar sind, wobei die Träger in Form von Kugeln, Strängen, Fäden, Zylindern, Polygonen oder in Pulverform vorliegen können, Raney-Typ-Katalysatoren, wie Raney-Nickel, W-1-, W-5-, W-6-, W-7-Raney-Nickel wie von H. Adkins, J. Am. Chem. Soc. 69, 3039 (1974) beschrieben, Raney-Kobalt-Katalysatoren, Raney-Kupfer, Raney-Nickel-Eisen, Raney-Kobalt-Nickel, Raney-Kobalt-Eisen, durch Reduktion von Nickel- oder Kobaltsalzen hergestellte Metallkatalysatoren, wie Urushibara-Nickel oder mit Metallalkylverbindungen, Alkalihydriden, Hydrazin, Boranaten oder Borwasserstoff reduzierte Nickel- oder Kobaltsalze, durch Reduktion der Metalloxide oder Metalloxidgemische hergestellte Katalysatoren, die Metalloxide oder -oxidgemische.
  • Die Reduktion der Metalloxide oder Metallsalze kann auch mit Wasserstoff, gegebenenfalls bei erhöhter Temperatur und erhöhtem Druck oder unter den Bedingungen des Verfahrens oder während des Verfahrens geschehen.
  • Die Katalysatoren können als Beschleuniger eines oder mehrere der folgenden Elemente in Mengen bis zu 10% enthalten:
    • Li, Na, Ca, Ba, K, Ag, Be, La, Ce, Ti, V, Nb, Ta, Mo, W, und bis zu 1% der Elemente Ru, Rh, Pd, Au, lr, Pt.
  • Besonders bevorzugte Hydrierkatalysatoren sind Raney-Katalysatoren, wie Raney-Nickel, Raney-Kobalt und Raney-Nickel-Eisen.
  • Für die Herstellung von Di- und Triaminomethylverbindungen kann es vorteilhaft sein, in einem Hydrierautoklaven den Katalysator, Ammoniak und ein Lösungsmittel oder das Endprodukt unter Wasserstoffdruck bei der Hydriertemperatur vorzulegen und das entsprechende Formylcyclododecan gegebenenfalls in einem Lösungsmittel einzupumpen.
  • Die erfindungsgemässen Amine können aus dem Reaktionsgemisch, nachdem der Hydrierkatalysator in bekannter Weise beispielsweise durch Filtration oder Zentrifugieren entfernt wurde, durch Destillation abgetrennt werden. Bei den erfindungsgemässen Aminen handelt es sich um Aminomethyl-substituierte Cyclododecane mit 1 bis 3 Aminomethyl-Substituenten pro Molekül. Im allgemeinen fallen die erfindungsgemässen Verfahrensprodukte, falls auf eine Auftrennung der als Zwischenstufe eingesetzten Hydroformylierungsprodukte verzichtet wurde, als Mono-, Di- und Triamine enthaltendes Gemisch an, in welchem der Gehalt an Mono-, Di- bzw. Triaminen beispielsweise - wie bereits ausgeführt - durch Wahl der Hydroformylierungs-Temperatur innerhalb gewisser Grenzen eingestellt werden kann. Die Reindarstellung von Mono-, Di- bzw. Triaminen oder von ausschliesslich Di- und Triamine enthaltenden Gemischen kann durch entsprechende destillative Reindarstellung auf der Zwischenstufe des Hydroformylierungsproduktes erfolgen, da die Zusammensetzung der erfindungsgemässen Verfahrensprodukte der Zusammensetzung dieser Zwischenstufe entspricht. Selbstverständlich ist es jedoch auch möglich, die Zerlegung des Reaktionsgemischs in die einzelnen Komponenten nach Abschluss der reduktiven Aminierung, beispielsweise durch Destillation, durchzuführen. Bei den erfindungsgemässen Di- und Triaminen handelt es sich jeweils um Isomerengemische, deren genaue Zusammensetzung für die technische Verwertbarkeit der erfindungsgemässen Amine ohne Belang ist.
  • Die erfindungsgemässen Amine stellen wertvolle Korrosionsschutzmittel dar, die wegen ihres hohen Kohlenwasserstoffanteils insbesondere eine ausgezeichnete Verträglichkeit mit Heizölen, Schmierstoffen und Treibmitteln auf Kohlenwasserstoff-Basis aufweisen. Die erfindungsgemässen Di- und Triamine bzw. deren Gemische stellen im übrigen interessante Vernetzer bzw. Kettenverlängerungsmittel für Epoxidharze bzw. NCO-Präpolymere dar, wie sie in an sich bekannter Weise zur Herstellung von Polyurethan-Polyharnstoffen eingesetzt werden.
  • Beispiel 1 Hydroformylierung des Cyclododecatriens
  • In einen Autoklaven aus Edelstahl werden der Katalysator, 75 mg Tris-(dibenzylsulfid)-tris- chlor-Rhodium und 2,4 g Dikobaltoctacarbonyl und 500 g Toluol eingefüllt. Der Autoklav wird mit einem 1:1-Gasgemisch aus Kohlenmonoxid und Wasserstoff mehrmals gespült und dieses Gasgemisch wird bis 100 bar aufgepresst. Man heizt unter Rühren den Autoklaven bis 170°C auf und ergänzt mit dem gleichen Gasgemisch den Druck bis 200 bar und hält im folgenden den Druck konstant, indem weiter CO/H2 nachgedrückt wird, wenn der Druck abfällt. Nach 1 Stunde wird die Temperatur auf 110°C gesenkt und im Verlauf von 3 Stunden die Lösung von 500 g Cyclododecatrien-1,5,9 in 1000 g Toluol in den Autoklaven eingepumpt. Nach weiteren 90 Minuten wird das Reaktionsgemisch im Autoklaven abgekühlt, entspannt und mit Stickstoff gespült. Die Reaktionslösung wird filtriert. Bei 1600 Pa wird das Lösungsmittel abdestilliert. Das Reaktionsprodukt wird bei 13 Pa und einer Manteltemperatur von ca. 220°C über einen Dünnschichtverdampfer destilliert. Die Zusammensetzung des Destillats wird gaschromatographisch untersucht (Säule: 1 m Carbowachs 6000 auf Teflon; Heizrate: 15° min-1; 130 bis 260°C. Die Probe wird mit Tetrahydrofuran verdünnt).
  • Die Ergebnisse der Versuche der Beispiele 1 bis 6, die wie im Beispiel 1 durchgeführt wurden, wobei jedoch die in der Tabelle 1 aufgeführten Katalysatoren und Lösungsmittel verwendet und die in der Tabelle 1 aufgeführten Reaktionstemperaturen und Reaktionszeiten eingehalten wurden, sind in der Tabelle 1 zusammengefasst.
  • Aus dem dünnschichtdestillierten Reaktionsgemisch des Beispiels 2 wurde durch Redestillation Bisformylcyclododecan in einer Reinheit von ca. 95% gewonnen, Siedepunkt: 102°C bei 0,7 Pa. C14H2402, MG 224,3.
  • Aus dem Reaktionsgemisch des Beispiels 6 wurde durch Redestillation das Monoformylcyclododecan in über 95% Reinheit gewonnen; Siedepunkt 91 bis 93°C bei 13 Pa, n20 1.4853.
    Figure imgb0013
    Figure imgb0014
  • Reduktive Aminierung Beispiel 7 Aminomethylcyclododecan
  • In einem Rührautoklaven aus Edelstahl werden 235 g Formylcyclododecan, 2 g Essigsäure, 250 g Tetrahydrofuran und 20 g Raney-Kobalt eingefüllt. Der Autoklav wird verschlossen, mit Stickstoff gespült. 300 g Ammoniak werden flüssig in den Autoklaven gepumpt. Unter 80 bar Wasserstoffdruck wird auf 110°C erhitzt und mit Wasserstoff der Druck bis 120 bar 45 Minuten konstant gehalten. Dann ist die reduktive Aminierung beendet. Aus dem abgekühlten Reaktionsgemisch wird nach Verdampfen des Ammoniaks der Katalysator durch Filtration entfernt und das Lösungsmittel abdestilliert. Man erhält durch Destillation bei 13 Pa eine bei 112 bis 113°C siedende Fraktion, die zu 98,5% aus Aminomethylcyclododecan besteht, n20 1.5012, Val: gef. 200 (theoretisch 197), Ausbeute: 86,7%.
  • Beispiel 8
  • In einem Autoklaven werden 50 g Raney-Nikkel, 1000 g Methanol, 2 g Phosphorsäure und, - nachdem der Autoklav verschlossen und mit Stickstoff gespült wurde, - 700 g Ammoniak eingefüllt. Der Autoklav wird auf 95°C unter Wasserstoffdruck erhitzt, so dass sich ein Druck von 120 bar einstellt. Bei 90 bis 100°C und 120 bar Druck, der durch Nachpressen von Wasserstoff konstant gehalten wird, wird die Lösung von 500 g eines Gemisches, das bei der Formylierung des Cyclododecatrien-1,3,5 entstanden ist und 7,9 Gew.-% Monoformyl-cyclododecan, 71,6 Gew.-% Bisformyl-cyclododecan und 14,7 Gew.-% Trisformylcyclododecan enthält, in 1000 g Methanol im Verlauf von 90 Minuten eingepumpt. Danach wird noch 10 Minuten bei 105°C und 120 bar gerührt.
  • Die übliche Aufarbeitung des Reaktionsgemisches ergaben 435 g Amingemisch, das im Dünnschichtverdampfer bei 25 Pa und 170°C Wandtemperatur überging. Aufgrund des Gaschromatogramms enthielt dieses Gemisch 8,5% Mono-, 76,3% Di- und 13,4% Tri-(aminomethyl)-cyclododecan.
  • Aus diesem Gemisch kann durch Redestillation eine bei 1,3 Pa und 122 bis 140°C siedende Fraktion gewonnen werden, die neben 41% Di- etwa 59%Tri-(aminomethyt)-cyc)ododecan enthält und frei von Mono-(aminomethyl)-cyclododecan ist.
  • Das Di-(aminomethyl)-cyclododecan (Reinheit 99%) siedet bei 1,3 Pa und 108°C;
    Figure imgb0015
    1.5163.

Claims (3)

1. Aminomethyl-cyclododecane ausgewählt aus der Gruppe bestehend aus Aminomethyl-cyclododecan, Bis-(aminomethyl)-cyclododeca- nen, Tris-(aminomethyl)-cyclododecanen und deren Gemischen.
2. Verfahren zur Herstellung von Aminomethylcyclododecanen gemäss Anspruch 1, dadurch gekennzeichnet, dass man Cyclododecatrien-1,5,9 in Gegenwart eines rhodiumhaltigen Katalysators mit Kohlenmonoxid und Wasserstoff bei Temperaturen von 80 bis 180°C und Drücken von 30 bis 900 bar umsetzt, den Katalysator von dem Hydroformulierungsprodukt abtrennt und die Hydroformulierungsprodukte, gegebenenfalls nach ihrer destillativen Auftrennung in die einzelnen Komponenten, in Gegenwart von Ammoniak und einem Hydrierkatalysator bei 50 bis 150°C mit Wasserstoff behandelt.
3. Verwendung der Aminomethyl-cyclododecane gemäss Anspruch 1 als Korrosionsschutzmittel in Heizölen, Schmierstoffen oder Treibmitteln auf Kohlenwasserstoff-Basis.
EP79103157A 1978-09-06 1979-08-27 Aminomethyl-cyclododecane, ein Verfahren zu ihrer Herstellung und ihre Verwendung als Korrosionsschutzmittel Expired EP0008763B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE2838755 1978-09-06
DE19782838755 DE2838755A1 (de) 1978-09-06 1978-09-06 Aminomethyl-cyclododecane, ein verfahren zu ihrer herstellung und ihre verwendung als korrosionsschutzmittel

Publications (2)

Publication Number Publication Date
EP0008763A1 EP0008763A1 (de) 1980-03-19
EP0008763B1 true EP0008763B1 (de) 1981-04-01

Family

ID=6048762

Family Applications (1)

Application Number Title Priority Date Filing Date
EP79103157A Expired EP0008763B1 (de) 1978-09-06 1979-08-27 Aminomethyl-cyclododecane, ein Verfahren zu ihrer Herstellung und ihre Verwendung als Korrosionsschutzmittel

Country Status (4)

Country Link
US (1) US4251462A (de)
EP (1) EP0008763B1 (de)
JP (1) JPS5543085A (de)
DE (2) DE2838755A1 (de)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5792018A (en) * 1980-11-28 1982-06-08 Takeda Chem Ind Ltd Novel epoxy resin curing agent
SE461095B (sv) * 1983-09-09 1990-01-08 Berol Kemi Ab Amineringsfoerfarande med anvaendning av en ruteniumdopad nickel och/eller kovoltkatalysator
DE10240451A1 (de) * 2002-09-02 2004-03-11 Dürr Systems GmbH Sensoranordnung für eine Beschichtungsanlage
CN105646158B (zh) 2012-02-24 2018-07-06 陶氏环球技术有限责任公司 环十二碳三烯三醛和相关化合物的制备和用途

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL287930A (de) * 1962-01-18
DE1201335B (de) * 1963-07-24 1965-09-23 Basf Ag Verfahren zur Herstellung von Cyclododecylamin
DE1211174B (de) * 1963-10-17 1966-02-24 Huels Chemische Werke Ag Verfahren zur Herstellung von Monooxierungsprodukten der cyclischen Di- und Trimeren des Butadiens-(1, 3)
US3354229A (en) * 1964-01-28 1967-11-21 Exxon Research Engineering Co Oxonation of cyclododecatriene to c13 alcohol
FR1437448A (fr) * 1965-01-27 1966-05-06 Rhone Poulenc Sa Acides méthylène-2 cycloalcane-carboxyliques et leurs dérivés
CH468320A (de) * 1966-08-17 1969-02-15 Inventa Ag Verfahren zur Herstellung eines Gemisches von Formylcyclododecan und Cyclododecen
US3499933A (en) * 1967-06-15 1970-03-10 Union Carbide Corp Hydroformylation of cyclic olefins
US3499932A (en) * 1967-06-15 1970-03-10 Union Carbide Corp Hydroformylation of polycyclic diolefins
GB1233776A (de) * 1967-11-06 1971-05-26
GB1170226A (en) * 1968-07-18 1969-11-12 Juergen Falbe Tricyclodecane Dialdehydes and Dimethylols.
JPS4947738B1 (de) * 1969-05-26 1974-12-17
US3758527A (en) * 1969-07-04 1973-09-11 Ciba Geigy Corp Esters of 1-aminoalkyl-cycloalkanols
US3925494A (en) * 1971-05-05 1975-12-09 Phillips Petroleum Co Ruthenium complexes as catalysts for reduction of polyenes
US3873621A (en) * 1972-05-22 1975-03-25 Univ Minnesota Method for preparing amines
US3804914A (en) * 1972-05-25 1974-04-16 Phillips Petroleum Co Ruthenium(ii)complexes as catalysts for selective hydrogenation of cyclic polyenes to cyclic monoenes
DE2515486C2 (de) * 1975-04-09 1984-05-24 Bayer Ag, 5090 Leverkusen Bicyclo [2.2.1] heptan-Triamine und Verfahren zu ihrer Herstellung
DE2614244A1 (de) * 1976-04-02 1977-10-20 Bayer Ag Cycloaliphatische triamine

Also Published As

Publication number Publication date
EP0008763A1 (de) 1980-03-19
DE2838755A1 (de) 1980-03-27
US4251462A (en) 1981-02-17
DE2960236D1 (en) 1981-04-23
JPS5543085A (en) 1980-03-26

Similar Documents

Publication Publication Date Title
EP0163234B1 (de) Verfahren zur Herstellung von Aldehyden
EP1529769B1 (de) Verfahren zur Herstellung von TCD-Dialdehyd
EP1604966B1 (de) Verfahren zur Herstellung von Tricyclo-[5.2.1.0 2,6]-decandimethylol
EP0263259B1 (de) Verfahren und Katalysatorsystem zur Trimerisierung von Acetylen und Acetylenverbindungen
EP0051859B1 (de) Verfahren zur Herstellung von Ethanol aus Methanol
EP0140210B1 (de) Verfahren zur katalytischen Dimerisation von Acrylsäurederivaten und Verwendung der erhaltenen Dimeren
EP0008763B1 (de) Aminomethyl-cyclododecane, ein Verfahren zu ihrer Herstellung und ihre Verwendung als Korrosionsschutzmittel
EP0100479B1 (de) 3-Aminomethyl-1-(3-aminopropyl-1-methyl)-4-methylcyclohexan, Verfahren zu seiner Herstellung und seine Verwendung
CH629175A5 (en) Process for preparing alkyl alpha-formylpropionates
DE2404312A1 (de) Verfahren zur herstellung von 3-methylpentan-1,5-diol
EP0084833B1 (de) Verfahren zur Herstellung von Ethanol und n-Propanol aus Methanol und Synthesegas
DE2456056C2 (de) Verfahren zur Herstellung von Triethanolmethan und 3-Methyl-1,5-pentandiol
EP0761634A1 (de) Verfahren zur Herstellung von Pentenalen
DE4344064C1 (de) Verfahren zur Herstellung von in alpha-Stellung durch einen Alkylrest substituierten Aldehyden
DE1059904B (de) Verfahren zur Herstellung von Cyclododecanderivaten
EP0074561B1 (de) Cyclische Keto-butyraldehyde, ein Verfahren zu ihrer Herstellung und ihre Verwendung zur Herstellung von cyclischen Diisocyanaten
EP0186075B1 (de) Verfahren zur Herstellung von 8- und 9-Formyl-tricyclo-(5,2,1,0, 2,6)-decen-3
DE10352258B4 (de) Verfahren zur Herstellung von TCD-Diamin
EP1813587A1 (de) 3(4),7(8)-Dihydroxymethyl-bicyclo[4.3.0] nonan und ein Verfahren zu seiner Herstellung
EP1813595A1 (de) "3(4),7(8)-Bis (aminomethyl)-bicyclo[4.3.0] nonan und ein Verfahren zu seiner Herstellung
EP0065294A1 (de) Verfahren zur Herstellung von Formylcyannorbornan
DE2928313A1 (de) Verfahren zur herstellung von 3-(4)- formyltricyclo- eckige klammer auf 5,2,1, 0 hoch 2,6 eckige klammer zu -decen-8
DE2451473A1 (de) Verfahren zur herstellung von formylpropylacetaten
DE19602049A1 (de) Verfahren zur Herstellung von 4-Aminobutanol
DE2453229A1 (de) Rhodiumhaltige komplexverbindungen

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed
AK Designated contracting states

Designated state(s): BE CH DE FR GB IT NL

ITF It: translation for a ep patent filed

Owner name: ING. C. GREGORJ S.P.A.

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): BE CH DE FR GB IT NL

REF Corresponds to:

Ref document number: 2960236

Country of ref document: DE

Date of ref document: 19810423

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19840724

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19840731

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19840831

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19840930

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19841019

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Effective date: 19850831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19860301

GBPC Gb: european patent ceased through non-payment of renewal fee
NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19860430

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19860501

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

BERE Be: lapsed

Owner name: BAYER A.G.

Effective date: 19860831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19881118

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Effective date: 19890831

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT