EP0004569B1 - Procédé d'oxydation anodique de l'aluminium et son utilisation comme matériau porteur pour plaques d'impression - Google Patents

Procédé d'oxydation anodique de l'aluminium et son utilisation comme matériau porteur pour plaques d'impression Download PDF

Info

Publication number
EP0004569B1
EP0004569B1 EP79100695A EP79100695A EP0004569B1 EP 0004569 B1 EP0004569 B1 EP 0004569B1 EP 79100695 A EP79100695 A EP 79100695A EP 79100695 A EP79100695 A EP 79100695A EP 0004569 B1 EP0004569 B1 EP 0004569B1
Authority
EP
European Patent Office
Prior art keywords
range
aluminum
electrolyte
per liter
current density
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP79100695A
Other languages
German (de)
English (en)
Other versions
EP0004569A1 (fr
Inventor
Gerhard Dr. Usbeck
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hoechst AG
Original Assignee
Hoechst AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoechst AG filed Critical Hoechst AG
Publication of EP0004569A1 publication Critical patent/EP0004569A1/fr
Application granted granted Critical
Publication of EP0004569B1 publication Critical patent/EP0004569B1/fr
Expired legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • C25D11/02Anodisation
    • C25D11/04Anodisation of aluminium or alloys based thereon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41NPRINTING PLATES OR FOILS; MATERIALS FOR SURFACES USED IN PRINTING MACHINES FOR PRINTING, INKING, DAMPING, OR THE LIKE; PREPARING SUCH SURFACES FOR USE AND CONSERVING THEM
    • B41N3/00Preparing for use and conserving printing surfaces
    • B41N3/03Chemical or electrical pretreatment
    • B41N3/034Chemical or electrical pretreatment characterised by the electrochemical treatment of the aluminum support, e.g. anodisation, electro-graining; Sealing of the anodised layer; Treatment of the anodic layer with inorganic compounds; Colouring of the anodic layer
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • C25D11/02Anodisation
    • C25D11/04Anodisation of aluminium or alloys based thereon
    • C25D11/06Anodisation of aluminium or alloys based thereon characterised by the electrolytes used
    • C25D11/08Anodisation of aluminium or alloys based thereon characterised by the electrolytes used containing inorganic acids
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S205/00Electrolysis: processes, compositions used therein, and methods of preparing the compositions
    • Y10S205/921Electrolytic coating of printing member, other than selected area coating

Definitions

  • the invention relates to a process for the anodic oxidation of aluminum, the use of the material produced thereby as Druckplati p n-substrate and a method for manufacturing a printing plate support material.
  • the substances causing the veil are also dissolved out of the depth of the oxide layer.
  • the corrected areas appear as bright areas on a tinted background.
  • the sensitivity to alkali and the correction spots mentioned lead to difficulties in printing, which can be caused by the tendency of the printing plates to toning in their non-image areas and by a reduced circulation of the printing plates.
  • the process for the anodic oxidation of printing plate support materials made of aluminum according to DE-A 23 28 606 is carried out using an aqueous electrolyte of about 15% by weight H 2 SO 4 (approx. 165 g H 2 SO 4 / ltr) than 70 ° C, a current density of 16.1 A / dm 2 to 108 A / dm 2 for 10 sec to 60 sec.
  • the anodic oxidation can be preceded by an electrochemical roughening or a further chemical treatment step can be added.
  • DE-A 22 48 743 describes an aqueous H 2 S0 4- containing electrolyte for the production of printing plate support materials of approximately 10 to 35 wt .-% H 2 S0 4 (approx. 106 to 435 g H 2 SO 4 / Itr.) described, which at 20 to 40 ° C, a current density of 4 to 15 A / dm 2 and a relative linear velocity against the aluminum strip of at least 2 m / min is used.
  • CH-A 161 851 describes a process for the anodic oxidation of aluminum, in which, in an aqueous electrolyte of, for example, 900 g of aluminum sulfate (approx. 3.95 g of Al 3+ / liter), 13.5 liters. H 2 O and 4.5 ltr. H 2 SO 4 (approx. 450 g H 2 SO 4 / Itr.), Electrolysed at a current density of 0.1 to 0.35 A / dm 2 , at a temperature of 15 to 32 ° C and for 15 to 50 min becomes.
  • an aqueous electrolyte of, for example, 900 g of aluminum sulfate (approx. 3.95 g of Al 3+ / liter), 13.5 liters. H 2 O and 4.5 ltr. H 2 SO 4 (approx. 450 g H 2 SO 4 / Itr.)
  • the process for producing a corrosion-resistant layer of high wear resistance on aluminum alloys with about 6% Cu content according to DE-B 12 57 523 is carried out in an aqueous electrolyte from 240 to 300 g H 2 SO 4 / ltr., A content of at least 50 g Al 2 O 3 / Itr. (approx. 27 g Al 3+ / Itr) and a current density of 1 to 12 A / dm 2 for about 30 min.
  • Hard layers with a thickness of 100 to 180 ⁇ m are, according to DE-A 12 33 472 at a temperature of about 15 ° C to 20 ° C in a bath of 250 to 300 g aluminum sulfate / liter, 30 to 40 g oxalic acid / liter. and 7 to 20 g glycerol / ittr. on aluminum with a current density of 2.5 to 3 A / dm 2 for 1 to 2.5 hours.
  • JP-A 72 44 129 (cited in Chemical Abstracts, Vol. 79, No. 26, citation 15 2282n) describes a process for the anodic oxidation of aluminum surfaces, which is carried out in an electrolyte from 3 to 7% by volume of H 2 SO 4 , 10 to 200 g / l of alkali metal sulfate, 3 to 15 g / l of aluminum sulfate (ie less than 3 g / l of Al 3+ ions) and 10 to 50 g / l of oxalic acid at a temperature of 30 up to 55 ° C and a current density of 3 to 30 A / dm 2 is carried out.
  • the object of the invention is therefore to propose a method for producing anodically oxidized aluminum, with the abrasion-resistant, alkali-resistant, less porous aluminum oxide layers of sufficient strength can be produced on aluminum strips, foils or plates at economically justifiable energy costs.
  • the invention is based on the known process for the anodic oxidation of strip, foil or plate-shaped material made of aluminum or its alloys in an aqueous. Electrolytes containing sulfuric acid and aluminum ions, if necessary after previous mechanical, chemical or electrochemical roughening.
  • the process according to the invention is characterized in that the material in an electrolyte free of alkali sulfate and oxalic acid has a concentration of sulfuric acid of 25 to 100 g / l. and anodized on aluminum ions of 10 to 25 g / l, at a current density of 4 to 25 A / dm 2 and at a temperature of 25 ° to 65 ° C.
  • this method is used to produce a strip, film or plate-shaped printing plate carrier material.
  • printing plate is generally understood to mean a printing plate for planographic printing, which mainly consists of a flat support made of one or more materials and one or more likewise flat photosensitive layers attached to it.
  • Both methods are used in particular in an electrolyte with a concentration of sulfuric acid of 30 to 75 g / ltr. and on aluminum ions of 15 to 20 g / ltr., at a current density of 6 to 15 A / dm2 and at a temperature of 40 ° to 55 ° C.
  • the electrolyte is made of conc. H Z S0 4 , water and an added aluminum salt. in particular aluminum sulfate, made so that it to 1 liter. Electrolyte based 25 to 100 g H 2 SO 4 , preferably 30 to 75 g H z S0 4 , and 10 to 25 g Al 3+ ions in solution, preferably 15 to 20 g Al 3+ ions, contains.
  • the concentration ranges of the electrolyte components are checked at regular intervals, since they are of crucial importance for an optimal course of the process, and the electrolyte is then regenerated discontinuously or preferably continuously. Detailed information on the production, monitoring and regeneration of electrolytes in the anodic oxidation of aluminum can be found in W.
  • This device has a treatment tub filled with the electrolyte, an inlet and an outlet opening for the band to be treated in the two end walls of the tub below the liquid level of the electrolyte, at least one electrode arranged above the metal band and devices for generating a rapid electrolyte flow between the transport path of the tape and the electrode surface.
  • the electrolyte flow is generated by a bell-like chamber arranged along each tub end wall, which overflows the electrolyte with a liquid drain into a reserve container located below the tub, a gas space sealed off from the outside air above the liquid level and a gas chamber that begins in this gas space. contains gas line connected to a suction pump.
  • this device also has a pump for conveying the electrolyte from the reserve container into the tub.
  • the process according to the invention is expediently carried out in such a way that the duration of the treatment of the anodic oxidation — ie the stay of a surface point in the area of influence of the electrode (s) —is in the range from 5 to 60 seconds, preferably from 10 to 35 seconds.
  • Layer weights of aluminum oxide in the range from 1 to 10 g / m 2 (corresponding to a layer thickness of approximately 0.3 to 3.0 ⁇ m), preferably approximately 2 to 4 g / m 2 can then be obtained.
  • Good electrolyte circulation is required in the practice of the invention. This can be generated either by stirring or by pumping around the electrolyte. In the case of continuous implementation (see, for example, DE-B 22 34 424), care must be taken to ensure that the electrolyte is guided as parallel as possible to the strip to be treated under turbulent flow at high speed while ensuring good material and heat exchange. The flow rate of the electrolyte relative to the strip is then expediently more than 0.3 misec.
  • Direct current is preferably used for anodic oxidation, but alternating current or can also be used a combination of these types of current (e.g. direct current with superimposed alternating current or similar) can be used.
  • the process according to the invention for the anodic oxidation of aluminum can also be preceded by one or more pretreatment steps, in particular a roughening step, in particular in the embodiment of the process according to the invention for producing a printing plate carrier material.
  • Pretreatment is understood to mean either a mechanical surface treatment by grinding, polishing, brushing or blasting, a chemical surface treatment for degreasing, pickling or matting or an electrochemical surface treatment by the action of the electric current (mostly from alternating current) in an acid such as HCI or HN0 3 .
  • the mechanical and electrochemical treatment of the surfaces of the aluminum in particular lead to roughened surfaces.
  • the average roughness depth R z is in the range from about 1 to 15 ⁇ m, in particular in the range from 4 to 8 ⁇ m.
  • the roughness depth is determined in accordance with DIN 4768 in the version from October 1970, the roughness depth R z is then the arithmetic mean of the individual roughness depths of five adjacent individual measuring sections.
  • the individual roughness depth is defined as the distance between two parallels to the middle line, which touch the roughness profile at the highest or lowest point within the individual measuring section.
  • the individual measuring section is the fifth part of the length of the part of the roughness profile which is used directly for evaluation and is projected perpendicular to the middle line.
  • the middle line is the line parallel to the general direction of the roughness profile from the shape of the geometrically ideal profile, which divides the roughness profile so that the sums of the material-filled areas above it and the material-free areas below it are equal.
  • the method according to the invention for the anodic oxidation of aluminum can also be simulated, also in particular in the embodiment of the method according to the invention for producing a printing plate carrier material, by one or more post-treatment stages.
  • These post-treatment stages serve in particular to additionally increase the hydrophilicity of the aluminum oxide layer, which is already sufficient for many areas of application, the remaining known properties of this layer being at least retained.
  • Suitable layers also include the electrophotographic layers, i.e. H. those containing an inorganic or organic photoconductor. In addition to the light-sensitive substances, these layers can of course also other components such. B. contain resins, dyes or plasticizers.
  • Negative-working condensation products from aromatic diazonium salts and compounds with active carbonyl groups preferably condensation products from diphenylamine diazonium salts and formaldehyde, which are described, for example, in DE Pat - Patent specifications 2679498 and 3 050 502 and GB-A 712 606 are described.
  • Negative mixed condensation products of aromatic diazonium compounds for example according to DE-A 20 24 244, which each have at least one unit of the general types A (-D) n and B connected by a double-bonded intermediate member derived from a condensable carbonyl compound.
  • A is the remainder of a compound containing at least two aromatic carbocyclic and / or heterocyclic nuclei which is capable of condensation with an active carbonyl compound in at least one position in an acid medium
  • D is one on an aromatic carbon atom
  • Diazonium salt group bonded by A: n is an integer from 1 to 10: and B is the remainder of a compound free of diazonium groups, which is capable of condensing with an active carbonyl compound in at least one position of the molecule in an acid medium.
  • Positive-working layers according to DE-A 26 10 842 which contain a compound which cleaves off on irradiation, a compound which has at least one CO - C group which can be cleaved by acid (e.g. an orthocarboxylic acid ester group or a carboxylic acid amide acetal group) and, if appropriate Contain binders.
  • acid e.g. an orthocarboxylic acid ester group or a carboxylic acid amide acetal group
  • Contain binders e.g. an orthocarboxylic acid ester group or a carboxylic acid amide acetal group
  • the monomers used here are, for example, acrylic and methacrylic acid esters or reaction products of diisocyanates with partial esters of polyhydric alcohols, as described, for example, in US Pat. Nos. 2,760,863 and 3,060,023 and DE Publications 2064079 and 23 61 041.
  • photoinitiators are u. a. Benzoin, bezoin ethers, multi-core quinones, acridine derivatives, phenazine derivatives, quinoxaline derivatives, quinazoline derivatives or synergistic mixtures of different ketones.
  • a variety of soluble organic polymers can be used as binders, e.g. Polyamides, polyesters, alkyd resins, polyvinyl alcohol, polyvinyl pyrrolidone, polyethylene oxide, gelatin or cellulose ether.
  • an anodically oxidized strip, sheet or plate-shaped material made of aluminum or its alloys can be produced in a surprising manner by the process according to the invention, which has an abrasion-resistant, alkali-resistant and less porous surface in sufficient strength for many fields of application.
  • a printing plate support material produced by this method and provided with a layer sensitive to lithography shows no or at least reduced "fog".
  • This goal could be achieved in the process according to the invention by the combination of process features that were judged to be rather detrimental to the achievement of this goal, namely the use of a low H 2 SO 4 concentration, a high Al 3+ ion concentration, a relative high electrolyte temperature, a high current density and a high flow rate of the electrolyte.
  • Blank aluminum strip with a thickness of 0.3 mm is degreased with an alkaline pickling solution (an aqueous solution of 20 g NaOH per liter of solution) at an elevated temperature of about 50 to 70 ° C.
  • alkaline pickling solution an aqueous solution of 20 g NaOH per liter of solution
  • the electrochemical roughening of the aluminum surface takes place in an apparatus created according to the teaching of DE-B 22 34 424 with alternating current and in an electrolyte containing HN0 3 .
  • a similar device is used for the subsequent anodic oxidation with direct current, but the current is supplied via a contact roller.
  • the anodizing electrolyte contains 50 g H 2 SO 4 / Itr. and 20 g Al 3+ / Itr.
  • Aluminum ions, the Al 3+ ion concentration by dissolving 247 g Al 2 (SO 4 ) 3 .18 H 2 O per Itr. is produced.
  • the flow in the above-mentioned apparatus is turbulent for achieving a good material and heat exchange, the flow rate of the electrolyte is more than 0.3 m / sec.
  • the weight of the photosensitive layer applied to the anodized support is approximately 3 g / m 2 .
  • the color value of the surface is measured as a difference in color value x I -x II of 6.4 x 10 3 .
  • the zincate test gives a measuring time of about 35 seconds.
  • the "fog" of the printing plate support is low and the alkali resistance is good.
  • Rolled aluminum strip with a thickness of 0.3 mm is alkali-pickled and roughened according to the instructions in Example 1.
  • the subsequent anodic oxidation takes place in an apparatus created according to the teaching of DE-B 22 34 424 with an electrolyte containing 100 g H 2 SO 4 / it. and 20 g Al 3+ / Itr. contains.
  • At a bath temperature of 35 ° C and a current density of 10 A / dm 2 , 3 g / m 2 of aluminum oxide can be built up in 25 seconds.
  • the dyeing test gives a difference in color value x I -x II of 18 ⁇ 10 3 , the zincate test a measuring time of 24 sec.
  • the "fogging" of the printing plate support is low and the alkali resistance is good.
  • Rolled aluminum strip with a thickness of 0.3 mm is alkali pickled and electrochemically roughened as described in Example 1.
  • the anodic oxidation takes place in a device created according to the teaching of DE-B 22 34 424.
  • the electrolyte contains 30 g H 2 SO 4 / Itr. and 15 g Al 3+ / Itr.
  • an aluminum oxide layer of approximately 2.3 g / m 2 can be built up in 30 seconds.
  • the dyeing test gives a difference in color value x I -x II of 5 ⁇ 10 3, the zincate test a measuring time of 55 seconds.
  • the "fogging" of the printing plate support is low and the alkali resistance is good.
  • Aluminum strip sections are alkali pickled and electrochemical with ENT, in the tank process, similar to that described in DE-B 12 38 049.
  • the anodic oxidation takes place in a tank with aluminum or graphite as the cathode material.
  • a pump is pumped through a heating and cooling system for circulation and temperature control.
  • At a concentration of 125 g H 2 SO 4 / Itr. and a maximum concentration of 7 g Al 3+ / Itr. are generated with a current density of 2.5 A / dm 2 in 180 sec at 40 ° C about 2.5 to 3 g / m 2 of aluminum oxide.
  • the dyeing test gives a difference in color value x I -x II of 36 - 10 3.
  • the aluminum oxide produced in this way only withstands the attack of the alkaline solution for 20 seconds in the zincate test.
  • the copied printing plate After coating with a solution according to Example 1, the copied printing plate shows a strong formation of fog on the printing plate carrier. That is, with a higher H 2 SO 4 concentration and a lower Al 3+ ion concentration than in the process according to the invention, no comparable good aluminum oxide layers can be produced.
  • Aluminum strip with a thickness of 0.3 mm is pickled according to the instructions in Example 1. electrochemically roughened and anodized. The anodic oxidation is carried out with an electrolyte of 150 g H 2 SO 4 / Itr. and 5 g Al 3+ / Itr. carried out.
  • the coloring test gives a difference in color value x I -x II of 27-10 3 .
  • the oxide layer is already penetrated after 22 seconds.
  • Example 2 After coating with a solution as in Example 1, a printing plate is obtained. which shows a strong haze after the copy. Around 140,000 good prints can be produced using the offset process.
  • Example 3 of the present invention can be achieved progress in dyeing test (ie, reduced fogging) and alkali resistance is shown at an also increased temperature and current density.
  • the undercoat which is light-sensitive coated according to Example 1 shows a very strong fog.
  • the print run using the offset process only reaches about 95,000 prints in good quality.
  • Roll-bright aluminum strip with a thickness of 0.3 mm is degreased with an alkaline solution, electrochemically roughened and anodized according to the instructions in Example 1.
  • the electrolyte in the anodic oxidation contains 50 g H 2 SO 4 / it. and 20 g Al 3+ / Itr. At 40 ° C bath temperature and 10 A / dm 2 current density, approx. 3 g / m 2 oxide can be built up in 25 seconds.
  • the surface is prepared for the subsequent sensitization by immersing the aluminum support in a 0.1% aqueous solution of polyvinylphosphonic acid (molecular weight about 100,000) at 60 ° C. for 4 minutes.
  • the photosensitive coating is carried out using 1.4 parts by weight of mixed condensate composed of 1 mol of 3-methoxy-diphenylamine-4-diazonium sulfate and 1 mol of 4,4'-bis-methoxymethyl-diphenyl ether, prepared in 85% strength aqueous phosphoric acid and precipitated as mesitylene sulfonate, 0 , 2 parts by weight of p-toluenesulfonic acid monohydrate, 3 parts by weight of polyvinyl butyral, (containing 69 to 71% polyvinyl butyral, 1% polyvinyl acetate and 24 to 27% polyvinyl alcohol units, the viscosity of a 5% solution in butanol at 20 ° C is 20-30 m Pa - s), 80 parts by volume of ethylene glycol monomethyl ether and 20 parts by volume of butyl acetate.
  • mixed condensate composed of 1 mol of 3-methoxy-diphenylamine-4
  • the diazo mixed condensate layer exposed under a negative is mixed with a mixture of 50 parts by weight of water, 15 parts by weight of isopropanol, 20 parts by weight of n-propanol, 12.5 parts by weight of n-propyl acetate, 1.5 Parts by weight of polyacrylic acid and 1.5 parts by weight of acetic acid developed.
  • a roughened aluminum strip prepared according to the instructions in Example 1 is made from 30 g H 2 SO 4 / ltr in an electrolyte. and 15 g AI3 + / ltr. anodized. At a bath temperature of 55 ° C and a current density of 8 A / dm 2 , 2.7 to 3 g / m 2 of aluminum oxide can be built up in 30 seconds. In the dyeing test, there is a color value difference x I -x II of 12 ⁇ 10 3 and a zincate test time of about 69 seconds.
  • An aluminum strip is pretreated and roughened according to the instructions in Example 1.
  • Anodizing is carried out in an electrolyte made from 100 g of H 2 SO 4 / it. and 20 g Al 3+ / Itr.
  • a bath temperature of 40 ° C. and an anodic current density of 10 A / dm 2 approximately 3 g / m 2 of aluminum oxide can be generated in approximately 30 seconds.
  • this oxide has a color value difference x I -x II of 24.1 1 0 3 .
  • 100 g of finely powdered novolak are slowly sprinkled into a solution of 36 g of NaOH in 500 ml of water at 50 ° C. After the novolak has dissolved, the solution is heated to the boil and 125 g of powdered sodium monochloroacetate are added over the course of about 20 minutes, after which boiling is continued for about 1.5 hours. Any cloudiness that may occur is indicated by adding as little NaOH as possible brought back into solution.
  • the reaction mixture is then diluted with twice the amount of water at 40 ° C. and then made weakly acidic with hydrochloric acid (1: 2).
  • the separated resin is filtered, extracted thoroughly with water and dried at 110 ° C. About 100 g of a resin with 10 to 11% carboxyl groups are obtained, corresponding to a degree of esterification of 30 to 34%.
  • the coated aluminum support is dried and then exposed under a negative film template.
  • a solution of 2 parts by weight of trisodium phosphate and 4 parts by weight of disodium phosphate in 100 parts by volume of water is used for developing the image.
  • the plate is rinsed with water and then wiped with a 1% aqueous phosphoric acid on its image side, then colored with a bold color.
  • the printing form obtained is good in its non-image parts, i. H. clay-free, strippable and veil-free. It can produce around 55,000 prints in good quality using the offset process.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Printing Plates And Materials Therefor (AREA)
  • Photosensitive Polymer And Photoresist Processing (AREA)
  • Electrochemical Coating By Surface Reaction (AREA)

Claims (6)

1. Procédé pour l'oxydation anodique d'un matériau en forme de bande, de feuille ou de plaque. en aluminium ou ses alliages, dans un électrolyte aqueux contenant de l'acide sulfurique et des ions d'aluminium, éventuellement après avoir rendu le matériau rugueux par voie mécanique. chimique ou électrochimique, caractérisé en ce que le matériau est oxydé par voie anodique dans un électrolyte exempt de sulfate alcalin et d'acide oxalique, ayant une concentration en acide sulfurique comprise entre 25 et 100 g/1 et une concentration en ions d'aluminium comprise entre 10 et 25 g/1, à une densité de courant comprise entre 4 et 25 A/dm2 et à une température comprise entre 25 et 65°C.
2. Procédé selon la revendication 1, caractérisé en ce que le matériau est oxydé par voie anodique dans un électrolyte dont la concentration en acide sulfurique est comprise entre 30 et 75 g/I et la concentration en ions d'aluminium entre 15 et 20 g/1, à une densité de courant comprise entre 6 et 15 5 AJdm2 et à une température comprise entre 40 et 55°C.
3. Procédé pour la fabrication d'un matériau porteur pour plaques d'impression en forme de bande, de feuille ou de plaque par oxydation anodique de l'aluminium ou de ses alliages dan un électrolyte aqueux contenant de l'acide sulfurique et des ions d'aluminium éventuellement après avoir rendu le métal rugueux par voie mécanique, chimique ou électrochimique, caractérisé en ce que le matériau porteur est oxydé par voie anodique dans un électrolyte exempt de sulfate alcalin et d'acide oxalique, dont la concentration en acide sulfurique est comprise entre 25 et 100 g/I et celle en ions d'aluminium entre 10 et 25 g/I, à une densité de courant comprise entre 4 et 25 A/dm2 et à une température entre 25 et 65°C.
4. Procédé selon la revendication 3, caractérisé en ce que le matériau porteur est oxydé par voie anodique dans un électrolyte ayant une concentration en acide sulfurique comprise entre 30 et 75 gI1 et une concentration en ions d'aluminium comprise entre 15 et 20 g/I, à une densité de courant comprise entre 6 et 15 A/dm2 et à une température comprise entre 40 et 55°C.
5. Mise en oeuvre du matériau oxydé par voie anodique selon le procédé de la revendication 1 ou 2 comme matériau porteur dans la fabrication de plaques d'impression munies d'une couche photosensible.
6. Mise en oeuvre selon la revendication 5, caractérisé en ce que les couches photosensibles éventuellement teintées renferment des composés. diazoïques, des diazoquinones, des produits de condensation diazoïques mixtes ou des composés photopolymérisables.
EP79100695A 1978-03-16 1979-03-08 Procédé d'oxydation anodique de l'aluminium et son utilisation comme matériau porteur pour plaques d'impression Expired EP0004569B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19782811396 DE2811396A1 (de) 1978-03-16 1978-03-16 Verfahren zur anodischen oxidation von aluminium und dessen verwendung als druckplatten-traegermaterial
DE2811396 1978-03-16

Publications (2)

Publication Number Publication Date
EP0004569A1 EP0004569A1 (fr) 1979-10-17
EP0004569B1 true EP0004569B1 (fr) 1982-11-03

Family

ID=6034588

Family Applications (1)

Application Number Title Priority Date Filing Date
EP79100695A Expired EP0004569B1 (fr) 1978-03-16 1979-03-08 Procédé d'oxydation anodique de l'aluminium et son utilisation comme matériau porteur pour plaques d'impression

Country Status (7)

Country Link
US (1) US4211619A (fr)
EP (1) EP0004569B1 (fr)
JP (1) JPS54128453A (fr)
BR (1) BR7901597A (fr)
CA (1) CA1137917A (fr)
DE (2) DE2811396A1 (fr)
ES (1) ES478640A1 (fr)

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2836803A1 (de) * 1978-08-23 1980-03-06 Hoechst Ag Verfahren zur anodischen oxidation von aluminium und dessen verwendung als druckplatten-traegermaterial
CH645409A5 (de) * 1980-09-08 1984-09-28 Schenk & Co Verfahren zum faerben von oxydschichten von aluminium oder aluminiumlegierungen mit organischen verbindungen.
AU8323982A (en) * 1981-05-15 1982-11-18 Polychrome Corp. Improved anodized supports
US4581996A (en) * 1982-03-15 1986-04-15 American Hoechst Corporation Aluminum support useful for lithography
DE3217552A1 (de) * 1982-05-10 1983-11-10 Hoechst Ag, 6230 Frankfurt Verfahren zur elektrochemischen aufrauhung von aluminium fuer druckplattentraeger
US4400246A (en) * 1982-06-28 1983-08-23 International Business Machines Corporation Process for applying barrier layer anodic coatings
US4431707A (en) * 1982-12-27 1984-02-14 International Business Machines Corporation Plating anodized aluminum substrates
DE3312497A1 (de) * 1983-04-07 1984-10-11 Hoechst Ag, 6230 Frankfurt Zweistufiges verfahren zur herstellung von anodisch oxidierten flaechigen materialien aus aluminium und deren verwendung bei der herstellung von offsetdruckplatten
DE3378270D1 (en) * 1983-06-13 1988-11-24 Hoechst Ag Method and plants for the continuous unilateral anodic oxidation of aluminium bands and utilization thereof to make offset printing plates
JPS6021298A (ja) * 1983-07-18 1985-02-02 Fuji Photo Film Co Ltd 平版印刷版用支持体の製造方法
JPS6029493A (ja) * 1983-07-20 1985-02-14 Pentel Kk 酸化皮膜を有するアルミニウムまたはアルミニウム合金基体の製造方法
DE3328048A1 (de) * 1983-08-03 1985-02-21 Hoechst Ag, 6230 Frankfurt Verfahren zur zweistufigen anodischen oxidation von traegermaterialien aus aluminium fuer offsetdruckplatten
DE3328049A1 (de) * 1983-08-03 1985-02-21 Hoechst Ag, 6230 Frankfurt Verfahren zur einstufigen anodischen oxidation von traegermaterialien aus aluminium fuer offsetdruckplatten
DE3328923A1 (de) * 1983-08-10 1985-02-28 TDS Tampondruck-Service GmbH, 7257 Ditzingen Druckklischee fuer tampondruckmaschinen
DE3413899A1 (de) * 1984-04-13 1985-10-17 Hoechst Ag, 6230 Frankfurt Verfahren zur anodischen oxidation von aluminium und dessen verwendung als traegermaterial fuer offsetdruckplatten
DE3425860A1 (de) * 1984-07-13 1986-01-16 Hoechst Ag, 6230 Frankfurt Traegermaterial fuer druckplatten aus einer aluminiumlegierung und druckplatte aus diesem material
CA1287013C (fr) * 1985-07-25 1991-07-30 Yasuhisa Nishikawa Support en alliage d'aluminium pour cliches de lighographie
DE3635303A1 (de) 1986-10-17 1988-04-28 Hoechst Ag Verfahren zur abtragenden modifizierung von mehrstufig aufgerauhten traegermaterialien aus aluminium oder dessen legierungen und deren verwendung bei der herstellung von offsetdruckplatten
DE3637764A1 (de) * 1986-11-06 1988-05-11 Hoechst Ag Traegermaterial auf der basis von aluminium oder dessen legierungen fuer offsetdruckplatten sowie verfahren zu dessen herstellung
JPH0297698A (ja) * 1988-10-04 1990-04-10 Minoru Mitani アルミニウム又はその合金の表面処理方法
DE4001466A1 (de) * 1990-01-19 1991-07-25 Hoechst Ag Verfahren zur elektrochemischen aufrauhung von aluminium fuer druckplattentraeger
US5187046A (en) * 1991-03-18 1993-02-16 Aluminum Company Of America Arc-grained lithoplate
US5481084A (en) * 1991-03-18 1996-01-02 Aluminum Company Of America Method for treating a surface such as a metal surface and producing products embodying such including lithoplate
JP4069135B2 (ja) * 2003-01-30 2008-04-02 日本アルミナ加工株式会社 アルミニウムまたはアルミニウム合金の表面に陽極酸化被膜を形成する方法
JP4808374B2 (ja) * 2003-11-13 2011-11-02 富士通株式会社 金属成形品の表面処理方法
JP4559188B2 (ja) * 2003-12-26 2010-10-06 東洋製罐株式会社 酸化物被覆方法および装置
JP2006062322A (ja) 2004-08-30 2006-03-09 Fuji Photo Film Co Ltd 平版印刷版原版、平版印刷版原版積層体、及び製版方法
AT514194B1 (de) * 2013-07-05 2014-11-15 Münze Österreich Ag Metallplatte

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB467267A (en) * 1935-11-14 1937-06-14 George Charles Jones Improvements in or relating to the production of protective coatings on aluminium and aluminium alloys
CH245379A (fr) * 1945-05-31 1946-11-15 Magnetos Lucifer S A Procédé d'oxydation anodique de la surface d'objets en aluminium ou en alliages d'aluminium.
GB679599A (en) * 1951-02-21 1952-09-17 Essex Aero Ltd Modification of sulphuric acid electrolyte employed in the anodic treatment of aluminium and aluminium-rich alloys
JPS4923737A (fr) * 1972-06-29 1974-03-02
US3902976A (en) * 1974-10-01 1975-09-02 S O Litho Corp Corrosion and abrasion resistant aluminum and aluminum alloy plates particularly useful as support members for photolithographic plates and the like
US3935080A (en) * 1974-10-02 1976-01-27 Polychrome Corporation Method of producing an aluminum base sheet for a printing plate
US4022670A (en) * 1975-07-16 1977-05-10 Swiss Aluminium Ltd. Process for preparation of lithographic printing plates
US4159305A (en) * 1975-10-01 1979-06-26 Dorr-Oliver Incorporated Pier-supported refractory constriction element
US4144142A (en) * 1975-11-04 1979-03-13 Riken Keikinzoku Kogyo Kabushiki Kaisha Method for producing colored anodic film on aluminum-based material
JPS5432141A (en) * 1977-08-17 1979-03-09 Tahei Asada Color producing method of aluminum hard film layer

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Dettner/Elze, Handbuch der Galvanotechnik" Band III, 1969, S. 32-36 *

Also Published As

Publication number Publication date
EP0004569A1 (fr) 1979-10-17
DE2963962D1 (en) 1982-12-09
US4211619A (en) 1980-07-08
JPS6325079B2 (fr) 1988-05-24
BR7901597A (pt) 1979-10-16
ES478640A1 (es) 1979-12-16
DE2811396A1 (de) 1979-09-27
CA1137917A (fr) 1982-12-21
JPS54128453A (en) 1979-10-05

Similar Documents

Publication Publication Date Title
EP0004569B1 (fr) Procédé d'oxydation anodique de l'aluminium et son utilisation comme matériau porteur pour plaques d'impression
EP0008440B1 (fr) Procédé d'oxydation anodique d'aluminium et son application comme support de plaque d'impression
EP0121880B1 (fr) Procédé en deux pas pour la préparation de matériaux anodisés d'aluminium en forme plane et leur utilisation dans la fabrication de planches à imprimer offset
EP0105170B1 (fr) Procédé de posttraitement de couches d'oxyde d'aluminium avec des solutions aqueuses contenant du silicate alcalin et son application dans la fabrication des supports pour plaques d'impression
EP0093960B1 (fr) Procédé de grainage électrochimique de l'aluminium pour des supports de plaques d'impression
DE4001466A1 (de) Verfahren zur elektrochemischen aufrauhung von aluminium fuer druckplattentraeger
EP0069319A1 (fr) Matériaux de support pour plaques lithographiques, aux propriétés hydrophiles améliorées, procédés pour leur fabrication, et leur utilisation
EP0093961B1 (fr) Procédé de grainage électrochimique de l'aluminium pour des supports de plaques d'impression
EP0097301B1 (fr) Procédé pour la modification par l'enlèvement de supports en aluminium décapés par voie électrochimique et l'utilisation de ceux-ci pour la fabrication des plaques offset
EP0086957B1 (fr) Procédé pour la production de matériaux de support pour des plaques d'impression offset
EP0086956B1 (fr) Procédé pour la production de matériaux de support pour des plaques d'impression offset
EP0141056B1 (fr) Procédé d'oxydation anodique en une étape des matériaux supports en aluminium pour plaques d'impression offset
EP0190643B1 (fr) Matériau de supports hydrophilisés pour plaques d'impression offset, procédé de fabrication et leur emploi
EP0269851B1 (fr) Support en aluminium ou en alliage d'aluminium pour des plaques offset et son procédé de fabrication
EP0139111A1 (fr) Procédé d'oxidation anodique en deux étapes des matériaux de support en aluminium pour plaques d'impression offset
EP0161461B1 (fr) Procédé d'oxydation anodique d'aluminium et son application comme matériau de support pour plaques d'impression offset
DE3134054A1 (de) Elektrochemisches entwicklungsverfahren fuer reproduktionsschichten
EP0468313A1 (fr) Plaques, feuilles ou matériel en forme de bandes comme support pour des plaques d'impression offset, procédé pour sa préparation et son utilisation
EP0170045B1 (fr) Procédé pour le décapage et le chromage simultanés de plaques d'acier comme supports pour des utilisations lithographiques
EP0095581B1 (fr) Procédé de post traitement de couches d'oxyde d'aluminium avec des solutions aqueuses contenant silicate alcalin et son application dans la fabrication de supports de plaques d'impression offset
DE4129909A1 (de) Verfahren zum aufrauhen von aluminium bzw. von aluminiumlegierungen als traegermaterial fuer druckplatten und eine druckplatte
EP0035730A2 (fr) Procédé pour la modification de la surface de matériaux supports de plaques d'impression en aluminium et procédé pour la production de plaques d'impression en ces matériaux
EP0268058A2 (fr) Procédé de décapage électrochimique de l'aluminium ou ses alliages pour supports pour plaques d'impression

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): BE CH DE FR GB IT NL SE

17P Request for examination filed
ITF It: translation for a ep patent filed

Owner name: SOCIETA' ITALIANA BREVETTI S.P.A.

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): BE CH DE FR GB IT NL SE

REF Corresponds to:

Ref document number: 2963962

Country of ref document: DE

Date of ref document: 19821209

ET Fr: translation filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19830228

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19840217

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19840309

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19840331

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19870331

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Effective date: 19880331

BERE Be: lapsed

Owner name: HOECHST A.G.

Effective date: 19880331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19881001

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Effective date: 19890331

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19900215

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19900228

Year of fee payment: 12

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19910308

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19910515

Year of fee payment: 13

GBPC Gb: european patent ceased through non-payment of renewal fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19911129

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19921201

EUG Se: european patent has lapsed

Ref document number: 79100695.0

Effective date: 19850527

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT