EP0006894B1 - Fehlerstromschutzschalter - Google Patents

Fehlerstromschutzschalter Download PDF

Info

Publication number
EP0006894B1
EP0006894B1 EP78900088A EP78900088A EP0006894B1 EP 0006894 B1 EP0006894 B1 EP 0006894B1 EP 78900088 A EP78900088 A EP 78900088A EP 78900088 A EP78900088 A EP 78900088A EP 0006894 B1 EP0006894 B1 EP 0006894B1
Authority
EP
European Patent Office
Prior art keywords
core
magnetic
circuit breaker
tripping device
armature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP78900088A
Other languages
English (en)
French (fr)
Other versions
EP0006894A1 (de
Inventor
Nicolas Gath
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of EP0006894A1 publication Critical patent/EP0006894A1/de
Application granted granted Critical
Publication of EP0006894B1 publication Critical patent/EP0006894B1/de
Expired legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H83/00Protective switches, e.g. circuit-breaking switches, or protective relays operated by abnormal electrical conditions otherwise than solely by excess current
    • H01H83/14Protective switches, e.g. circuit-breaking switches, or protective relays operated by abnormal electrical conditions otherwise than solely by excess current operated by imbalance of two or more currents or voltages, e.g. for differential protection
    • H01H83/144Protective switches, e.g. circuit-breaking switches, or protective relays operated by abnormal electrical conditions otherwise than solely by excess current operated by imbalance of two or more currents or voltages, e.g. for differential protection with differential transformer

Definitions

  • the invention relates to a residual current circuit breaker whose operating current-carrying conductors are chained to a core whose magnetic induction flux triggers a trigger in the event of a fault by an armature of the trigger dropping from the magnetic system of the trigger when a permanent magnetic field is superimposed on a magnetic field caused by the fault current. where the core part of the magnetic system is the trigger.
  • the residual current is determined in that the operating current-carrying conductors are wound as coils over the core of a summation current transformer. If a fault current that consists of alternating current flows, an alternating current is generated in a secondary coil, which is conducted through the coil of the magnetic system, with a permanent magnet, of the release. The flow generated thereby reduces the induction flux generated by the permanent magnet and thus the attraction force on the armature of the trigger. The armature is released, it drops, causing the residual current circuit breaker to switch off.
  • a residual current circuit breaker whose magnetic flux in the armature is canceled by superimposing two magnetic fluxes, works on the counter-excitation principle.
  • the magnetic flux to the armature is prevented. It is known to lead the operating current-carrying conductors directly through pole leg windows of the blocking magnet in a residual current circuit breaker operating according to the blocking magnet principle (DE-OS 19 09 085). With such a residual current circuit breaker, the remanence has a more unfavorable effect than with the current residual current circuit breakers that work according to the counter-excitation principle. This is due to the larger magnetic systems required to hold the armature, since the thick conductors carrying the operating current are placed through a window of the magnetic system, the so-called blocking magnet. The length of the magnetic lines of force is about ten times greater than that of the current residual current circuit breakers that work on the counter-excitation principle.
  • the object of the invention is to develop a residual current circuit breaker which can respond to direct current components and does without electrical transmission means, such as a secondary coil.
  • the solution to the problem described is that the core in turn surrounds the operating current-carrying conductors in several turns.
  • the residual current circuit breaker can respond to direct current in a certain direction, since a direct current fault current can also generate a magnetic flux in the magnetic system of the release, and because the operating current-carrying conductors are led directly through the core.
  • a direct current fault current can also generate a magnetic flux in the magnetic system of the release, and because the operating current-carrying conductors are led directly through the core.
  • the disadvantages of the known residual current circuit breakers, which operate on the principle of the blocking magnet are avoided, since the operating current-carrying conductors in the residual current circuit breaker according to the invention bring about an increased flow.
  • a residual current circuit breaker By means of a second magnetic system, which responds with direct current of opposite polarity, a residual current circuit breaker can be built which responds to direct current fault currents in any direction, as is known per se (DE-OS 21 63 402).
  • the remanence can be reduced in that the core is divided into two tracks at least over part of its length and that a coil is wound on each of these tracks, which is connected to an AC power source, and which together has a magnetic sense of rotation surrender.
  • the core can also be made hollow so that it can receive an electrical conductor which is connected to a wake-up current source.
  • a residual current circuit breaker based on the counter-excitation principle can be constructed in such a way that the magnetic system of the release consists of three legs connected at both ends at one end, one leg of which forms the core for the operating current-carrying conductors and in one of which the permanent magnet and the armature of the arm Trigger are arranged. This shortens the path length of the magnetic flux generated by the permanent magnet, which holds the armature, and reduces the leakage flux.
  • a magnetic voltage can be impressed in the magnetic system of the release of the residual current circuit breaker, the induction flux in the magnetic system of the release then becoming independent of the internal resistance of the permanent magnet. This is achieved simply by the permanent magnet resting laterally on one leg of the magnetic system, as illustrated in FIGS. 4, 5 and 2.
  • a core 3 which is wound around the operating current-carrying conductors 8, is part of the magnetic system.
  • the core 3 can consist of soft iron or a highly permeable nickel-iron alloy.
  • This wire is passed, for example, several times through the hole or window of the coils 5, for one conductor 8 carrying operating current.
  • one coil 5 for an operating current-carrying conductor 8 is shown in the figures of the drawing.
  • the operating current-carrying conductor 8 could also be implemented simply, ie not in the form of a coil, through the coil-shaped core 3.
  • the electrical voltage of the secondary coil increases the higher the number of turns of the secondary coil, so the magnetic voltage increases with the number of turns of the core. This increases the flooding caused by the conductor carrying the operating current.
  • the magnetic flux for holding an armature 4 is generated by permanent magnets 11 and 11 b.
  • the permanent magnets 11 a and 11 b are arranged so that they generate a magnetic induction of a direction of rotation and that as little scatter lines as possible can occur between armature 4 and core 3.
  • the armature 4 acts in the usual way on a switch lock 6. With 7 the direction of rotation of a magnetic induction generated by the permanent magnets 11 a and 11 b is illustrated.
  • the core 3 encloses the operating current-carrying conductors 8 in several turns. A minimal distance between the individual windings of the core 3 can be achieved in that a sleeve made of non-magnetic material is drawn around the magnetically conductive material as a spacer.
  • the arrangement according to FIG. 3 can be constructed as a series connection of a magnetic voltage source, consisting of the permanent magnets 11 and 11b, with a core 3 and the armature 4. be grasped.
  • the residual current circuit breaker responds when a residual current in the core 3 generates a magnetic flux against the direction of induction 7, so that no or only so little magnetic flux flows through the armature 4 that the armature 4 fall off and the switch 6 can trip. This then causes, in the usual way, the interruption of the operating current-carrying conductors on the provided switching contacts.
  • the length of the core according to FIG. 6 can be divided into two tracks.
  • the induction "flux conductor of the magnetic system is divided there into tracks 3a and 3b.
  • Coils 61 and 62 are wound on each of these tracks.
  • Coils 61 and 62 are connected at one end at 63 and at their other ends 64 and 65 connected to an alternating current source 66.
  • the structure corresponds otherwise to that of Fig. 4, the permanent magnet being designated 11.
  • the induction flow generated by the coils 61 and 62 runs in the direction of the circulating sense 7, if the alternating current at the moment of viewing Point 65 flows to point 64.
  • the induction flow generated by the two coils 61 and 62 runs over the tracks 3a and 3b of the core, but not over the leg of the release magnet with the armature 4. It therefore does not interfere with the magnetic flux that holds the armature 4; however, it reduces the residual magnetic flux.
  • the tracks 3a and 3b of the core advantageously have the same cross section.
  • the remanence can also be reduced by making the core 3 hollow and receiving an electrical conductor 71 which is connected to an alternating current source 66, as illustrated in FIG. 7 with the basic structure according to FIG. 4.
  • Operating current leading conductors are shown individually, L1, L2, L3, N, and together with 8. 7, the induction flux conductor for the core 3 is, for example, a tube made of soft magnetic material. An electrically insulated copper wire can be passed through this tube.
  • the alternating current flowing through it causes an induction flow which describes a path within the wall of the tube which has the shape of a circle, the center of which lies on the imaginary central axis of the tube.
  • the magnetic system 1 of the trigger can be designed according to FIG.
  • This residual current circuit breaker like the one according to FIG. 3, works on the principle of counterexcitation.
  • the operating current-carrying conductors 8, only one coil 5 is shown in the exemplary embodiment, are linked to the coil-shaped core 3.
  • the magnetic system 1 of the trigger consists of three legs 41, 42 and 43 which are connected to one another at both ends. The connecting points are designated by 44 and 45.
  • This residual current circuit breaker also works on the principle of counterexcitation; the anchor 4 thus drops when a flux is induced in the core 3, which - based on the drawing - runs from left to right, that is to say from the connection point 44 via the core 3 to the connection point 45.
  • a magnetic voltage divider that is to say as a voltage divider for magnetic voltage, based on the mode of operation of an electrical voltage divider.
  • the permanent magnet 11 is a source of an induction flux, the internal resistance of which is high. 2, the major part of the induction flow flows from the north pole N via the induction flow conductor 22 underneath to the south pole S.
  • the drop in the magnetic voltage which occurs between the north pole and the south pole represents part of the original voltage available from the permanent magnet.
  • the arrangement according to FIG. 2 acts hence to the outside like a source of magnetic tension.
  • the prerequisite is that the leg section which is in contact with the permanent magnet or is enclosed by the tubular permanent magnet, is magnetically unsaturated. This means that the flux entering the leg from the permanent magnet is not too strong.
  • a magnetic flux source can also be obtained if an induction flux conductor, for example a leg of the magnetic system, is separated and a permanent magnet is inserted. With such a source, the magnetic flux is constant and quite independent of the magnetic resistance of the connected circuit.
  • the magnetic voltage source is the most suitable, however, for the third embodiment, e.g. 5, the magnetic flux source is most suitable.
  • a residual current circuit breaker according to the invention can be applied both to circuit breakers that work on the principle of the blocking magnet and to those that work on the principle of counterexcitation.
  • the illustrated residual current circuit breakers which work according to the principle of counterexcitation, one can achieve tripping for direct current fault currents of any polarity by means of two systems, of which one system responds to one polarity and the other system to the other polarity.
  • Such a circuit breaker can then be equipped with two triggers, the Permanent magnets D ei otherwise the same version are reversed. It is then expedient to connect the two anchors to one another by means of a web and to let this act on the switching mechanism.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Breakers (AREA)
  • Emergency Protection Circuit Devices (AREA)

Description

  • Die Erfindung bezieht sich auf einen Fehlerstromschutzschalter, dessen betriebsstromführende Leiter mit einem Kern verkettet sind, dessen magnetischer Induktionsfluß im Fehlerfall das Ansprechen eines Auslösers bewirkt, indem ein Anker des Auslösers bei Überlagerung eines Dauermagnetfeldes mit einem vom Fehlerstrom bewirkten Magnetfeld vom magnetischen System des Auslösers abfällt, wobei der kern Teil des magnetischen Systems der Auslösers ist.
  • Bei den bisher üblichen Fehlerstromschutzschaltern wird der Fehlerstrom dadurch festgestellt, daß die betriebsstromführenden Leiter als Spulen über den Kern eines Summenstromwandlers gewickelt sind. Falls ein Fehlerstrom fließt, der aus Wechselstrom besteht, wird in einer Sekundärspule ein Wechselstrom hervorgerufen, der durch die Spule des magnetischen Systems, mit einem Dauermagneten, des Auslösers geleitet wird. Die dabei erzeugte Durchflutung vermindert den vom Dauermagneten erzeugten Induktionsfluß und damit die Anziehungskraft auf den Anker des Auslösers. Der Anker wird freigegeben, er fällt ab, wodurch der Fehlerstromschutzschalter abschaltet.
  • Wenn jedoch ein aus Gleichstrom bestehender Fehlerstrom fließt, so wird dieser vom Wandler herkömmlicher Art nicht übertragen und die Abschaltung unterbleibt. Wenn der Gleichstrom so stark ist, daß die Induktion des Dauermagneten des Auslösers sich im Sättigungsgebiet befindet, so reagiert ein solcher Fehlerstromschutzschalter selbst bei einem zusätzlich auftretenden Fehlerstrom mit Wechselstromkomponenten überhaupt nicht mehr bestimmungsgemäß.
  • Ein Fehlerstromschutzschalter, dessen magnetischer Fluß im Anker durch Überlagerung zweier Magnetflüsse aufgehoben wird, arbeitet nach dem Gegenerregungsprinzip.
  • Nach dem Sperrmagnetprinzip wird der Magnetfluß zum Anker unterbunden. Es ist bekannt, in einem nach dem Sperrmagnetprinzip arbeitenden Fehlerstromschutzschalter die betriebsstromführenden Leiter direkt durch Polschenkelfenster des Sperrmagneten zu führen (DE-OS 19 09 085). Bei einem solchen Fehlerstromschutzschalter wirkt sich die Remanenz ungünstiger aus als bei den derzeit üblichen Fehlerstromschutzschaltern, die nach dem Gegenerregungsprinzip arbeiten. Dies liegt an den erforderlichen größeren magnetischen Systemen zu Halten des Ankers, da die dicken betriebsstromführenden Leiter durch ein Fenster des magnetischen Systems, des sogenannten Sperrmagneten, gelegt werden. Die Länge der magnetischen Kraftlinien wird dabei etwa zehnmal größer als bei den derzeit üblichen Fehlerstromschutzschaltern, die nach dem Gegenerregungsprinzip arbeiten. Andererseits will man die Dimensionen des Ankers nicht vergrößern, da sonst die zur Auslösung nötige Energie ansteigt. Auf einen kleinen Anker wirkt sich jedoch ein im magnetischen System bestehender Remanentmagnetismus viel stärker aus. Die Folgen dieser Remanenz können sein, daß der Schalter nach einer voraufgegangenen Abschaltung, die einen Remanentmagnetismus hinterlassen hat, nicht mehr eingeschaltet werden kann.
  • Der Erfindung liegt die Aufgabe zugrunde, einen Fehlerstromschutzschalter zu entwickeln, der auf gleichstromkomponenten ansprechen kann und ohne elektrische Übertragungsmittel, wie Sekundärspule, auskommt. Die Lösung der geschilderten Aufgabe besteht darin, daß der Kern seinerseits in mehreren Windungen die betriebsstromführenden Leiter umschließt.
  • Bei Gleichstrom einer bestimmten Richtung kann der Fehlerstromschutzschalter ansprechen, da auch ein Gleichstrom-Fehlerstrom im magnetischen System des Auslösers einen Magnetfluß erzeugen kann, und weil die betriebsstromführenden Leiter direkt durch den Kern geführt sind. Dabei werden jedoch die Nachteile der bekannten Fehlerstromschutzschalter, die nach dem Prinzip des Sperrmagneten arbeiten, vermieden, da die betriebsstromführenden Leiter beim erfindungsgemäßen Fehlerstromschutzschalter eine erhöhte Durchflutung bewirken.
  • Durch ein zweites magnetisches System, das bei Gleichstrom entgegengesetzter Polarität anspricht, kann sonach ein Fehlerstromschutzschalter gebaut werden, der auf Gleichstrom-Fehlerströme beliebiger Richtung anspricht, wie es an sich bekannt ist (DE-OS 21 63 402).
  • Darüber hinaus kann man nach einer Weiterbildung die Remanenz dadurch abbauen, daß der Kern zumindest auf einem Teil seiner Länge in zwei Bahnen aufgeteilt ist und daß auf jeder dieser Bahnen eine Spule gewickelt ist, die an einer Wechselstromquelle angeschlossen ist, und die zusammen einen magnetischen Umlaufsinn ergeben. Man kann den Kern auch hohl ausbilden, so daß er einen elektrischen Leiter aufnehmen kann, der an eine Weckselstromquelle angeschlossen ist.
  • Einen Fehlerstromschutzschalter nach dem Gegenerregungsprinzip kann man so aufbauen, daß das magnetische System des Auslösers aus drei beidseits an ihren Enden miteinander verbundenen Schenkeln besteht, dessen einer Schenkel den Kern für die betriebsstromführenden Leiter bildet und in dessen einem der anderen Schenkel der Dauermagnet und der Anker des Auslösers angeordnet sind. Dadurch wird die Weglänge des vom Dauermagneten erzeugten magnetischen Flusses, der den Anker festhält, verkürzt und der Streufluß vermindert. Man kann auch das magnetische System der Auslösers aus drei beidseits an ihren Enden miteinander verbundenen Schenkeln aufbauen, wobei einer der Schenkel den Kern für die betriebsstromführenden Leiter bildet und wobei in den anderen Schenkeln der Dauermagnet bzw. der Anker des Auslösers angeordnet sind.
  • Man kann im magnetischen System des Auslösers des Fehlerstromschutzschalters eine magnetische Spannung einprägen, wobei der Induktionsfluß im magnetischen System des Auslösers dann vom Innenwiderstand des Dauermagneten unabhängig wird. Dies erzielt man einfach dadurch, daß der Dauermagnet an einem Schenkel des magnetischen Systems seitlich anliegt, wie es in den Figuren 4, 5 und 2 veranschaulicht ist.
  • Man kann einen Fehlerstromschutzschalter erfindungsgemäß auch einfach dadurch aufbauen, daß das magnetische System des Auslösers einen geschlossenen Kreis bildet, in dem zwischen dem Kern für die betriebsstromführenden Leiter und dem Anker des Auslösers zumindest ein Dauermagnet liegt und daß bei zwei Dauermagneten diese in einer Flußrichtung angeordnet sind.
  • Die Erfindung soll anhand von in der Zeichnung grob schematisch wiedergegebenen Ausführungsbeispielen näher erlaütert werden:
    • In den Fig. 1 und 2 ist veranschaulicht, wie man eine Spannungsquelle mit eingeprägter magnetischer Spannung herstellen kann.
    • In Fig. 3 ist der prinzipielle Aufbau eines Fehlerstromschutzschalters wiedergegeben.
    • In Fig. 4 ist eine Ausgestaltung des Fehlerstromschutzschalters dargestellt.
    • In Fig. 5 ist eine weitere Ausgestaltung des Fehlerstromschutzschalters wiedergegeben.
    • In Fig. 6 ist eine Weiterbildung des Fehlerstromschutzschalters dargestellt.
    • In Fig. 7 ist ein andersartig weitergebildeter Fehlerstromschutzschalter dargestellt.
  • Der Fehlerstromschutzschalter nach Fig. 3 weist ein magnetisches System 1 aus magnetisch leitendem Material auf. Hierfür eignet sich Weicheisen oder eine hochpermeable Nickel-Eisen-Legierung. Ein Kern 3, der um die betriebsstromführenden Leiter 8 gewickelt ist, ist Teil des magnetischen Systems. Der Kern 3 kann aus Weicheisen oder einer hochpermeablen Nickel-Eisen-Legierung bestehen.
  • Dieser Draht wird beispielsweise mehrere Male durch das Loch bzw. Fenster der Spulen 5, für je einen betriebsstromführenden Leiter 8, hindurchgeführt. Der Einfachheit halber ist in den Figuren der Zeichnung jeweils nur eine Spule 5 für einen betriebsstromführenden Leiter 8 dargestellt. Dar betriebsstromführende Leiter 8 könnte durch den spulenförmig ausgebildeten Kern 3 auch lediglich einfach, also nicht in Form einer Spule durchgeführt sein.
  • Wie bei einem Transformator die elektrische Spannung der Sekundärspule um so größer wird, je höher die Windungszahl der Sekundärspule ist, so wird hier die magnetische Spannung mit der Zahl der Windungen des Kerns höher. Dadurch wird die vom betriebsstromführenden Leiter bewirkte Durchflutung gesteigert.
  • Nach Fig. 3 wird der Magnetfluß zum Halten eines Ankers 4 durch Dauermagneten 11 und 11 b erzeugt. Die Dauermagneten 11 a und 11 b sind so angeordnet, daß sie eine magnetische Induktion einer Umlaufrichtung erzeugen und daß zwischen Anker 4 und Kern 3 möglichst wenig Streulinien auftreten können. Der Anker 4 wirkt in üblicher Weise auf ein Schaltschloß 6. .Mit 7 ist die Umlaufrichtung einer von den Dauermagneten 11 a und 11 b erzeugten magnetischen Induktion veranschaulicht. Der Kern 3 umschließt die betriebsstromführenden Leiter 8 in mehreren Windungen. Ein minimaler Abstand zwischen den einzelnen Windungen des Kerns 3 läßt sich dadurch erzielen, daß um das magnetisch leitende Material eine Hülle aus unmagnetischem Material als Distanzhlater aufgezogen wird.
  • Die Anordnung nach Fig. 3 kann als eine Serienschaltung einer Magnetspannungsquelle, bestehend aus den Dauermagneten 11 und 11b, mit einem Kern 3 und dem Anker 4 aufge-. faßt werden. Der Fehlerstromschutzschalter spricht an, wenn ein Fehlerstrom im Kern 3 einen magnetischen Fluß entgegen der Induktionsrichtung 7 erzeugt, so daß durch den Anker 4 kein oder nur so wenig magnetischer Fluß fließt, daß der Anker 4 abfallen und das Schaltschloß 6 auslösen kann. Dieses bewirkt dann in üblicher Weise die Unterbrechung der betriebsstromführenden Leiter an vorgesehen Schaltkontakten.
  • Zur Unterdrückung des remanenten Magnetismus kann man den Kern nach Fig. 6 in seiner Länge in zwei Bahnen aufteilen. Der Induktions": flußleiter des magnetischen Systems ist dort in die Bahnen 3a und 3b aufgeteilt. Auf jede dieser Bahnen ist eine Spule 61 und 62 gewickelt. Die Spulen 61 und 62 sind am einen Ende bei 63 verbunden und an ihrem anderen Ende 64 bzw. 65 mit einer Wechselstromquelle 66 verbunden. Der Aufbau entspricht im übrigen dem nach Fig. 4, wobei der Permanentmagnet mit 11 bezeichnet ist. Der von den Spulen 61 und 62 erzeugte Induktionsfluß verläuft in Richtung des Umlaufssinns 7, falls der Wechselstrom im Augenblick der Betrachtung vom Punkt 65 zum Punkt 64 fließt.
  • Der von den beiden Spulen 61 und 62 erzeugte Induktionsfluß verläuft über die Bahnen 3a und 3b des Kerns, jedoch nicht über den Schenkel des Auslösemagneten mit dem Anker 4. Er stört also den magnetischen Fluß, der den Anker 4 festhält, nicht; er baut jedoch den remanenten Magnetfluß ab. Die Bahnen 3a und 3b des Kerns weisen günstigerweise gleichen Querschnitt auf.
  • Man kann die Remanenz auch dadurch vermindern, daß der Kern 3 hohl ausgebildet wird und einen elektrischen Leiter 71 aufnimmt, der an eine Wechselstromquelle 66 angeschlossen ist, wie es in Fig. 7 bei grundsätzlichem Aufbau nach Fig. 4 veranschaulicht ist. Betriebsstromführende Leiter sind einzeln eingezeichnet, L1, L2, L3, N, und gemeinsam mit 8 bezeichnet. Bei einem Aufbau nach Fig. 7 ist der Induktionsflußleiter für den Kern 3 beispielsweise ein Rohr aus weichmagnetischem Material. Durch dieses Rohr kann ein elektrisch isolierter Kupferdraht geführt werden. Der ihn durchfließende Wechselstrom bewirkt einen Induktionsfluß, der innerhalb der Wandung des Rohres eine Bahn beschreibt, die die Form eines Kreises hat, dessen Zentrum auf der gedachten Mittelachse des Rohres liegt.
  • Zur Verkürzung des Weges, den der magnetische Fluß, welcher den Anker des Auslösers hält, zurücklegen muß, also zwischen einem als Magnetspannungsquelle dienenden Dauermagneten und dem Anker, kann man das magnetische System 1 des Auslösers entsprechend Fig. 4 ausbilden. Auch dieser Fehlerstromschutzschalter arbeitet ebenso wie der nach Fig. 3 nach dem Prinzip der Gegenerregung. Die betriebsstromführenden Leiter 8, im Ausführungsbeispiel ist nur eine Spule 5 dargestellt, sind mit dem spulenförmigen Kern 3 verkettet. Das magnetische System 1 des Auslösers besteht aus drei beidseits endständig miteinander verbundenen Schenkeln 41, 42 und 43. Die Verbindungsstellen sind mit 44 und 45 bezeichnet.
  • Der Fehlerstromschutzschalter nach Fig. 4 löst dann aus, wenn der in der Anordnung der Spulen 5, von denen der Übersichtlichkeit wegen wieder nur eine Spule 5 dargestellt ist, fließende Strom im Kern 3 einen magnetischen Fluß hervorruft, der hier von links nach rechts verläuft. Ein Teil dieses Flusses fließt über den Schenkel 41. Hier überlagert er sich dem Fluß, der den Anker hält - Flußrichtung 7. Da beide Flüsse entgegengesetzte Richtung haben, vermindert sich der über den Anker fließende gesamte Fluß und der Anker fällt ab.
  • Man kann das magnetische System des Auslösers nach Fig. 5 auch aus drei beidseits an ihren Enden miteinander verbundenen Schenkeln 41, 42, 43 aufbauen, wobei ein Schenkel wieder den Kern 3 für die betriebsstromführenden Leiter bildet und wobei in den anderen Schenkeln 42, 41 der Dauermagnet 11 1 bzw. der Anker 4 angeordnet sind. Auch dieser Fehlerstromschutzschalter arbeitet nach dem Prinzip der Gegenerregung; der Anker 4 fällt also ab, wenn im Kern 3 ein Fluß induziert wird, der - anhand der Zeichnung orientiert - von links nach rechts, also von der Verbindungsstelle 44 über den Kern 3 zur Verbindungsstelle 45 verläuft.
  • Legt man einen Dauermagneten nach Fig. 1 auf einen flachen Induktionsflußleiter, also auf einen magnetisch leitenden Körper, wie es in Fig. 2 dargestellt ist, wobei der Abstand zwischen Dauermagnet 11 und Induktionsflußleiter 22 übertrieben dargestellt ist, so erhält man eine Anordnung, die man als Magnetspannungsteiler, also als einen Spannungsteiler für magnetische Spannung, bezeichnen kann, in Anlehnung an die Wirkungsweise eines elektrischen Spannungsteilers. Man kann den Dauermagnet 11 als Quelle für einen Induktionsfluß ansehen, deren innerer Widerstand hoch ist. Gemäß Fig. 2 fließt der größte Teil des Induktionsflusses vom Nordpol N über den darunter liegenden Induktionsflußleiter 22 zum Südpol S. Der zwischen Nordpol und Südpol auftretende Abfall der magnetischen Spannung stellt einen Teil der vom Dauermagneten verfügbaren Urspannung dar. Die Anordnung nach Fig. 2 wirkt daher nach außen wie eine Quelle für magnetische Spannung. Auch ein rohrförmiger Dauermagnet, der in Längsrichtung magnetisiert ist und über einen Induktionsflußleiter nach Fig. 3 geschoben wird, stellt eine solche Magnetspannungsquelle dar. Voraussetzung ist in beiden Fällen, daß der Schenkelabschnitt, der am Dauermagnet anliegt, bzw. vom rohrförmigen Dauermagnet umschlossen wird, magnetisch ungesättigt ist. Das heißt, daß der vom Dauermagneten in den Schenkel eintretende Fluß nicht zu stark ist.
  • Andernfalls, wenn der magnetische Schenkel gesättigt ist, hat man eine Quelle für konstanten magnetischen Fluß, die im nachfolgenden kurz Flußquelle genannt wird. Eine magnetische Flußquelle erhält man auch, wenn man einen Induktionsflußleiter, beispielsweise einen Schenkel des magnetischen Systems, auftrennt und einen Dauermagneten einfügt. Bei einer solchen Quelle ist der magnetische Fluß konstant und ziemlich unabhängig von dem magnetischen Widerstand der angeschlossenen Schaltung.
  • Bei den zuvor aufgezählten drei grundsätzlichen Ausführungen ist für die beiden ersten Fälle, z.B. nach Fig. 3 und Fig. 4 die magnetische Spannungsquelle die geeignetste, indessen für die dritte Ausführung, z.B. nach Fig. 5, die magnetische Flußquelle am geeignetsten ist.
  • Die Unterdrückung des remanenten Magnetismus durch eine Wechselstromquelle 66 bei Fehlerstromschutzschaltern nach Fig. 6 sowie nach Fig. 7 ermöglicht es, die Auflageflächen des Ankers 4 präzis geschliffen herzustellen. Man vermeidet dabei trotzdem die Gefahr, daß der Anker durch remanenten Magnetismus kleben könnte, wenn er infolge eines eingetretenen Fehlerstroms abschalten sollte.
  • Der erfindungsgemäße Aufbau eines Fehlerstromschutzschalters kann sowohl auf Schutzschalter angewandt werden, die nach dem Prinzip des Sperrmagneten arbeiten, wie auf solche, die nach dem Prinzip der Gegenerregung arbeiten. Bei den veranschaulichten Fehlerstromschutzschaltern, die nach dem Prinzip der Gegenerregung arbeiten, kann man eine Auslösung für Gleichstrom-Fehlerströme beliebiger Polarität durch zwei Systeme erreichen, von denen ein System auf eine Polarität und das andere System auf die andere Polarität anspricht. Ein solcher Schutzschalter kann dann mit zwei Auslösern ausgerüstet sein, deren Dauermagnete Dei sonst gleicher Ausführung umgekehrt ausgerichtet sind. Es ist dann zweckmäsig, beide Anker durch einen Steg miteinander zu verbinden und diesen auf dass Schaltschloß einwirken zu lassen.

Claims (7)

1. Fehlerstromschutzschalter, dessen betriebsstromführende Leiter (8) mit einem Kern (3) verkettet sind, dessen magnetischer Induktionsfluß (7) im Fehlerfall das Ansprechen eines Auslösers bewirkt, indem ein Anker (4) des Auslösers bei Überlagerung eines Dauermagnetfeldes mit einem vom Fehlerstrom bewirkten Magnetfeld vom magnetischen System (1) des Auslösers abfällt, wobei der Kern (3) Teil des magnetischen Systems (1) des Auslösers ist, dadurch gekennzeichnet, daß der Kern (3) seinerseits in mehreren Windungen die betriebsstromführenden Leiter (8) umschließt.
2. Fehlerstromschutzschalter nach Anspruch 1, dadurch gekennzeichnet, daß der Kern zumindest auf einem Teil seiner Länge in zwei Bahnen (3a, 3b) aufgeteilt ist und daß auf jeder dieser Bahnen eine Spule (61; 62) gewickelt ist, die an einer Wechselstromquelle (66) angeschlossen ist und die zusammen einen magnetischen Umlaufsinn (7) ergeben (Fig. 6).
3. Fehlerstromschutzschalter nach Anspruch 1, dadurch gekennzeichnet, daß der Kern (3) hohl ausgebildet ist und einen elektrischen Leiter (71) aufnimmt, der an eine Wechselstromquelle (66) angeschlossen ist (Fig. 7).
4. Fehlerstromschutzschalter nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß das magnetische System (1) des Auslösers aus drei beidseits an ihren Enden miteinander verbundenen Schenkeln (41, 42, 43) besteht, dessen einer Schenkel den Kern (3) für die betriebsstromführenden Leiter (8) bildet und in dessen einem der anderen Schenkel der Dauermagnet (11) und der Anker (4) des Auslösers angeordnet sind (Fig. 4).
5. Fehlerstromschutzschalter nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß das magnetische System des Auslösers aus drei beidseits an ihren Enden miteinander verbundenen Schenkeln (41, 42, 43) besteht, dessen einer Schenkel (43) den Kern (3) für die betriebsstromführenden Leiter (8) bildet, wobei in den anderen Schenkeln (41, 42) der Dauermagnet (11) bzw. der Anker (4) des Auslösers angeordnet sind (Fig. 5).
6. Fehlerstromschutzschalter nach Anspruch 4 oder 5, dadurch gekennzeichnet, daß der Dauermagnet (11) am Schenkel (41; 42) seitlich anliegt (Fig. 4, Fig. 5, Fig. 2).
7. Fehlerstromschutzschalter nach einem der Ansprüche 2 bis 3, dadurch gekennzeichnet, daß das magnetische System (1) des Auslösers einen geschlossenen Kreis bildet, in dem zwischen dem Kern (3) für die betriebsstromführenden Leiter und dem Anker (4) des Auslösers zumindest ein Dauermagnet (11 a, 11 b) liegt und daß bei zwei Dauermagneten diese in einer Flußrichtung (7) angeordnet sind (Fig. 3).
EP78900088A 1977-08-22 1978-08-18 Fehlerstromschutzschalter Expired EP0006894B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
LU78012 1977-08-22
LU78012A LU78012A1 (de) 1977-08-22 1977-08-22 Fehlerstromschutzschalter

Publications (2)

Publication Number Publication Date
EP0006894A1 EP0006894A1 (de) 1980-01-23
EP0006894B1 true EP0006894B1 (de) 1981-06-03

Family

ID=19728682

Family Applications (1)

Application Number Title Priority Date Filing Date
EP78900088A Expired EP0006894B1 (de) 1977-08-22 1978-08-18 Fehlerstromschutzschalter

Country Status (6)

Country Link
EP (1) EP0006894B1 (de)
JP (1) JPS5453275A (de)
DE (1) DE2860745D1 (de)
IT (1) IT1098158B (de)
LU (1) LU78012A1 (de)
WO (1) WO1979000105A1 (de)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
LU79817A1 (de) * 1978-06-15 1980-01-22 N Gath Fehlerstromschutzschalter
KR101153117B1 (ko) 2011-02-25 2012-06-04 엘에스산전 주식회사 누전 차단기

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3165671A (en) * 1960-08-10 1965-01-12 Thompson Ramo Wooldridge Inc Polyphase control device
CH406365A (de) * 1963-04-08 1966-01-31 Dresden Elektroschaltgeraete Auslöseeinrichtung für verklinkbare Schalter
US3302146A (en) * 1965-03-02 1967-01-31 Ite Circuit Breaker Ltd Rotary armature flux shifting device
FR2370354A1 (fr) * 1976-11-05 1978-06-02 Metalimphy Declencheur differentiel polarise

Also Published As

Publication number Publication date
IT1098158B (it) 1985-09-07
DE2860745D1 (en) 1981-09-10
LU78012A1 (de) 1979-04-09
EP0006894A1 (de) 1980-01-23
JPS5453275A (en) 1979-04-26
IT7826862A0 (it) 1978-08-21
WO1979000105A1 (en) 1979-03-08

Similar Documents

Publication Publication Date Title
DE3215057A1 (de) Selbsthaltendes solenoid
EP2338210B1 (de) Elektromechanisches verbindungssystem
DE3932274C2 (de) Polarisierte elektromagnetische Vorrichtung
DE2533859C2 (de)
DE69304680T2 (de) Elektromagnetischer betätiger mit ferromagnetischen wicklungen
DE3545149C2 (de)
EP0006894B1 (de) Fehlerstromschutzschalter
EP0327894A1 (de) Magnetischer Steuerantrieb
DE2856316C3 (de) Elektronisches Auslösesystem für Schutzschalter, insbesondere für Fehlerstrom-Schutzschalter
DE1194497B (de) Elektromagnetische Schaltvorrichtung mit Schutzrohrankerkontakt
EP0006903A1 (de) Fehlerstromschutzschalter, der auf Gleichstromfehlerströme beider Polarität anspricht
EP0268804B1 (de) Elektrische Schaltanordnung
DE1665759C3 (de) Magnetfeldbetätigte Kontaktanordnung
EP0504666B1 (de) Fang- und Haltemagnet
AT234163B (de) Mehrfach-Kontaktanordnung
DD134166B1 (de) Hochempfindlicher haltemagnetausloeser
DE2163402C3 (de) Auslöser für Fehlerstromschutzschalter
DE966574C (de) Relaisanordnung fuer UEberstrom und Rueckstrom
AT267660B (de) Relais mit Schutzrohrwechselkontakt
DE1182748B (de) Elektrisches Schaltgeraet
DE2807311A1 (de) Polarisiertes relais
AT216081B (de) Elektrischer Schalter
DE102011052003B4 (de) Schaltvorrichtung mit Überlastsicherungsvorrichtung und einem ersten und einem zweiten Betätigungsorgan
DE1808900C (de) Elektromagnetische Vorrichtung mit einer wenigstens naherungsweise linearen Strom Kraft Beziehung
DE914263C (de) Schutzeinrichtung fuer Senderoehren

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): CH DE FR SE

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): CH DE FR SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY

Effective date: 19810603

Ref country code: FR

Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY

Effective date: 19810603

Ref country code: CH

Effective date: 19810603

REF Corresponds to:

Ref document number: 2860745

Country of ref document: DE

Date of ref document: 19810910

17P Request for examination filed

Effective date: 19790908

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19830201

EUG Se: european patent has lapsed

Ref document number: 78900088.2

Effective date: 19820309

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT