EP0008440B1 - Procédé d'oxydation anodique d'aluminium et son application comme support de plaque d'impression - Google Patents

Procédé d'oxydation anodique d'aluminium et son application comme support de plaque d'impression Download PDF

Info

Publication number
EP0008440B1
EP0008440B1 EP79102982A EP79102982A EP0008440B1 EP 0008440 B1 EP0008440 B1 EP 0008440B1 EP 79102982 A EP79102982 A EP 79102982A EP 79102982 A EP79102982 A EP 79102982A EP 0008440 B1 EP0008440 B1 EP 0008440B1
Authority
EP
European Patent Office
Prior art keywords
aluminum
ranging
electrolyte
per liter
current density
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP79102982A
Other languages
German (de)
English (en)
Other versions
EP0008440A3 (en
EP0008440A2 (fr
Inventor
Gerhard Dr. Usbeck
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hoechst AG
Original Assignee
Hoechst AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoechst AG filed Critical Hoechst AG
Publication of EP0008440A2 publication Critical patent/EP0008440A2/fr
Publication of EP0008440A3 publication Critical patent/EP0008440A3/xx
Application granted granted Critical
Publication of EP0008440B1 publication Critical patent/EP0008440B1/fr
Expired legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41NPRINTING PLATES OR FOILS; MATERIALS FOR SURFACES USED IN PRINTING MACHINES FOR PRINTING, INKING, DAMPING, OR THE LIKE; PREPARING SUCH SURFACES FOR USE AND CONSERVING THEM
    • B41N3/00Preparing for use and conserving printing surfaces
    • B41N3/03Chemical or electrical pretreatment
    • B41N3/034Chemical or electrical pretreatment characterised by the electrochemical treatment of the aluminum support, e.g. anodisation, electro-graining; Sealing of the anodised layer; Treatment of the anodic layer with inorganic compounds; Colouring of the anodic layer
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • C25D11/02Anodisation
    • C25D11/04Anodisation of aluminium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • C25D11/02Anodisation
    • C25D11/04Anodisation of aluminium or alloys based thereon
    • C25D11/06Anodisation of aluminium or alloys based thereon characterised by the electrolytes used
    • C25D11/08Anodisation of aluminium or alloys based thereon characterised by the electrolytes used containing inorganic acids

Definitions

  • the invention relates to a method for the anodic oxidation of aluminum, the use of the material produced thereafter as a printing plate carrier material and a method for producing a printing plate carrier material.
  • the substances causing the veil are also dissolved out of the depth of the oxide layer.
  • the corrected areas appear as bright areas on a tinted background.
  • the sensitivity to alkali and the correction spots mentioned lead to difficulties in printing, which can be caused by the tendency of the printing plates to toning in their non-image areas and by a reduced circulation of the printing plates.
  • the »hard anodization « is carried out with an aqueous electrolyte containing H 2 SO 4 with a concentration of 166 g H 2 S0 4 / ltr. (or about 230 g H 2 S0 4 / ltr.) at an operating temperature of 0 ° to 5 ° C, at a current density of 2 to 3 A / dm 2 , an increasing voltage of about 25 to 30 V at the beginning and about 40 to 100 V towards the end of the treatment and carried out for 30 to 200 min.
  • Modified electrolytes based on phosphoric acid are therefore described in particular in the processes for the anodic oxidation of aluminum known from the prior art.
  • the process for the anodic treatment of objects made of aluminum according to DE-C-821 898 is carried out with an anodic gloss step in a bath of 70% H 2 SO 4 , 20% H 3 PO 4 and 10% water at a current density of 15 to 30A / dm 2 , a temperature between 70 and 90 ° C and carried out for 3 to 5 minutes and results in shiny and reflective surfaces.
  • DE-C-957616 describes a process for the galvanic production of uniformly granular, shiny surfaces on aluminum, in which the electrolyte comprises 40 to 70% by volume H 2 SO 4 , 0 to 20% by volume H 3 PO 4 , Contains 2 to 5 vol .-% HNO 3 , 0.5 to 2 vol .-% HF and a wetting agent.
  • the electrolyte temperature is approximately 60 to 100 ° C. over a period of 3 to 10 minutes, and the current density ranges from approximately 30 to 40 A / dm 2 at the beginning and 10 to 15 A / dm 2 towards the end of the treatment.
  • the process for producing offset printing plates made of aluminum according to DE-A-1 956795 has, inter alia, an anodizing stage in which the previously etched printing plate is in a bath with 7.5 vol. % H 2 SO 4 and 5 vol.% H 3 P0 4 is anodized at a temperature of 23.9 ° C for 10 min and with a current density of 1.08 A / dm 2 .
  • an aqueous solution containing 10 to 25% H 2 SO 4 and 20 to 50% H 3 P0 4 is used at temperatures above 80 ° C .
  • the pretreatment is completed in about 5 to 6 seconds at a current density of 100 A / dm 2 .
  • the bath is used to dissolve aluminum oxide at high current densities and within a short time.
  • the process for producing colored, anodized aluminum according to DE-A-2 548 177 has an anodizing stage in which the aluminum is anodized in an H 3 PO 4 and a small amount of another acid such as e.g. B. H 2 S0 4 containing bath is treated.
  • a bath of H 3 PO 4 (80 g / liter) and H 2 SO 4 (10 g / liter) is listed, in which the aluminum is treated for 2 minutes.
  • the surface is already anodized in H 2 S0 4 (165 g / l) for 30 min at 20 ° C. and a current density of 1.5 A / dm 2 .
  • DE-A-2 729 391 describes a process for producing a support plate for lithography, in which a porous oxidized layer is produced in an electrolyte which is a mixture of H 3 PO 3 (phosphorous acid) and H 2 SO 4 contains, the current density should be about 0.1 to 2 A / dm 2 .
  • the process for anodizing aluminum according to FR-A-1 285 053 is used as a preliminary step before the application of a chrome or nickel layer and in an electrolyte containing 5 to 45% by volume of H 3 PO 4 , 1 to 30 Vol .-% H 2 S0 4 and 25 to 94 vol .-% water at a temperature of 27 ° C to 60 ° C, a duration of 1 to 30 min and a current density of 1.3 to 13 A / dm 2 performed .
  • the anodic oxidation leading to bright, well reflecting surfaces on aluminum is made in an electrolyte from 15 to 40% by weight H 3 PO 4 , 2 to 10% by weight H 2 SO 4 and 50 to 83 wt .-% water at a current density of about 0.5 to 3 A / dm 2 , a duration of 0.5 min to 50 min and a temperature of 15 ° C to 32 ° C.
  • a light-sensitive layer cannot be achieved;
  • high temperatures of, for example, more than 65 ° C. to 70 ° C. are used during the anodizing process.
  • Low current densities of less than approximately 2 A / dm2 or high current densities of more than approximately 30 A / dm 2 in conjunction with anodizing times of more than approximately 1.5 to 2 minutes also lead to layers that are either too slow for large-scale use or grow with too large porosity or where the layer build-up is too small or no, because the back-dissolving power of the electrolyte predominates.
  • the object of the invention is therefore to propose a process for the production of anodically oxidized aluminum which uses the advantages of the electrolyte types H 2 S0 4 and H 3 P0 4 without taking on the disadvantages described, ie with the abrasion-resistant, alkali-resistant, little porous aluminum oxide layers of sufficient strength can be produced on aluminum strips, foils or plates with economically justifiable energy costs.
  • the invention is based on the known process for the anodic oxidation of strip, foil or plate-shaped material made of aluminum or its alloys in an aqueous electrolyte containing sulfuric acid and phosphoric acid, if appropriate after prior mechanical, chemical or electrochemical roughening.
  • the process according to the invention is characterized in that the material in an electrolyte has a concentration of sulfuric acid of 25 to 150 g / l, phosphoric acid of 10 to 50 g / l. and anodized on aluminum ions of 5 to 25 g / l, at a current density of 4 to 25 A / dm 2 and at a temperature of 25 ° to 65 ° C.
  • this method is used with the Features specified for the production of a tape, film or plate-shaped printing plate carrier material.
  • the term printing plate is generally understood to mean a printing plate for planographic printing, which mainly consists of a flat support made of one or more materials and one or more light-sensitive layers which are also mounted thereon.
  • the process is carried out in particular in an electrolyte with a concentration of sulfuric acid of 25 to 75 g / l, of phosphoric acid of 25 to 40 g / l. and on aluminum ions of 10, preferably 12 to 20 g / Itr., at a current density of 6 to 15 A / dm2 and at a temperature of 35 ° C to 55 ° C.
  • the electrolyte is made of conc. H 2 S0 4 , conc. H 3 P0 4 , water and an added aluminum salt, especially aluminum sulfate, prepared so that it, to 1 liter.
  • an added aluminum salt especially aluminum sulfate, prepared so that it, to 1 liter.
  • 25 to 150 g of H 2 SO 4 preferably 25 to 75 g of H 2 SO 4
  • 10 to 50 g of H 3 PO 4 preferably 25 to 40 g of H 3 PO 4
  • 5 to 25 g of A1 in solution 3 + - ions preferably 10, in particular 12 to 20 g of Al 3 + - ions contains.
  • the concentration ranges of the electrolyte components are checked at regular intervals, since they are of crucial importance for an optimal course of the process, and the electrolyte is then regenerated discontinuously or preferably continuously.
  • Detailed information on the production, monitoring and regeneration of electrolytes in the anodic oxidation of aluminum can be found in W. Huebner, CT Lucasr, The Practice of Anodic Oxidation of Aluminum, Aluminum Verlag - Düsseldorf, 1977, 3rd edition, pages 141 to 148 and pages 154 to 157, can be found there, there are also basic information on the procedure for the anodic oxidation of aluminum (page 149 and page 150).
  • This device has a treatment tub filled with the electrolyte, an inlet and an outlet for the band to be treated in the two end walls of the tub below the liquid level of the electrolyte, at least one electrode arranged above the metal band and devices for generating a rapid electrolyte flow between the transport path of the tape and the electrode surface.
  • the electrolyte flow is generated by a bell-like chamber arranged along each end wall of the trough, which overflows the electrolyte with a liquid drain into a reserve container located below the trough, a gas space above the liquid level that is sealed off from the outside air, and a gas chamber that begins in this gas space. contains gas line connected to a suction pump.
  • this device also has a pump for conveying the electrolyte from the reserve container into the tub.
  • Treatment devices of a different design are also suitable for the method according to the invention, as long as they ensure the conditions listed below with regard to treatment duration, electrolyte movement, material and heat exchange.
  • the method according to the invention is expediently carried out in such a way that the duration of the treatment of the anodic oxidation - ie the stay of a surface point in the area of influence of the electrode (s) - ranges from 5 to 60 seconds, preferably from 10 to 35 seconds.
  • Layer weights of aluminum oxide in the range from 1 to 10 g / m 2 (corresponding to a layer thickness of approximately 0.3 to 3.0 ⁇ m), preferably approximately 2 to 4 g / m 2 can then be obtained.
  • Good electrolyte circulation is required in the practice of the invention. This can be generated either by stirring or by pumping around the electrolyte. In the case of continuous operation (see, for example, DE-B-2234424), care must be taken to ensure that the electrolyte is guided as parallel as possible to the strip to be treated at high speed under turbulent flow while ensuring good material and heat exchange.
  • the flow rate of the electrolyte relative to the strip is then expediently more than 0.3 m / sec.
  • Direct current is preferably used for the anodic oxidation, but alternating current or a combination of these types of current (eg direct current with superimposed alternating current or the like) can also be used.
  • the method according to the invention for the anodic oxidation of aluminum can also be used, in particular in the embodiment of the method according to the invention for producing a Printing plate carrier material - one or more pretreatment stages, in particular a roughening stage, are preceded.
  • Pretreatment is understood to mean either a mechanical surface treatment by grinding, polishing, brushing or blasting, a chemical surface treatment for degreasing, pickling or matting or an electrochemical surface treatment by the action of the electric current (mostly from alternating current) in an acid such as HCI or HN0 3 .
  • the mechanical and electrochemical treatment of the surfaces of the aluminum in particular lead to roughened surfaces.
  • the average roughness depth Rz is in the range from about 1 to 15 ⁇ m, in particular in the range from 4 to 8 ⁇ m.
  • the roughness depth is determined in accordance with DIN 4768 in the version from October 1970, the roughness depth R z is then the arithmetic mean of the individual roughness depths of five adjacent individual measuring distances.
  • the individual roughness depth is defined as the distance between two parallels to the middle line, which touch the roughness profile at the highest or lowest point within the individual measuring section.
  • the individual measuring section is the fifth part of the length of the part of the roughness profile which is used directly for evaluation and is projected perpendicularly onto the middle line.
  • the middle line is the line parallel to the general direction of the roughness profile of the shape of the geometrically ideal profile, which divides the roughness profile so that the sums of the material-filled areas above it and the material-free areas below it are equal.
  • the method according to the invention for the anodic oxidation of aluminum can also - like this also in particular in the embodiment of the method according to the invention for producing a printing plate support material - be followed by one or more post-treatment stages.
  • These post-treatment mares serve in particular to further increase the hydrophilicity of the aluminum oxide layer, which is already sufficient for many areas of application, the other known properties of this layer being at least retained.
  • Suitable layers also include the electrophotographic layers, i.e. H. those containing an inorganic or organic photoconductor. In addition to the light-sensitive substances, these layers can of course also other components such. B. contain resins, dyes or plasticizers.
  • Negative-working condensation products from aromatic diazonium salts and compounds with active carbonyl groups preferably condensation products from diphenylamine diazonium salts and formaldehyde, which are described, for example, in DE-C-596 731, 1 138 399, 1 138 400, 1 138 401, 1 142 871, 1 154 123, US-A-2 679 498 and 3 050 502 and GB-A-712 606.
  • Negative mixed condensation products of aromatic diazonium compounds for example according to DE-A-2 024 244, which each have at least one unit of the general types A (-D) "and B connected by a double bond derived from a condensable carbonyl compound Have intermediate link.
  • A is the remainder of a compound containing at least two aromatic carbocyclic and / or heterocyclic nuclei, which is capable of condensing with an active carbonyl compound in an acidic medium at at least one position.
  • D is a diazonium salt group attached to an aromatic carbon atom of A; n is an integer from 1 to 10; and B is the remainder of a compound free of diazonium groups and capable of condensing with an active carbonyl compound in an acidic medium at at least one position on the molecule.
  • Positive-working layers according to DE-A-2 610 842 which contain a compound which cleaves off on irradiation, a compound which has at least one COC group which can be cleaved by acid (for example an orthocarboxylic acid ester group or a carboxylic acid amide acetal group) and optionally a binder .
  • Negative working layers made of photopolymerizable monomers, photoinitiators, binders and optionally other additives.
  • the monomers used here are, for example, acrylic and methacrylic acid esters or reaction products of diisocyanates with partial esters of polyhydric alcohols, as described, for example, in US Pat. Nos. 2,760,863 and 3,060,023 and DE-A-2,064,079 and 2,361,041 .
  • photoinitiators are u. a. Benzoin, benzoin ethers, mercury quinones, acridine derivatives, phenazine derivatives, quinoxaline derivatives, quinazoline derivatives or synergistic mixtures of different ketones.
  • soluble organic polymers can be used as binders, e.g. B. polyamides, polyesters, alkyd resins, polyvinyl alcohol, polyvinyl pyrrolidone, polyethylene oxide, gelatin or cellulose ether.
  • Bare aluminum strip with a thickness of 0.3 mm is degreased with an alkaline pickling solution (an aqueous solution of 20 g NaOH per liter solution) at an elevated temperature of about 50 to 70 ° C.
  • the electrochemical roughening of the aluminum surface takes place in an apparatus created according to the teaching of DE-B-2234424 with alternating current and in an electrolyte containing HN0 3 .
  • a similar device is used for the subsequent anodic oxidation with direct current, but the current is supplied via a contact roller.
  • the anodizing electrolyte contains 50 g H 2 SO 4 / Itr., 25 g H 3 PO 4 / Itr. and 10 g Al 3+ / Itr., the Al 3+ ion concentration by dissolving 123.5 g Al 2 (SO 4 ) 3 .18 H 2 0 per Itr. is produced.
  • a bath temperature of 35 ° C. and a current density of 8 A / dm 2 (direct current) approximately 3.1 g / m 2 of aluminum oxide can be obtained in an anodizing time of approximately 25 seconds.
  • the flow in the above-mentioned apparatus is turbulent for achieving a good material and heat exchange, the flow rate of the electrolyte is more than 0.3 m / sec.
  • the weight of the photosensitive layer applied to the anodized support is approximately 3 g / m 2 .
  • a measure of the color acceptance of the surface is a color value difference x I -x II of 1 ⁇ 10 3 .
  • the zincate test gives a measurement time of about 38 seconds.
  • the "fog" of the printing plate support is low and the alkali resistance good.
  • Roll-bright aluminum strip with a thickness of 0.3 mm is alkali-pickled and electrochemically roughened according to the instructions in Example 1.
  • the anodic oxidation takes place in a device created according to the teaching of DE-B-2 234 424 with an electrolyte containing 50 g of H 2 SO 4 / Itr. And 25 g of H 3 PO 4 / Itr. and 12 g AI 3+ / Itr. contains, at a temperature of 55 ° C and a current density of 12 A / dm 2 .
  • the aluminum oxide surface thus obtained is washed with an aqueous solution of 2 g / l according to the teaching of DE-A-2 532 769. Na-metasilicate anodized at 25 ° C and a current density of 0.9 A / dm 2 for 60 seconds.
  • An aluminum strip material pickled and roughened as described in Example 1 is in a device according to DE-AS 2234424 in an aqueous solution with 150g H2S04 / ltr., 50 g H 3 PO 4 / Itr., 5 g Al 3+ / Itr. (added as 61.75 g / ltr. Al 2 (SO 4 ) 3 .18 H 2 0) anodized.
  • a temperature of 40 ° C and a current density of 11 A / dm 2 about 2.5 g / m 2 of aluminum oxide can be built up in 25 seconds.
  • the dyeing test gives a difference in color values x I -x II of 12 ⁇ 10 3 .
  • the alkali resistance in the zincate test is 31 sec.
  • Example 1 A by the procedure of Example 1 and stained alkaline electrochemically roughened aluminum strip material of the starch is 0.3 mm anodized in a solution containing 50 g of H 2 S0 4 / ltr., 25 g H 3 PO 4 / Itr. and 13 g Al 3+ / Itr. contains.
  • the process is carried out in a device with less electrolyte movement and thus poorer material and heat exchange, for example a device as in DE-B-1 621 115, column 3 , Lines 1 to 10 described.
  • This example shows the wide range in the applicability of the anodizing electrolytes according to the invention, which bring about significant improvements in the properties of the oxide layer even under difficult anodizing conditions.
  • Rolled aluminum strip with a thickness of 0.3 mm is degreased with an alkaline solution, electrochemically roughened and anodized according to the instructions in Example 1.
  • the electrolyte in the anodic oxidation contains 25 g H 2 SO 4 / Itr., 25 g H 3 PO 4 / Itr. and 5 g Al 3 + / Itr.
  • At 55 ° C bath temperature and 8 A / dm 2 current density approx. 1.95 g / m 2 oxide can be built up in 25 seconds.
  • the untreated material has an alkali resistance in the zincate test of 63 sec.
  • the surface is prepared for the subsequent sensitization by immersing the aluminum support in a 0.1% aqueous solution of polyvinylphosphonic acid (molecular weight about 100,000) at 60 ° C. for 4 minutes.
  • the photosensitive coating is carried out with 1.4 parts by weight of mixed condensate of 1 mol of 3-methoxydiphenylamine-4-diazonium sulfate and 1 mol of 4,4'-bis-methoxymethyl diphenyl ether, prepared in 85% aqueous phosphoric acid and as Mesitylene sulfonate precipitated, 0.2 part by weight of p-toluenesulfonic acid monohydrate, 3 parts by weight of polyvinyl butyral (containing 6S to 71% polyvinyl butyral, 1% polyvinyl acetate and 24 to 27% polyvinyl alcohol units, the viscosity of a 5% solution in butanol at 20 ° C is 20-30 mPa ⁇ s), 80 parts by volume of ethylene glycol monomethyl ether and 20 parts by volume of butyl acetate.
  • the diazo mixed condensate layer exposed under a negative is mixed with a mixture of 50 parts by weight of water, 15 parts by weight of isopropanol, 20 parts by weight of n-propanol, 12.5 parts by weight of n-propyl acetate, 1.5 Parts by weight of polyacrylic acid and 1.5 parts by weight of acetic acid developed.
  • a roughened aluminum strip prepared according to the instructions in Example 1 is made in an electrolyte from 50 g H 2 SO 4 / Itr., 25 g H 3 PO 4 / Itr. and 12 g Al 3+ / Itr. anodized.
  • a bath temperature of 55 ° C and a current density of 12 A / dm 2 3.1 g / m 2 of aluminum oxide can be built up in 30 seconds.
  • a negative working photopolymer solution of the following proportions can also be used for the light-sensitive coating:
  • the aluminum support provided with this photopolymer layer in an amount of 5 g / m 2 also receives a cover layer of approx. 1 g / m2, which is produced from the following solution:
  • An alkaline cleaned and electrochemically roughened aluminum strip according to the instructions of Example 1 is in an aqueous electrolyte with 100 g H 3 PO 4 / Itr. anodically oxidized as the sole electrolyte acid.
  • aqueous electrolyte with 100 g H 3 PO 4 / Itr. anodically oxidized as the sole electrolyte acid.
  • the resistance to alkali, measured in the zincate test, is moderate (16 sec), the tendency to »color fog «, judged in the dye test, is very low (difference in color value x I -x II of about 1 - 10 3 ).
  • the oxide layer which can still be built up without burns, shows a real alkali resistance and thus clearly the disadvantages of using phosphoric acid as the sole anodizing electrolyte, but also indicates the advantage of the very low sensitivity to color fog.
  • An aluminum strip with a thickness of 0.3 mm is alkali pickled, electrochemically roughened and anodized according to the information in Example 1.
  • the anodic oxidation is carried out with an electrolyte of 150 g H 2 SO 4 / Itr. and 5 g Al 3+ / Itr. carried out.
  • At 40 ° C bath temperature and a current density of 12 A / dm 2 about 2.8 g / m 2 of aluminum oxide can be applied in 30 seconds.
  • the dyeing test gives a difference in color value x I -x II of 27-10 3 . In the zincate test, the oxide layer is already penetrated after 22 seconds.
  • example 2 shows the progress which can be achieved according to the invention in the coloring test (ie reduced fog formation) and alkali resistance at a likewise increased temperature and current density.
  • the base coated with a light-sensitive mixture according to Example 1 shows a very strong "fog" after the copy.
  • the print run using the offset process only achieves about 95,000 prints in good quality.
  • Rolled aluminum strip is pretreated and anodized according to the instructions in Example 1.
  • the anodic oxidation takes place in an electrolyte containing 75 g H 2 SO 4 / it. and 20 g A1 3+ / ltr. contains (according to the teaching of DE-A-2 811 396).
  • Example 1 aluminum strip sections which have been pretreated with alkaline and electrochemically roughened are mixed in H 2 S0 4 or H 2 S0 4 / H 3 P0 4 mixtures of various concentrations with and without addition of aluminum ions (introduced as Al 2 (SO 4 ) 3 .18 H 2 0) anodized for 30 seconds at 30 ° C. with a current density of 8 A / dm 2 .
  • the composition of the anodizing electrolyte, conductivity and the oxide layer thicknesses produced and their coloring behavior are listed in the Table included. It turns out that the addition of aluminum ions generally favors the oxide thickness growth and contributes greatly to the reduction of the colorability, expressed by the difference in color value xi-xii.
  • the aluminum ion additive reduces the specific conductivity at higher total acid concentrations, however, at the lower acid concentrations preferred according to the invention, the conditions are unexpectedly mostly reversed and this additive improves the specific conductivity and thus also the economy of the process.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Printing Plates And Materials Therefor (AREA)
  • Electrochemical Coating By Surface Reaction (AREA)

Claims (6)

1. Procédé pour l'oxydation anodique de matière en bande, en feuille ou en plaque formée d'aluminium ou de ses alliages, dans un électrolyte aqueux contenant de l'acide sulfurique et de l'acide phosphorique, éventuellement après un dépolissage mécanique, chimique ou électrochimique préalable, caractérisé en ce que l'on oxyde la matière par voie anodique dans un électrolyte ayant une concentration d'acide sulfurique comprise entre 25 et 150 g/I, une concentration d'acide phosphorique comprise entre 10 et 50 g/I et une concentration d'ions aluminium comprise entre 5 et 25 g/I, à une densité de courant comprise entre 4 et 25 A/dm2 et à une température comprise entre 25 et 65° C.
2. Procédé selon la revendication 1, caractérisé en ce que l'on oxyde par voie anodique la matière dans un électrolyte ayant une concentration d'acide sulfurique comprise entre 25 et 75 g/I, une concentration d'acide phosphorique comprise entre 25 et 40 g/1 et une concentration d'ions aluminium comprise entre 10, de préférence 12, et 20 g/I, à une densité de courant comprise entre 6 et 15 A/dm2 et à une température comprise entre 35 et 55°C.
3. Procédé de fabrication d'un support pour plaques d'impression en forme de bande, de feuille ou de plaque, par oxydation anodique d'aluminium ou de ses alliages dans un électrolyte aqueux contenant de l'acide sulfurique et de l'acide sulfurique et de l'acide phosphorique, éventuellement après un dépolissage mécanique, chimique ou électrochimique préalable, caractérisé en ce que l'on oxyde anodiquement le support dans un électrolyte ayant une concentration d'acide sulfurique comprise entre 25 et 150 g/1, une concentration d'acide phosphorique comprise entre 10 et 50 g/I et une concentration d'ions aluminium comprise entre 5 et 25 g/I, à une densité de courant comprise entre 4 et 25 A/dm2 et à une température comprise entre 25 et 65° C.
4. Procédé selon la revendication 3, caractérisé en ce que l'on oxyde anodiquement le support dans un électrolyte ayant une concentration d'acide sulfurique comprise entre 25 et 75 g/I, une concentration d'acide phosphorique comprise entre 25 et 40 g/I et une concentration d'ions aluminium comprise entre 10, de préférence 12, et 20 g/I, à une densité de courant comprise entre 6 et 15 A/dm2 et à une température comprise entre 35 et 55° C.
5. Utilisation de la matière oxydée anodiquement par le procédé selon l'une des revendications 1 et 2 comme support dans la fabrication de plaques d'impression portant une couche photosensible.
6. Utilisation selon la revendication 5, caractérisée en ce que les couches photosensibles éventuellement colorées contiennent des composés diazoïques, des diazoquinones, des produits de cocondensation diazoïque ou des composés photopolymérisables.
EP79102982A 1978-08-23 1979-08-16 Procédé d'oxydation anodique d'aluminium et son application comme support de plaque d'impression Expired EP0008440B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE2836803 1978-08-23
DE19782836803 DE2836803A1 (de) 1978-08-23 1978-08-23 Verfahren zur anodischen oxidation von aluminium und dessen verwendung als druckplatten-traegermaterial

Publications (3)

Publication Number Publication Date
EP0008440A2 EP0008440A2 (fr) 1980-03-05
EP0008440A3 EP0008440A3 (en) 1980-04-30
EP0008440B1 true EP0008440B1 (fr) 1981-11-04

Family

ID=6047707

Family Applications (1)

Application Number Title Priority Date Filing Date
EP79102982A Expired EP0008440B1 (fr) 1978-08-23 1979-08-16 Procédé d'oxydation anodique d'aluminium et son application comme support de plaque d'impression

Country Status (8)

Country Link
US (1) US4229266A (fr)
EP (1) EP0008440B1 (fr)
JP (1) JPS5528400A (fr)
BR (1) BR7905415A (fr)
CA (1) CA1137918A (fr)
DE (2) DE2836803A1 (fr)
ES (1) ES8101130A1 (fr)
ZA (1) ZA794419B (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3917188A1 (de) * 1989-05-26 1990-11-29 Happich Gmbh Gebr Verfahren zur erzeugung farbiger oberflaechen auf teilen aus aluminium oder aluminium-legierungen
DE102015208201A1 (de) * 2015-05-04 2016-11-10 Coperion Gmbh Verfahren zum Herstellen einer Förderleitung und Förderleitung für die pneumatische Förderung von Schüttgut

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH645409A5 (de) * 1980-09-08 1984-09-28 Schenk & Co Verfahren zum faerben von oxydschichten von aluminium oder aluminiumlegierungen mit organischen verbindungen.
GB2088901B (en) * 1980-10-23 1983-12-07 Vickers Ltd Anodised aluminium sheet for lithographic printing plate production
US4349435A (en) * 1980-11-24 1982-09-14 Celanese Corporation Control of anaerobic filter
DE3206470A1 (de) * 1982-02-23 1983-09-01 Hoechst Ag, 6230 Frankfurt Verfahren zur herstellung von traegermaterialien fuer offsetdruckplatten
DE3206469A1 (de) * 1982-02-23 1983-09-01 Hoechst Ag, 6230 Frankfurt Verfahren zur herstellung von traegermaterialien fuer offsetdruckplatten
GB2119942B (en) * 1982-03-03 1985-09-11 Fuji Photo Film Co Ltd Method for preparing a lithographic printing plate and a light-sensitive material used therefor
DE3217499A1 (de) * 1982-05-10 1983-11-10 Hoechst Ag, 6230 Frankfurt Verfahren zur elektrochemischen aufrauhung von aluminium fuer druckplattentraeger
JPS58210144A (ja) * 1982-06-01 1983-12-07 Fuji Photo Film Co Ltd 平版印刷版支持体用アルミニウム合金
US4524125A (en) * 1982-08-13 1985-06-18 Polychrome Corporation Chemical etching of lithographic aluminum substrate
DE3312497A1 (de) * 1983-04-07 1984-10-11 Hoechst Ag, 6230 Frankfurt Zweistufiges verfahren zur herstellung von anodisch oxidierten flaechigen materialien aus aluminium und deren verwendung bei der herstellung von offsetdruckplatten
JPS59227494A (ja) * 1983-06-09 1984-12-20 Fuji Photo Film Co Ltd 平版印刷版用支持体の製造方法
DE3413899A1 (de) * 1984-04-13 1985-10-17 Hoechst Ag, 6230 Frankfurt Verfahren zur anodischen oxidation von aluminium und dessen verwendung als traegermaterial fuer offsetdruckplatten
US4502925A (en) * 1984-06-11 1985-03-05 American Hoechst Corporation Process for aluminum surface preparation
JPH0767868B2 (ja) * 1984-10-23 1995-07-26 三菱化学株式会社 感光性平版印刷版
US4647346A (en) * 1985-10-10 1987-03-03 Eastman Kodak Company Anodized aluminum support, method for the preparation thereof and lithographic printing plate containing same
DE3635303A1 (de) 1986-10-17 1988-04-28 Hoechst Ag Verfahren zur abtragenden modifizierung von mehrstufig aufgerauhten traegermaterialien aus aluminium oder dessen legierungen und deren verwendung bei der herstellung von offsetdruckplatten
GB8720424D0 (en) * 1987-08-28 1987-10-07 Horsell Graphic Ind Ltd Pre-sensitized lithographic printing plate production
DE4243164A1 (de) * 1992-12-19 1994-06-23 Deutsche Aerospace Airbus Verfahren zur anodischen Oxidation
DE69512321T2 (de) 1994-06-16 2000-05-11 Kodak Polychrome Graphics Llc, Norwalk Lithographische Druckplatten mit einer oleophilen bilderzeugenden Schicht
DE19518587A1 (de) * 1995-05-20 1996-11-21 Tampoprint Gmbh Druckklischee und Verfahren zu dessen Herstellung
DE10149928C1 (de) * 2001-10-10 2002-12-12 Wkw Erbsloeh Automotive Gmbh Verfahren zum Glänzen von Aluminium und dessen Verwendung
US7273537B2 (en) * 2002-09-12 2007-09-25 Teck Cominco Metals, Ltd. Method of production of metal particles through electrolysis
US8309237B2 (en) * 2007-08-28 2012-11-13 Alcoa Inc. Corrosion resistant aluminum alloy substrates and methods of producing the same
US7732068B2 (en) * 2007-08-28 2010-06-08 Alcoa Inc. Corrosion resistant aluminum alloy substrates and methods of producing the same
DE102008019887A1 (de) * 2008-04-21 2009-10-22 OCé PRINTING SYSTEMS GMBH Verfahren zum Herstellen einer Tonerwalze durch elektrolytische Oxidation von Aluminium
CN103374740A (zh) * 2012-04-18 2013-10-30 靖江先锋半导体科技有限公司 铝镁合金的低粉尘阳极氧化表面处理工艺
WO2013180119A1 (fr) * 2012-05-30 2013-12-05 三菱レイヨン株式会社 Procédé de fabrication d'un moule, et procédé de fabrication d'un article moulé ayant une structure irrégulière fine sur une surface
EP3445896B1 (fr) * 2016-04-18 2023-10-18 Fokker Aerostructures B.V. Procédé d'anodisation d'un article en aluminium ou en alliage de celui-ci

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB467267A (en) * 1935-11-14 1937-06-14 George Charles Jones Improvements in or relating to the production of protective coatings on aluminium and aluminium alloys
GB679599A (en) * 1951-02-21 1952-09-17 Essex Aero Ltd Modification of sulphuric acid electrolyte employed in the anodic treatment of aluminium and aluminium-rich alloys
US3672972A (en) * 1970-03-23 1972-06-27 Kaiser Aluminium Chem Corp Method for forming anodic oxide coatings having improved adhesive properties
JPS5414579B2 (fr) * 1973-09-12 1979-06-08
US3902976A (en) * 1974-10-01 1975-09-02 S O Litho Corp Corrosion and abrasion resistant aluminum and aluminum alloy plates particularly useful as support members for photolithographic plates and the like
US3935080A (en) * 1974-10-02 1976-01-27 Polychrome Corporation Method of producing an aluminum base sheet for a printing plate
US4144142A (en) * 1975-11-04 1979-03-13 Riken Keikinzoku Kogyo Kabushiki Kaisha Method for producing colored anodic film on aluminum-based material
DE2811396A1 (de) * 1978-03-16 1979-09-27 Hoechst Ag Verfahren zur anodischen oxidation von aluminium und dessen verwendung als druckplatten-traegermaterial

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3917188A1 (de) * 1989-05-26 1990-11-29 Happich Gmbh Gebr Verfahren zur erzeugung farbiger oberflaechen auf teilen aus aluminium oder aluminium-legierungen
DE102015208201A1 (de) * 2015-05-04 2016-11-10 Coperion Gmbh Verfahren zum Herstellen einer Förderleitung und Förderleitung für die pneumatische Förderung von Schüttgut

Also Published As

Publication number Publication date
JPS5528400A (en) 1980-02-28
BR7905415A (pt) 1980-05-20
ES483570A0 (es) 1980-12-01
CA1137918A (fr) 1982-12-21
US4229266A (en) 1980-10-21
EP0008440A3 (en) 1980-04-30
DE2961253D1 (en) 1982-01-14
EP0008440A2 (fr) 1980-03-05
DE2836803A1 (de) 1980-03-06
ZA794419B (en) 1980-08-27
ES8101130A1 (es) 1980-12-01

Similar Documents

Publication Publication Date Title
EP0008440B1 (fr) Procédé d'oxydation anodique d'aluminium et son application comme support de plaque d'impression
EP0004569B1 (fr) Procédé d'oxydation anodique de l'aluminium et son utilisation comme matériau porteur pour plaques d'impression
EP0069320B1 (fr) Matériaux de support pour plaques lithographiques, aux propriétés hydrophiles améliorées, procédés pour leur fabrication, et leur utilisation
EP0105170B1 (fr) Procédé de posttraitement de couches d'oxyde d'aluminium avec des solutions aqueuses contenant du silicate alcalin et son application dans la fabrication des supports pour plaques d'impression
DE3312497A1 (de) Zweistufiges verfahren zur herstellung von anodisch oxidierten flaechigen materialien aus aluminium und deren verwendung bei der herstellung von offsetdruckplatten
EP0069319B1 (fr) Matériaux de support pour plaques lithographiques, aux propriétés hydrophiles améliorées, procédés pour leur fabrication, et leur utilisation
EP0050216B1 (fr) Procédé pour l'oxydation anodique d'aluminium et son utilisation comme support pour planches d'imprimerie
EP0093961B1 (fr) Procédé de grainage électrochimique de l'aluminium pour des supports de plaques d'impression
EP0097301B1 (fr) Procédé pour la modification par l'enlèvement de supports en aluminium décapés par voie électrochimique et l'utilisation de ceux-ci pour la fabrication des plaques offset
EP0086957B1 (fr) Procédé pour la production de matériaux de support pour des plaques d'impression offset
EP0139111B1 (fr) Procédé d'oxidation anodique en deux étapes des matériaux de support en aluminium pour plaques d'impression offset
EP0086956B1 (fr) Procédé pour la production de matériaux de support pour des plaques d'impression offset
EP0141056B1 (fr) Procédé d'oxydation anodique en une étape des matériaux supports en aluminium pour plaques d'impression offset
EP0190643B1 (fr) Matériau de supports hydrophilisés pour plaques d'impression offset, procédé de fabrication et leur emploi
EP0269851B1 (fr) Support en aluminium ou en alliage d'aluminium pour des plaques offset et son procédé de fabrication
EP0468313B1 (fr) Plaques, feuilles ou matériel en forme de bandes comme support pour des plaques d'impression offset, procédé pour sa préparation et son utilisation
EP0161461B1 (fr) Procédé d'oxydation anodique d'aluminium et son application comme matériau de support pour plaques d'impression offset
EP0170045B1 (fr) Procédé pour le décapage et le chromage simultanés de plaques d'acier comme supports pour des utilisations lithographiques
EP0095581B1 (fr) Procédé de post traitement de couches d'oxyde d'aluminium avec des solutions aqueuses contenant silicate alcalin et son application dans la fabrication de supports de plaques d'impression offset
EP0268058B1 (fr) Procédé de décapage électrochimique de l'aluminium ou ses alliages pour supports pour plaques d'impression
EP0035730A2 (fr) Procédé pour la modification de la surface de matériaux supports de plaques d'impression en aluminium et procédé pour la production de plaques d'impression en ces matériaux

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Designated state(s): BE CH DE FR GB IT NL SE

AK Designated contracting states

Designated state(s): BE CH DE FR GB IT NL SE

17P Request for examination filed
ITF It: translation for a ep patent filed
GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): BE CH DE FR GB IT NL SE

REF Corresponds to:

Ref document number: 2961253

Country of ref document: DE

Date of ref document: 19820114

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19820930

Year of fee payment: 4

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19830718

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19830817

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Effective date: 19840831

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19840930

Year of fee payment: 6

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19860831

Year of fee payment: 8

BERE Be: lapsed

Owner name: HOECHST A.G.

Effective date: 19870831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19880301

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Effective date: 19890831

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19900712

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19900719

Year of fee payment: 12

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19910816

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19911017

Year of fee payment: 13

GBPC Gb: european patent ceased through non-payment of renewal fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19920430

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19930501

EUG Se: european patent has lapsed

Ref document number: 79102982.0

Effective date: 19850610

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT