EA031009B1 - Полупроводниковые пленки из соединения iii-v или ii-vi на графитовых подложках - Google Patents

Полупроводниковые пленки из соединения iii-v или ii-vi на графитовых подложках Download PDF

Info

Publication number
EA031009B1
EA031009B1 EA201592260A EA201592260A EA031009B1 EA 031009 B1 EA031009 B1 EA 031009B1 EA 201592260 A EA201592260 A EA 201592260A EA 201592260 A EA201592260 A EA 201592260A EA 031009 B1 EA031009 B1 EA 031009B1
Authority
EA
Eurasian Patent Office
Prior art keywords
film
substrate
base layer
gasb
compound
Prior art date
Application number
EA201592260A
Other languages
English (en)
Other versions
EA201592260A1 (ru
Inventor
Бьерн-Ове Фимланд
Дхирадж Л. Даса
Хельге Веман
Original Assignee
НОРВИДЖЕН ЮНИВЕРСИТИ ОФ САЙЕНС ЭНД ТЕКНОЛОДЖИ (ЭнТиЭнЮ)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by НОРВИДЖЕН ЮНИВЕРСИТИ ОФ САЙЕНС ЭНД ТЕКНОЛОДЖИ (ЭнТиЭнЮ) filed Critical НОРВИДЖЕН ЮНИВЕРСИТИ ОФ САЙЕНС ЭНД ТЕКНОЛОДЖИ (ЭнТиЭнЮ)
Publication of EA201592260A1 publication Critical patent/EA201592260A1/ru
Publication of EA031009B1 publication Critical patent/EA031009B1/ru

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • C30B25/10Heating of the reaction chamber or the substrate
    • C30B25/105Heating of the reaction chamber or the substrate by irradiation or electric discharge
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • C30B25/18Epitaxial-layer growth characterised by the substrate
    • C30B25/183Epitaxial-layer growth characterised by the substrate being provided with a buffer layer, e.g. a lattice matching layer
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/02Elements
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/40AIIIBV compounds wherein A is B, Al, Ga, In or Tl and B is N, P, As, Sb or Bi
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/46Sulfur-, selenium- or tellurium-containing compounds
    • C30B29/48AIIBVI compounds wherein A is Zn, Cd or Hg, and B is S, Se or Te
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02373Group 14 semiconducting materials
    • H01L21/02376Carbon, e.g. diamond-like carbon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02455Group 13/15 materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02455Group 13/15 materials
    • H01L21/02466Antimonides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02469Group 12/16 materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02485Other chalcogenide semiconducting materials not being oxides, e.g. ternary compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02538Group 13/15 materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02551Group 12/16 materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02631Physical deposition at reduced pressure, e.g. MBE, sputtering, evaporation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/04Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their crystalline structure, e.g. polycrystalline, cubic or particular orientation of crystalline planes
    • H01L29/045Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their crystalline structure, e.g. polycrystalline, cubic or particular orientation of crystalline planes by their particular orientation of crystalline planes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/15Structures with periodic or quasi periodic potential variation, e.g. multiple quantum wells, superlattices
    • H01L29/151Compositional structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/16Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/16Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table
    • H01L29/1606Graphene
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/22Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIBVI compounds
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/544Solar cells from Group III-V materials

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)
  • Recrystallisation Techniques (AREA)
  • Light Receiving Elements (AREA)

Abstract

Композиция, включающая пленку на графитовой подложке, причем указанная пленка выращена эпитаксиально на указанной подложке, где указанная пленка содержит по меньшей мере одно соединение группы III-V или по меньшей мере одно соединение группы II-VI.

Description

Изобретение относится к способу эпитаксиального выращивания тонких пленок на графитовых подложках. В частности, в изобретении для эпитаксиального выращивания на графитовых подложках полупроводниковых тонких пленок применяют технологии молекулярной пучковой эпитаксии. Полученные полупроводниковые пленки на графитовом носителе образуют дополнительный аспект изобретения. Эти пленки предпочтительно представляют собой полупроводниковые материалы и имеют широкую область применений, например, в электронной промышленности или в солнечных элементах.
За последние годы интерес к полупроводникам усилился, поскольку важной инженерной дисциплиной стала нанотехнология. Полупроводниковая технология нашла важное применение во множестве электрических устройств, таких как датчики, солнечные элементы и светодиоды.
Известно много различных типов полупроводников, некоторые из них - в пленочной форме. Обычно полупроводниковые пленки выращивали на подложке, идентичной самому полупроводнику (гомоэпитаксиальный рост). Таким образом, GaAs выращивали на GaAs, Si на Si и т.д. Это, конечно, обеспечивает соответствие параметров кристаллических решеток между кристаллической структурой подложки и кристаллической структурой растущего полупроводника. Как подложка, так и полупроводник могут иметь идентичные кристаллические структуры.
Однако использование такого же материала в качестве подложки сильно ограничено. К тому же необходимые материалы подложки могут быть дорогими. Также обычно необходимо срезать подложку, чтобы обнажить конкретную плоскость внутри кристаллической структуры подложки, например, плоскость (001) или плоскость (111). Это может быть сложным и увеличивает затраты на изготовление подложки.
Однако с введением трехкомпонентных полупроводников стало возможным достичь соответствия параметров кристаллической решетки на двухкомпонентных подложках, таких как GaAs, GaSb и InP, путем регулирования состава трехкомпонентного, четырехкомпонентного и т.д. полупроводника. Таким образом, это представляет собой гетероэпитаксиальный рост, так как подложка и растущая пленка являются различными.
Известен также рост псевдоморфных эпитаксиальных слоев. В случае псевдоморфных эпитаксиальных слоев в эпитаксиальном слое имеется небольшая деформация (порядка 1%) из-за несоответствия параметров кристаллических решеток (порядка 1%) между эпитаксиальным слоем и подложкой. Бездефектные псевдоморфные эпитаксиальные слои можно выращивать только до некоторой толщины, которую называют критической толщиной, выше которой псевдоморфные эпитаксиальные слои начинают релаксировать (возвращаться в исходное состояние). В ходе релаксации в эпитаксиальном слое возникают дислокации, чтобы уменьшить энергию деформации в слое. В качестве полупроводников, такие слои с повышенным содержанием дислокаций представляют ограниченный интерес.
Одним из способов компенсации деформации в эпитаксиальном слое было выращивание сверхрешетки с напряженными слоями. Такая сверхрешетка с напряженными слоями включает чередующиеся слои двух или более материалов с различными равновесными постоянными кристаллической решетки, которые компенсируют напряжения друг друга. Таким образом, можно вырастить слои с чередующимися напряжениями сжатия и растяжения. В некоторых случаях эту сверхрешетку с напряженными слоями можно вырастить очень большой толщины, так как среднюю величину постоянной кристаллической решетки для сверхрешетки в целом можно подобрать так, чтобы она соответствовала постоянной кристаллической решетки подложки.
Однако необходимые материалы подложки для гетероэпитаксиального роста могут быть труднодоступными, и они опять-таки могут быть дорогими.
Таким образом, авторы изобретения искали другие материалы положки, чтобы выращивать на них полупроводниковые тонкие пленки, в частности, дешевые подложки, которые являются экономически жизнеспособными в промышленном масштабе. Авторы изобретения искали возможность использования графитовых подложек, в частности графена, для нанесения на них полупроводниковых тонких пленок.
Идеальный графен представляет собой планарный лист толщиной в один атом из sp2-связанных атомов углерода, плотноупакованных в сотообразной структуре кристаллической решетки. Кристаллическая или чешуйчатая форма графита состоит из множества графеновых листов, уложенных друг на друга. В последнее время графен привлек значительный интерес благодаря его благоприятным свойствам. Он является легким, прозрачным, к тому же очень прочным и электропроводным. Таким образом, его использование в качестве подложки для полупроводниковой тонкой пленки могло бы быть очень привлекательным.
В работе Jiang et al. Physical Review Letters, от 10 февраля 2012, исследуют тонкие пленки Sb2Te3 на графене. Эти пленки выращивают методом молекулярно-пучковой эпитаксии, и они являются полупроводниками из-за присущих им дефектов внутри пленки, или за счет легирующих добавок, полученных ими из графеновой подложки.
Однако авторы изобретения стремились получить полупроводники группы (III)/(V) или (II)/(VI), имеющие структуру, совершенно отличную от Sb2Te3. Sb2Te3 не имеет неподеленных пар электронов, поэтому не имеет межслоевой адгезии. Таким образом, подобно графиту, он является чешуйчатым, и только очень слабые силы Ван-дер-Ваальса удерживают один слой кристаллической структуры по отно
- 1 031009 шению к следующему слою. Это двухмерный материал. Наличие тонкой пленки Sb2Te3 создает разнообразные трудности для нанесения тонкой пленки полупроводника по данному изобретению, который обладает неподеленными парами электронов, пригодными для формирования связей между слоями и для взаимодействия с подложкой. Таким образом, полупроводники по данному изобретению являются трехмерными.
Данное изобретение относится к трехмерным материалам, так как полупроводники по данному изобретению обладают свободными неподеленными парами электронов и межатомными связями. При выращивании трехмерной кристаллической пленки на подложке важно, чтобы имело место соответствие параметров кристаллических решеток между подложкой и полупроводником, чтобы сформировать монокристаллическую пленку с высокими структурными, электронными и оптическими свойствами, пригодную для различных применений. Без этого соответствия параметров кристаллических решеток невозможно получить пригодную пленку. Таким образом, для данного изобретения соответствие параметров кристаллических решеток является существенным, в то время как для Sb2Te3 оно является несущественным.
Так как графитовые подложки не имеют неподеленных пар электронов на поверхности, и обладают очень короткими длинами межатомных связей по сравнению с типичными полупроводниками, такими как кремний и GaAs, нет причин предполагать на них зародышеобразование и эпитаксиальный рост пленок. Как отмечено ниже, авторы изобретения неожиданно обнаружили, что может существовать превосходное соответствие параметров кристаллических решеток между графитовой подложкой и некоторыми полупроводниками, в зависимости от того, как расположены атомы полупроводника на поверхности графена. В альтернативном случае возможно близкое соответствие параметров кристаллических решеток между соответствующими элементами группы (II), (III), (V) или (VI) и графитовой подложкой.
При наличии соответствия параметров кристаллических решеток, применение молекулярнопучковой эпитаксии дает превосходные результаты с точки зрения роста пленки. Неожиданно авторы изобретения обнаружили, что некоторые полупроводники группы (III/V) или (II/VI) обладают превосходным соответствием параметров кристаллической решетки по отношению к графену. В альтернативном случае можно использовать базовый слой с соответствием параметров кристаллической решетки для того, чтобы начать процесс роста тонкой пленки и, таким образом, дать возможность формировать тонкие пленки на графитовой подложке.
Сущность изобретения
Таким образом, с позиции одного из аспектов изобретение обеспечивает композицию, включающую пленку на графитовой подложке, причем указанная пленка эпитаксиально выращена на указанной подложке, в которой указанная пленка содержит по меньшей мере одно соединение группы III-V, или по меньшей мере одно соединение группы II-VI, или соединение группы IV, предпочтительно по меньшей мере одно соединение группы III-V или по меньшей мере одно соединение группы II-VI.
С позиции другого аспекта изобретение обеспечивает способ получения пленки, эпитаксиально выращенной на графитовой подложке, включающий стадии:
(I) подачи элементов группы II-VI, или элементов группы III-V, или элементов группы IV, или элементов группы IV, на поверхность указанной графитовой подложки, предпочтительно посредством молекулярного пучка; и (II) эпитаксиального роста пленки группы III-V, или группы II-VI, на поверхности графитовой подложки или соединения группы IV.
С позиции другого аспекта изобретение обеспечивает способ выращивания пленки на графитовой подложке, включающий стадии:
(I) обеспечения наличия на указанной подложке пленки базового слоя, причем указанная пленка базового слоя включает элемент или соединение, обладающее несоответствием параметров кристаллической решетки по отношению к кристаллической решетке графена, составляющее 2,5% или менее, предпочтительно 1% или менее;
(II) приведения указанной пленки базового слоя в контакт с элементами группы II-VI, или элементами группы III-V, предпочтительно с помощью молекулярного пучка так, чтобы вырастить пленку из элементов группы III-V или II-VI.
С позиции другого аспекта изобретение обеспечивает композицию, включающую пленку на графитовой подложке, где указанная композиция включает, в следующем порядке, (a) графитовую подложку, (b) пленку базового слоя, включающую элемент или соединение, имеющее несоответствие параметров кристаллической решетки по отношению к кристаллической решетке графена, составляющее 2,5% или менее, 1% или менее; и (c) пленку, содержащую соединение группы III-V, или соединение группы II-VI, или соединение группы IV, предпочтительно соединение группы III-V или соединение группы II-VI.
С позиции другого аспекта изобретение обеспечивает композицию, включающую пленку на графитовой подложке, где указанная композиция включает, в следующем порядке:
- 2 031009 (a) графитовую подложку, (b) пленку базового слоя, включающую GaSb, InAs, AsSb, GaN, SbBi, AlAs, AlSb, CdSe или Sb, предпочтительно GaSb, InAs, AsSb, GaN, SbBi или Sb; и (c) пленку, включающую соединение группы III-V, или соединение группы II-VI, или соединение группы IV, предпочтительно соединение группы III-V или соединение группы II-VI.
Необязательно, поверхность графитовой подложки можно химически/физически модифицировать, для улучшения эпитаксиального роста пленок.
С позиции другого аспекта изобретение обеспечивает устройство, например электронное устройство, включающее композицию, определенную ранее в тексте данного описания, например, солнечный элемент.
С позиции другого аспекта изобретение обеспечивает применение молекулярно-пучковой эпитаксии для выращивания по меньшей мере одной пленки на графитовой подложке, как определено выше.
Определения
Под соединением группы III-V подразумевают соединение, включающее по меньшей мере один ион из группы III и по меньшей мере один ион из группы V. Подобным образом, соединение группы II-VI это соединение, включающее по меньшей мере один ион группы II и по меньшей мере один ион группы VI. В настоящем описании термин группа (II) охватывает периоды обеих классических групп (IIa) и (IIb), то есть семейство щелочноземельных элементов и семейство Zn. Может присутствовать более чем один ион из каждой группы, например InGaAs (то есть трехкомпонентное соединение) и т.д. Также могут присутствовать четырехкомпонентные соединения и т.д.
Соединение IV группы представляет собой соединение, включающее два или более элементов из группы IV, то есть предпочтительно С, Si или Ge, например SiC. Во всех примерах воплощения пленка предпочтительно представляет собой пленку, включающую соединение группы III-V или соединение группы II-VI.
Графитовые подложки представляют собой подложки, состоящие из единственного или многочисленных слоев графена или его производных. Термин графен относится к планарному листу из связанных sp2-связями атомов углерода в сотообразной кристаллической структуре. Производными графена являются графены с модифицированной поверхностью. Например, к поверхности графена можно присоединить атомы водорода, с получением графана. Другим вариантом является хлорографен. Графен с атомами кислорода, присоединенными к поверхности наряду с атомами углерода и водорода, называют оксидом графена. Модифицировать поверхность можно также химическим легированием или обработкой кислородной/водородной плазмой.
Термин эпитаксия происходит от греческих корней эпи, что означает над, выше, и таксис, что означает упорядоченным образом. Атомная организация пленки основана на кристаллографической структуре подложки. Это термин, широко используемый в данной области. Эпитаксиальный рост означает, в тексте данного описания, рост на подложке пленки, которая воспроизводит ориентацию подложки.
Молекулярно-пучковая эпитаксия (МПЭ) представляет собой способ формирования отложений на кристаллических подложках. Процесс МПЭ осуществляют путем нагревания кристаллической подложки в вакууме так, чтобы активировать структуру кристаллической решетки подложки. Затем пучок (пучки) с некоторой атомной или молекулярной массой направляют на поверхность подложки. Как предполагают, применяемый выше термин элемент охватывает применение атомов, молекул или ионов этого элемента. Когда направленные атомы или молекулы поступают на поверхность подложки, эти направленные атомы или молекулы сталкиваются с активированной кристаллической структурой подложки. Процесс МПЭ более подробно описан ниже. Со временем поступающие атомы образуют пленку.
Образующаяся на подложке пленка предпочтительно является непрерывной. Таким образом, ее нельзя рассматривать как ряд дискретных пластин; скорее пленка образуется по части поверхности подложки, например, по меньшей мере по 50% поверхности подложки. Однако, как дополнительно обсуждают далее, пленку можно также осаждать в отверстиях маски.
Степень несоответствия параметров кристаллической решетки измеряют относительно любого параметра решетки графена по любому параметру кристаллической решетки полупроводника, как разъяснено ниже. Если полупроводниковое соединение или элемент имеет параметр кристаллической решетки, который не более чем на 1% отличается от одного из параметров кристаллической решетки графена, то этот полупроводник пригоден для применения в качестве базового слоя в данном изобретении, и его также можно наносить непосредственно на графитовую подложку.
Авторы изобретения считают, что для получения близких кристаллических решеток несоответствие должно составлять до 1%; почти совершенное совпадение параметров кристаллической решетки предполагает несоответствие до 0,1%.
Подробное описание изобретения
Изобретение относится к эпитаксиальному росту тонких пленок на графитовой подложке. Композиция по данному изобретению включает как подложку, так и выращенные на ней пленки, и, возможно, основание.
- 3 031009
Наличие эпитаксиально выращенной пленки обеспечивает сформированному материалу однородность, которая может улучшить различные конечные свойства, например механические, оптические или электрические свойства.
Эпитаксиальные пленки можно вырастить из газообразных или жидких предшественников. Поскольку подложка действует как затравочный кристалл, осажденные предшественники могут принимать структуру и ориентацию кристаллической решетки, идентичные структуре и ориентации подложки. Это отличается от других способов нанесения тонких пленок, при которых наносят поликристаллические или аморфные пленки, даже на монокристаллических подложках.
В данном изобретении подложка представляет собой графитовую подложку, а более конкретно графен. Как используют в тексте данного описания, термин графен относится к планарным листам из соединенных sp2-связями атомов углерода, которые плотно упакованы в сотообразной (гексагональной) кристаллической решетке. Графеновые подложки должны содержать не более 10 слоев графена или его производных, предпочтительно не более 5 слоев (что называют графеном с малым количеством слоев). Особенно предпочтительно он представляет собой планарный слой графена толщиной в один атом углерода.
Кристаллическая или чешуйчатая форма графита состоит из множества графеновых листов, уложенных друг на друга (то есть более 10 листов). Таким образом, под графитовой подложкой подразумевают подложку, сформированную из одного или множества графеновых листов.
Предпочтительно, чтобы подложка имела толщину 20 нм или менее. При образовании графита, графеновые листы уложены друг на друга, с межплоскостным расстоянием 0,335 нм. Подложка предпочтительно содержит лишь небольшое количество таких слоев, и в идеале может иметь толщину менее 10 нм. Еще более предпочтительно она может иметь толщину 5 нм или менее. Площадь подложки не ограничена. Она может составлять 0,5 мм2 или больше, например, до 5 мм2 или еще больше, например, до 10 см2. Таким образом, площадь подложки ограничена только практической целесообразностью.
Ясно, что такую графитовую подложку может быть необходимо на что-то нанести, чтобы иметь возможность выращивать на ней пленки. Графеновый лист можно нанести на любой вид материалов, включая традиционные подложки для полупроводников, металлы и прозрачные стекла. Так, можно применять стекло или металлическую фольгу. Особенно предпочтительным является применение оксида кремния или какого-либо соединения Si, такого, как, например, SiC. Особенно предпочтительным примером воплощения является применение SiC.
Основа должна быть инертной. Можно также выращивать графитовую подложку непосредственно на металлической пленке, нанесенной на пластину из окисленного кремния, или непосредственно на металлических фольгах. Затем графитовые подложки можно отделять от металла путем травления и легко переносить на любые другие материалы.
В одном из весьма предпочтительных примеров воплощения графитовая подложка представляет собой слоистую подложку, отделенную от первичного графита (Kish graphite); или в высокой степени упорядоченный пиролитический графит. В альтернативном случае это может быть графеновая подложка, выращенная химическим осаждением из паровой фазы на металлических пленках или фольгах, изготовленных, например, из Cu, Ni ИЛИ Pt.
В то время как предпочтительно применять графитовую подложку без модификации, поверхность графитовой подложки может быть модифицирована. Например, ее можно обработать водородной, кислородной, NO2 плазмой или их сочетаниями. Возможна также обработка азотом. Окисление подложки могло бы улучшить зародышеобразование пленки. Также может быть предпочтительным предварительно обработать подложку, например, для обеспечения чистоты перед выращиванием пленки. Возможна обработка сильной кислотой такой, как например HF или буферной HF (Buffered Oxide Etchant, ВОЕ). Подложки можно промыть изопропанолом, ацетоном или н-метил-2-пирролидоном, для устранения поверхностных загрязнений.
Очищенную графитовую поверхность можно дополнительно модифицировать путем легирования. На стадии легирования можно применять раствор FeCl3, AuCl3 или GaCl3. В идеале применяемая графитовая подложка должна быть хорошим проводником. Любые находящиеся в подложке примеси могут быть извлечены в формирующуюся пленку полупроводника, а это может не быть предпочтительным. Этого процесса можно избежать, если подложка не содержит примесей.
Так как целью изобретения являются тонкие пленки, также важно, чтобы графитовая подложка была гладкой. Она не должна включать границ зерен, и предпочтительно на поверхности может присутствовать только один тип помещенных друг на друга графеновых слоев из возможных типов А, В или С. Если на поверхности присутствуют более одного из типов А, В или С помещенных друг на друга графеновых слоев, то различные участки растущей пленки могут не соответствовать друг другу, таким образом вызывая образование дефектов в формирующейся пленке.
В высокой степени гладкие структуры графеновых подложек описаны в литературе, например, в работе Virojanadara, С.; Yakimova, R.; Zakharov, A.A.; Johansson, L.I., Large homogeneous mono-/bi-layer grapheme on 6H-SiC(0001) and buffer layer elimination; J.Phys. D: Appl. Phys. 2010, 43, 374010. Предпочтительными являются такие основы, как SiC и Si.
- 4 031009
Применение графитовых подложек, в идеале тонких графитовых подложек, является в высокой степени преимущественным в данном изобретении, так как они являются тонкими, но очень прочными, легкими и гибкими, в высокой степени электропроводными и теплопроводными. Они являются прозрачными при малых толщинах, которые предпочтительно используют в данном изобретении; они непроницаемы и инертны.
Полупроводниковые пленки
Для получения тонких пленок, обладающих коммерческой ценностью, существенно, чтобы они росли на подложке эпитаксиально. В данном изобретении этого достигают, обеспечивая превосходное соответствие параметров кристаллической решетки между графеновой подложкой и тонкой пленкой, или, возможно, посредством соответствия параметров кристаллической решетки пленки базового слоя, как подробно описано ниже.
Идеально, если рост пленки происходит в направлении [111] (для кубической кристаллической структуры) или [0001] (для гексагональной кристаллической структуры). Как отмечено выше, возможность этого не гарантирована для конкретной подложки, если этот материал подложки отличается от выращиваемой пленки. Однако авторы изобретения установили, что эпитаксиальный рост на графитовых подложках возможен путем установления возможного соответствия параметров кристаллических решеток атомов в пленке полупроводника и атомов углерода в листе графена.
Длина связи углерод-углерод в графеновых слоях составляет примерно 0,142 нм. Графен имеет гексагональную геометрию кристалла. Авторы изобретения неожиданно обнаружили, что графитовые подложки могут обеспечить подложку, на которой можно вырастить полупроводниковые пленки, поскольку несоответствие параметров кристаллических решеток между материалом растущей пленки и графитовой подложкой может быть очень малым.
Авторы изобретения обнаружили, что, благодаря гексагональной симметрии графитовой подложки и гексагональной симметрии атомов полупроводника в плоскостях (111) пленки, растущей в направлении [111], при кубической кристаллической структуре (или в плоскостях (0001) пленки, растущей в направлении [0001] при гексагональной кристаллической структуре), можно достичь соответствия параметров кристаллических решеток между растущими пленками и подложкой.
Фиг. 1а-1б изображают четыре различные гексагональные структурные конфигурации атомов полупроводника в плоскостях (111) (или (0001)) пленки полупроводника поверх гексагональной кристаллической решетки атомов углерода в графеновом слое, расположенные таким образом, что не возникает несоответствия параметров кристаллических решеток. В качестве возможных активных положений адсорбции полупроводника поверх графена авторы рассматривают следующие: 1) над центром гексагональных углеродных колец графена (Н-положение), и 2) над мостиком между атомами углерода (Вположение), как указано стрелками на фиг. 1а.
Чертежи изображают идеализированное, с соответствием параметров кристаллических решеток, расположение атомов полупроводника в плоскостях (111) для кубического кристалла (в плоскостях (0001) для гексагонального кристалла), когда атомы помещены в положениях 1) Н и В (фиг. 1а, 1и и 1d) и 2) Н или В (фиг. 1с). Пунктирные линии подчеркивают гексагональную симметрию кристаллической решетки атомов полупроводника в плоскости (111). Относительные вращения этих шестиугольников для каждого расположения атомов обозначены в верхней части каждого чертежа. Для (фиг. 1а) и (фиг. 1d) возможны две относительных ориентации, ±10,9° и ±16,1°, соответственно (на изображениях показаны только +вращения).
Фиг. 1е изображает параметры кристаллической решетки искусственно приведенных в соответствие кристаллических решеток для расположений атомов в случаях (а), (b), (с) и (d). Пунктирные и сплошные линии соответствуют гексагональной (аД и кубической (а = a1 х ^2) кристаллическим фазам этих решеток, соответственно. Квадрат (и) и шестиугольник представляют соответственно кубическую и гексагональную фазы для Si, ZnO и двухкомпонентных III-V полупроводников.
Если атомы полупроводника помещены над чередующимися положениями Н- и В-, как показано на фиг. 1а, можно получить строгое соответствие параметров кристаллических решеток, если параметр кристаллической решетки, а, кубического кристалла полупроводника (параметр кристаллической решетки, а, определяют как длину боковой грани кубической элементарной ячейки) равен 4,607 А. Существуют несколько двухкомпонентных полупроводников с кубической структурой, имеющих параметры кристаллической решетки, близкие к этой величине; при этом наиболее близкое значение у AlN (а = 4,40 А) и GaN (a = 4,51 А). Для гексагональных кристаллов полупроводника точное соответствие параметров кристаллических решеток будет достигнуто, если параметр кристаллической решетки, a1, равен 3,258 А. Существуют несколько двухкомпонентных полупроводников с гексагональной структурой, имеющих параметры кристаллической решетки, близкие к этой величине; при этом наиболее близкое значение у кристаллов SiC (a1 = 3,07 А), AlN (а1 =3,11 А), GaN (а1 = 3,19 А) и ZnO (а1 = 3,25 А).
Если атомы полупроводника помещены над чередующимися позициями Н- и В-, как показано на фиг. 1b, точное соответствие параметров кристаллических решеток можно получить, если параметр кристаллической решетки, а, кристалла полупроводника с кубической структурой равен: 1,422 А х 3/2 х ^6 =
- 5 031009
5,225 А. Это близко к параметру кристаллической решетки GaP (a = 5,45 A), AlP (а = 5,45 A), InN (a = 4,98 А) и ZnS (a = 5,42 А). Для гексагональных кристаллов полупроводника точное соответствие параметров кристаллических решеток будет получено, если параметр кристаллической решетки, a1, равен: 1,422 А х 3/2 х Аз = 3,694 А. Это близко к параметрам ai кристаллической решетки гексагональных форм кристаллов InN (a1 = 3,54 А) и ZnS (a1 = 3,82 А).
Для атомной конфигурации, подобной приведенной на фиг. 1с, точное соответствие параметров кристаллических решеток можно получить, если параметр кристаллической решетки, а, кубического кристалла полупроводника равен: 1,422 А (расстояние между атомами углерода) х 3 х А2 = 6,033 А. Это близко к параметрам кристаллической решетки полупроводниковых кристаллов соединений группы IIIV, таких, как InAs, GaAs, InP, GaSb, AlSb и AlAs, и соединений II-VI, таких, как, полупроводниковых кристаллов MgSe, ZnTe, CdSe и ZnSe. В частности, это близко к параметру кристаллической решетки полупроводниковых кристаллов соединений группы III-V, например, InAs (a = 6,058 А), GaSb (a = 6,096 А) и AlSb (a = 6,136 А), а также соединений II-VI, например ZnTe (a = 6,103 А) и CdSe (a = 6,052 А).
Для гексагональных полупроводниковых кристаллов точное соответствие параметров кристаллических решеток можно получить, если параметр кристаллической решетки, a1, равен: 1,422 А (расстояние между атомами углерода) х 3 = 4,266 А. Это близко к параметрам a1 кристаллической решетки гексагональных форм материалов II-VI - кристаллов CdS (a1 = 4,160 А) и CdSe (a1 = 4,30 А), что означает, что трехкомпонентный полупроводник CdSSe может обеспечить идеальное соответствие параметров кристаллической решетки при определенной мольной доле S.
Если атомы полупроводника помещены над чередующимися положениями Н- и В-, как показано на фиг. 1d, точное соответствие параметров кристаллических решеток можно получить, если параметр кристаллической решетки, а, кубического полупроводникового кристалла равен 6,28 А. Это близко к параметру кристаллической решетки InSb (а = 6,479 А), MgTe (а = 6,42 А) и CdTe (a = 6,48 А).
Идеальное соответствие параметров кристаллических решеток могут обеспечить некоторые трехкомпонентные соединения, такие как, например, InGaSb, InAsSb и AlInSb, а также некоторые четырехкомпонентные соединения, такие как InGaAsSb и AlInAsSb. Для гексагональных полупроводниковых кристаллов точного соответствия параметров кристаллических решеток можно достичь, если параметр кристаллической решетки, a1, равен 4,44 А. Это близко к параметрам a1 кристаллической решетки гексагональных форм кристаллов InSb (a1 = 4,58 А), MgTe (a1 = 4,54 А) и CdTe (a1 = 4,58 А).
Не желая ограничиваться теорией, ввиду гексагональной симметрии атомов углерода в графитовых слоях и гексагональной симметрии атомов кубических или гексагональных полупроводников в кристаллографическом направлении [111] и [0001], соответственно, можно получить близкое соответствие параметров кристаллических решеток между графитовой подложкой и полупроводником, когда атомы полупроводника помещают над атомами углерода графитовой подложки, в идеале в виде шестиугольников. Это является новой и неожиданной находкой, и может позволить осуществить эпитаксиальный рост пленок на графитовых подложках.
Четыре различных гексагональных расположения атомов полупроводника, описанные выше, могут позволить вырастить полупроводниковые пленки из таких материалов.
В то время как в идеале несоответствия параметров кристаллических решеток между растущей пленкой и подложкой отсутствуют, возможны небольшие несоответствия параметров кристаллических решеток. Пленки по изобретению в идеале имеют несоответствие параметров кристаллических решеток с подложкой примерно до 1%. Более предпочтительно несоответствия параметров кристаллических решеток должны составлять 0,5% или менее, например, 0,25% или менее. Эти величины применимы к любой толщине пленки. Значения соответствия параметров кристаллической решетки можно рассчитать на основе знания кристаллической структуры рассматриваемого полупроводника и информации, приведенной выше. Если полупроводник может расти в форме с параметром кристаллической решетки, который удовлетворят любому из расположений атомов, изображенных на фиг. 1a-1d для его плоскости (111) в случае кубического кристалла, или для его плоскости (0001) в случае гексагонального кристалла, имеется приемлемое соответствие параметров кристаллической решетки. Чтобы избежать сомнений, следует рассчитывать соответствие параметров кристаллических решеток для всей пленки, присутствующей на подложке.
Однако следует отметить, что успех способа по изобретению зависит, до некоторой степени, от толщины пленки. Так, средняя величина относительной деформации для общей толщины пленки 100 нм обычно должна составлять менее 0,5%. Средняя величина относительной деформации для общей толщины пленки 0,5 мкм обычно должна составлять менее 0,2%. Средняя величина относительной деформации для общей толщины пленки 1 мкм обычно должна составлять менее 0,15%. Средняя величина относительной деформации для общей толщины пленки 5 мкм обычно должна составлять менее 0,1%. Следовательно, для того, чтобы избежать дефектов в более толстых пленках, предпочтительно, чтобы несоответствие параметров кристаллических решеток было как можно меньшим.
Для некоторых двухкомпонентных полупроводников, таких как кубический InAs (a = 6,058 А), кубический GaSb (a = 6,093 А), кубический CdSe (a = 6,052 А) и гексагональный CdSe (a1 = 4,30 А), несоот
- 6 031009 ветствие параметров кристаллических решеток является таким малым (<~1%), что можно ожидать превосходного роста этих двухкомпонентных полупроводников для толщин пленок до нескольких десятков нанометров. Однако, по мере того, как пленка становится толще, может быть необходимо применять технологии выращивания с компенсацией напряжений, чтобы снизить энергию деформации и избежать появления в кристалле таких дефектов, как дислокации. Таким образом, по существу можно достигать толщин пленок вплоть до критической толщины без риска образования дефектов. Эта величина составляет порядка 30 нм для несоответствия параметров кристаллических решеток 1,0%, и порядка 100 нм для несоответствия 0,5%. Таким образом, за пределами критической толщины могут потребоваться технологии получения сверхрешетки или другие полупроводниковые материалы, например, трех- или четырехкомпонентные полупроводники.
Конечно, из-за их природы, параметрами кристаллической решетки трехкомпонентных, четырехкомпонентных и т.д. соединений можно управлять путем изменения относительного количества каждого из присутствующих элементов. Параметры кристаллической решетки этих соединений можно установить на определенное значение, регулируя состав этих соединений. Таким образом, применение трехкомпонентных и четырехкомпонентных полупроводниковых соединений является предпочтительным, если желательно получить более толстые пленки, например более 100 нм. Устройства могут потребовать общей толщины пленки порядка 5 мкм, обычно от 1 до 10 мкм.
Для выращиваемых на подложке пленок в объем данного изобретения входят пленки, включающие множество слоев соединений различных групп (III)(V) или (II)(VI). Таким образом, трехкомпонентный или четырехкомпонентный полупроводник может быть выращен на двухкомпонентном полупроводнике.
Другие пленки, состоящие из нескольких слоев, можно получить при использовании компенсирующих технологий роста, например, напряженных сверхрешеток. Если пленка содержит сверхрешетки, каждый слой сверхрешетки мог бы иметь более 1% деформации при применении компенсации напряжений, так что средний параметр кристаллической решетки для сверхрешетки в целом соответствует параметру кристаллической решетке графитовой подложки.
Такие технологии выращивания с компенсацией известны специалистам.
Однако следует понимать, что для некоторых сочетаний полупроводников может существовать слишком большое несоответствие между параметром кристаллической решетки полупроводника и параметром кристаллической решетки графена, чтобы можно было успешно вырастить пленку. При таких обстоятельствах может быть невозможно вырастить такой полупроводник непосредственно на графитовой подложке.
Базовый слой
Чтобы позволить получать другие полупроводниковые пленки и максимизировать возможности данного изобретения, авторы данного изобретения предлагают применять промежуточный (или базовый) слой между тонкой пленкой полупроводника и подложкой. Этот способ предпочтительно применяют, когда невозможно привести в соответствие параметры кристаллических решеток полупроводника и графитовой подложки, или если по каким-либо причинам конкретный полупроводник не образует тонкую пленку непосредственно на графитовой поверхности, например, вследствие того, что ни один из его компонентов не обладает достаточными поверхностно-активными характеристиками, чтобы покрывать графитовую поверхность.
Этот промежуточный слой представляет собой слой, соответствующий по параметрам кристаллической решетке; и, таким образом, он образует своего рода поверхностно-активное вещество между слоем тонкопленочного полупроводника и графитовой подложкой. Материал базового слоя, который может быть элементом или соединением, имеет несоответствие параметров кристаллической решетки с графеном 2,5% или менее, предпочтительно 1% или менее. Например, несоответствие параметров кристаллической решетки между (111) ориентированной Sb (ромбоэдрический А7) и графеном составляет 1,0%, когда атомы Sb расположены только над положениями Н, только над положениями В или только над положениями Т. GaSb также имеет 1,0% несоответствие параметров кристаллической решетки с графеном. InAs имеет 0,43% несоответствие параметров кристаллической решетки с графеном. Этот базовый слой должен иметь толщину всего в несколько атомных слоев.
При использовании базового слоя, который сам по себе является трехмерным, этот слой обеспечивает неподеленные электронные пары, благодаря которым может начаться рост слоя полупроводника. Благодаря использованию базового слоя получают адгезию к двумерной подложке.
Базовый слой предпочтительно представляет собой элемент группы V или сплав соединений групп III-V, таких, как, например GaSb, InAs, AsSb, SbBi или Sb. Также можно использовать AlSb. Сплав As(0,077) - Sb(0,923) должен полностью соответствовать параметрам кристаллической решетке графена, в конфигурации фиг. 1(с). (Где 0,077 представляет мольную долю As в сплаве.) Подобным образом сплав Sb-Bi может соответствовать по параметрам кристаллической решетке конфигурации, приведенной на фиг. 1(d).
Другой возможностью является трехкомпонентный, соответствующий по параметрам кристаллической решетке, базовый слой, например, слои на основе AlAsSb, AlInSb, InGaSb или AlInAs. Дополнительной возможностью является комбинация базовых слоев, таких, как, например слой элементарной Sb,
- 7 031009 на который нанесен трехкомпонентный слой, как описано выше. Слой Sb может иметь толщину всего в один атом, хотя более вероятно этот слой может иметь толщину в два или три атома.
Дополнительной возможностью для базового слоя может быть CdSe или CdSSe. В одном из примеров воплощения CdSSe можно было вырастить на слое CdSe, с получением базового слоя.
Наиболее предпочтительным является применение в качестве базового слоя Sb. Sb, в виде (111)ориентированных двойных слоев, или ромбоэдрическая, А7, Sb в высокой степени соответствует параметрам кристаллической решетке графена (несоответствие 1,0%). Базовый слой можно нанести на подложку с использованием технологий, подробно описанных ниже в связи с нанесением полупроводника.
Однако, когда базовый слой представляет собой Sb, предпочтительно, чтобы его наносили в мягких условиях, например при температуре ниже 200°С, предпочтительно от 100 до 135°С, или, например, при температуре ниже 325°С, предпочтительно от 200 до 300°С, в зависимости от интенсивности потока Sb4 или Sb2, который применяют при нанесении; при этом последние условия являются идеальными для Sb2.
Как отмечено выше, необходимо нанести лишь небольшое количество атомных слоев базового слоя (возможно только один атомный слой или два атомных слоя). В случае Sb минимальным был бы (111)ориентированный двойной слой Sb. Следует учитывать, что нанесение одного атомного слоя Sb с последующим нанесением слоя Ga представляет собой то же самое, что и нанесение базового слоя GaSb и, следовательно, то же самое, что и выращивание GaSb непосредственно на графене. После нанесения базового слоя можно наносить пленку полупроводника. В случае применения базового слоя может случиться так, что начальный рост пленки полупроводника происходит при более низкой температуре, подобной той, которую применяли для нанесения элемента группы V (или сплава элемента группы V, и т.д.). Третья стадия может затем включать нанесение пленки (пленок) III-V при более высокой температуре, типичной для обычного эпитаксиального роста рассматриваемого соединения III-V. Вторая вышеуказанная стадия является предпочтительной для того, чтобы избежать десорбции элемента группы V (или сплава элемента группы V) в ходе третьей стадии.
Может случиться так, что для выращивания сверхрешетки на графитовой подложке потребуется базовый слой, например, из Sb, GaSb или InAs, если каждый слой сверхрешетки имеет слишком высокое напряжение для того, чтобы можно было вырастить его непосредственно на графене. Также можно использовать AlSb (несоответствие параметров кристаллических решеток 1,7%).
Базовый слой также может быть сверхрешеткой с чередующимися атомными слоями [плоскости (111)] Sb и Bi. Эта сверхрешетка может создавать близкое соответствие параметров кристаллических решеток до d на фиг. 1(е) и, таким образом, обеспечивает подложку с параметром кристаллической решетки, в которой отсутствуют бинарные подложки, применяемые в настоящее время.
Полупроводники
Полупроводниковые пленки по изобретению формируют из по меньшей мере одного соединения III-V, или по меньшей мере одного соединения II-VI, или соединения группы IV, такого, как, например, SiC.
Элементами группы II являются Be, Mg, Ca, Zn, Cd и Hg. В данном случае предпочтительными вариантами являются Zn и Cd.
Вариантами группы III являются В, Al, Ga, In и Tl. В данном случае предпочтительными вариантами являются Ga, Al и In.
Вариантами группы V являются N, P, As, Sb. Все они являются предпочтительными.
Варианты группы VI включают О, S, Se и Те. Предпочтительно использовать О, Se и Те.
Предпочтительным является получение пленки группы III-V. Следует понимать, что любое соединение, которое образуется при росте пленки, не обязательно будет полностью стехиометрическим, так как существует возможность легирования, как это описано ниже.
Предпочтительные двухкомпонентные соединения для получения пленок включают InAs, GaAs, AlAs, InP, GaP, AlP, InSb, GaSb, AlSb, ZnTe, CdSe и ZnSe. В объем изобретения входит выращивание чередующихся тонких слоев (толщиной порядка 1 нм или нескольких нм) из двухкомпонентных полупроводников, так, что электронные свойства и усредненный параметр кристаллической решетки этой тонкой пленки в целом соответствовали подложке. В высокой степени предпочтительным является применение GaSb или InAs. Другие возможности включают ZnO и AlSb. Предпочтительно, чтобы в пленке не было AlN.
В то время как применение двухкомпонентных материалов является возможным, предпочтительным является выращивание трехкомпонентных или четырехкомпонентных пленок, или даже пятикомпонентных пленок. Особенно предпочтительными возможностями являются InGaAs, InAlAs, InAsP, InPSb, InAsN, InPN, InSbN, GaInSb, GaAsN, GaInN, GaPN, GaSbN, AlInSb, AlAsSb, AlSbP, AlInN, AlPN, AlAsN, AlSbN, InGaAsSb, AlGaAsSb и InGaAsN, поскольку эти соединения можно вырастить полностью соответствующими параметрам кристаллической решетке графена, и они пригодны для ряда устройств. Следует понимать, что в трехкомпонентных, четырехкомпонентных и т.д. материалах относительные количества каждого иона могут быт различными.
Таким образом, трехкомпонентные соединения могут иметь формулу XYZ, где X представляет собой элемент III группы, Y представляет собой элемент III или V группы, отличный от X и Z, a Z пред
- 8 031009 ставляет собой элемент V группы. Мольное отношение X к Y или Y к Z в XYZ предпочтительно составляет от 0,2 до 0,8, то есть формула предпочтительно представляет собой XxYj-xZ (или XY1-xZx), где нижний индекс х равен от 0,2 до 0,8. Четырехкомпонентные системы могут быть представлены формулой AxB1-xCyD1-y, где А и В представляют собой элементы III группы, а С и D представляют собой элементы V группы. И снова нижние индексы х и у обычно составляют от 0,2 до 0,8. Другие опции будут понятны для специалиста.
В объем данного изобретения входит возможность легировать пленки. Легирование обычно включает введение в пленку ионов примесей. Их можно вводить на уровне до 1019/см2, предпочтительно до 1018/см2 Пленки могут быть нелегированными, р-легированными или n-легированными, по желанию. Легированные полупроводники обладают примесной электропроводностью, в то время как нелегированные полупроводники обладают собственной электропроводностью.
Полупроводники с примесной проводимостью, с концентрацией электронов, превышающей концентрацию дырок, известны как полупроводники n-типа. В полупроводниках n-типа электроны представляют собой основные носители заряда, а дырки представляют собой неосновные носители заряда. Полупроводники n-типа получают путем легирования полупроводника с собственной проводимостью донорными примесями. Подходящими донорами для соединений III-V могут быть, например, Si и Те. Подходящими донорами для полупроводников группы IV могут быть, например, Р и As.
Полупроводники р-типа имеют концентрацию дырок, превышающую концентрацию электронов. Фраза р-типа относится к положительному заряду дырки. В полупроводниках р-типа дырки являются основными носителями заряда, а электроны - неосновными носителями. Полупроводники р-типа создают путем легирования полупроводников с собственной проводимостью акцепторными примесями. Подходящими акцепторами для соединений III-V могут быть, например, Be и Zn. Подходящими акцепторами для полупроводников группы IV может быть, например, В. Следует понимать, что тот факт, будет ли примесь действовать как донор или как акцептор в соединении III-V, в некоторых случаях будет зависеть от ориентации растущей поверхности и условий роста. Легирующие добавки можно вводить в ходе процесса роста или путем имплантации иона в пленки после их образования. Легирование можно также осуществлять, позволяя примесям из подложки проникать в пленку полупроводника.
Предпочтительные пленки по изобретению будут содержать легирующие добавки.
После того, как рост пленки на графеновой подложке установился, нет реальных ограничений для манипуляций, которые можно провести. Различные слои пленки можно добавлять, просто изменяя природу присутствующих атомов. Например, если рост пленки установился, при использовании соответствующих технологий легирования возможно также вырастить верхний слой пленки, в котором присутствует p-i-n или n-i-p структура. Таким образом, изначально пленка могла бы быть р-легированной, перед тем как наносят нелегированный слой с собственной проводимостью и n-легированный слой (или наоборот).
Можно понять, что возможно легирование только части/частей пленки, например, с использованием имплантации ионов для конкретных компонентов. Таким образом, легирование можно проводить после выращивания пленки.
Пленки
Пленки, выращенные по изобретению, могут иметь толщину от 250 нм до нескольких микрон, например от 0,5 до 10 микрон, более предпочтительно от 1 до 5 микрон. Площадь поверхности пленок ограничена только устройством, применяемым для нанесения пленок, и размером подложки. Площадь поверхности может также определяться размером отверстий, в которых выращивают пленку, как дополнительно описано ниже.
Толщину пленок часто регулируют посредством продолжительности времени, в течение которого идет процесс выращивания. Более длительный процесс обычно приводит к более толстой пленке.
Базовый слой, когда он присутствует, может иметь толщину в один или два атомных слоя, например, 2 А или более вплоть до десятков нанометров, в зависимости от природы базового слоя и природы тонкой пленки, выращенной поверх этого базового слоя.
Нанесение/рост пленки/базового слоя
Прежде всего рассмотрим прямое нанесение пленок по изобретению на графитовую подложку. Пленки по изобретению растут эпитаксиально на подложке или базовом слое. Они соединены с нижележащей графитовой подложкой посредством ковалентных, ионных или квази-Ван-дер-Ваальсовых связей. Соответственно, в месте соединения подложки и пленки кристаллические плоскости образуются эпитаксиально. Они формируются, одна на другой, в одном и том же кристаллографическом направлении, таким образом предоставляя возможность эпитаксиального роста пленки.
Пленки по изобретению предпочтительно должны расти в направлении [111] для пленок с кубической кристаллической структурой, и в направлении [0001] для пленок с гексагональной кристаллической структурой. И плоскость (111), и плоскость (0001) представляют собой одну и ту же (гексагональную) плоскость пленки; это как раз тот случай, когда номенклатура плоскости изменяется в зависимости от кристаллической структуры растущей пленки.
Предпочтительно пленки выращивают с помощью молекулярно-пучковой эпитаксии (МПЭ). В то
- 9 031009 время, как в область изобретения входит в качестве способа осаждения из паровой фазы, который должны применять, например, химическое осаждение из паровой фазы, особенно химическое осаждение из паровой фазы металлорганического соединения, или эпитаксия из паровой фазы металлорганического соединения, применение МПЭ является в высокой степени предпочтительным.
В этом способе на подложку направляют молекулярный пучок каждого реагента, например, элемента группы III и элемента группы V, которые предпочтительно подают одновременно. Однако может быть предпочтительным начинать процесс нанесения с использованием одного реагента за раз. Таким образом, первый слой может включать нанесение Sb, с последующим нанесением Ga. Первый слой может включать нанесение In, с последующим нанесением As, или наоборот. Процесс нанесения может включать рост AlSb, предпочтительно Sb, а не Al. После того, как нанесены оба реагента, и каждый из них образовал атомный слой, из этих двух реагентов будет образовываться соединение. Это чередующееся нанесение можно повторить, один или большее число раз (а можно и не повторять). После этого оба иона можно подавать одновременно, и пленка будет продолжать расти. Перед выращиванием пленки в традиционном режиме МПЭ с элементами групп III-V температуру подложки может быть необходимо повысить.
В случае технологии МПЭ более высокой степени контроля зародышеобразования и роста пленок на графитовой подложке можно достичь путем использования миграционно-стимулированной эпитаксии (МСЭ), когда элементы группы (III) (V) подают попеременно, без перерыва; или молекулярно-пучковой эпитаксии атомных слоев, когда, например, элементы групп III и V можно подавать попеременно, с выдержкой между ними.
Предпочтительной технологией является МПЭ с твердым источником, при которой очень чистые элементы, такие, как, например, галлий и сурьму, нагревают в раздельных эффузионных ячейках до тех пор, пока они не начинают медленно испаряться (например, галлий) или сублимировать (например, сурьма). Затем газообразные элементы конденсируются на подложке, где они могут реагировать друг с другом. В примере с галлием и сурьмой образуется монокристаллический антимонид галлия. Использование термина пучок означает, что испарившиеся атомы (например, галлий) или молекулы (например, Sb4 или Sb2) не реагируют друг с другом, или с находящимися в вакуумной камере газами, до тех пор, пока они не достигнут подложки.
При использовании МПЭ можно также легко ввести и легирующие ионы. Фиг. 2 представляет возможную общую компоновку процесса МПЭ.
Молекулярно-пучковая эпитаксия (МПЭ) происходит в сверхглубоком вакууме, обычно с остаточным давлением около 133 х 10-10-133х 10-9 Па (10-10-10-9 торр). Обычно пленки выращивают медленно, например со скоростью до нескольких, например около 2, мкм в час. Это позволяет пленкам расти эпитаксиально и максимизирует структурные характеристики.
Температура роста для традиционной полупроводниковой пленки II-VI или III-V может находиться в диапазоне от 300 до 700°С. Для выращивания базового слоя необходимы значительно более низкие температуры, которые обычно составляют около 130°С. Однако применяемая температура зависит от природы материала пленки, ориентации поверхности и применяемых потоков элементов III и V. Для выращивания GaAs на (001) поверхности GaAs предпочтительной температурой является 580-630°С, например 590°С. Для выращивания GaAs на (111) поверхности GaAs, например, на поверхности GaAs(111)B, предпочтительна более высокая температура, например 530°С или выше, такая как 610°С или выше. Для InAs и GaSb этот диапазон ниже, например, 430-540°С, например 450°С для роста InAs на (001) поверхности InAs, и 465°С для роста GaSb на (111) поверхности GaSb. Рост GaSb на (001) поверхности GaSb может происходить при 490°С. Подходящие температуры могут быть определены специалистом.
Рост пленки можно инициировать путем открытия затвора эффузионной ячейки Ga/In и затвора и/или клапана эффузионной ячейки противоиона (например, мышьяка или сурьмы), одновременно (непрерывное (аналоговое или цифровое) МПЭ выращивание) или попеременно (миграционно-стимулированная эпитаксия, молекулярно-пучковая эпитаксия атомных слоев).
Для регулирования скорости роста можно использовать температуру эффузионных ячеек. Обычные скорости роста составляют 0,05 - 2 мкм в час, например 1 мкм в час.
Эквивалентное давление в пучке (поток) в молекулярных пучках также можно регулировать, в зависимости от природы выращиваемой пленки. Допустимые уровни эквивалентных давлений в пучке составляют от 133х10-8 до 133х10-5 Па (от 1х10-8 до 1х10-5 торр).
Отношение потоков реагентов в пучке (например, атомов группы III и молекул группы V) можно изменять, при этом предпочтительное отношение потоков в пучке зависит от других параметров роста и от природы выращиваемой пленки.
Существенное преимущество МПЭ заключается в том, что растущую пленку можно анализировать in situ, например с использованием дифракции отраженных электронов высоких энергий (ДОЭВЭ). Дифракция отраженных электронов высоких энергий представляет собой способ, который обычно используют для получения поверхностных характеристик кристаллических материалов. Этот способ нельзя
- 10 031009 применять с такой легкостью в случаях, если пленки получают другими способами, например, с помощью эпитаксии металлорганических соединений из паровой фазы.
Как отмечено выше, пленки по данному изобретению предпочтительно растут в виде кубических (структура цинковой обманки) или гексагональных (структура вюрцита) структур. Также в объем изобретения входит изменение природы образующего пленку материала в ходе процесса роста. Таким образом, при изменении природы молекулярных пучков в пленку можно было бы вводить участок иной структуры. Исходная пленка GaAs может быть продолжена участком пленки InAs, например, при замене подачи Ga на подачу In. Затем пленка GaAs/InAs может быть продолжена участком пленки GaAs, при повторном изменении подачи на Ga, и т.д. Также в объем изобретения входит включение в пленку наноструктур в ходе процесса роста, например квантовых точек InAs или GaSb в матрице GaAs. Выращивание таких наноструктур известно специалисту. И опять, разрабатывая различные структуры с отличающимися электрическими свойствами, авторы изобретения предлагают пленки с интересными и регулируемыми электронными свойствами, которые изготовитель может подобрать для всевозможных конечных применений.
Если присутствует базовый слой, то этот базовый слой предпочтительно наносят с использованием одной из вышеописанных технологий, например, молекулярно-пучковой эпитаксии атомных слоев. После этого проводят формирование полупроводника, следуя вышеприведенным инструкциям.
В одном из примеров воплощения после того, как нанесена исходная пленка базового слоя элемента (часто это слой Sb), можно нанести второй слой элемента, обычно из другого материала, например, слой Ga. Может быть полезно наносить попеременно атомные слои, например из Sb и Ga, перед началом роста желаемого полупроводника; но предпочтительно укладывают только один атомный слой Ga, и это является началом слоя GaSb, поверх которого можно вырастить, например, InAs или трехкомпонентные или четырехкомпонентные соединения.
Также может быть полезно сначала нанести потоки компонентов полупроводника по-отдельности. Таким образом, перед объединенным одновременным потоком для выращивания пленки можно использовать нанесение потока элемента (III), а затем элемента (V), или, в альтернативном случае, в обратном порядке.
Если применяют базовый слой, который чувствителен к теплу, например базовый слой из Sb, температуру можно увеличить до обычных температур эпитаксиального роста после того, как установился рост пленки III-V. Выращенная пленка полупроводника не обязательно должна быть такой же, как базовый слой, или содержать элемент (элементы) базового слоя.
Базовый слой или основную пленку можно легировать. После того, как начался рост пленки полупроводника, можно инициировать легирование. Если легирование присутствует, его следует начинать после того, как образовались несколько атомных слоев пленки. Это идеально введет в пленку омический контакт. Предпочтительной легирующей добавкой является Si или Те. В альтернативном случае легирующей добавкой может быть Be или Mg. Mg используют в качестве предпочтительной легирующей добавки для нитридов р-типа. Be используют в качестве предпочтительной легирующей добавки для арсенидов и антимонидов р-типа. Si используют в качестве предпочтительной легирующей добавки для арсенидов и нитридов n-типа, в то время как Te используют в качестве предпочтительной легирующей добавки для антимонидов n-типа.
Можно понять, что возможно проводить легирование только части/частей пленки, например, используя имплантацию ионов для конкретных компонентов. Таким образом, легирование может происходить при обработке после выращивания пленки.
В одном из примеров воплощения пленку можно вырастить на подложке, снабженной маской. Маска защищает подложку, но определяет рисунок отверстий, в которых предполагают вырастить пленку. Например, на графитовую подложку можно наложить маску из диоксида кремния или оксида алюминия с рисунком отверстий в маске, через которые происходит рост пленки. После того как произошло нанесение пленки, маску можно оставить на месте, частично удалить или полностью удалить, например, посредством травления, чтобы оставить на подложке серию тонких пленок, соответствующих положению отверстий в маске.
Применения
Пленки по изобретению имеют широкий диапазон применений. Они являются полупроводниками, поэтому можно предположить, что они могут быть использованы в любой области, где пригодны полупроводниковые технологии. В первую очередь их применяют в электронике и оптоэлектронике, например, в солнечных элементах, фотодетекторах, светодиодах, волноводах и лазерах.
Идеальным устройством для их применения могут быть тонкопленочные солнечные элементы. Такие солнечные элементы потенциально способны быть одновременно эффективными, дешевыми и легкими. Это быстро развивающаяся отрасль, и дополнительные применения этих ценных материалов будут обнаружены в последующие годы.
Теперь данное изобретение будет дополнительно описано в связи со следующими неограничивающими примерами и чертежами.
- 11 031009
Краткое описание чертежей
Фиг. 1a-d изображают расположение атомов в случае, когда атомы полупроводника помещены на графене над 1) положениями Н- и В- (фиг. 1а, b и d), и 2) положениями Н- или В- (фиг. 1с). На фиг. 1е представлена зависимость энергий ширины запрещенной зоны полупроводников III-V (а также Si и ZnO) от их параметров кристаллических решеток. Вертикальные сплошные (пунктирные) цветные линии описывают параметр кристаллической решетки идеального кристалла, который мог бы дать полное соответствие кристаллической решетки с графеном для кубического (гексагонального) кристалла с четырьмя различными расположениями атомов (фиг. 1a-d) по отношению к графену. В случае некоторых двухкомпонентных полупроводников несоответствие параметров кристаллической решетки с графеном является очень малым (например InAs, GaSb и ZnO) для одной предполагаемой атомной конфигурации. Для других двухкомпонентных полупроводников, таких как GaAs, несоответствие параметров кристаллической решетки является весьма значительным и (она) находится между двумя различными атомными конфигурациями (как на фиг. 1b или фиг. 1с). Из этого чертежа можно понять, что кристаллическая решетка многих трехкомпонентных, четырехкомпонентных и пятикомпонентных полупроводников может превосходно совпадать с кристаллической решеткой графена.
Фиг. 2 изображает экспериментальную установку для проведения МПЭ.
Фиг. 3 представляет теоретический вид сбоку подложки, слоя графена, базового слоя и верхнего слоя полупроводника.
Фиг. 4 изображает тонкую пленку GaSb, выращенную непосредственно на поверхности первичного графита.
Фиг. 5 показывает, что для SbGp13 пластинки GaSb в форме треугольников подтверждают эпитаксиальную взаимосвязь с графитовой подложкой.
Порядок проведения эксперимента
Тонкую пленку выращивают на модульной установке для проведения молекулярно-пучковой эпитаксии (МПЭ) Varian Gen II, снабженной обычной ячейкой с Al нитью, ячейкой с двойной Ga нитью, ячейкой с двойной In нитью SUMO, As ячейкой-диссоциатором с клапаном и Sb ячейкой-диссоциатором с клапаном, что позволяет фиксировать отношение димеров и тетрамеров. В данном исследовании основными частицами мышьяка были As2, а сурьмы -Sb2.
Выращивание тонкой пленки проводят или на чешуйках первичного графита, или на графеновой пленке (толщиной 1-7 монослоев, предпочтительно толщиной только в один монослой), или выращенной с помощью технологии химического осаждения из паровой фазы непосредственно на металлической пленке, например Cu, Ni и Pt, или выращенной на подложках SiC путем применения технологии высокотемпературной сублимации. Образцы графеновых пленок приобретают у сторонних поставщиков. Полученные химическим осаждением из паровой фазы графеновые пленки приобретают у Graphene Supermarket, США.
Образцы полученных химическим осаждением из паровой фазы графеновых пленок очищают изопропанолом, с последующей сушкой потоком азота, а затем соединяют индием с тонкой кремниевой пластиной. Подложки из графена/SiC сушат потоком азота, а затем соединяют индием с кремниевой пластиной.
Затем эти образцы загружают в устройство МПЭ для выращивания тонкой пленки. Образцы отжигают при температуре подложки 550°С (или выше) в продолжение 10 мин, чтобы устранить любые оставшиеся на подложке оксиды. Нанесение пленки III-V обычно проводят методом трехстадийного (если используют базовый слой) или двухстадийного роста. В случае, когда используют базовый слой, первая стадия включает нанесение элемента группы V (или сплава элементов группы V) на графитовые слои при более низких температурах подложки, как описано ниже. Вторая стадия включает рост пленки III-V при более низкой температуре подложки, подобно тому, как это использовали для нанесения элемента группы V (или сплава элемента группы V). Третья стадия включает нанесение пленки (пленок) III-V при более высокой температуре, типичной для обычного эпитаксиального роста рассматриваемого соединения III-V. Приведенная выше вторая стадия является предпочтительной для того, чтобы избежать десорбции элемента группы V (или сплава элемента группы V) в ходе третьей стадии.
Пример 1
После отжига графеновой подложки при 550°С температуру подложки понижают, обычно до значения между 200°С и 300°С, для нанесения Sb. Сначала на поверхность подают поток Sb, обычно в течение интервала времени от 5 с до 1 мин, в зависимости от потока Sb и температуры подложки. Затем, предпочтительно методом миграционно-стимулированной эпитаксии или молекулярно-пучковой эпитаксии атомных слоев, наращивают несколько нм, предпочтительно менее нескольких десятков нм, Sb. Затем температуру подложки увеличивают до температуры, пригодной для роста тонкой пленки GaSb: то есть примерно до 450°С. Температуру Ga эффузионной ячейки предварительно устанавливают таким образом, чтобы получить номинальную скорость роста с плоским фронтом 0,3 мкм/ч. Для выращивания тонкой пленки GaSb при этой температуре поток Sb2 устанавливают на 133 х 10-6 Па (1х 10-6 торр). Тонкую пленку GaSb легируют до уровня, приемлемого для той структуры устройства, которая будет выращена на этой тонкопленочной структуре шаблона.
- 12 031009
Пример 2
После отжига графеновой подложки при 550°С температуру подложки снижают до величины между 15 и 80°С для осаждения As; и эта температура зависит от желаемой скорости нанесения. Поток As сначала направляют на поверхность в течение интервала времени, обычно составляющего от 5 с до 1 мин. Затем выращивают несколько нанометров, предпочтительно менее нескольких десятков нм, InAs, предпочтительно с помощью миграционно-стимулированной эпитаксии или молекулярно-пучковой эпитаксии атомных слоев. Затем температуру подложки увеличивают до температуры, пригодной для выращивания тонкой пленки InAs: то есть примерно до 450°С. Температуру In эффузионной ячейки устанавливают так, чтобы получить номинальную скорость роста плоского фронта до 0,7 мкм в час. Чтобы сформировать тонкую пленку InAs при этой температуре, устанавливают величину потока As2 798х10-6 Па (6х10-6 торр). Тонкую пленку InAs легируют до уровня, приемлемого для той структуры устройства, которая будет выращена на этой тонкопленочной структуре шаблона.
Подложки, подготовленные в примерах 1 и 2 и называемые здесь тонкопленочной подложкой IIIV/GP, можно использовать в качестве шаблона для изготовления различных оптоэлектронных или электронных устройств, а также солнечных элементов.
В нижеприведенных примерах 3-4 описано нанесение 1) p-i-n легированного гомогенного перехода из тонкой пленки GaSb на тонкопленочной подложке III-V/GP, и 2) р-n легированной гетероструктуры из тонкой пленки GaSb/InGaAsSb на тонкопленочной подложке III-V/GP. Эти тонкопленочные структуры предполагают использовать в таких применениях, как светодиоды и фотодетекторы.
Пример 3
Дополнительно выращивают p-i-n легированный гомогенный переход из тонкой пленки GaSb на тонкопленочной подложке III-V/GP по примеру 1, для использования его в качестве фотодетектора. Толщину каждого из р-легированного, n-легированного и обладающего собственной проводимостью эпитаксиального слоя III-V обычно поддерживают между 0,5 и 3 мкм. Для легирования р-типа используют Be. Tc используют в качестве n-легирующей добавки. Температуру Be ячейки устанавливают на 990°С, что дает номинальную концентрацию легирующей добавки р-типа 3х1018 см-3. Температуру Te ячейки устанавливают на 440°С, что дает номинальную концентрацию легирующей добавки n-типа 1х1018 см-3. Температуру нанесения для всех слоев устанавливают на 450°С. Температуру Ga эффузионной ячейки задают таким образом, чтобы получить номинальную скорость роста плоского фронта 0,7 мкм в час, а поток Sb2 ДЛЯ выращивания тонкой пленки GaSb задают на уровне 133 х 10-6 Па (1х 10-6 торр).
Пример 4
Дополнительно на тонкопленочной подложке III-V/GP выращивают тонкую пленку GaSb ртипа/GaInAsSb с собственной проводимостью/GaSb n-типа. Состав GaInAsSb с собственной проводимостью подбирают таким образом, чтобы его кристаллическая решетка соответствовала кристаллической решетке GaSb. Толщину каждого из этих трех эпитаксиальных слоев обычно поддерживают от 0,5 до 3 мкм. В качестве легирующей добавки р-типа используют Be. Te используют в качестве легирующей добавки n-типа для эпитаксиального слоя GaInAsSb. Температуру Be ячейки устанавливают на величину 990°С, что дает номинальную концентрацию легирующей добавки р-типа 3х1018 см-3. Температуру Te ячейки устанавливают на величину 440°С, что дает номинальную концентрацию легирующей добавки nтипа 1 х 1018 см-3.
Пример 5
Дополнительно на тонкопленочной подложке III-V/GP выращивают тонкую пленку GaSb п-типа/п+ GaInAsSb/p-GaInAsSb/p+ GaInAsSb, чтобы использовать ее в качестве фотодетектора. Состав GaInAsSb подбирают таким образом, чтобы его кристаллическая решетка соответствовала кристаллической решетке GaSb. Толщину каждого из этих эпитаксиальных слоев обычно поддерживают от 0,5 до 3 мкм. В качестве легирующей добавки р-типа используют Be. Te используют в качестве легирующей добавки n-типа для эпитаксиального слоя GaInAsSb. Температуру Be ячейки устанавливают на 990°С, что дает номинальную концентрацию легирующей добавки р+ типа *1**1018 см-3, и температуру Be ячейки устанавливают на 940°С, что дает номинальную концентрацию легирующей добавки р-типа 9х1016 см-3. Температуру Te ячейки устанавливают на 440°С, что дает номинальную концентрацию легирующей добавки nтипа 1 х 1018 см-3.
Пример 6
Ряд тонких пленок выращивают непосредственно на первичном графите. Условия роста сведены в таблице 1. После отжига образца при 550°С температуру подложки снижают до приведенного в столбце 2 значения, при котором выращивают тонкую пленку. Полученные с помощью сканирующего электронного микроскопа изображения фиг. 4 показывают, что мы имеем кристаллический материал GaSb, выращенный на первичном графите.
Зародышеобразование: Образцы SbGp13, SbGp22 и SbGp17 показывают, что на первичном графите образуются зародыши GaSb, формирующие пластинки GaSb треугольной формы благодаря эпитаксиальной взаимосвязи с поверхностью графита. Зародышеобразования можно достичь с помощью обычной молекулярно-пучковой эпитаксии (МПЭ) при 300°С и при миграционно-стимулированной эпитаксии
- 13 031009 (МСЭ) в молекулярно-пучковой эпитаксии при 200°С и при 300°С. Материал, осажденный на первичный графит, в каждом случае эквивалентен 3 монослоям (МС) GaSb.
Тонкая пленка: Образцы SbGp24/26/27/31 показывают, что с использованием метода двухстадийного выращивания (стадия зародышеобразования посредством МСЭ при 300°С + рост посредством МПЭ при 300-520°С) на первичном графите можно вырастить почти непрерывную пленку GaSb с номинальной толщиной 100 нм.
Образцы SbGp26/27/31 выращивают согласно двухстадийному методу (стадия МСЭ при низкой температуре + стадия МПЭ при более высокой температуре), то есть для этих образцов не применяли базовый слой Sb.
Номер образца Подробности процесса роста Краткое описание образца
SbGp13 Тонкая пленка GaSb: 5 с (3 МС), поток Sb=1x10'6 (133x10'6 Па), Ga=0,7 МСс'1, Тс=300°С 3 МС GaSb осажд. при Тс=300°С
SbGp14 Поток предв. нанесения Sb=1x10'6 (133x10'6 Па), 5 мин при Тс=400°С. Тонкая пленка GaSb: 5 с (3 МС), поток Sb=1x10'6 (133x10'6 Па), Ga=0,7 МСс'1, Тс=300°С
SbGp15 Тонкая пленка GaSb: МСЭ 5 с (3 МС), поток Sb=1x10'6 (133x10'6 Па), Ga= 0,7 МСс'1, Тс=300°С [открыто Sb 1,4 с+открыто Ga 1,4 с+выдержка 2]хЗ раза 3 МС GaSb, осажд. методом МСЭ при Тс=300°С
SbGp16 Тонкая пленка GaSb: 5 с (3 МС), поток Sb=1x10'6 (133x10'6 Па), Ga=0,7 МСс'1, Тс=350°С 3 МС GaSb осажд. при 350°С
SbGp17 Тонкая пленка GaSb: МСЭ 5 с (3 МС), поток Sb=1x10'6 (133x10'6 Па), Ga= 0,3 МСс'1, Тс=300°С [открыто Sb 3,4 с+открыто Ga 3,4 с+выдержка 2]хЗ раза 3 МС GaSb, осажд. методом МСЭ при Тс=300°С, Ga=0,3 МСс'1
SbGp18 Тонкая пленка GaSb: МСЭ 5 с (3 МС), поток Sb=6x10'7 (798x10'7 Па), Ga= 0,3 МСс'1, Тс=300°С [открыто Sb 3,4 с+открыто Ga 3,4 с+выдержка 2]хЗ раза 3 МС GaSb, осажд. методом МСЭ при Тс=300°С, Ga=0,3 МСс1, низкий поток Sb
SbGp19 Тонкая пленка GaSb: МСЭ 5 с (3 МС), поток Sb=1,5x10'6 (200x10'6 Па), Ga=0,3 МСс'1, Тс=300°С [открыто Sb 3,4 с+открыто Ga 3,4 с+выдержка 2]хЗ раза 3 МС GaSb, осажд. методом МСЭ при Тс=300°С, Ga=0,3 МСс1, высокий поток Sb
SbGp20 Тонкая пленка GaSb: МСЭ при двух температурах, поток Sb=1x10'6 (133х10_6 Па), Ga= 0,3 МСс'1, Тс=300°С [открыто Sb 1,7 с+открыто Ga 1,7 с+выдержка 2]х2 раза + Тс=400°С [открыто Sb 3,4 с+открыто Ga 3,4 с+выдержка 2]х2 раза МСЭ при двух температурах: 1 МС при 300°С и 2 МС при 400°С
SbGp21 Тонкая пленка GaSb: МСЭ при двух температурах, поток Sb=1x10'6 (133х10_6 Па), Ga= 0,3 МСс'1, Тс=300°С [открыто Sb 1,7 с+открыто Ga 1,7 с+выдержка 2]х2 раза + Тс=375°С [открыто Sb 3,4 с+открыто Ga 3,4 с+выдержка 2]х2 раза МСЭ при двух температурах: 1 МС при 300°С и 2 МС при 375°С
SbGp22 Тонкая пленка GaSb: МСЭ 5 с (3 МС), поток Sb=1x10'6 (133x10'6 Па), Ga=0,3 МСс'1, Тс=200°С [открыто Sb 3,4 с+открыто Ga 3,4 с+выдержка 2]хЗ раза 3 МС GaSb, осажд. методом МСЭ при Тс=200°С, Ga=0,3 МСс'1
SbGp23 Тонкая пленка GaSb: МСЭ 5 с (3 МС), поток Sb=1x10'6 (133x10'6 Па), Ga= 0,3 МСс'1, Тс=325°С [открыто Sb 3,4 с+открыто Ga 3,4 с+выдержка 2]хЗ раза 3 МС GaSb, осажд. методом МСЭ при Тс=325°С, Ga=0,3 МСс1
SbGp24 Тонкая пленка GaSb: толщина 100 нм, поток Sb=1x10'6 (133x10'6 Па), Ga= 0,3 МСс'1, Тс=300°С [открыто Sb 3,4 с+открыто Ga 3,4 с+выдержка 2]х20 раз+GaSb 980 с 100 нм GaSb осажд. при Тс=300°С, Ga=0,3 МСс1
SbGp25 Тонкая пленка GaSb: МСЭ 5 с (3 МС), поток Sb=8x10'7 (1064x10'7 Па), Ga= 0,1 МСс'1, Тс=300°С [открыто Sb 3,4 с+открыто Ga 3,4 с+выдержка 2]х9 раз 3 МС GaSb, осажд. методом МСЭ при Тс=300°С, Ga=0,1 МСс'1
SbGp26 Тонкая пленка GaSb: толщина 100 нм, поток Sb=1x10'6 (133x10'6 Па), Ga= 0,3 МСс'1, Тс=300°С [открыто Sb 3,4 с+открыто Ga 3,4 с+выдержка 2]х30 раз+GaSb 980 с при Тс=450°С 100 нм GaSb осажд.: 3 нм при Тс=300°С, 98 нм при Тс=450°С
SbGp27 Тонкая пленка GaSb: толщина 100 нм, поток Sb=1x10'6 (133x10'6 Па), Ga= 0,3 МСс'1, Тс=300°С [открыто Sb 3,4 с+открыто Ga 3,4 с+выдержка 2]х30 раз+100 с при Тс=300°С+ GaSb 800 с при Тс=450°С 100 нм GaSb осажд.: 3 нм методом МСЭ + 10 нм при Тс=300°С, 80 нм при Тс=450°С
SbGp28 Тонкая пленка GaSb_Te: МСЭ 5 с (3 МС), поток Sb=1x10'6 (133x10'6 Па), Ga=0,3 МСс'1, GaTe=600C, Тс=300°С [открыто Sb 3,4 с+открыто Ga и GaTe 3,4 с+выдержка 2]хЗ раза
SbGp29 Тонкая пленка GaSb_Te: МСЭ 5 с (3 МС), поток Sb=1x10'6 (133x10'6 Па), Ga=0,3 МСс'1, GaTe=550C, Тс=300°С [открыто Sb 3,4 с+открыто Ga и GaTe 3,4 с+выдержка 2]хЗ раза

Claims (3)

ФОРМУЛА ИЗОБРЕТЕНИЯ
1. Полупроводниковый материал, включающий непрерывную пленку на графитовой подложке, причем указанная пленка выращена эпитаксиально на указанной подложке, где указанная пленка включает по меньшей мере одно соединение, состоящее из элементов групп III-V, выбранное из InAs, GaAs, AlAs, InP, GaP, AlP, InSb, GaSb и AlSb, или трехкомпонентное соединение формулы XYZ, где X представляет собой элемент III группы, Y представляет собой элемент III или V группы, отличный от X, и Z представляет собой элемент V группы, или четырехкомпонентное соединение, состоящее из элементов III группы, выбранных из Al, Ga и In, и одного или более элементов V группы.
2. Полупроводниковый материал, включающий пленку на графитовой подложке, где указанный полупроводниковый материал содержит, в следующем порядке:
(a) графитовую подложку, (b) пленку базового слоя, имеющую несоответствие параметров кристаллической решетки, составляющее 2,5% или менее, включающую GaSb, InAs, AsSb, GaN, SbBi, AlAs, AlSb, Sb, AlAsSb, AlInSb, In- 14 031009
GaSb или AlInAs; и (c) пленку, содержащую по меньшей мере одно соединение, состоящее из элементов групп III-V, выбранное из InAs, GaAs, AlAs, InP, GaP, AlP, InSb, GaSb и AlSb, или трехкомпонентное соединение формулы XYZ, где X представляет собой элемент III группы, Y представляет собой элемент III или V группы, отличный от X, и Z представляет собой элемент V группы, или четырехкомпонентное соединение, состоящее из элементов III группы, выбранных из Al, Ga и In, и одного или более элементов V группы, где соединение пленки (с) является отличным от соединения базового слоя (b).
3. Полупроводниковый материал по любому из предшествующих пунктов, в котором пленка или часть пленки из соединения, состоящего из элементов групп III-V, является легированной.
4. Полупроводниковый материал по любому из предшествующих пунктов, в котором графитовая подложка нанесена на основание.
5. Полупроводниковый материал по любому из предшествующих пунктов, в котором графитовая подложка не содержит границ зерен.
6. Полупроводниковый материал по любому из предшествующих пунктов, в котором атом группы V указанной пленки представляет собой N.
7. Полупроводниковый материал по любому из предшествующих пунктов, в котором базовый слой представляет собой GaSb, InAs, AsSb или Sb.
8. Полупроводниковый материал по любому из предшествующих пунктов, в котором базовый слой и/или пленку выращивают с использованием молекулярно-пучковой эпитаксии (МПЭ), миграционностимулированной эпитаксии (МСЭ), химического осаждения из паровой фазы металлорганического соединения и/или молекулярно-пучковой эпитаксии атомных слоев (МПЭАС).
9. Полупроводниковый материал по любому из предшествующих пунктов, в котором пленка представляет собой пленку из трехкомпонентного или четырехкомпонентного соединения.
10. Полупроводниковый материал по п.2, в котором объединенная толщина базового слоя (b) и пленки (с) составляет от 250 нм до 10 мкм.
11. Полупроводниковый материал по любому из предшествующих пунктов, в котором пленка включает соединения, состоящие из элементов групп (III)(V), в разных слоях.
12. Способ получения пленки по п.1, выращенной эпитаксиально на графитовой подложке, включающий стадии:
(I) подачи элементов групп III-V на поверхность указанной графитовой подложки и (II) эпитаксиального выращивания указанной пленки от поверхности графитовой подложки.
13. Способ выращивания пленки на графитовой подложке, включающий стадии:
(I) обеспечения наличия пленки базового слоя на указанной подложке, где указанная пленка базового слоя имеет несоответствие параметров кристаллической решетки, составляющее 2,5% или менее, и содержит GaSb, InAs, AsSb, GaN, SbBi, AlAs, AlSb, Sb, AlAsSb, AlInSb, InGaSb или AlInAs;
(II) приведения указанной пленки базового слоя в контакт с элементами групп III-V так, чтобы вырастить пленку по меньшей мере из одного соединения, состоящего из элементов групп III-V, выбранного из InAs, GaAs, AlAs, InP, GaP, AlP, InSb, GaSb и AlSb, или трехкомпонентного соединения формулы XYZ, где X представляет собой элемент III группы, Y представляет собой элемент III или V группы, отличный от X, и Z представляет собой элемент V группы, или четырехкомпонентного соединения, состоящего из элементов III группы, выбранных из Al, Ga и In, и одного или более элементов V группы, или множества таких соединений в различных слоях, где соединение(ия) пленки (с) является отличным от соединения базового слоя (b).
14. Способ по п.12 или 13, в котором базовый слой и/или пленку выращивают с использованием молекулярно-пучковой эпитаксии (МПЭ), миграционно-стимулированной эпитаксии (МСЭ), химического осаждения из паровой фазы металлорганического соединения и/или молекулярно-пучковой эпитаксии атомных слоев (МПЭАС).
15. Способ по любому из пп.12-14, в котором пленку выращивают с использованием МПЭ и/или химического осаждения из паровой фазы металлорганического соединения.
16. Способ по п.13 или 14, в котором нанесение пленки базового слоя или формирование пленки, выращенной эпитаксиально на графитовой подложке, включает миграционно-стимулированную эпитаксию (МСЭ) с последующей молекулярно-пучковой эпитаксией атомных слоев (МПЭАС).
- 15 031009
Фиг. 1
е· * с< « е 4 л- s с ® e с © β • « • ® « >-е--е-еч 8 & е & <« « * « ® <3 й ©Zfa fa о c V «έ 4> i) ft « fa i. L V · t) & W C φ » ft · ® i V> \ 4> <Ь / Й φ fi s'l s. <J £ Й ей Ъ с & р & ϋ fr а ώ © $ » fa fa fa &“·φτ bE®' * < * • . 4.266 A „ . fa · c e © <s 4 1 fa «
4.0 —r——r——T--г»---?r-—, 1 1 1 1 GaN ] 3.5 ^ZnO j 3.0 1 .% 1 г .. 2.5· 1 1 1 T I i AIP · 1 I M- 20 1 i 1 г ; GaP 1.5 1 i 1 1 : G <—— 1.0 1 1 1 1 , InN i Si • e * 0.5 I I 4 t 0.0 -t L—J L/X— I 1
- 16 031009
Фиг. 2
Слой GaAs/lnAs
Базовый слой Sb
Слой графена
Слой основания
Фиг. 3
Фиг. 4
- 17 031009
SbGp13 300’C
I I t I f I I I 1 I
3-ЖС20.0Л' 12r^ x4C.Ck SE 8/'9'2013 I.Xjm
Фиг. 5
EA201592260A 2013-06-21 2014-06-23 Полупроводниковые пленки из соединения iii-v или ii-vi на графитовых подложках EA031009B1 (ru)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
GBGB1311101.8A GB201311101D0 (en) 2013-06-21 2013-06-21 Semiconducting Films
PCT/EP2014/063195 WO2014202796A1 (en) 2013-06-21 2014-06-23 Iii-v or ii-vi compound semiconductor films on graphitic substrates

Publications (2)

Publication Number Publication Date
EA201592260A1 EA201592260A1 (ru) 2016-06-30
EA031009B1 true EA031009B1 (ru) 2018-10-31

Family

ID=48950282

Family Applications (1)

Application Number Title Priority Date Filing Date
EA201592260A EA031009B1 (ru) 2013-06-21 2014-06-23 Полупроводниковые пленки из соединения iii-v или ii-vi на графитовых подложках

Country Status (13)

Country Link
US (2) US10472734B2 (ru)
EP (1) EP3011587B1 (ru)
JP (1) JP6463743B2 (ru)
KR (1) KR102356432B1 (ru)
CN (2) CN105474360A (ru)
AU (1) AU2014283130B2 (ru)
BR (1) BR112015031712A2 (ru)
CA (1) CA2916152C (ru)
EA (1) EA031009B1 (ru)
GB (1) GB201311101D0 (ru)
HK (1) HK1223735A1 (ru)
SG (1) SG11201510517VA (ru)
WO (1) WO2014202796A1 (ru)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB201021112D0 (en) 2010-12-13 2011-01-26 Ntnu Technology Transfer As Nanowires
GB201311101D0 (en) 2013-06-21 2013-08-07 Norwegian Univ Sci & Tech Ntnu Semiconducting Films
AU2016292850B2 (en) 2015-07-13 2019-05-16 Crayonano As Nanowires or nanopyramids grown on graphitic substrate
AU2016292849B2 (en) 2015-07-13 2019-05-16 Crayonano As Nanowires/nanopyramids shaped light emitting diodes and photodetectors
TWI711072B (zh) 2015-07-31 2020-11-21 挪威商卡亞奈米公司 生長奈米線或奈米角錐體之方法
US10249780B1 (en) * 2016-02-03 2019-04-02 Stc.Unm High quality AlSb for radiation detection
GB201701829D0 (en) 2017-02-03 2017-03-22 Norwegian Univ Of Science And Tech (Ntnu) Device
GB201705755D0 (en) 2017-04-10 2017-05-24 Norwegian Univ Of Science And Tech (Ntnu) Nanostructure
CN108735866A (zh) * 2018-07-20 2018-11-02 华南理工大学 生长在Si/石墨烯复合衬底上InN纳米柱外延片及其制备方法
CN109003888A (zh) * 2018-07-20 2018-12-14 华南理工大学 硅/石墨烯复合衬底上外延生长GaN纳米柱及制备方法
JP2021057366A (ja) * 2019-09-26 2021-04-08 旭化成エレクトロニクス株式会社 赤外線センサ
CN114787699B (zh) * 2020-09-29 2023-10-20 京东方科技集团股份有限公司 显示面板、显示设备、显示面板的制造方法以及对置基板
CN114836827A (zh) * 2022-04-29 2022-08-02 中国科学院半导体研究所 量子点的制备方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012080252A1 (en) * 2010-12-13 2012-06-21 Norwegian University Of Science And Technology (Ntnu) Nanowire epitaxy on a graphitic substrate

Family Cites Families (116)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4213801A (en) 1979-03-26 1980-07-22 Bell Telephone Laboratories, Incorporated Ohmic contact of N-GaAs to electrical conductive substrates by controlled growth of N-GaAs polycrystalline layers
EP1374309A1 (en) 2001-03-30 2004-01-02 The Regents Of The University Of California Methods of fabricating nanostructures and nanowires and devices fabricated therefrom
JP3823784B2 (ja) 2001-09-06 2006-09-20 富士ゼロックス株式会社 ナノワイヤーおよびその製造方法、並びにそれを用いたナノネットワーク、ナノネットワークの製造方法、炭素構造体、電子デバイス
JP3679097B2 (ja) 2002-05-31 2005-08-03 株式会社光波 発光素子
US7594982B1 (en) 2002-06-22 2009-09-29 Nanosolar, Inc. Nanostructured transparent conducting electrode
US7335908B2 (en) 2002-07-08 2008-02-26 Qunano Ab Nanostructures and methods for manufacturing the same
US7608147B2 (en) 2003-04-04 2009-10-27 Qunano Ab Precisely positioned nanowhiskers and nanowhisker arrays and method for preparing them
US7354850B2 (en) 2004-02-06 2008-04-08 Qunano Ab Directionally controlled growth of nanowhiskers
US7528002B2 (en) 2004-06-25 2009-05-05 Qunano Ab Formation of nanowhiskers on a substrate of dissimilar material
GB2418532A (en) 2004-09-28 2006-03-29 Arima Optoelectronic Textured light emitting diode structure with enhanced fill factor
CA2588548A1 (en) 2004-12-09 2006-06-15 Nanosys, Inc. Nanowire-based membrane electrode assemblies for fuel cells
US7939218B2 (en) 2004-12-09 2011-05-10 Nanosys, Inc. Nanowire structures comprising carbon
EP1727216B1 (en) 2005-05-24 2019-04-24 LG Electronics, Inc. Rod type light emitting diode and method for fabricating the same
CN101563801B (zh) 2005-11-21 2013-03-27 纳米系统公司 含碳的纳米线结构体
US7570355B2 (en) 2006-01-27 2009-08-04 Hewlett-Packard Development Company, L.P. Nanowire heterostructures and methods of forming the same
US7643136B2 (en) 2006-02-02 2010-01-05 Optilia Instrument Ab Device for inspection of narrow spaces and objects in narrow spaces
WO2008048704A2 (en) 2006-03-10 2008-04-24 Stc.Unm Pulsed growth of gan nanowires and applications in group iii nitride semiconductor substrate materials and devices
FR2904146B1 (fr) 2006-07-20 2008-10-17 Commissariat Energie Atomique Procede de fabrication d'une nanostructure a base de nanofils interconnectes,nanostructure et utilisation comme convertisseur thermoelectrique
JP4106397B2 (ja) 2006-09-14 2008-06-25 株式会社島津製作所 光または放射線検出器の製造方法
US7442575B2 (en) 2006-09-29 2008-10-28 Texas Christian University Method of manufacturing semiconductor nanowires
WO2008140611A2 (en) 2006-12-18 2008-11-20 The Regents Of The University Of California Nanowire array-based light emitting diodes and lasers
US20080191317A1 (en) 2007-02-13 2008-08-14 International Business Machines Corporation Self-aligned epitaxial growth of semiconductor nanowires
US8890117B2 (en) 2007-03-28 2014-11-18 Qunano Ab Nanowire circuit architecture
KR100904588B1 (ko) 2007-07-05 2009-06-25 삼성전자주식회사 코어/쉘 형태의 나노와이어를 제조하는 방법, 그에 의해제조된 나노와이어 및 이를 포함하는 나노와이어 소자
US7714317B2 (en) 2007-08-30 2010-05-11 Brookhaven Science Associates, Llc Assembly of ordered carbon shells on semiconducting nanomaterials
KR101541560B1 (ko) 2007-10-26 2015-08-03 큐나노 에이비 이종 재료상의 나노와이어 성장
US8273983B2 (en) 2007-12-21 2012-09-25 Hewlett-Packard Development Company, L.P. Photonic device and method of making same using nanowires
US8435676B2 (en) 2008-01-09 2013-05-07 Nanotek Instruments, Inc. Mixed nano-filament electrode materials for lithium ion batteries
US7871653B2 (en) 2008-01-30 2011-01-18 Ocean Duke Corporation Double-stack shrimp tray
US8129763B2 (en) 2008-02-07 2012-03-06 International Business Machines Corporation Metal-oxide-semiconductor device including a multiple-layer energy filter
JP5386747B2 (ja) 2008-02-21 2014-01-15 公益財団法人神奈川科学技術アカデミー 半導体基板、半導体素子、発光素子及び電子素子
KR101445877B1 (ko) 2008-03-24 2014-09-29 삼성전자주식회사 산화아연 나노와이어의 제조방법
TW200952184A (en) 2008-06-03 2009-12-16 Univ Nat Taiwan Structure of mixed type heterojunction thin film solar cells and its manufacturing method
JP5836122B2 (ja) 2008-07-07 2015-12-24 グロ アーベーGlo Ab ナノ構造のled
US8735797B2 (en) 2009-12-08 2014-05-27 Zena Technologies, Inc. Nanowire photo-detector grown on a back-side illuminated image sensor
WO2010056064A2 (ko) 2008-11-13 2010-05-20 주식회사 엘지화학 리튬 이차전지용 비수 전해액 및 이를 구비한 리튬 이차전지
KR101071906B1 (ko) 2008-11-14 2011-10-11 한국과학기술원 단결정 게르마늄코발트 나노와이어, 게르마늄코발트 나노와이어 구조체, 및 이들의 제조방법
CN101504961B (zh) 2008-12-16 2010-08-11 华中科技大学 面发射多色发光二极管及其制造方法
US8389387B2 (en) 2009-01-06 2013-03-05 Brookhaven Science Associates, Llc Segmented nanowires displaying locally controllable properties
KR101650310B1 (ko) 2009-01-16 2016-08-24 삼성전자주식회사 도광부재 및 이를 구비하는 제전유닛, 화상형성장치, 화상독취장치
FR2941688B1 (fr) 2009-01-30 2011-04-01 Commissariat Energie Atomique Procede de formation de nano-fils
US20110220171A1 (en) 2009-01-30 2011-09-15 Mathai Sagi V Photovoltaic Structure and Solar Cell and Method of Fabrication Employing Hidden Electrode
KR100995394B1 (ko) 2009-02-18 2010-11-19 한국과학기술원 박막 태양전지의 박막 형성장치
WO2010096035A1 (en) 2009-02-23 2010-08-26 Nanosys, Inc. Nanostructured catalyst supports
US20120135158A1 (en) 2009-05-26 2012-05-31 Sharp Kabushiki Kaisha Methods and systems for electric field deposition of nanowires and other devices
WO2010141348A1 (en) 2009-05-31 2010-12-09 College Of William And Mary Method for making polymer composites containing graphene sheets
JP5299105B2 (ja) 2009-06-16 2013-09-25 ソニー株式会社 二酸化バナジウムナノワイヤとその製造方法、及び二酸化バナジウムナノワイヤを用いたナノワイヤデバイス
CN102868498B (zh) 2009-06-18 2015-12-09 华为技术有限公司 码本生成方法、数据传输方法及装置
US8409366B2 (en) * 2009-06-23 2013-04-02 Oki Data Corporation Separation method of nitride semiconductor layer, semiconductor device, manufacturing method thereof, semiconductor wafer, and manufacturing method thereof
US8337003B2 (en) * 2009-07-16 2012-12-25 Eastman Kodak Company Catcher including drag reducing drop contact surface
US9290388B2 (en) 2009-08-03 2016-03-22 Inje University Industry-Academic Cooperation Foundation Carbonaceous nanocomposite having novel structure and fabrication method thereof
US8507797B2 (en) 2009-08-07 2013-08-13 Guardian Industries Corp. Large area deposition and doping of graphene, and products including the same
WO2011021248A1 (ja) * 2009-08-20 2011-02-24 国立大学法人東京大学 半導体基板、半導体層の製造方法、半導体基板の製造方法、半導体素子、発光素子、表示パネル、電子素子、太陽電池素子及び電子機器
JP2011057474A (ja) * 2009-09-07 2011-03-24 Univ Of Tokyo 半導体基板、半導体基板の製造方法、半導体成長用基板、半導体成長用基板の製造方法、半導体素子、発光素子、表示パネル、電子素子、太陽電池素子及び電子機器
CN102326266B (zh) 2009-10-20 2015-07-01 松下电器产业株式会社 发光二极管元件及其制造方法
WO2011048809A1 (ja) 2009-10-21 2011-04-28 パナソニック株式会社 太陽電池およびその製造方法
KR20110057989A (ko) 2009-11-25 2011-06-01 삼성전자주식회사 그래핀과 나노구조체의 복합 구조체 및 그 제조방법
CN101710567A (zh) 2009-11-27 2010-05-19 晶能光电(江西)有限公司 具有复合碳基衬底的氮化镓基半导体器件及其制造方法
KR101736972B1 (ko) 2009-12-01 2017-05-19 삼성전자주식회사 그라펜 및 무기물의 적층 구조체 및 이를 구비한 전기소자
US9306099B2 (en) * 2009-12-01 2016-04-05 Samsung Electronics Co., Ltd. Material including graphene and an inorganic material and method of manufacturing the material
JP4806475B2 (ja) * 2009-12-04 2011-11-02 パナソニック株式会社 基板およびその製造方法
WO2011081440A2 (ko) 2009-12-30 2011-07-07 성균관대학교산학협력단 그래핀 필름의 롤투롤 도핑 방법 및 도핑된 그래핀 필름
US8212236B2 (en) 2010-01-19 2012-07-03 Eastman Kodak Company II-VI core-shell semiconductor nanowires
WO2011090863A1 (en) 2010-01-19 2011-07-28 Eastman Kodak Company Ii-vi core-shell semiconductor nanowires
US8377729B2 (en) 2010-01-19 2013-02-19 Eastman Kodak Company Forming II-VI core-shell semiconductor nanowires
US20110240099A1 (en) 2010-03-30 2011-10-06 Ellinger Carolyn R Photovoltaic nanowire device
TWI440074B (zh) * 2010-04-02 2014-06-01 Univ Nat Chiao Tung 一種在三族氮化物磊晶過程中降低缺陷產生的方法
US9985150B2 (en) 2010-04-07 2018-05-29 Shimadzu Corporation Radiation detector and method of manufacturing the same
US9718054B2 (en) 2010-05-24 2017-08-01 Siluria Technologies, Inc. Production of ethylene with nanowire catalysts
KR101781552B1 (ko) 2010-06-21 2017-09-27 삼성전자주식회사 보론 및 질소로 치환된 그라핀 및 제조방법과, 이를 구비한 트랜지스터
US9947829B2 (en) 2010-06-24 2018-04-17 Glo Ab Substrate with buffer layer for oriented nanowire growth
CN103155174B (zh) 2010-08-07 2017-06-23 宸鸿科技控股有限公司 具有表面嵌入的添加剂的装置组件和相关的制造方法
CN102376817A (zh) 2010-08-11 2012-03-14 王浩 一种半导体光电器件的制备方法
WO2012029381A1 (ja) 2010-09-01 2012-03-08 シャープ株式会社 発光素子およびその製造方法、発光装置の製造方法、照明装置、バックライト、表示装置、並びにダイオード
US9190590B2 (en) 2010-09-01 2015-11-17 Sharp Kabushiki Kaisha Light emitting element and production method for same, production method for light-emitting device, illumination device, backlight, display device, and diode
KR101636915B1 (ko) * 2010-09-03 2016-07-07 삼성전자주식회사 그래핀 또는 탄소나노튜브를 이용한 반도체 화합물 구조체 및 그 제조방법과, 반도체 화합물 구조체를 포함하는 반도체 소자
KR101691906B1 (ko) 2010-09-14 2017-01-02 삼성전자주식회사 Ⅲ족 질화물 나노로드 발광 소자 제조방법
US8901536B2 (en) 2010-09-21 2014-12-02 The United States Of America, As Represented By The Secretary Of The Navy Transistor having graphene base
KR101802374B1 (ko) 2010-10-05 2017-11-29 삼성전자주식회사 도핑된 그래핀 함유 투명전극, 그의 제조방법, 및 이를 구비하는 표시소자와 태양전지
KR101217209B1 (ko) 2010-10-07 2012-12-31 서울대학교산학협력단 발광소자 및 그 제조방법
US8321961B2 (en) 2010-10-07 2012-11-27 International Business Machines Corporation Production scale fabrication method for high resolution AFM tips
KR101142545B1 (ko) 2010-10-25 2012-05-08 서울대학교산학협력단 태양전지 및 그 제조 방법
ES2694239T3 (es) 2010-11-12 2018-12-19 Gentium S.R.L. Defibrótido para su uso en profilaxis y/o tratamiento de la enfermedad de Injerto contra huésped (GVHD)
US20120141799A1 (en) * 2010-12-03 2012-06-07 Francis Kub Film on Graphene on a Substrate and Method and Devices Therefor
KR20120065792A (ko) 2010-12-13 2012-06-21 삼성전자주식회사 나노 센서 및 그의 제조 방법
KR101268033B1 (ko) * 2010-12-21 2013-05-28 한국세라믹기술원 실리콘카바이드 코팅방법
KR20120083084A (ko) 2011-01-17 2012-07-25 삼성엘이디 주식회사 나노 로드 발광 소자 및 그 제조 방법
KR101227600B1 (ko) 2011-02-11 2013-01-29 서울대학교산학협력단 그래핀-나노와이어 하이브리드 구조체에 기반한 광센서 및 이의 제조방법
US8591990B2 (en) 2011-03-25 2013-11-26 GM Global Technology Operations LLC Microfiber supported metal silicide nanowires
CN102201503A (zh) * 2011-03-30 2011-09-28 苏州纳维科技有限公司 一种iii族氮化物衬底的生长方法、衬底以及led
JP6139511B2 (ja) 2011-05-06 2017-05-31 ザ・リサーチ・ファウンデーション・フォー・ザ・ステイト・ユニヴァーシティ・オブ・ニューヨーク 磁性グラフェン様ナノ粒子あるいは黒鉛ナノまたは微小粒子、およびそれらの生産および使用方法
KR20140040169A (ko) 2011-05-27 2014-04-02 유니버시티 오브 노스 텍사스 그라핀 자기터널접합 스핀 필터 및 그 제조방법
JP2012250868A (ja) * 2011-06-01 2012-12-20 Sumitomo Electric Ind Ltd Iii族窒化物層の成長方法およびiii族窒化物基板
WO2012167282A1 (en) 2011-06-02 2012-12-06 Brown University High-efficiency silicon-compatible photodetectors based on ge quantumdots and ge/si hetero-nanowires
KR101305705B1 (ko) 2011-07-12 2013-09-09 엘지이노텍 주식회사 터치 패널 및 전극 제조 방법
US20130020623A1 (en) 2011-07-18 2013-01-24 Taiwan Semiconductor Manufacturing Company, Ltd. Structure and method for single gate non-volatile memory device
CN102254969B (zh) 2011-08-17 2012-11-14 中国科学院苏州纳米技术与纳米仿生研究所 基于纳米柱阵列的光电器件及其制作方法
KR101217216B1 (ko) * 2011-08-31 2012-12-31 서울대학교산학협력단 전자 소자 및 그 제조 방법
US9202867B2 (en) 2011-10-04 2015-12-01 Arizona Board Of Regents Nanocrystals containing CdTe core with CdS and ZnS coatings
US8440350B1 (en) 2011-11-10 2013-05-14 GM Global Technology Operations LLC Lithium-ion battery electrodes with shape-memory-alloy current collecting substrates
BR112014012795B1 (pt) 2011-11-29 2022-04-12 Siluria Technologies, Inc Material catalítico na forma de uma microesfera prensada, extrusado ou monólito e método para o acoplamento oxidativo de metano
GB201200355D0 (en) * 2012-01-10 2012-02-22 Norwegian Univ Sci & Tech Ntnu Nanowires
US9299560B2 (en) * 2012-01-13 2016-03-29 Applied Materials, Inc. Methods for depositing group III-V layers on substrates
US9653286B2 (en) 2012-02-14 2017-05-16 Hexagem Ab Gallium nitride nanowire based electronics
TW201344749A (zh) 2012-04-23 2013-11-01 Nanocrystal Asia Inc 以塡膠燒結方式製造選擇性成長遮罩之方法
US20130311363A1 (en) 2012-05-15 2013-11-21 Jonathan E. Ramaci Dynamically re-programmable transaction card
GB201211038D0 (en) 2012-06-21 2012-08-01 Norwegian Univ Sci & Tech Ntnu Solar cells
FR2997558B1 (fr) 2012-10-26 2015-12-18 Aledia Dispositif opto-electrique et son procede de fabrication
CN104781305B (zh) 2012-11-26 2018-04-17 麻省理工学院 纳米线修饰的石墨烯及其制造和使用方法
JP5876408B2 (ja) 2012-12-14 2016-03-02 日本電信電話株式会社 ナノワイヤの作製方法
CN103050498B (zh) 2012-12-28 2015-08-26 中山大学 一种微纳米线阵列结构紫外雪崩光电探测器及其制备方法
US10957816B2 (en) * 2013-02-05 2021-03-23 International Business Machines Corporation Thin film wafer transfer and structure for electronic devices
GB201311101D0 (en) 2013-06-21 2013-08-07 Norwegian Univ Sci & Tech Ntnu Semiconducting Films
GB2517186A (en) 2013-08-14 2015-02-18 Norwegian University Of Science And Technology Radial P-N junction nanowire solar cells
KR101517551B1 (ko) 2013-11-14 2015-05-06 포항공과대학교 산학협력단 발광소자의 제조방법 및 그에 의해 제조된 발광소자
US9577176B1 (en) 2015-06-18 2017-02-21 Raytheon Bbn Technologies Corp. Josephson junction readout for graphene-based single photon detector

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012080252A1 (en) * 2010-12-13 2012-06-21 Norwegian University Of Science And Technology (Ntnu) Nanowire epitaxy on a graphitic substrate

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
A. MAZID MUNSHI, DASA L. DHEERAJ, VIDAR T. FAUSKE, DONG-CHUL KIM, ANTONIUS T. J. VAN HELVOORT, BJ�RN-OVE FIMLAND, HELGE WEMAN: "Vertically Aligned GaAs Nanowires on Graphite and Few-Layer Graphene: Generic Model and Epitaxial Growth", NANO LETTERS, AMERICAN CHEMICAL SOCIETY, vol. 12, no. 9, 12 September 2012 (2012-09-12), pages 4570 - 4576, XP055095024, ISSN: 15306984, DOI: 10.1021/nl3018115 *
HYOBIN YOO, KUNOOK CHUNG, SUK IN PARK, MIYOUNG KIM, GYU-CHUL YI: "Microstructural defects in GaN thin films grown on chemically vapor-deposited graphene layers", APPLIED PHYSICS LETTERS, A I P PUBLISHING LLC, US, vol. 102, no. 5, 4 February 2013 (2013-02-04), US, pages 051908.1 - 051908.4, XP002729510, ISSN: 0003-6951, DOI: 10.1063/1.4790385 *
YOUNG JOON HONG, TAKASHI HONG, FUKUI: "Controlled van der Waals Heteroepitaxy of InAs Nanowires on Carbon Honeycomb Lattices", ACS NANO, AMERICAN CHEMICAL SOCIETY, vol. 5, no. 9, 27 September 2011 (2011-09-27), pages 7576 - 7584, XP055095046, ISSN: 19360851, DOI: 10.1021/nn2025786 *

Also Published As

Publication number Publication date
GB201311101D0 (en) 2013-08-07
AU2014283130B2 (en) 2017-06-15
JP6463743B2 (ja) 2019-02-06
WO2014202796A1 (en) 2014-12-24
US11261537B2 (en) 2022-03-01
US10472734B2 (en) 2019-11-12
US20200141027A1 (en) 2020-05-07
CA2916152A1 (en) 2014-12-24
BR112015031712A2 (pt) 2018-04-10
HK1223735A1 (zh) 2017-08-04
CN105474360A (zh) 2016-04-06
JP2016527167A (ja) 2016-09-08
SG11201510517VA (en) 2016-01-28
KR102356432B1 (ko) 2022-01-26
EP3011587A1 (en) 2016-04-27
EP3011587B1 (en) 2021-12-01
US20160369423A1 (en) 2016-12-22
AU2014283130A1 (en) 2016-01-21
CA2916152C (en) 2023-08-22
EA201592260A1 (ru) 2016-06-30
CN111509039A (zh) 2020-08-07
KR20160040525A (ko) 2016-04-14

Similar Documents

Publication Publication Date Title
US11261537B2 (en) III-V or II-VI compound semiconductor films on graphitic substrates
US11257967B2 (en) Solar cells
US11450528B2 (en) Process for growing nanowires or nanopyramids on graphitic substrates
AU2015213350B2 (en) Nanowire epitaxy on a graphitic substrate
US10243104B2 (en) Nanowire device having graphene top and bottom electrodes and method of making such a device

Legal Events

Date Code Title Description
MM4A Lapse of a eurasian patent due to non-payment of renewal fees within the time limit in the following designated state(s)

Designated state(s): AM AZ BY KZ KG TJ TM