EP0000761B1 - Verfahren zur Herstellung von Urethangruppen aufweisenden Schaumstoffen - Google Patents

Verfahren zur Herstellung von Urethangruppen aufweisenden Schaumstoffen Download PDF

Info

Publication number
EP0000761B1
EP0000761B1 EP78100555A EP78100555A EP0000761B1 EP 0000761 B1 EP0000761 B1 EP 0000761B1 EP 78100555 A EP78100555 A EP 78100555A EP 78100555 A EP78100555 A EP 78100555A EP 0000761 B1 EP0000761 B1 EP 0000761B1
Authority
EP
European Patent Office
Prior art keywords
compounds
weight
polyisocyanates
groups
mixtures
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP78100555A
Other languages
English (en)
French (fr)
Other versions
EP0000761A1 (de
Inventor
Hans-Joachim Dr. Meiners
Hans-Heinrich Dr. Moretto
Armand Dr. De Montigny
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bayer AG
Original Assignee
Bayer AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bayer AG filed Critical Bayer AG
Publication of EP0000761A1 publication Critical patent/EP0000761A1/de
Application granted granted Critical
Publication of EP0000761B1 publication Critical patent/EP0000761B1/de
Expired legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/0061Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof characterized by the use of several polymeric components
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/4009Two or more macromolecular compounds not provided for in one single group of groups C08G18/42 - C08G18/64
    • C08G18/4072Mixtures of compounds of group C08G18/63 with other macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/65Low-molecular-weight compounds having active hydrogen with high-molecular-weight compounds having active hydrogen
    • C08G18/6552Compounds of group C08G18/63
    • C08G18/6558Compounds of group C08G18/63 with compounds of group C08G18/32 or polyamines of C08G18/38
    • C08G18/6564Compounds of group C08G18/63 with compounds of group C08G18/32 or polyamines of C08G18/38 with compounds of group C08G18/3203
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/0014Use of organic additives
    • C08J9/0042Use of organic additives containing silicon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2110/00Foam properties
    • C08G2110/0008Foam properties flexible
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2110/00Foam properties
    • C08G2110/0041Foam properties having specified density
    • C08G2110/005< 50kg/m3
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2110/00Foam properties
    • C08G2110/0083Foam properties prepared using water as the sole blowing agent
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2375/00Characterised by the use of polyureas or polyurethanes; Derivatives of such polymers
    • C08J2375/04Polyurethanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2483/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen, or carbon only; Derivatives of such polymers

Definitions

  • Foams containing urethane groups are widely used, e.g. in the field of insulation, for the production of structural elements or for upholstery purposes.
  • urethane group-containing foams made from higher molecular weight polyols, e.g. To produce hydroxyl-containing polyethers, polyisocyanates, water and / or other blowing agents in the presence of catalysts, emulsifiers and auxiliaries in blocks and in formula.
  • the task of the emulsifiers and stabilizers in the reaction mixture is to homogenize the reactants and to facilitate the simultaneous foaming process and to prevent the foams from collapsing after the end of gas formation.
  • the catalysts are intended to ensure that the processes taking place during the foam formation are brought into the desired equilibrium and run at the correct speed.
  • hydroxyl groups containing polyethers in which at least about 10% of the OH groups present are primary OH groups and which e.g. have a molecular weight of 400-10000 or polyethers grafted with organic, unsaturated compounds in combination with the polyisocyanates, special polyisocyanates being used in many cases.
  • Special polyisocyanates include In addition to 2,4- and / or 2,6-tolylene diisocyanate, mixtures of diphenylmethane diisocyanates and polyphenylpolymethylene polyisocyanates (raw MDI), combinations of tolylene diisocyanates and polyphenylpolymethylene polyisocyanates, also so-called "modified polyisocyanates" in question, e.g.
  • the foams known to date which have urethane groups and are produced, for example, using the "modified polyisocyanates" often have the disadvantage, however, that when they are foamed, they show defects in the form of bubbles under the outer part of the foam part, which can also be found inside can reproduce the foam part.
  • This appearance is extremely disadvantageous. e.g. in the production of molded parts, be it for the furniture industry or automotive industry, because e.g. this blistering clearly shows on fine upholstery fabrics.
  • polysiloxane-polyalkylene oxide copolymers such as are commercially available as foam stabilizers, cannot solve the problem, since in this case, even with the smallest amounts of stabilizers, irreversible shrinkage or collapse occurs and leads to unusable foams.
  • the index a means a whole unbroken number.
  • Formula (I) thus represents discrete compounds (for example with a defined boiling point) and no mixtures of statistical distribution. However, it turns out that these (discrete) compounds do not have a sufficient stabilizing effect. For example, the compound (falling under Formula 1) Purity: 99.8%) not even able to stabilize those (commercial) foam systems that are not very demanding in terms of stabilization.
  • DT-OS 2 533 074 tries to show that (in contrast to the teaching of GB-PS 795 335) the properties of polyurethane foams desired by practice can only be obtained by selecting low-molecular fractions from 4 to a maximum of 12 siloxy units from linear dimethylpolysiloxanes will; Even the smallest amounts of higher molecular weight linear dimethylpolysiloxanes are said to significantly worsen the property profile.
  • the mixtures of organofunctional polysiloxanes to be used according to the invention no restriction of this type in the low and high molecular weight range is necessary.
  • mixtures of compounds to be used according to the invention can be easily and often produced in almost 100% yield by conventional hydrolysis of chlorosilanes, followed by an equilibration known per se.
  • the compound mixtures which are well compatible with foamable polyurethane systems, can be stored without restrictions in polyols, so that there are no problems with storage. They obviously favor the nucleation during the foaming process and give the foam system excellent fluidity, which is the prerequisite for optimal production in the case of the production of foams by shaping with long flow paths or strongly changing cross sections.
  • foams obtained which have excellent physical data but products are also obtained which, when viewed purely subjectively, leave a good impression.
  • the grip and elasticity on the test person are decidedly "personable”.
  • connection mixtures to be used according to the invention can be matched admirably to the corresponding foam systems.
  • the total number of siloxy units is responsible for the stabilizing effect (DT-AS 2 402 691)
  • Suitable starting components according to the invention are aliphatic, cycloaliphatic, araliphatic, aromatic and heterocyclic polyisocyanates, as are described, for example, by W. Siefken in Justus Liebigs Annalen der Chemie, 562, pages 75 to 136, for example ethylene diisocyanate, 1,4 Tetramethylene diisocyanate, 1,6-hexamethylene diisocyanate, 1,12-dodecane diisocyanate, cyclobutane-1,3-diisocyanate, cyclohexane-1,3- and -1,4-diisocyanate and any mixtures of these isomers, 1-isocyanato-3,3, 5-trimethyl-5-isocyanatomethyl-cyclohexane (DAS 1 202 785 American patent specification 3 401 190), 2,4- and 2,6-hexahydrotoluenediisocyanate as well as any mixtures of these isomers, hexahydr
  • polyisocyanates prepared by telomerization reactions such as are described, for example, in US Pat. No. 3,654,106, polyisocyanates containing ester groups, as described, for example, in British Patents 956,474 and 1,072,956 in American Patent 3,567,763 and i n of German Patent 1,231,688, reaction products of the above-mentioned isocyanates with acetals according to German Patent 1,072,385 and polymeric fatty acid residues containing polyisocyanates according to American Patent 3,455,883.
  • distillation residues obtained in the technical production of isocyanate and containing isocyanate groups optionally dissolved in one or more of the aforementioned polyisocyanates. It is also possible to use any mixtures of the aforementioned polyisocyanates.
  • polyisocyanates for example the 2,4- and 2,6-tolylene diisocyanate and any mixtures of these isomers (“TDI”), polyphenyl-polymethylene polyisocyanates, such as those obtained from aniline-formaldehyde condensation, are generally particularly preferred and subsequent phosgenation are prepared (“crude MDI”) and carbodiimide groups, urethane groups, allophanate groups, isocyanurate groups, urea groups or biuret groups containing polyisocyanates ("modified polyisocyanates").
  • TDI 2,4- and 2,6-tolylene diisocyanate and any mixtures of these isomers
  • polyphenyl-polymethylene polyisocyanates such as those obtained from aniline-formaldehyde condensation
  • Starting components to be used according to the invention are furthermore compounds having at least two isocyanate-reactive hydrogen atoms with a molecular weight of generally 400-100000.
  • these are preferably polyhydroxyl compounds, in particular two to eight compounds containing hydroxyl groups, especially those having a molecular weight of 800 to 10,000, preferably 1000 to 6000, for example at least two, usually 2 to 8, but preferably 2 to "4, hydroxyl-containing polyesters, polyethers, polythioethers, polyacetals, polycarbonates and polyesteramides as are known per se for the production of homogeneous and cellular polyurethanes. 1
  • the hydroxyl group-containing polyesters are e.g. Reaction products of polyhydric, preferably dihydric and optionally additionally trihydric alcohols with polyhydric, preferably dihydric, carboxylic acids.
  • polyhydric preferably dihydric and optionally additionally trihydric alcohols
  • polyhydric preferably dihydric, carboxylic acids.
  • free polycarboxylic acids it is also possible to use the corresponding polycarboxylic acid anhydrides or corresponding polycarboxylic acid esters of lower alcohols or their mixtures for the preparation of the polyesters.
  • the polycarboxylic acids can be aliphatic, cycloaliphatic, aromatic and / or heterocyclic in nature and optionally, e.g. by halogen atoms, substituted and / or unsaturated.
  • Examples include: succinic acid, adipic acid, suberic acid, azelaic acid, Seba cic acid, phthalic acid, isophthalic acid, trimellitic acid, phthalic anhydride, tetrahydrophthalic anhydride, hexahydrophthalic anhydride, tetrachlorophthalic anhydride, endomethylene tetrahydrophthalic anhydride, glutaric acid anhydride, maleic acid and maleic acid fatty acid, fatty acid mixture, oleic acid fatty acid, fatty acid mixture, such as oleic acid fatty acid, fatty acid mixture, such as oleic acid fatty acid, fatty acid mixture, such as oleic acid fatty acid, fatty acid mixture, such as fatty acid, fatty acid, fatty acid mixture, such as fatty acid, fatty acid, fatty acid mixture, such as fatty acid, fatty acid, fatty acid mixture, such as fatty acid, fatty acid, fatty acid mixture
  • polyethers which are suitable and even preferred according to the invention and which have at least two, generally two to eight, preferably two to three, hydroxyl groups are those of the type known per se and are obtained, for example, by polymerizing epoxides such as ethylene oxide, propylene oxide, butylene oxide and tetrahydrofuran , Styrene oxide or epichlorohydrin with itself, e.g. in the presence of BF 3 , or by the addition of these epoxides, optionally in a mixture or in succession, to starting components with reactive hydrogen atoms such as water, alcohols, ammonia or amines, e.g.
  • epoxides such as ethylene oxide, propylene oxide, butylene oxide and tetrahydrofuran , Styrene oxide or epichlorohydrin
  • Sucrose polyethers such as are described, for example, in German publications 1 176 358 and 1 064 938, are also suitable according to the invention. Polyethers are preferred which have predominantly (up to 90% by weight, based on all the OH groups present in the polyether) primary OH groups.
  • Polyethers modified by vinyl polymers such as those formed by polymerizing styrene and acrylonitrile in the presence of polyethers (American patents 3,383,351, 3,304,273, 3,523,093, 3,110,695, German patent 1,152,536) are also suitable, as are OH -Group polybutadienes.
  • the condensation products of thiodiglycol with themselves and / or with other glycols, dicarboxylic acids, formaldehyde, aminocarboxylic acids or amino alcohols should be mentioned in particular.
  • the products are polythio ether, polythio ether ester or polythio ether ester amide.
  • polyacetals e.g. those from glycols, such as diethylene glycol. Triethylene glycol, 4,4'-dioxäthoxydiphenyldimethylmethan, hexanediol and formaldehyde producible compounds in question.
  • polyacetals suitable according to the invention can also be prepared by polymerizing cyclic acetals.
  • Suitable polycarbonates containing hydroxyl groups are those of the type known per se, which e.g. by reacting diols such as propanediol (1,3), butanediol (1,4) and / or hexanediol (1,6), diethylene glycol, triethylene glycol or tetraethylene glycol with diaryl carbonates, e.g. Diphenyl carbonate, or phosgene can be produced.
  • diols such as propanediol (1,3), butanediol (1,4) and / or hexanediol (1,6)
  • diethylene glycol triethylene glycol or tetraethylene glycol
  • diaryl carbonates e.g. Diphenyl carbonate, or phosgene
  • polyester amides and polyamides include e.g. the predominantly linear condensates obtained from polyvalent saturated and unsaturated carboxylic acids or their anhydrides and polyvalent saturated and unsaturated amino alcohols, diamines, polyamines and their mixtures.
  • Polyhydroxyl compounds which already contain urethane or urea groups and optionally modified natural polyols, such as castor oil, carbohydrates or starch, can also be used. Addition products of alkylene oxides with phenol-formaldehyde resins or also with urea-formaldehyde resins can also be used according to the invention.
  • Compounds with at least two isocyanate-reactive hydrogen atoms with a molecular weight of 32-400 are also suitable as starting components which may be used according to the invention.
  • These compounds generally have 2 to 8 isocyanate-reactive hydrogen atoms, preferably 2 or 3 reactive hydrogen atoms.
  • Examples of such compounds are: ethylene glycol, propylene glycol (1,2) and - (1,3), butylene glycol- (1,4) and - (2,3), pentanediol- (1,5), hexanediol- (1,6), octanediol- (-1,8), neopentylglycol, 1,4-bis-hydroxymethyl-cyclohexane, 2-methyl-1,3-propanediol, glycerol, trimethylolpropane, hexanetriol- (1,2,6), trimethylolethane, pentaerythritol, quinite, mannitol and sorbitol, diethylene glycol, triethylene glycol, tetraethylene glycol, Polyethylene glycols with a molecular weight of up to 400 dipropylene glycol, polypropylene glycols with a molecular weight of up to 400, dibutylene glycol, polybutylene
  • mixtures of different compounds with at least two isocyanate-reactive hydrogen atoms with a molecular weight of 32-400 can be used.
  • polyhydroxyl compounds can also be used in which high molecular weight polyadducts or polycondensates are contained in finely dispersed or dissolved form.
  • modified polyhydroxyl compounds are obtained if polyaddition reactions (e.g. reactions between polyisocyanates and amino-functional compounds) or polycondensation reactions (e.g. between formaldehyde and phenols and / or amines) are carried out directly in situ in the above-mentioned compounds containing hydroxyl groups.
  • water and / or volatile organic substances are also used as blowing agents.
  • organic blowing agents come e.g. Acetone, ethyl acetate, halogen-substituted alkanes such as methylene chloride, chloroform, ethylene chloride, vinylidene chloride, monofluorotrichloromethane, chlorodifluoromethane, dichlorodifluoromethane, butane, hexane, heptane or diethyl ether are also suitable.
  • a blowing effect can also be achieved by adding compounds which decompose at temperatures above room temperature with the elimination of gases, for example nitrogen, e.g. Azo compounds such as azoisobutyronitrile can be achieved.
  • propellants as well as details on the use of propellants can be found in the Kunststoff-Handbuch, Volume VII, published by Vieweg and Höchten, Carl-Hanser-Verlag, Kunststoff 1966, e.g. on pages 108 and 109, 453 to 455 and 507 to 510.
  • catalysts are often also used.
  • Suitable catalysts to be used are those of the type known per se, e.g. tertiary amines, such as triethylamine, tributylamine, N-methylmorpholine, N-ethylmorpholine, N-cocomorpholine, N, N, N ', N'-tetramethyl-ethylenediamine, 1,4-diaza-bicyclo- (2.2 , 2) octane, N-methyl-N'-dimethylaminoethyl-piperazine, N, N-dimethylbenzylamine, bis (N, N-diethylaminoethyl) adipate, N, N-diethylbenzylamine, pentamethyldiethylenetriamine, N, N-dimethylcyclohexylamine, N , N, N ', N'-tetramethyl-1,3-butanediamine, N, N-dimethyl-ß
  • Suitable catalysts are also known Mannich bases from secondary amines, such as dimethylamine, and aldehydes, preferably formaldehyde, or ketones such as acetone, methyl ethyl ketone or cyclohexanone and phenols, such as phenol, nonylphenol or bisphenol.
  • Tertiary amines which have hydrogen atoms active against isocyanate groups as catalysts are e.g. Triethanolamine, triisopropanolamine, N-methyldiethanolamine, N-ethyl-diethanolamine, N, N-dimethyl-ethanolamine, and their reaction products with alkylene oxides, such as propylene oxide and / or ethylene oxide.
  • Silaamines with carbon-silicon bonds such as those e.g. in German Patent 1,229,290 (corresponding to American Patent 3,620,984) are in question, e.g. 2,2,4-trimethyl-2-silamorpholine and 1,3-diethylaminomethyl-tetramethyl-disiloxane.
  • Suitable catalysts are also nitrogen-containing bases such as tetraalkylammonium hydroxides, alkali metal hydroxides such as sodium hydroxide, alkali phenolates such as sodium phenolate or alkali metal alcoholates such as sodium methylate. Hexahydrotriazines can also be used as catalysts.
  • organic metal compounds in particular organic tin compounds, can also be used as catalysts.
  • Preferred organic tin compounds are tin (II) salts of carboxylic acids such as tin (II) acetate, tin (II) octoate, tin (11) ethylhexoate and tin (II) laurate and the tin (IV) compounds, e.g.: Dibutyltin oxide, dibutyltin dichloride, dibutyltin diacetate, dibutyltin dilaurate, dibutyltin maleate or dioctyltin diacetate.
  • tin (II) salts of carboxylic acids such as tin (II) acetate, tin (II) octoate, tin (11) ethylhexoate and tin (II) laurate
  • the tin (IV) compounds e.g.: Dibutyltin oxide, dibutyltin dichloride, dibuty
  • the catalysts are generally used in an amount between about 0.001 and 10 wt .-%, aeration zo g s to the amount of compounds having at least two isocyanate-reactive hydrogen atoms and a molecular weight of 400 to 100,000.
  • surface-active additives such as emulsifiers and foam stabilizers can also be used.
  • the emulsifiers are e.g. the sodium salts of castor oil sulfonates or salts of fatty acids with amines such as oleic acid diethylamine or stearic acid diethanolamine.
  • Alkali or ammonium salts of sulfonic acids such as dodecylbenzenesulfonic acid or dinaphthylmethane disulfonic acid or of fatty acids such as ricinoleic acid or of polymeric fatty acids can also be used as surface-active additives.
  • reaction retarders e.g. acidic substances such as hydrochloric acid or organic acid halides, further cell regulators of the type known per se such as paraffins or fatty alcohols or dimethylpolysiloxanes as well as pigments or dyes and flame retardants of the type known per se, e.g. Tris-chloroethyl phosphate, tricresyl phosphate or ammonium phosphate and polyphosphate, further stabilizers against aging and weather influences, plasticizers and fungistatic and bacteriostatic substances and fillers such as barim sulfate, diatomaceous earth, carbon black or sludge chalk are also used.
  • acidic substances such as hydrochloric acid or organic acid halides
  • cell regulators of the type known per se
  • pigments or dyes and flame retardants e.g. Tris-chloroethyl phosphate, tricresyl phosphate or ammonium phosphate and polyphosphate
  • surface-active additives and foam stabilizers to be used according to the invention as well as cell regulators, reaction retarders, stabilizers, flame-retardant substances, plasticizers, dyes and fillers, as well as fungistatic and bacteriostatic substances, as well as details on the use and mode of action of these additives are given in the Plastics Manual, Volume VII by Vieweg and Höchtlen, Carl-Hanser-Verlag, Kunststoff 1966, e.g. described on pages 103 to 113.
  • reaction components are reacted according to the one-step process, the prepolymer process or the semi-prepolymer process, which are known per se, machine equipment often being used, e.g. those described in U.S. Patent 2,764,565. Details on processing devices which are also suitable according to the invention are given in the plastics manual, volume VII, published by Vieweg and Höchtlen, Carl-Hanser-Verlag, Kunststoff 1966, e.g. described on pages 121 to 205.
  • foaming is often carried out in molds according to the invention.
  • the reaction mixture is introduced into a mold.
  • Metal e.g. Aluminum, or plastic, e.g. Epoxy resin, in question.
  • the foamable reaction mixture foams in the mold and forms the shaped body.
  • the foaming of the mold can be carried out in such a way that the molded part has a cell structure on its surface, but it can also be carried out in such a way that the molded part has a compact skin and a cellular core. According to the invention, one can proceed in this connection in such a way that so much foamable reaction mixture is introduced into the mold that the foam formed just fills the mold.
  • foams can also be produced by block foaming.
  • the products obtainable according to the invention find e.g. Use as upholstery materials.
  • the dried crude product is equilibrated with an acid catalyst.
  • the crosslinking activities are not affected during the foam production, while the blowing activities are only slightly influenced in the last phase (rise time).
  • molded foams can be produced which have no marginal zone defects or bubbles under the surface.

Description

  • Urethangruppen aufweisende Schaumstoffe finden weite Anwendung, z.B. auf dem Gebiet der Isolierung, zur Herstellung von Strukturelementen oder für Polsterungszwecke.
  • Es ist auch bekannt, Urethangruppen aufweisende Schaumstoffe aus höhermolekularen Polyolen, z.B. Hydroxylgruppen aufweisenden Polyäthern, Polyisocyanaten, Wasser und/oder anderen Treibmitteln, in Gegenwart von Katalysatoren, Emulgatoren und Hilfsmitteln in Blöcken und in Formel herzustellen. Den Emulgatoren und Stabilisatoren fällt dabei im Reaktionsgemisch die Aufgabe zu, die Reaktionspartner zu homogenisieren und den gleichzeitig einsetzenden Schäumvorgang zu erleichtern und ein Zusammenfallen der Schaumstoffe nach Ende de Gasbildung zu verhindern. Die Katalysatoren sollen dafür sorgen, dass die während der Schaumstoffbildung ablaufenden Vorgänge in das gewünschte Gleichgewicht gebracht werden und mit der richtigen Geschwindigkeit ablaufen.
  • Dabei werden oft mindestens zwei Hydroxylgruppen aufweisende Polyäther, in denen mindestens ca. 10% der vorhandenen OH-Gruppen primäre OH-Gruppen sind und die z.B. ein Molekulargewicht von 400-10000 aufweisen oder mit organischen, ungesättigte Verbindungen gepfropfte Polyäther in Kombination mit den Polyisocyanaten verwendet, wobei vielfach spezielle Polyisocyanate eingesetzt werden.
  • Als spezielle Polyisocyanate kommen z.B. neben 2,4- und/oder 2,6-Toluylendiisocyanat, Gemischen aus Diphenylmethandiisocyanaten und Polyphenyl-polymethylen-polyisocyanaten (rohes MDI), Kombinationen aus Toluylendiisocyanaten und Polyphenylpolymethylenpolyisocyanaten, auch sogenannte "modifizierte Polyisocyanate" in Frage, z.B. Lösungen von Biuretgruppen aufweisenden Polyisocyanaten in biuretgruppenfreien Polyisocyanaten und/oder Lösungen von mindestens zwei NCO-Gruppen und mindestens eine N,N'-disubstituierte Allophansäureestergruppierung enthaltenden Polyisocyanaten in Allophansäureestergruppen-freien Polyisocyanaten und/oder Lösungen von Urethangruppen aufweisenden Polyisocyanaten in Urethangruppen-freien Polyisocyanaten und/oder Lösungen von Isocyanursäureringe enthaltenden Polyisocyanaten in Isocyanuratgruppen-freien Polyisocyanaten.
  • Die bisher bekannten Urethangruppen aufweisenden Schaumstoffe, hergestellt z, B. unter Verwendung der "modifizierten Polyisocyanate", weisen indessen oft den Nachteil auf, dass sie bei der Verschäumung Störungen in Form von Blasen unter den Schaumteil-Aussenseiten zeigen, die sich auch in das Innere des Schaumteils fortpflanzen können. Dieses Erscheinungsbild ist ausserordentlich nachteilig. z.B. bei der Fertigung von Formteilen, sei es für die Möbelindustrie oder Automobilindustrie, da sich z.B. auf feinen Bezugstoffen diese Blasenbildung deutlich abzeichnet. Durch Einsatz von Polysiloxan-Polyalkylenbxid-Copolymeren, wie sie als Schaumstabilisatoren handelsüblich sind, kann das angeführte Störungsbild nicht behoben werden, da in diesem Fall, selbst bei geringsten Mengen an Stabilisatoren, ein irreversibeler Schrumpf oder Kollaps auftritt und zu nicht verwertbaren Schaumstoffen führt.
  • Man hat nun bereits versucht, durch Mitverwendung von speziellen -Siliciumverbindungen das geschilderte Störungsbild bei den Polyurethanschaumstoffen zu beheben (vgl. DT-OS 2 232 525 und 2 246 400). Diese Versuche haben indessen noch nicht zu in der Praxis allseits befriedigenden Ergebnissen geführt. Insbesondere hat sich gezeigt, dass auch bei Mitverwendung der in den Offenlegungsschriften näher beschriebenen Siliciumverbindungen oft ein Schrumpfen des Schaumstoffs nicht völlig vermieden werden kann.
  • Auch mit der Lehre der DT-OS 2 337 140, wonach Verbindungen der Formel
    Figure imgb0001
    in der T z.B. CH3
    • R' z.B. CFiZCI und CH3
    • a z.B. die Zahl zwei bedeuten, verwendet werden, wird versucht, die oben erwähnten Störungen zu beheben.
  • Wie aus der Beschreibung dieser DT-OS hervorgeht bedeutet der Index a eine ganze ungebrochene Zahl. Die Formel (I) gibt somit diskrete Verbindungen (z.B. mit definiertem Siedepunkt) und keine Gemische statistischer Verteilung wieder. Es zeigt sich aber, daß diese (diskreten) Verbindungen keine ausreichende stabilisierende Wirkung entfalten. So ist z.B. die (unter die Formel 1 fallende) Verbindung
    Figure imgb0002
    Reinheit: 99.8%ig) nicht einmal in der Lage, solche (handelsüblichen) Schaumstoffsystem zu stabilisieren, die in Hinsicht auf Stabilisierung nur wenig anspruchsvoll sind.
  • Die DT-OS 2 533 074 versucht zu zeigen, daß (im Gegensatz zur Lehre Der GB-PS 795 335) nur durch eine Auswahl nieder-molekularer Anteile von 4 bis maximal 12 Siloxyeinheiten aus linearen Dimethylpolysiloxanen die von der Praxis gewünschten Eigenschaften von Polyurethanschaumstoffen erhalten werden; bereits geringste Mengen höhermolekularer linearer Dimethylpolysiloxane sollen angeblich das Eigenschaftsbild erheblich verschlechtern. Überraschenderweise hat sich jedoch ergeben, daß mit der Verwendung der erfindungsgemäß einzusetzenden Gemische von organofunktionellen Polysiloxanen keine Einschränkung dieser Art im nieder- und höhermolekularen Bereich notwendig ist.
  • Der Einsatz von diskreten Silicium-Verbindungen sowie von Zusammensetzungen, die einen zusätzlichen Trennaufwand erfordern, ist naturgemäß wirtschaftlich weniger interessant.
  • Es wurde nun ein Verfahren zur Herstellung von nicht schrumpfenden, Urethangruppen enthaltenden Schaumstoffen gefunden, wobei die geschilderten Nachteile vermieden werden können und die Herstellung von einwandfreien Schaumstoffen gelinget.
  • Gegenstand der vorliegenden Erfindung ist ein Verfahren zur Herstellung von kalthärtenden, nicht schrumpfenden Urethangruppen aufweisenden Schaumstoffen durch Umsetzung von mindestens zwei aktive Wasserstoffatome aufweisenden Verbindungen vom Molekulargewicht 400 bis 100000 mit Polyisocyanaten in Gegenwart von Wasser und/oder organischen Treibmitteln, Siliciumverbindungen und gegebenenfalls in Gegenwart von Katalysatoren und weiteren Hilfsmitteln, dadurch gekennzeichnet, daß als Siliciumverbindungen Gemische von Verbindungen der allgemeinen Formel
    Figure imgb0003
    wobei R einen Alkyl- oder Alkenylrest bis zu 3 C-Atomen, vorsugsweise einen Methylrest,
    • R2 einen Chlormethylrest,
    • R1 einen Rest R2 bzw. R,
    • n' eine ganze oder gebrochene Zahl von 0 bis 9,
    • n eine ganze oder gebrochene Zahl von 0 bis 9,

    und n + n' < 10 bedeuten
    und R1 gleich R2 wird, wenn n' = 0 ist,
    in Mengen von 0,01 bis 2,0 Gew-%, vorzugsweise 0,1-1,0 Gew-% bezogen auf die aktive Wasserstoffatome aufweisende Verbindungen vom Molekulargewicht 400-100000, verwendet werden.
  • Da die Indizes n und n' die mittlere Zusammensetzung der Gemische der Siliciumverbindung beschreiben, können bei einer Zusammensetzung n + n' = 10 definierte Verbindungen mit höheren diskreten Indizes auftreten. Dies ist in den Beispielen, wo auf die Herstellung dieser Verbindungen eingegangen wird, anhand eines Gaschromatogramms näher erläutert.
  • Die erfindungsgemäß zu verwendenden Gemische von Verbindungen sind durch klassische Hydrolyse von Chlorsilanen, gefolgt von einer an sich bekannten Äquilibrierung, leicht und oft in nahezu 100 %iger Ausbeute herstellbar.
  • Typische Beispiele für solche Verbindungsgemische soll folgende Auswahl zeigen.
    Figure imgb0004
    Figure imgb0005
    Figure imgb0006
    Figure imgb0007
    Figure imgb0008
    Figure imgb0009
    Figure imgb0010
    Figure imgb0011
    Figure imgb0012
  • Die mit schaumfähigen Polyurethansystemen gut verträglichen Verbindungsgemische sind uneingeschränkt in Polyolen lagerfähig, so dass keinerlei Probleme bei der Lagerhaltung auftreten. Sie begünstigen offensichtlich die Keimbildung beim Schaumvorgang und verleihen dem Schaumstoffsystem ein ausgezeichnetes Fließvermögen, was im Falle der Herstellung von Schaumstoffen durch Formgebung bei langen Fließwegen bzw. stark sich verändernden Querschnitten die Voraussetzung zur optimalen Fertigung darstellt.
  • Erfindungsgemäss werden nicht nur Schaumstoffe erhalten, die hervorragende physikalische Daten aufweisen, sondern es werden auch Produkte erhalten, die bei einer rein subjektiven Betrachtungsweise einen guten Eindruck hinterlassen.
  • So wirken z.B. der Griff und die Elastizität auf die Prüfperson ausgesprochen "sympathisch".
  • Ein Vorteil der Erfindung besteht auch darin, dass die erfindungsgemäss zu verwendenden Verbindungsgemische vortrefflich auf die entsprechenden Schaumstoffsysteme abgestimmt werden können. Obwohl bekannt ist, dass die Gesamtzahl der Siloxyeinheiten für die stabilisierende Wirkung verantwortlich ist (DT-AS 2 402 691), wurde durch die vorliegende Erfindung gefunden, dass durch eine Variation der Organosiloxyeinheiten innerhalb einer bestimmten Gesamtzahl von Siloxyeinheiten eine zusätzliche Feinabstimmung in der stabilisierenden Wirkung möglich ist. Hierdurch gelingt es, (je nach Verhältnis der Indexzahlen n und n' zueinander) die Stabilisierung während des Schäumvorganges so zu steuern, dass extrem stabilisatorbedürftige, schäumfähige Polyurethansysteme einerseits wie auch nahezu sich selbst stabilisierende Systeme andererseits zu hervorragenden, nicht schrumpfenden Schaumstoffen umgesetzt werden können.
  • Als erfindungsgemäß einzusetzende Ausgangskomponenten kommen aliphatische, cycloaliphatische, araliphatische, aromatische und heterocyclische Polyisocyanate in Betracht, wie sie z.B. von W. Siefken in Justus Liebigs Annalen der Chemie, 562, Seiten 75 bis 136, beschrieben werden, beispielsweise Äthylen-diisocyanat, 1,4-Tetramethylendiisocyanat, 1,6-Hexamethylendiisocyanat, 1,12-Dodecandiisocyanat, Cyclobutan-1,3-diisocyanat, Cyclohexan-1,3- und -1,4-diisocyanat sowie beliebige Gemische dieser Isomeren, 1-Isocyanato-3,3,5-trimethyl-5-isocyanatomethyl-cyclohexan (DAS 1 202 785 amerikanische Patentschrift 3 401 190), 2,4- und 2,6-Hexahydrotoluylendiisocyanat sowie beliebige Gemische dieser Isomeren, Hexahydro-1,3-und/oder -1,4-phenylen-diisocyanat, Perhydro-2,4'- und/oder -4,4'-diphenylmethan-diisocyanat, 1,3- und 1,4-Phenylendiisocyanat, 2,4- und 2,6-Toluylendiisocyanat sowie beliebige Gemische dieser Isomeren, Diphenylmethan-2,4'- und/oder -4,4'-diisocyanat, Naphthylen-1,5-düsocyanat, Triphenylmethan-4,41,4"-triisocyanat, Polyphenyl-polymethylen-polyisocyanate, wie sie durch Anilin-Formaldehyd-Kondensation und anschließende Phosgenierung erhalten und z.B. in den britischen patentschriften 874 430 und 848 671 beschrieben werden, m- und p-Isocyanatophenylsulfonyl-isocyanate gemäß der amerikanischen Patentschrift 3 454 606, perchlorierte Arylpolyisocyanate, wie sie z.B. in der deutschen Auslegeschrift 1 157 601 (amerikanische Patentschrift 3 277 138) beschrieben werden, Carbodiimidgruppen aufweisende Polyisocyanate, wie sie in der deutschen Patentschrift 1 092 007 (amerikanische Patentschrift 3 152 162) beschrieben werden, Diisocyanate, wie sie in der amerikanischen Patentschrift 3 492 330 beschrieben werden, Allophanatgruppen aufweisende Polyisocyanate, wie sie z.B. in der britischen Patenschrift 994 890, der belgischen Patentschrift 761 626 und der veröffentlichten holländischen Patentanmeldung 7 102 524 beschrieben werden, Isocyanuratgruppen aufweisende Polyisocyanate, wie sie z.B, in der amerikanischen Patentschrift 3 001 973, in den deutschen Patentschriften 1 022 789, 1 222 067 und 1 027 394 sowie in den deutschen Offenlegungsschriften 1 929 034 und 2 004 048 beschrieben werden, Urethangruppen aufweisende Polyisocyanate, wie sie z.B. in der belgischen Patentschrift 752 261 oder in der amerikanischen Patentschrift 3 394 164 beschrieben werden, acylierte Harnstoffgruppen aufweisende Polyisocyanate gemäß der deutschen Patentschrift 1 230 778, Biuretgruppen aufweisende Polyisocyanate, wie sie z.B. in der deutschen Patentschrift 1,101,394 (amerikanische Patentschriften 3 124 605 und 3 201 372) sowie in der britischen Patentschrift 899 050 beschrieben werden, durch Telomerisationsreaktionen hergestellte Polyisocyanate, wie sie z.B. in der amerikanischen Patentschrift 3 654 106 beschrieben werden, Estergruppen aufweisende Polyisocyanate, wie sie zum Beispiel in den britischen Patentschriften 956 474 und 1 072 956, in der amerikanischen Patentschrift 3 567 763 und in der deutschen Patentschrift 1 231 688 genannt werden, Umsetzungsprodukte der obengenannten Isocyanate mit Acetalen gemäß der deutschen Patentschrift 1 072 385 und polymere Fettsäurereste enthaltende Polyisocyanate gemäß der amerikanischen Patentschrift 3 455 883.
  • Es ist auch möglich, die bei der Technischen Isocyanatherstellung anfallenden, Isocyanatgruppen aufweisenden Destillationsrückstände, gegebenenfalls gelöst in einem oder mehreren der vorgenannten Poiyisocyanate, einzusetzen. Ferner ist es möglich, beliebige Mischungen der vorgenannten Polyisocyanate zu verwenden.
  • Besonders bevorzugt werden in der Regel die technisch leicht zugänglichen Polyisocyanate, z.B: das 2,4- und 2,6-Toluylendiisocyanat sowie beliebige Gemische dieser Isomeren ("TDI"), Polyphenyl-polymethylen-polyisocyanate, wie sie durch Anilin-Formaldehyd-Kondensation und anschließende Phosgenierung hergestellt werden ("rohes MDI") und Carbodiimidgruppen, Urethangruppen, Allophanatgruppen, Isocyanuratgruppen, Harnstoffgruppen oder Biuretgruppen aufweisenden Polyisocyanate ("modifizierte Polyisocyanate").
  • Erfindungsgemäß einzusetzende Ausgangskomponenten sind ferner Verbindungen mit mindestens zwei gegenüber Isocyanaten reaktionsfähigen Wasserstoffatomen von einem Molekulargewicht in der Regel von 400-100000. Hierunter versteht man neben Aminogruppen, Thiolgruppen oder Carboxylgruppen aufweisenden Verbindungen vorzugsweise Polyhydroxylverbindungen, insbesondere zwei bis acht Hydroxylgruppen aufweisende Verbindungen, speziell solche vom Molekulargewicht 800 bis 10000, vorzugsweise 1000 bis 6000, z.B. mindestens zwei, in der Regel 2 bis 8, vorzugsweise aber 2 bis"4, hydroxylgruppen aufweisende Polyester, Polyäther, Polythioäther, Polyacetale, Polycarbonate und Polyesteramide, wie sie für die Herstellung von homogenen und von zellförmigen Polyurethanen and sich bekannt sind. 1
  • Die in Frage kommenden Hydroxylgruppen aufweisenden Polyester sind z.B. Umsetzungsprodukte von mehrwertigen, vorzugsweise zweiwertigen und gegebenenfalls zusätzlich dreiwertigen Alkoholen mit mehrwertigen, vorzugsweise zweiwertigen, Carbonsäuren, Anstelle der freien Polycarbonsäuren können auch die entsprechenden Polycarbonsäureanhydride oder entsprechende Polycarbonsäureester von niedrigen Alkoholen oder deren Gemische zur Herstellung der Polyester verwendet werden. Die Polycarbonsäuren können aliphatischer, cycloaliphatischer, aromatischer und/oder heterocyclischer Natur sein und gegebenenfalls, z.B. durch Halogenatome, substituiert und/oder ungesättigt sein.
  • Als Beispiele hierfür seien genannt: Bernsteinsäure, Adipinsäure, Korksäure, Azelainsäure, Sebacinsäure, Phthalsäure, Isophthalsäure, Trimellitsäure, Phthalsäureanhydrid, Tetrahydrophthalsäureanhydrid, Hexahydrophthalsäureanhydrid, Tetrachlorphthalsäureanhydrid, Endomethylentetrahydrophthalsäureanhydrid, Glutarsäureanhydrid, Maleinsäure, Maleinsäureanhydrid, Fumarsäure, dimere und trimere Fettsäuren wie Ölsäure, gegebenenfalls in Mischung mit monomeren Fettsäuren, Terephthalsauredimethylester und Terephthalsäure-bis-glykolester. Als mehrwertige Alkohole kommen z.B. Äthylenglykol, Propylenglykol-(1,2) und -(1,3), Butylenglykol-(1,4) und -(2,3), Hexandiol-(1,6), Octandiol-(1,8), Neopentylglykol, Cyclohexandimethanol(1,4-Bis-hydroxy- methylcyclohexan), 2-Methyl-1,3-propandiol, Glycerin, Trimethylolpropan, Hexantriol-(1,2,6), Butantriol-(1,2,4), Trimethyloläthan, Pentaerythrit, Chinit, Mannit und Sorbit, Methylglykosid, ferner Diäthylenglykol, Triäthylenglykol, Tetraäthylenglykol, Polyäthylenglykole, Dipropylenglykol, Polypropylenglykole, Dibutylenglykol und Polybutylenglykole in Frage. Die Polyester können anteilig endständige Carboxylgruppen aufweisen. Auch Polyester aus Lactonen, z.B. ε-Caprolacton oder Hydroxycarbonsäuren, z.B. w-Hydroxycapronsäure, sind einsetzbar.
  • Auch die erfindungsgemäss in Frage kommenden und sogar bevorzugten, mindestens zwei, in der Regel zwei bis acht, vorzugsweise zwei bis drei, Hydroxylgruppen aufweisenden Polyäther sind solche der an sich bekannten Art und werden z.B. durch Polymerisation von Epoxiden wie Äthylenoxid, Propylenoxid, Butylenoxid, Tetrahydrofuran, Styroloxid oder Epichlorhydrin mit sich selbst, z.B. in Gegenwart von BF3, oder durch Anlagerung dieser Epoxide, gegebenenfalls im Gemisch oder nacheinander, an Startkomponenten mit reaktionsfähigen Wasserstoffatomen wie Wasser, Alkohole, Ammoniak oder Amine, z.B. Äthylenglykol, Propy)engiykoi-(1,3) oder -(1,2), Trimethylolpropan, 4,4'-Dihvdroxy-diphenylpropan, Anilin, Äthanolamin oder Äthylendiamin hergestellt. Auch Sucrosepolyäther, wie sie z.B. in den deutschen Auslegeschriften 1 176 358 und 1 064 938 beschrieben werden, kommen erfindungsgemäss in Frage. Veilfach sind solche Polyäther bevorzugt, die überwiegend (bis zu 90 Gew.-%, bezogen auf alle vorhandenen OH-Gruppen im Polyäther) primäre OH-Gruppen aufweisen. Auch durch Vinylpolymerisate modifizierte Polyäther, wie sie z.B. durch Polymerisation von Styrol und Acrylnitril in Gegenwart von Polyäthern entstehen (amerikanische Patentschriften 3 383 351, 3 304 273, 3 523 093, 3 110 695, deutsche Patentschrift 1 152 536) sind geeignet, ebenso OH-Gruppen aufweisende Polybutadiene.
  • Unter den Polythioäthern seien insbesondere die Kondensationsprodukte von Thiodiglykol mit sich selbst und/oder mit anderen Glykolen, Dicarbonsäuren, Formaldehyd, Aminocarbonsäuren oder Aminoalkoholen angeführt. Je nach den Co-Komponenten handelt es sich bei den Produkten um Polythiomischäther, Polythioätherester oder Polythioätheresteramide.
  • Als Polyacetale kommen z.B. die aus Glykolen, wie Diäthylenglykol. Triäthylenglykol, 4,4'-Dioxäthoxydiphenyldimethylmethan, Hexandiol und Formaldehyd herstellbaren Verbindungen in Frage. Auch durch Polymerisation cyclischer Acetale lassen sich erfindungsgemäß geeignete Polyacetale herstellen.
  • Als Hydroxylgruppen aufweisende Polycarbonate kommen solche der an sich bekannten Art in Betracht, die z.B. durch Umsetzung von Diolen wie Propandiol-(1,3), Butandiol-(1,4) und/oder Hexandiol-(1,6), Diäthylenglykol, Triäthylenglykol oder Tetraäthylenglykol mit Diarylcarbonaten, z.B. Diphenylcarbonat, oder Phosgen hergestellt werden können.
  • Zu den Polyesteramiden und Polyamiden zählen z.B. die aus mehrwertigen gesättigten und ungesättigten Carbonsäuren bzw. deren Anhydriden und mehrwertigen gesättigten und ungesättigten Aminoalkoholen, Diaminen, Polyaminen und ihren Mischungen gewonnenen, vorwiegend linearen Kondensate.
  • Auch bereits Urethan- oder Harnstoffgruppen enthaltende Polyhydroxylverbindungen sowie gegebenenfalls modifizierte natürliche Polyole, wie Rizinusöl, Kohlenhydrate oder Stärke, sind verwendbar. Auch Anlagerungsprodukte von Alkylenoxide an Phenol-Formaldehyd-Harze oder auch an Harnstoff-Formaldehydharze sind erfindungsgemäß einsetzbar.
  • Vertreter dieser erfindungsgemäß zu verwendenden Verbindungen sind z.B. in High Polymers, Vol. XVI, "Polyurethanes, Chemistry and Technology", verfaßt von Saunders-Frisch, Interscience Publishers, New York, London, Band I, 1962, Seiten 32-42 und Seiten 44-54 und Band 11, 1964, Seiten 5-6 und 198-199, sowie im Kunststoff-Handbuch, Band VII, Vieweg-Höchtlen, Carl-Hanser-Verlag, München, 1966, z.B. auf den Seiten 45-71, beschrieben.
  • Selbstverständlich können Mischungen der obengenannten Verbindungen mit mindestens zwei gegenüber Isocyanaten reaktionsfähigen Wasserstoffatomen mit einem Molekulargewicht von 400-100000, z.B. Mischungen von Polyäthern und Polyestern, eingesetzt werden.
  • Als erfindungsgemäß gegebenenfalls einzusetzende Ausgangskomponenten kommen auch Verbindungen mit mindestens zwei gegenüber Isocyanaten reaktionsfähigen Wasserstoffatomen von einem Molekulargewicht 32-400 in Frage. Auch in diesem Fall versteht man hierunter Hydroxylgruppen und-oder Aminogruppen und/oder Thiolgruppen und/oder Carboxylgruppen aufweisende Verbindungen, vorzugsweise Hydroxy!gruppen und/oder Aminogruppen aufweisende Verbindungen, die als Kettenverlängerungsmittel oder Vernetzungsmittel dienen. Diese Verbindungen weisen in der Regel 2 bis 8 gegenüber Isocyanaten reaktionsfähige Wasserstoffatome auf, vorzugsweise 2 oder 3 reaktionsfähige Wasserstoffatome.
  • Als Beispiele für derartige Verbindungen seien genannt: Äthylenglykol, Propylenglykol- (1,2) und - (1,3), Butylenglykol-(1,4) und -(2,3), Pentandiol-(1,5), Hexandiol-(1,6), Octandiol-(-1,8), Neopentylgly-kol, 1,4-Bis-Hydroxymethyl-cyclohexan, 2-Methyl-1,3-Propandiol, Glycerin, Trimethylolpropan, Hexantriol-(1,2,6), Trimethyloläthan, Pentaerythrit, Chinit, Mannit und Sorbit, Diäthylenglykol, Triäthylenglykol, Tetraäthylenglykol, Polyäthylenglykole mit einem Molekulargewicht bis 400 Dipropylenglykol, Polypropylenglykole mit einem Molekulargewicht bis 400, Dibutylenglykol, Polybutylenglykole mit einem Molekulargewicht bis 400, 4,4'-Dihydroxydiphenylpropan, Di-hydroxymethyl-hydrochinon, Äthanolamin, Diäthanolamin, Triäthanolamin, 3-Aminopropanol, Athylendiamin, 1,3-Diaminopropan, 1-Mercapto-3-aminopropan, 4-Hydroxy- oder -Amino-phthalsäure, Bernsteinsäure, Adipinsäure, Hydrazin, N,N'-Dimethylhydrazin, 4,4'-Diaminodiphenylmethan, Toluylendiamin, Methylen-bis-chloranilin, Methylen-bis-anthranilsäureester Diaminobenzoesäureester und die isomeren Chlorphenylendiamine.
  • Auch in Diesem Fall können Mischungen von verschiedenen Verbindungen mit mindestens zwei gegenüber Isocyanaten reaktionsfähigen Wasserstoffatomen mit einem Molekulargewicht von 32-400 verwendet werden.
  • Erfindungsgemäß können jedoch auch Polyhydroxylverbindungen eingesetzt werden, in welchen hochmolekulare Polyaddukte bzw. Polykondensate in feindisperser oder geloster Form enthalten sind. Derartige modifizierte Polyhydroxylverbindungen werden erhalten, wenn man Polyadditionsreaktionen (z.B. Umsetzungen zwischen Polyisocyanaten und aminofunktionellen Verbindungen) bzw. Polykondensationsreaktionen (z.B. zwischen Formaldehyd und Phenolen und/oder Aminen) direkt in situ in den oben genannten, Hydroxylgruppen aufweisenden Verbindungen ablaufen läßt. Derartige Verfahren sind beispielsweise in den Deutschen Auslegeschriften 1 168 075 und 1 260 142, sowie den Deutschen Offenlegungsschriften 2 324 134, 2 423 984, 2 512 385, 2 513 815, 2 550 796, 2 550 797, 2 550 833 und 2 550 862 beschrieben. Es ist aber auch möglich, gemäß US-Patent 3 869 413 bzw. Deutscher Offenlegungsschrift 2 550 860 eine fertige wässrige Polymerdispersion mit einer Polyhydroxylverbindung zu vermischen und anschließend aus dem Gemisch das Wasser zu entfernen.
  • Bei der Verwendung von modifizierten Polyhydroxylverbindungen der oben genannten Art als Ausgangskomponente im Polyisocyanat-Polyadditionsverfahren entstehen in vielen Fällen Polyurethankunststoffe mit wesentlich verbesserten mechanischen Eigenschaften.
  • Erfindungsgemäß werden Wasser und/oder leicht flüchtige organische Substanzen als Treibmittel mitverwendet. Als organische Treibmittel kommen z.B. Aceton, Äthylacetat, halogensubstituierte Alkane wie Methylen-chlorid, Chloroform, Äthylen-chlorid, Vinylidenchlorid, Mono-fluortrichlormethan, Chlordifluormethan, Dichlordifluormethan, ferner Butan, Hexan, Heptan oder Diäthyl- äther infrage. Eine Treibwirkung kann auch durch Zusatz von bei Temperaturen über Raumtemperatur unter Abspaltung von Gasen, beispielsweise von Stickstoff, sich zersetzenden Verbindungen, z.B. Azoverbindungen wie Azoisobuttersäurenitril, erzielt werden. Weitere Beispiele für Treibmittel sowie Einzelheiten über die Verwendung von Treibmitteln sind im Kunststoff-Handbuch, Band VII, herausgegeben von Vieweg und Höchten, Carl-Hanser-Verlag, München 1966, z.B. auf den Seiten 108 und 109, 453 bis 455 und 507 bis 510 beschrieben.
  • Erfindungsgemäß werden ferner oft Katalysatoren mitverwendet. Als mitzuverwendende Katalysatoren kommen solche der an sich bekannten Art infrage, z.B. tertiäre Amine, wie Triäthylamin, Tributylamin, N-Methyl-morpholin, N-Äthyl-morpholin, N-Cocomorpholin, N,N,N',N'-Tetramethyl- äthylendiamin, 1,4-Diaza-bicyclo-(2,2,2)-octan, N-Methyl-N'-dimethylaminoäthyl-piperazin, N,N-Dimethylbenzylamin, Bis-(N,N-diäthylaminoäthyl)-adipat, N,N-Diäthylbenzylamin, Pentamethyldiäthylentriamin, N,N-Dimethylcyclohexylamin, N,N,N',N'-Tetramethyl-1,3-butandiamin, N,N-Dimethyl- ß-phenyläthylamin, 1,2-Dimethylimidazol; 2-Methylimidazol. Als Katalysatoren kommen auch an sich bekannte Mannichbasen aus sekundären Aminen, wie Dimethylamin, und Aldehyden, vorzugsweise Formaldehyd, oder Ketonen wie Aceton, Methyläthylketon oder Cyclohexanon und Phenolen, wie Phenol, Nonylphenol oder Bisphenol in Frage.
  • Gegenüber Isocyanatgruppen aktive Wasserstoffatome aufweisende tertiäre Amine als Katalysatoren sind z.B. Triäthanolamin, Triisopropanolamin, N-Methyldiäthanolamin, N-Äthyl-diäthanolamin, N,N-Dimethyl-äthanolamin, sowie deren Umsetzungsprodukte mit Alkylenoxiden, wie Propylenoxid und/oder Äthylenoxid.
  • Als Katalysatoren kommen ferner Silaamine mit Kohlenstoff-Silizium-Bindungen, wie sie z.B. in der deutschen Patentschrift 1 229 290 (entsprechend der amerikanischen Patentschrift 3 620 984) beschrieben sind, in Frage, z.B. 2,2,4-Trimethyl-2-silamorpholin und 1,3-Diäthylaminomethyl-tetramethyl-disiloxan.
  • Als Katalysatoren kommen auch stickstoffhaltige Basen wie Tetraalkylammoniumhydroxide, ferner Alkalihydroxide wie Natriumhydroxid, Alkaliphenolate wie Natriumphenolat oder Alkalialkoholate wie Natriummethylat in Betracht. Auch Hexahydrotriazine können als Katalysatoren eingesetzt werden.
  • Erfindungsgemäß können auch organische Metallverbindungen, insbesondere organische Zinnverbindungen, als Katalysatoren, verwendet werden.
  • Als organische Zinnverbindungen kommen vorzugsweise Zinn(II)-salze von Carbonsäuren wie Zinn(II)-acetat, Zinn(II)-octoat, Zinn(11)-äthylhexoat und Zinn(II)-laurat und die Zinn(IV)-Verbindungen, z:B. Dibutylzinnoxid, Dibutylzinndichlorid, Dibutylzinndiacetat, Dibutylzinndilaurat, Dibutylzinnmaleat oder Dioctylzinndiacetat in Betracht. Selbstverständlich können alle obengenannten Katalysatoren als Gemische eingesetzt werden.
  • Weitere Vertreter von erfindungsgemäß zu verwendenden Katalysatoren sowie Einzelheiten über die Wirkungsweise der Katalysatoren sind im Kunststoff-Handbuch, Band VII, herausgegeben von Vieweg und Höchtlen, Carl-Hanser-Verlag, München 1966, z.B. auf den Seiten 96 bis 102 beschrieben.
  • Die Katalysatoren werden in der Regel in einer Menge zwischen etwa 0,001 und 10 Gew.-%, be- zogen auf die Menge an Verbindungen mit mindestens zwei gegenüber Isocyanaten reaktionsfähigen Wasserstoffatomen von einem Molekulargewicht von 400 bis 100000, eingesetzt.
  • Erfindungsgemäß können auch oberflächenaktive Zusatzstoffe, wie Emulgatoren und Schaumstabilisatoren mitverwendet werden. Als Emulgatoren kommen z.B. die Natriumsalze von Ricinusölsulfonaten oder Salze von Fettsäuren mit Aminen wie ölsaures Diäthylamin oder stearinsaures Diäthanolamin infrage. Auch Alkali-oder Ammoniumsalze von Sulfonsäuren wie etwa von Dodecylbenzolsulfonsäure oder Dinaphthylmethandisulfonsäure oder von Fettsäuren wie Ricinolsäure oder von polymeren Fettsäuren können als oberflächenaktive Zusatzstoffe mi,tverwendet werden.
  • Erfindungsgemäß können femer auch Reaktionsverzögerer, z.B. sauer reagierende Stoffe wie Salzsäure oder organische Säurehalogenide, ferner Zellregler der an sich bekannten Art wie Paraffine oder Fettalkohole oder Dimethylpolysiloxane sowie Pigmente oder Farbstoffe und Flammschutzmittel der an sich bekannten Art, z.B. Tris-chloräthylphosphat, Trikresylphosphat oder Ammoniumphosphat und -polyphosphat, ferner Stabilisatoren gegen Alterungs- und Witterungseinflüsse, Weichmacher und fungistatisch und bakteriostatisch wirkende Substanzen sowie Füllstoffe wie Barimsulfat, Kieselgur,_Ruß oder Schlämmkreide mitverwendet werden.
  • Weitere Beispiele von gegebenenfalls erfindungsgemäß mitzuverwendenden oberflächenaktiven Zusatzstoffen und Schaumstabilisatoren sowie Zellreglern, Reaktionsverzögerern, Stabilisatoren, flammhemmenden Substanzen, Weichmachern, Farbstoffen und Füllstoffen sowie fungistatisch und bakteriostatisch wirksamen Substanzen sowie Einzelheiten über Verwendungs- und Wirkungsweise dieser Zusatzmittel sind im Kunststoff-Handbuch, Band VII, herausgegeben von Vieweg und Höchtlen, Carl-Hanser-Verlag, München 1966, z.B. auf den Seiten 103 bis 113 beschrieben.
  • Die Reaktionskomponenten werden erfindungsgemäß nach dem an sich bekannten Einstufenverfahren, dem Prepolymerverfahren oder dem Semiprepolymerverfahren zur Umsetzung gebracht, wobei man sich oft maschineller Einrichtungen bedient, z.B. solcher, die in der amerikanischen Patentschrift 2 764 565 beschrieben werden. Einzelheiten über Verarbeitungseinrichtungen, die auch erfindungsgemäß infrage kommen, werden im Kunststoff-Handbuch, Band VII, herausgegeben von Vieweg und Höchtlen, Carl-Hanser-Verlag, München 1966, z.B. auf den Seiten 121 bis 205 beschrieben.
  • Bei der Schaumstoffherstellung wird erfindungsgemäß die Verschäumung oft in Formen durchgeführt. Dabei wird das Reaktionsgemisch in eine Form eingetragen. Als Formmaterial kommt Metall, z.B. Aluminium, oder Kunststoff, z.B. Epoxidharz, infrage. In der Form schäumt das schäumfähige Reaktionsgemisch auf und bildet den Formkörper. Die Formverschäumung kann dabei so durchgeführt werden, daß das Formteil an seiner Oberfläche Zellstruktur aufweist, es kann aber auch so durchgeführt werden, daß das Formteil eine kompakte Haut und einen zelligen Kern aufweist. Erfindungsgemäß kann man in diesem Zusammenhang so vorgehen, daß man in die Form so viel schäumfähiges Reaktionsgemisch einträgt, daß der gebildete Schaumstoff die Form gerade ausfüllt. Man kann aber auch so arbeiten, daß man mehr schäumfähiges Reaktionsgemisch in die Form einträgt, als zur Ausfüllung des Forminneren mit Schaumstoff notwendig ist. Im letztgenannten Fall wird somit unter "overcharging" gearbeitet; eine derartige Verfahrensweise ist z.B. aus den amerikanischen Patentschriften 3 178 490 und 3 182 104 bekannt.
  • Bei der Formverschäumung werden vielfach an sich bekannte "äußere Trennmittel", wie Siliconöle, mitverwendet. Man kann aber auch sogenannte "innere Trennmittel", gegebenenfalls im Gemisch mit äußeren Trennmitteln, verwenden, wie sie z.B. aus den deutschen Offenlegungsschriften 2 121 670 und 2 307 589 bekanntgeworden sind.
  • Selbstverständlich können aber auch Schaumstoffe durch Blockverschäumung hergestellt werden.
  • Erfindungsgemäß werden bevorzugt kalthärtende Schaumstoffe herzustellen (vgl. britische Patentschrift 1 162 517, deutsche Offenlegungsschrift 2 153 086).
  • Die nach der Erfindung erhältlichen Produkte finden z.B. Anwendung als Polstermaterialien.
  • Beispiele Herstellung der erfindungsgemäß zu verwendenden Gemische von Siliciumverbindungen
  • Durch klassische, an sich bekannte Cohydrolyse wird ein Rohhydrolysat mit der gewünschten Zusammensetzung hergestellt.
  • Das getrocknete Rohprodukt wird-wie ebenfalls bekannt-mit einem sauren Katalysator äquilibriert.
  • Zur näheren Erläuterung sei nachfolgend die Herstellung eines Produktes der globalen Zusammensetzung
    Figure imgb0013
    in der n ca. zwei bedeutet, beschrieben:
    • 10 Mol (1430 g) Chlormethyldimethylchlorsilan werden mit
    • 10 Mol (1290 g) Dimethyldichlorsilan vermischt und-über zweit Stunden verteilt-in 5 Liter Wasser gegeben.
  • Nachdem 30 Minuten gerührt wurde, werden die beiden Phasen sorgfältig getrennt und das Rohhydrolysat über Na2SO4 getrocknet; anschliessend wird bei 150°C mit 3% getrockneter Bleicherde während 5 Stunden äquilibriert. Das äquilibrierte vom Katalysator durch Filtration befreite Produkt ist transparent und nahezu farblos.
  • Ausbeute: 1816 g (96% d.Th.)
  • Figure imgb0014
    Figure imgb0015
  • Das erhaltene Produkt mit dem Globalindex n ca. 2 wurde gaschromatographisch in seine diskreten Bestandteile
    Figure imgb0016
    in denen x eine ganze ungebrochene Zahl bedeutet, zerlegt:
    Figure imgb0017
  • Die weiteren höhermolekularen Produkte konnten nicht mehr mit Sicherheit identifiziert werden.
  • Wie schon erwähnt, können bei einer Globalzusammensetzung, die durch ca. 2 bestimmt ist, durchweg definierte, durch ihren Siedepunkt charakterisierte Verbindungen mit einem Index x auftreten, dessen numerischer Wert grösser oder kleiner n ist.
    • a) Die nachfolgend aufgeführten Beispiele 1-3 wurden unter absolut identischen Verfahrens- und Versuchsbedingungen durchgeführt.
      Figure imgb0018
    • b) Die in den Tabellen aufgeführten Treibreaktionsdaten (Endhöhe, relat, Startzeit, maximale Schaumgeschwindigkeit, Steigzeit) wurden aus Weg-Zeit-Diagrammen ermittelt, die mit einem üblichen Wegaufnehmer erhalten wurden. Dabei konnte auch das Schaumverhalten (Setzen, Schrumpf) registriert werden.
    • c) Die Strömungswiderstände wurden nach der Dow-air-flow-Methode in mmWs bestimmt und sind ein Maß für die Offenzelligkeit.
  • Die übrigen mechanischen Werte wurden nach folgenden DIN-Normen gemessen:
    Figure imgb0019
  • Beispiel 1
    • A) 50 Gewichtsteile eines auf Trimethylolpropan gestarteten Polypropylenglykols, das mit Äthylenoxid so modifiziert wurde, dass endständig 90% primäre Hydroxylgruppen bei einer OH-Zahl von 28 resultieren, und 50 Gewichtsteile eines auf Trimethylolpropan gestarteten Polypropylentriols, das mit Äthylenoxid so modifiziert wurde, dass endständig 85% primäre Hydroxylgruppen resultieren, welches zudem mit Acrylnitril und Styrol (im Verhältnis 60 : 40 Gew.-%) gepfropft wurde und eine OH-Zahl von 28 aufwies, 2,7 Gewichtsteile Wasser
      • 0,15 Gewichtsteile Diazabicyclo-2,2,2-octan (als Katalysator),
      • 0.08 Gewichtsteile 2,2'-Dimethylaminodiäthyläther (als Katalysator).
    • B) 0,05 Gewichtsteile der Siliziumverbindung der Formel
      Figure imgb0020
      in welcher R' und R2 für Chloromethyl, R für Methyl, n' für 0 und n für 1, 2 oder 3 stehen, wurden vermischt mit
    • C) 34,0 Gewichtsteilen eines Gemisches aus 80 Gew.-% Toluylendiisocyanat (2,4- und 2,6-lsomeren im Gewichtsverhältnis 80:20%) und 20 Gew.-% eines Polyphenyl-polymethylen-polyisocyanates, welches durch Anilin-Formaldehyd-Kondensation und nachfolgende Phosgenierung erhalten worden ist, und in einem Päckchen zur Reaktion gebracht.
    • D) Man erhält Schaumstoffe mit folgenden Reaktionsdaten und mechanischen Eigenschaften:
      Figure imgb0021
  • Da immer die gleiche Konzentration der Siliziumverbindungen -unabhängig von n-eingesetzt wurde, sind die mechanischen Daten dar Schaumstoffe bei n=3 infolge von Geschlossenzelligkeit in Klammern gesetzt. Die Konzentration von 0,05 Gewichtsteilen der eingesetzten Siliziumverbindung mit n=3 war schon zu hoch.
  • Beispiel 2
    • A) 100 Gewichtsteile eines Polyolgemisches gemäss Beispiel 1 A
    • B) 1,0 Gewichtsteile einer Siliziumverbindung gemäß der in Beispiel 1 B) genannten Formel, in welcher R1 und R für Methyl, R2 für Chloromethyl, n für 0 und n' für 1,2 oder 3 stehen, wurden vermischt mit
    • C) 34.0 Gewichtsteilen eines Isocyanatgemisches gemäss Beispiel 1 C und in einem Päckchen zur Reaktion gebracht.
    • D) Man erhält Schaumstoffe mit folgenden Reaktionsdaten und mechanischen Eigenschaften:
    Figure imgb0022
    Beispiel 3
    • A) 100 Gewichtsteile eines Polyolgemisches gemäss Beispiel 1 A.
    • B) 1,0 Gewichtsteile einer Siliziumverbindung der in Beispiel 1 B) genannten Formel, in welcher R1 und R für Methyl, R2 für Chloromethyl, n' für 1 und n für 0,02 stehen, wurden vermischt mit
    • C) 34.0 Gewichtsteilen eines Isocyanatgemisches gemäss Beispiel 1 C und in einem Päckchen zur Reaktion gebracht.
    • D) Man erhält Schaumstoffe mit folgenden Reaktionsdaten und mechanischen Eigenschaften:
      Figure imgb0023
  • Die Beispiele 1 bis 3 zeigen, dass es
    • a) durch die Wahl der obengenannten Siliziumverbindung mit unterschiedlichem n oder
    • b) mit unterschiedlichem n' oder
    • c) mit unerschiedlicher Kombination von n oder n'

    hervorragend möglich ist, die Stabilisierung der Schaumstoffe, die Offenzelligkeiten, die Endhöhen und das Scnaumverhalten gezielt und in weitem Bereich maßgeschneiaert abgestuft einzustellen. Dabei ist die Konzentration je nach Typ der Siliziumverbindung von extrem geringen bis zu grossen Mengen variabel.
  • Die Vernetzungsaktivitäten werden während der Schaumherstellung nicht tangiert, während die Treibaktivitäten lediglich in der letzten Phase (Steigzeit) etwas beeinflusst werden.
  • Mit der unter Beispiel 1 beschriebenen Rezeptur sowie mit den in Beispiel 2 und 3 beschriebenen Silikonen lassen sich Formschäume herstellen, welche keine Randzonenstörungen oder Bläschenbildung unter der Oberfläche aufweisen.
  • Die nachfolgend aufgeführten Beispiele wurden unter für die Schaumherstellung üblichen Bedingungen durchgeführt.
  • Beispiel 4
    • A) 100 Gewichtststeile eines auf Trimethylolpropan gestarteten Polypropylentriols, das mit Äthylenoxid so modifiziert wurde, dass endständig 80% primäre Hydroxylgruppen bei einer OH-Zahl von 28 resultieren,
      Figure imgb0024
    • B) 0,9 Gewichtsteile einer Siliziumverbindung gemäß der in Beispiel 1 B) genannten Formel, in welcher R1 und R2 Chlormethyl, R für Methyl, n' für 3 und n für 3 stehen, wurden vermischt mit
    • C) 56,3 Gewichtsteilen eines Allophanat-modifizierten Toluylendiisocyanats (2,4- und 2,6-lsomeren im Gewichtsverhältnis 80:20 Gew.-%) des NCO-Gehaltes 40,1-40,9%.
    • D) Man erhält Schaumstoffe mit folgenden Reaktionsdaten und mechanischen Eigenschaften:
      Figure imgb0025
    Beispiel 5
    • A) 100 Gewichtsteile eine Polyätherdispersion, hergestellt aus einem Polyäther aus Propylenoxid, Äthylenoxid und Trimethololpropan (Hydroxylzahl 35, ca. 70% primäre Hydroxylgruppen), Toluylendiisocyanat, 2,4 und 2,6 Isomers im Gewichtsverhältnis 80:20) und Hydrazinhydrat,
      Figure imgb0026
    • B) 0,6 Gewichtsteile einer Siliziumverbindung gemäß der in Beispiel 1 B) genannten Formel, in welcher R und R2 für Chloromethyl, R für Methyl, n' für 0 und n für 2 Stehen, wurden vermischt mit
    • C) 38.5 Gewichtsteilen Toluylendiisocyanat (2,4- und 2,6 Isomeres im Gewichtsverhältnis 80:20).
    • D) Man erhält Schaumstoffe mit folgenden Reaktionsdaten und mechanischen Eigenschaften:
      Figure imgb0027

Claims (4)

1. Verfahren zur Herstellung von nicht schrumpfenden, Urethangruppen aufweisenden Schaumstoffen durch Umsetzung von mindestens zwei aktive Wasserstoffatome aufweisenden Verbindungen vom Molekulargewicht 400 bis 100 000 mit Polyisocyanaten, in Gegenwart von Wasser und/oder organischen Treibmitteln Siliciumverbindungen und gegebenenfalls in Gegenwart von Katalysatoren und weiteren Hilfsmitteln, dadurch gekennzeichnet, daß als Siliciumverbindungen Gemische von Verbindungen der allgemeinen Formel
Figure imgb0028
wobei R einen Alkyl- bzw. Alkenylrest bis zu 3 C-Atomen,
R2 einen Chlormethylrest,
R' einen Rest R2 bzw. R,
n' eine ganze oder gebrochene Zahl von 0 bis 9,
n eine ganze gebrochene Zahl von 0 bis 9,
n + n' ≦ 10 bedeuten,

wobei
n und n' die mittlere Zusammensetzung der Gemische bedeutet, die durch an sich bekannte Hydrolyse von entsprechenden Chlorsilanen und anschließende Äquilibrierung erhalten werden, und R1 gleich R2 wird, wenn n'=o ist; in Mengen vom 0,01 bis 2,0 Gew.-%, bezogen auf die aktive Wasserstoffatome aufweisende Verbindungen vom Molekulargewicht 400-100000, verwendet werden.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß die Siliciumverbindungen in Mengen von 0,1 und 1,0 Gew.-%, bezogen auf die aktive Wasserstoffatome aufweisenden Verbindungen vorzugsweise Polyäther, verwendet werden.
3. Verfahren nach Ansprüchen 1 und 2, dadurch gekennzeichnet, daß in der allgemeinen Formel R einen Methylrest bedeutet.
4. Verfahren nach Ansprüchen 1-3, dadurch gekennzeichnet, daß als aktive Wasserstoffatome aufweisende Verbindungen von Molekulargewicht 400-100000 mindestens zwei Hydroxylgruppen aufweisende Polyäther verwendet werden.
EP78100555A 1977-08-11 1978-07-31 Verfahren zur Herstellung von Urethangruppen aufweisenden Schaumstoffen Expired EP0000761B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE2736138 1977-08-11
DE19772736138 DE2736138A1 (de) 1977-08-11 1977-08-11 Verfahren zur herstellung von urethangruppen aufweisenden schaumstoffen

Publications (2)

Publication Number Publication Date
EP0000761A1 EP0000761A1 (de) 1979-02-21
EP0000761B1 true EP0000761B1 (de) 1981-11-25

Family

ID=6016108

Family Applications (1)

Application Number Title Priority Date Filing Date
EP78100555A Expired EP0000761B1 (de) 1977-08-11 1978-07-31 Verfahren zur Herstellung von Urethangruppen aufweisenden Schaumstoffen

Country Status (9)

Country Link
EP (1) EP0000761B1 (de)
JP (1) JPS5430299A (de)
AU (1) AU518959B2 (de)
BR (1) BR7805123A (de)
DE (2) DE2736138A1 (de)
DK (1) DK353478A (de)
ES (1) ES472468A1 (de)
IT (1) IT1106871B (de)
MX (1) MX148879A (de)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0614232B2 (ja) * 1983-12-26 1994-02-23 キヤノン株式会社 画像形成法
US4713399A (en) * 1985-12-30 1987-12-15 The Dow Chemical Company Flexible polyurethane foams prepared from poly(alkylene carbonate) polyols
DE3626297C1 (de) * 1986-08-02 1987-07-09 Goldschmidt Ag Th Verfahren zur Herstellung hochelastischer,kalthaertender Polyurethanschaumstoffe
DE4414803C1 (de) * 1994-04-28 1995-10-05 Goldschmidt Ag Th Verfahren zur Herstellung von Polyurethankaltschäumen
DE4444898C1 (de) * 1994-12-16 1996-10-10 Goldschmidt Ag Th Verfahren zur Herstellung von Polyurethankaltschäumen
CN103030809A (zh) * 2012-12-31 2013-04-10 山东大学 一种含氯甲基聚硅氧烷及其合成方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH597270A5 (de) * 1974-08-30 1978-03-31 Goldschmidt Ag Th

Also Published As

Publication number Publication date
JPS612085B2 (de) 1986-01-22
AU518959B2 (en) 1981-10-29
ES472468A1 (es) 1979-03-16
MX148879A (es) 1983-06-29
IT7850685A0 (it) 1978-08-09
BR7805123A (pt) 1979-04-10
DE2736138A1 (de) 1979-03-01
AU3873478A (en) 1980-02-14
DE2861352D1 (en) 1982-01-28
DK353478A (da) 1979-02-12
IT1106871B (it) 1985-11-18
JPS5430299A (en) 1979-03-06
EP0000761A1 (de) 1979-02-21

Similar Documents

Publication Publication Date Title
EP0000389B1 (de) Verfahren zur Herstellung von Polyurethankunststoffen
EP0296449B1 (de) Verfahren zur Herstellung von kalthärtenden Polyurethan-Weichformschaumstoffen
EP0176013B1 (de) Verfahren zur Herstellung von geschäumten Polyurethanen, die mit einem anderen Werkstoff verbunden oder konfektioniert worden sind.
DE2523633C2 (de) Verfahren zur Herstellung von Polyurethanschaumstoffen und Katalysatoren zur Durchführung des Verfahrens
DE3903100A1 (de) Verfahren zur herstellung von elastischen und offenzelligen polyurethan-weichformschaumstoffen
DE2624527A1 (de) Verfahren zur herstellung von polyurethanen
DE2427273A1 (de) Verfahren zur herstellung von schaumstoffen
DE2624528A1 (de) Verfahren zur herstellung von polyurethanschaumstoffen
DE2637170A1 (de) Verfahren zur herstellung von isocyanuratgruppen und urethangruppen aufweisenden kunststoffen
DE3818769A1 (de) Fluessige polyisocyanatmischungen, ein verfahren zu ihrer herstellung und ihre verwendung zur herstellung von polyurethan-weichschaumstoffen
EP0068281A1 (de) Verwendung von Poly-N,N-hydroxyalkyl-amiden mehrwertiger Carbonsäuren als Zellöffner bei der Herstellung elastischer Polyurethanschaumstoffe
EP0022994A1 (de) Zellige Elastomerschäume und Verfahren zu ihrer Herstellung
EP1097953A2 (de) Verfahren zur Herstellung von Polyurethanschaumstoffen
DE2441843A1 (de) Verfahren zur herstellung von polyisocyanaten
DE4129583C1 (de)
EP0463493A1 (de) Verfahren zur Herstellung von Urethan- und überwiegend Isocyanuratgruppen aufweisenden Hartschaumstoffen und deren Verwendung als Dämmaterialien
EP0000761B1 (de) Verfahren zur Herstellung von Urethangruppen aufweisenden Schaumstoffen
EP0422471B1 (de) Verfahren zur Herstellung von Polyurethan-Weichschaumstoffen
DE2914134A1 (de) Verfahren zur herstellung von polyurethan-schaumstoffen
DE2340995A1 (de) Verfahren zur herstellung von polyurethanschaumstoffen
DE3430285A1 (de) Verwendung von 1-phosphonoethan- und/oder -propan-2-carbonsaeure-tri-c(pfeil abwaerts)1(pfeil abwaerts)-c(pfeil abwaerts)4(pfeil abwaerts)-alkylestern bei der herstellung von kunststoffen auf isocyanatbasis
DE2607998A1 (de) Verfahren zur herstellung von kalthaertenden, urethangruppen aufweisenden schaumstoffen
DE2404310C2 (de) Verfahren zur Herstellung von formverschäumten Schaumstoffen
DE2309861A1 (de) Verfahren zur herstellung von schaumstoff-formkoerpern
EP0358075B1 (de) Verfahren zur Herstellung von heisshärtenden Polyurethan-Weichformschaumstoffen

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed
AK Designated contracting states

Designated state(s): BE DE FR GB NL SE

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): BE DE FR GB NL SE

REF Corresponds to:

Ref document number: 2861352

Country of ref document: DE

Date of ref document: 19820128

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19830731

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19840630

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19840703

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19840709

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19840801

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19870731

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19880731

Ref country code: BE

Effective date: 19880731

BERE Be: lapsed

Owner name: BAYER A.G.

Effective date: 19880731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19890201

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
GBPC Gb: european patent ceased through non-payment of renewal fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19890331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19890401

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

EUG Se: european patent has lapsed

Ref document number: 78100555.8

Effective date: 19850612

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT