DE60203804T3 - Windturbinenblatt - Google Patents
Windturbinenblatt Download PDFInfo
- Publication number
- DE60203804T3 DE60203804T3 DE60203804.9T DE60203804T DE60203804T3 DE 60203804 T3 DE60203804 T3 DE 60203804T3 DE 60203804 T DE60203804 T DE 60203804T DE 60203804 T3 DE60203804 T3 DE 60203804T3
- Authority
- DE
- Germany
- Prior art keywords
- sheet according
- strips
- sheet
- fiber composite
- wood
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- RLQJEEJISHYWON-UHFFFAOYSA-N flonicamid Chemical compound FC(F)(F)C1=CC=NC=C1C(=O)NCC#N RLQJEEJISHYWON-UHFFFAOYSA-N 0.000 title 1
- 239000000835 fiber Substances 0.000 claims abstract description 52
- 239000002023 wood Substances 0.000 claims abstract description 49
- 239000000463 material Substances 0.000 claims description 42
- 239000002131 composite material Substances 0.000 claims description 34
- 229920005989 resin Polymers 0.000 claims description 29
- 239000011347 resin Substances 0.000 claims description 29
- 229920000049 Carbon (fiber) Polymers 0.000 claims description 18
- 239000004917 carbon fiber Substances 0.000 claims description 18
- 238000004519 manufacturing process Methods 0.000 claims description 9
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 claims description 9
- 239000011120 plywood Substances 0.000 claims description 8
- 239000012783 reinforcing fiber Substances 0.000 claims description 7
- 238000000034 method Methods 0.000 claims description 6
- 238000001802 infusion Methods 0.000 claims description 5
- 239000011152 fibreglass Substances 0.000 claims description 3
- 229910052751 metal Inorganic materials 0.000 claims description 3
- 239000002184 metal Substances 0.000 claims description 3
- 239000013307 optical fiber Substances 0.000 claims description 3
- 238000012546 transfer Methods 0.000 claims description 3
- 229920002522 Wood fibre Polymers 0.000 claims description 2
- 238000010521 absorption reaction Methods 0.000 claims description 2
- 229920001187 thermosetting polymer Polymers 0.000 claims description 2
- 238000009755 vacuum infusion Methods 0.000 claims description 2
- 239000002025 wood fiber Substances 0.000 claims description 2
- 238000006467 substitution reaction Methods 0.000 claims 1
- 239000006260 foam Substances 0.000 abstract description 2
- 239000004033 plastic Substances 0.000 abstract 1
- 229920003023 plastic Polymers 0.000 abstract 1
- 239000010410 layer Substances 0.000 description 19
- 238000012360 testing method Methods 0.000 description 13
- 230000003068 static effect Effects 0.000 description 11
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 10
- 229910052799 carbon Inorganic materials 0.000 description 10
- 238000010276 construction Methods 0.000 description 7
- 238000005452 bending Methods 0.000 description 6
- 238000001125 extrusion Methods 0.000 description 6
- 239000003365 glass fiber Substances 0.000 description 6
- 239000004593 Epoxy Substances 0.000 description 5
- 238000009826 distribution Methods 0.000 description 5
- 230000006835 compression Effects 0.000 description 4
- 238000007906 compression Methods 0.000 description 4
- 239000011521 glass Substances 0.000 description 4
- 238000013461 design Methods 0.000 description 3
- 239000004744 fabric Substances 0.000 description 3
- 238000012681 fiber drawing Methods 0.000 description 3
- 239000011159 matrix material Substances 0.000 description 3
- 238000013001 point bending Methods 0.000 description 3
- 235000018185 Betula X alpestris Nutrition 0.000 description 2
- 235000018212 Betula X uliginosa Nutrition 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 239000011162 core material Substances 0.000 description 2
- 238000013016 damping Methods 0.000 description 2
- 239000002657 fibrous material Substances 0.000 description 2
- 239000003292 glue Substances 0.000 description 2
- 238000002347 injection Methods 0.000 description 2
- 239000007924 injection Substances 0.000 description 2
- 230000002093 peripheral effect Effects 0.000 description 2
- 239000002356 single layer Substances 0.000 description 2
- 229920001567 vinyl ester resin Polymers 0.000 description 2
- 239000011800 void material Substances 0.000 description 2
- 244000060011 Cocos nucifera Species 0.000 description 1
- 235000013162 Cocos nucifera Nutrition 0.000 description 1
- 240000000797 Hibiscus cannabinus Species 0.000 description 1
- 229920000271 Kevlar® Polymers 0.000 description 1
- 235000004431 Linum usitatissimum Nutrition 0.000 description 1
- 240000006240 Linum usitatissimum Species 0.000 description 1
- 240000007182 Ochroma pyramidale Species 0.000 description 1
- 229920005830 Polyurethane Foam Polymers 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 230000000712 assembly Effects 0.000 description 1
- 238000000429 assembly Methods 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 239000000805 composite resin Substances 0.000 description 1
- 238000012790 confirmation Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 239000004761 kevlar Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 239000011496 polyurethane foam Substances 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 230000002787 reinforcement Effects 0.000 description 1
- 239000012265 solid product Substances 0.000 description 1
- 239000002344 surface layer Substances 0.000 description 1
- 229920003002 synthetic resin Polymers 0.000 description 1
- 239000000057 synthetic resin Substances 0.000 description 1
- 229920001169 thermoplastic Polymers 0.000 description 1
- 239000004416 thermosoftening plastic Substances 0.000 description 1
- 238000001771 vacuum deposition Methods 0.000 description 1
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F03—MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
- F03D—WIND MOTORS
- F03D1/00—Wind motors with rotation axis substantially parallel to the air flow entering the rotor
- F03D1/06—Rotors
- F03D1/065—Rotors characterised by their construction elements
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F03—MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
- F03D—WIND MOTORS
- F03D1/00—Wind motors with rotation axis substantially parallel to the air flow entering the rotor
- F03D1/06—Rotors
- F03D1/065—Rotors characterised by their construction elements
- F03D1/0675—Rotors characterised by their construction elements of the blades
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C70/00—Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
- B29C70/04—Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
- B29C70/28—Shaping operations therefor
- B29C70/40—Shaping or impregnating by compression not applied
- B29C70/42—Shaping or impregnating by compression not applied for producing articles of definite length, i.e. discrete articles
- B29C70/44—Shaping or impregnating by compression not applied for producing articles of definite length, i.e. discrete articles using isostatic pressure, e.g. pressure difference-moulding, vacuum bag-moulding, autoclave-moulding or expanding rubber-moulding
- B29C70/443—Shaping or impregnating by compression not applied for producing articles of definite length, i.e. discrete articles using isostatic pressure, e.g. pressure difference-moulding, vacuum bag-moulding, autoclave-moulding or expanding rubber-moulding and impregnating by vacuum or injection
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C70/00—Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
- B29C70/04—Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
- B29C70/28—Shaping operations therefor
- B29C70/40—Shaping or impregnating by compression not applied
- B29C70/50—Shaping or impregnating by compression not applied for producing articles of indefinite length, e.g. prepregs, sheet moulding compounds [SMC] or cross moulding compounds [XMC]
- B29C70/52—Pultrusion, i.e. forming and compressing by continuously pulling through a die
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05B—INDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
- F05B2240/00—Components
- F05B2240/20—Rotors
- F05B2240/30—Characteristics of rotor blades, i.e. of any element transforming dynamic fluid energy to or from rotational energy and being attached to a rotor
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/70—Wind energy
- Y02E10/72—Wind turbines with rotation axis in wind direction
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Landscapes
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Laminated Bodies (AREA)
- Moulding By Coating Moulds (AREA)
- Wind Motors (AREA)
Description
- Die vorliegende Erfindung betrifft ein Blatt für Windturbinen, wobei in diesem Blatt die Umfangsschicht des Querschnitts des Blatts
- Hintergrund der Erfindung
- Windturbinenblätter werden heutzutage hergestellt, die einen tragenden mittleren Innenbalken aufweisen, der für gewöhnlich einem hohlen, quadratischen Querschnitt aufweist und aus einem Glasfaser- und Harzverbundstoff besteht, der durch zwei Schalen umgeben ist, die die obere und die untere Außenfläche des Blatts bilden und dessen aerodynamische Eigenschaften bestimmen.
- Die Schalen können aus einer einzelnen Schicht bestehen oder mindestens längs eines Teils des Umfangs aus einer Sandwichkonstruktion bestehen, die zwei parallele Schichten aus Glasfasern und Harz aufweisen, die einen Raum dazwischen aufweisen, der mit z. B. einem Polyurethanschaum gefüllt ist. Diese Verwendung eines Holzmaterials, um die Innenseite einer Einzelschichtschale zu verstärken oder den Raum einer Sandwichkonstruktion zu füllen, ist wohlbekannt.
- Es wird erkannt, daß die Kräfte und das Drehmoment mit der zunehmenden Länge der Blätter stark zunehmen und daß ebenso die Festigkeit und Steifigkeit des inneren Balken für die bekannten Blätter stark erhöht werden muß, da die Schalen nur wenig zu den gesamten Lasttrageeigenschaften des Blatts beitragen.
- Damit die Schale einen wesentlichen Teil der Kräfte des inneren Balkens trägt, benötigen die oben erläuterten Strukturen, die mit Holzmaterial verstärkt sind, für größere Abmessungen der Blätter eine Dicke der Holzschicht, die das Gewicht des Blatts merklich erhöhen würde, was folglich erhöhte Belastungen des Blatts verursacht.
-
US 5,375,324 offenbart ein ziehstranggepreßtes Verbundstoffblatt für einen Darrieus-Rotor mit Vertikalachse. Es wird auch ein Verfahren zur Herstellung eines solchen Blatts offenbart. Das Blatt besteht aus einer Verbundstoffstruktur mit einem gleichmäßigen Querschnitt mit Verstärkungsfasern, von denen sich mindestens einige parallel zur einer Längsmittelachse und durchgehend von Ende zu Ende verlaufen. Das Verbundstoffblatt wird gerade ziehstranggepreßt, und bei der Installation wird das Blatt elastisch in eine gekrümmte Form gebogen. -
US 4,643,647 offenbart ein hohles Propfan-Flügelblatt, das mit Nuten versehen ist, die sich zwischen seinem Fuß- und Spitzenabschnitten erstrecken. Die Nuten enthalten Filamente, die in ein Harzmatrixmaterial eingeschlossen sind und an den Fuß- und Spitzenabschnitten verankert sind. Die Filamente sind so angeordnet, daß sie eine ausreichende Festigkeit aufweisen, um jeden Flügelabschnitt des Blatts im Fall eines strukturellen Ausfalls desselben zu binden. -
US 4,474,536 offenbart ein hohles Windturbinenblatt und dergleichen, das aneinanderstoßende Blattabschnitte mit nasenbildenden Streifen und zusammenlaufenden Wänden aufweist, die mit den Enden der nasenbildenden Streifen verbunden sind, und ein Verfahren zu deren Herstellung, das die Bearbeitung der gegenüberliegenden Stirnwände der aneinanderstoßenden Blattabschnitte, um eine präzise Ausrichtung derselben bereitzustellen, die eine bündige Verbindung bereitstellt, wenn die Abschnitte aneinandergestoßen werden, eine Klebeverbindung der Blattabschnitte in einer aneinanderstoßenden Beziehung und Aushärtenlassen der Klebung, Schneiden von verbundenen Spleißaufnahmeschlitzen in die nasenbildenden Streifen, und Einsetzen klebend verbindender Spleißeinsätze in die Schlitze, die die Schlitze an ihrem Ort befestigen, aufweist. - Es ist eine Aufgabe der Erfindung, ein Windturbinenblatt mit den Eigenschaften lamellierter Erzeugnisse bereitzustellen, d. h. einer hohen Festigkeit im Vergleich zur Materialmenge und niedrigen Herstellungskosten verglichen mit massiven Produkten, wobei jedoch die Festigkeit verglichen mit den Herstellungskosten des Blattes verglichen mit Blättern des Stands der Technik stark erhöht ist.
- Beschreibung der Erfindung
- Diese Aufgabe kann durch ein Blatt gemäß Anspruch 1 gelöst werden.
- Unter dem Ausdruck „ein wesentlicher Längsteil” wird ein Teil verstanden, der sich über mindestens ein Drittel der Gesamtlänge des Blatts von der Spitze zur Nabe erstreckt, vorzugsweise über mindestens die Hälfte der Gesamtlänge des Blatts. Gemäß einer bevorzugten Ausführungsform weisen 60–85% der Gesamtlänge, wie etwa 70%, eine solche Schicht auf.
- Dadurch können die optimalen Materialeigenschaften erhalten werden, indem unterschiedliche Arten von Streifen kombiniert werden, wie ziehstranggepreßte Faserverbundstoffstreifen, die unterschiedliche Fasern, wie Kohlenstoff-Fasern, Glasfasern und/oder Naturfasern aufweisen, Holzstreifen, Verbundstoffstreifen, die als Hohlrohre augebildet sind, usw. Jeder Typ der Streifen ist sehr viel einfacher und folglich kostengünstiger herzustellen, als ein ganzes Blatt zu bilden, und die Streifen können durch geeignete Verfahren verbunden werden, wie durch die Injektion von Harz oder durch eine Vakuumaufguß von Harz.
- Erfindungsgemäß kann ein Windturbinenblatt erhalten werden, das die Kräfte und das Drehmoment auf den inneren Balken reduziert. Außerdem versieht die Festigkeit gegen Zug- und Kompressionskräfte in einer Schicht nahe des Außenumfangs der Schale das Blatt mit einer verbesserten strukturellen Leistungsfähigkeit bezüglich einer Biegeform senkrecht zur Kante.
- Mindestens einige der vorgefertigten Streifen bestehen aus ziehstranggepreßtem Faserverbundmaterial, wie Kohlenstoff-Harz.
- Dadurch wird eine Konstruktion mit einer ausgezeichneten Steifigkeit erhalten, die jedoch nicht für eine Knickung anfällig ist. Folglich kann die innere Struktur des Blatts aus einer leichteren Konstruktion bestehen, indem z. B. der für gewöhnlich verwendete innere Balken mit einem quadratischen Querschnitt durch zwei leichtere Stege an der Vorderkante bzw. der Hinterkante ersetzt wird.
- Die Umfangsschicht kann in einer bevorzugten Ausführungsform durch Injektion von Harz oder durch einen Vakuumaufguß von Harz aufgebaut werden. Die Verwendung eines Harzaufgusses führt zu einem schnellen, gesunden und sicheren Herstellungsverfahren, wobei keine oder nur sehr wenige Hohlräume im Harz hinterlassen werden. Eine Begrenzung der Anzahl der Hohlräume vermindert die anschließende Fertigbearbeitung. Es wird eine sehr kleine Menge der Fasern im Blatt tatsächlich eingegossen. Das Harz ist eher hauptsächlich ein Leim als eine Matrix. Dies führt zu einer Struktur, die toleranter für irgendwelche möglichen Hohlräume ist.
- Gemäß einer bevorzugten Ausführungsform weist das Blatt über einen wesentlichen Längsteil eine Schicht längs des Außenumfangs seines Querschnitts auf, wobei die Schicht mindestens teilweise durch Streifen eines Holzmaterials und Streifen eines Faserverbundmaterials in einer abwechselnden Aufeinanderfolge längs des Außenumfangs gebildet wird.
- Dadurch kann die ausgezeichnete Steifigkeit von Faserverbundmaterialien und der hohe Festigkeit gegen Knickung von Holzmaterialien kombiniert werden, um eine Schale mit geeigneten Eigenschaften in einer wirtschaftlichen Weise zu erzielen.
- Mindestens einige Streifen sind aus einem Holzmaterial, wobei vorzugsweise Sperrholz als das Holzmaterial verwendet wird, und Naturfaser-Ziehstrangpreßteile, vorzugsweise Kohlenstoff-Faser-Ziehstrangpreßteile, als das Faserverbundmaterial.
- Die Vorteile, die durch diese Ausführungsform erhalten werden, sind, daß die Materialien kompatibel sind und beide niedrige thermische Ausdehnungskoeffizienten aufweisen. Beide Materialtypen funktionieren bei einem ähnlich niedrigen Bereich von Dehnungen, was verglichen mit dem Gewicht der Blätter zur Möglichkeit von steiferen Blättern führt. Außerdem können natürliche Fasern für eine Knickung anfällig sein, und obwohl Holz sperrig ist, ist Holz nicht für eine Knickung anfällig, so daß auch aus diesem Grund die beiden Materialtypen sehr komplementär sind.
- Die Streifen können im allgemeinen aus Holz, Schichtholz, Ziehstrangpreßteilen aus irgendeiner synthetischen oder natürlichen Faser mit irgendeinem wärmeaushärtenden, thermoplastischen, synthetischen oder natürlich abgeleiteten Harz, Schaumstoff, leichten Kernmaterialien in jeder Proportion bestehen. Mindestens einige der vorgefertigten Streifen bestehen vorzugsweise aus einem Faserverbundmaterial. Die Fasern des Fasermaterials können aus jeder bekannten Faser, die geeignete Eigenschaften aufweist, um den Holzverbundstoff zu verstärken, wie Kohlenstoff-Fasern, Glasfasern, Kevlar-Fasern, natürlichen Fasern, z. B. aus Hanf oder Flachs, Kokosfasern usw. oder jeder Kombination daraus bestehen.
- Zum Beispiel weist Kohlenstoff eine höhere Dehnung bis zum Ausfall als Holz auf. Kohlenstoff dient als ein Versteifungsadditiv, jedoch versagt Holz zuerst. Dies ist bei der Abschnittprüfung ausgenutzt worden, um die Festigkeit von Kohlenstoff und Holz getrennt zu prüfen. Die Zugabe von Kohlenstoff und folglich die Möglichkeit, dünnere Häute zu verwenden, kann die Hautknickgrenzwerte reduzieren.
- Kohlenstoff-Fasern sind verhältnismäßig kostspielig, jedoch ist Holz billig und kann den Bereich des Blatts abdecken, was sehr niedrige Kosten nach sich zieht. Holz erzeugt jedoch selbst dicke uneffiziente Häute in hoch belasteten Blättern. Kohlenstoff-Fasern, kombiniert mit Holz, können dünnere Häute erzeugen, die strukturell effizient und zufriedenstellend sind. Außerdem ist Holz sehr defekttolerant. Der Anteil des gesamten Querschnittsbereichs der Schale, der aus Faserverbundmaterial besteht, liegt vorzugsweise innerhalb des Bereichs von 3% bis 30%. In dem Teil des Blatts, das den höchsten Anteil des Fasermaterials aufweist, liegt er bevorzugter im Bereich von 6% bis 20%.
- Desgleichen liegt der gesamte Querschnittsbereichs der Schale, der aus Fasern besteht, vorzugsweise im Bereich von 2% bis 20%, und bevorzugter im Bereich von 4% bis 15%.
- In einer besonders bevorzugten Ausführungsform der vorliegenden Erfindung werden mindestens einige der Streifen durch Hohlrohre gebildet, die aus einem Faserverbundmaterial bestehen. Dadurch wird Material und Gewicht eingespart, während vorteilhafte strukturelle Eigenschaften erhalten werden können.
- Mindestens einige der Streifen der Faserverbundmaterials sind Ziehstrangpreßteile, d. h. Streifen, die durch Ziehstrangpressen einer Mischung aus Fasern und einem Matrixmaterial hergestellt werden, das nach dem Ziehstrangpressen ausgehärtet wird, wie ein verarbeitbares Harz, z. B. Vinylester. Dadurch wird ein Streifen mit geraden Fasern und einem niedrigen Hohlraumanteil erhalten. Außerdem kann ein niedriger Harzgehalt erhalten werden, was zu eine geringen Schrumpfung und schnellen Aushärtung führt.
- Es ist folglich vorteilhaft, daß die Ziehstrangpreßteile eine Ziehstrangpreßrichtung aufweisen, die im wesentlichen mit einer Längsrichtung des Blatts ausgerichtet ist, wobei in dieser Richtung die Eigenschaften der Fasern benötigt werden. Jedoch sind Ziehstrangpreßteil-Endverbindungen Spannungserhöher, so daß diesen bei der Konstruktionselementprüfung eine besondere Aufmerksamkeit gegeben wird.
- Das Faserverbundmaterial weist vorteilhafterweise einen Faservolumenbruchteil von 50% bis 90% auf, vorzugsweise von 60% bis 80%. Insbesondere kann das Faserverbundmaterial einen Kohlenstoff-Faservolumenbruchteil von 50% bis 90%, vorzugsweise von 60% bis 80% aufweisen.
- Mindestens einige der vorgefertigten Streifen bestehen aus einem Holzmaterial, da Holzmaterialien niedrige Kosten und ein geringes Gewicht aufweisen, und die Materialeigenschaften des Holzmaterials können vervollständigt werden, um die erforderlichen Blattmaterialeigenschaften zu bilden, indem es mit Streifen anderer Materialarten, wie Faserverbundmaterialien kombiniert wird. Das Holzmaterial kann aus Streifen aus Holz bestehen, die falls notwendig in die Längsrichtung des Blatts miteinander verleimt werden.
- Eine bevorzugte Ausführungsform setzt aufgrund der homogenen Materialeigenschaften Sperrholz, insbesondere unidirektionales Sperrholz als Holzmaterial ein. Ein anderer Typ Holzmaterial, der eingesetzt werden kann, besteht aus Holzfasern, die in einem ausgehärteten Harz gehalten werden. Das Holz sieht dieselben Normalspannungen, daher ist es möglich, neue Verbindungsmuster und Leime zu verwenden, wobei bestehende Gestaltungszulässigkeiten verwendet werden, und man immer noch der Struktur des Holzmaterials sicher ist.
- Die Schicht wird mindestens teilweise durch Streifen eines Holzmaterials und Streifen eines Faserverbundmaterials in einer Aufeinanderfolge längs des Außenumfangs gebildet. Die Aufeinanderfolge kann vorzugsweise eine abwechselnde Aufeinanderfolge von Streifen eines Holzmaterials und Streifen eines Faserverbundmaterials sein. Die abwechselnde Aufeinanderfolge erstreckt sich vorzugsweise nur über einen Teil des kompletten Umfangs des Blatts.
- Es ist vorteilhaft, daß die erläuterte Schicht ein Teil einer Sandwichkonstruktion ist, wie vorhergehend erläutert, d. h. in einer Außenschale und einer Innenschale eingeschlossen ist, die aus einem Faserverbundmaterial, wie einem Glasfasergewebe besteht, das durch ein ausgehärtetes Kunstharz gehalten wird.
- Arten der Proben:
-
- Minibalken – 1-Balken, 2,5 m lang mal 150 mm mal 150 mm (25 mm dicke Flansche) mit Halbumfangshäuten. Enthält Ziehstrangpreßteilenden, Fehler, Holzverbindungen.
- 6 m × 1,2 m-Flügeltyp A, dazu bestimmt, bei direkter Überlastung zu versagen, wobei Häute, Vorder- und Hinterkanten-Verbindungen geprüft werden. Typ-B-Probe mit verhältnismäßig dünnen Häuten für Knickuntersuchungen.
- 31 m Blatt – Ein Blatt, das in der A131-Form mit denselben Fußbefestigungen wie AL40 (72×M30-Befestigungen) aufgebaut ist, mit Häuten, die mit einer ähnlichen Verteilung von Holz und Kohlenstoff wie AL40 aufgebaut ist, Doppelstegen und ähnlicher Vorderkantenverbindung.
- Konstruktionselement-Prüfung
Element Test Prüfung Minibalken 3-Punkt-Biegung statisch Festigkeit der Häute, Verbindungen in Holz und Ziehstrangpreßteil-Enden 6 m Flügel ‚A' dicke Häute 4-Punkt-Biegung statisch Vorderkantenverbindung, Stege und Verbindungen in der Haut. 6 m Flügel ‚B' dünne Häute 4-Punkt-Biegung statisch Knicktheorie mit gekrümmten Häuten 31 m Blatt Freiträgerbiegung statisch senkrecht zur Kante Steifigkeit, Frequenz, Dämpfung, (Last bis 1,35 max. Dehnung wie AL40, Verteilung wie A131). Freiträgerbiegung statisch senkrecht zur Platte Wie senkrecht zur Kante oben, jedoch 1,5 max. Dehnung wie AL40, Verteilung wie A131. Bolzenringbiegung (dehnungsgemessen) Freiträgerbiegungsermüdung senkrecht zur Platte Beschleunigter Ermüdungsbereich. Angestrebt 1 Millionen Zyklen, um A140-Lebendauerdehnungsdurchlauf zu simulieren. Statisch senkrecht zur Platte bis zum Ausfall Ausfallart und Grenzen Fußbefestigung statisches Herausziehen und Ermüdung Bestätigung der Fußbefestigungsfestigkeitsgrenzwerte Freiträgerbiegung statisch senkrecht zur Kante Steifigkeit, Frequenz, Dämpfung, Prüflast zum 1,35-Extrem. Freiträgerbiegung statisch senkrecht zur Platte Wie senkrecht zur Kante über Prüflast bis zum 1,35-Extrem. Bolzenring-Biegung (dehnungsgemessen) Freiträgerbiegung Ermüdung senkrecht zur Ermüdungsbereich. Angestrebt 5 Millionen Platte Zyklen äquivalent zur Lebensdauer mit 1,35 Belastungsfaktor. Freiträgerbiegungsermüdung senkrecht zur Ermüdungsbereich. Angestrebt 5 Millionen Kante Zyklen äquivalent zur Lebensdauer mit 1,35 Belastungsfaktor. Statisch senkrecht zur Platte bis zum Ausfall Ausfallart und Grenzen Material Test Prüfung Kohlenstoff-Ziehstrangpreßteil Zug/Kompression statischer & Ermüdungs-CRAG-Test Kohlenstoff-Grenzwerte sehr hoch Holz Zug/Kompression statisch & Ermüdung AL-Typ-Probe Holzverbindungen funktionieren ebenso gut oder besser als frühere Verbindungstypen Kohlenstoff mit Holz Statischer Kompressions-Standard-Holztest Kohlenstoff wirkt wie vorhergesagt mit Holz in der niedrigsten Festigkeitsdruckbeanspruchung - Die Erfindung kann ein Blitzschutzsystem enthalten, das zwei möglicherwiese austauschbare Blitzrezeptoren vorzugsweise nahe der Spitze aufweist. Einer der Blitzrezeptoren ist auf der Windseite angeordnet, und der andere Blitzrezeptor ist auf der Leeseite angeordnet. Beide sind mit einer Breite des Aluminiumgeflechts oder eines ähnlichen Materials verbunden, das sich über den faserverstärkten Bereich unter der Oberflächenschicht der Gelschicht des Blatts erstreckt, und werden zum Fuß des Blattes heruntergeführt, wo es geerdet ist.
- Es kann optional ein Absorptionsmedium für Hochfrequenz, z. B. eines Radarsignals, mit den Rest der Struktur eingegossen werden. Es ist außerdem möglich, optische Fasern in das Blatt einzubetten, entweder zusätzlich zu den Verstärkungsfasern oder als Ersatz für die Verstärkungsfasern. Optische Fasern können verwendet werden, um Belastungen an und in der Oberfläche des Blatts während des Betriebs der Windturbine zu messen.
- Alternativ kann eine Widerstandsmessung der Kohlenstoff-Fasern verwendet werden, um die Belastungen an oder innerhalb der Oberfläche des Blatts zu messen. Auch können die Kohlenstoff- Fasern, die zur Messung solcher Belastungen verwendet werden, eine oder mehrere der Verstärkungsfasern sein oder können Kohlenstoff-Fasern zusätzlich zu den Verstärkungsfasern sein und zur Messung dieser Belastungen bestimmt sein.
- Kurze Beschreibung der Zeichnungen
- Eine bevorzugte Ausführungsform der vorliegenden Erfindung wird in den beigefügten Zeichnungen gezeigt, von denen
-
1 ein Querschnitt eines Blatts ist, das eine Schicht aufweist, die aus Streifen aus Sperrholz in abwechselnder Aufeinanderfolge mit Streifen eines Faser-Ziehstrangpreßteils besteht, -
2a ein Querschnitt eines Blatts ist, das ähnlich zu dem Blatt der1 ist, das eine andere Verteilung längs des Umfangs der Teile mit Ziehstrangpreßstreifen aufweist, -
2b eine Draufsicht eines Blatts zeigt, das ähnlich zu dem Blatt ist, das im Querschnitt in2a gezeigt wird, das folglich eine ähnliche Verteilung längs des Umfangs der Teile mit Ziehstrangpreßstreifen aufweist, -
2c eine Photographie der Oberfläche des Blatts der2a ist, wobei die Außenschale aus Verbundmaterial entfernt ist, und -
3 das Vakuumharzaufguß-Verfahren veranschaulicht. - Detaillierte Beschreibung der Erfindung
- Das Blatt, das im Querschnitt in
1 gezeigt wird, weist eine Schicht auf, die aus 40 × 40-Millimeter-Streifen aus Birkensperrholz1 in abwechselnder Aufeinanderfolge mit 6 × 40-Millimeter-Streifen eines Kohlenstoff-Faser-Ziehstrangpreßteils2 besteht. Die Schicht1 ,2 erstreckt sich längs des Mittelteils des Blatts zwischen zwei C-Balken3 ,4 aus einem Verbundstoff aus Glasfasergewebe und Kunstharz, die als LE (Vorderkante) Steg3 und die TE (Hinterkante) Steg4 bezeichnet werden und dem mittleren Innenbalken ersetzen, der vorhergehend erläutert wurde. Die Schicht1 ,2 ist zwischen einer inneren Schicht5 und einer Außenschicht6 von Glasepoxid-Häuten angeordnet, die die Scherspannung aufnehmen und die Quersteifigkeit des Blatts unterstützen. Der Raum, der zwischen der oberen und unteren Schale, die so durch das Birkensperrholz1 und das Kohlenstoff-Faser-Ziehstrangpreßteil2 gebildet werden, und dem LE-Steg3 und dem TE-Steg4 definiert ist, ist mit einem Balsaholzkern7 gefüllt. - Das in den
2a ,2b und2c gezeigte Blatt ist ähnlich zu dem, was in1 gezeigt wird, mit der Ausnahme, daß die Verstärkung aus Kohlenstoff-Faser-Ziehstrangpreßteilen2 nahe den Kontaktbereichen zwischen der oberen und der unteren Schale und dem LE-Steg3 und dem TE-Steg4 angeordnet ist, wo die Spannungskonzentration am höchsten ist. In der gezeigten Ausführungsform wird anstelle eine einfachen Stegs ein Doppelsteg verwendet. Dies dient dazu, einen ausreichenden Knickgrenzwert an den Häuten während der Kompression zu ergeben. Außerdem reduziert der vordere Steg die Scherbelastung der Vorderkantenverbindung, was einen kleineren Vorderkantenverbindungsbereich zuläßt. Dies ist während der Herstellung des Blatts vorteilhaft. - Die Technologie ist darin vorteilhaft, daß die Hinzufügung der Faser-Ziehstrangpreßteile zu einer Holzkonstruktion die Steifigkeit der Konstruktion unterstützt. Die Kohlenstoff-Faser-Ziehstrangpreßteile werden nicht über die ganze Blattlänge verwendet, sondern nur in den mittleren 70%, wo es durch die Belastungen erforderlich ist. Der Blatthautquerschnitt kann bis zu 10% der Flächen des Kohlenstoff-Faser-Ziehstrangpreßteils in den stärker belasteten Bereichen betragen, die über den gesamten Holzverbundstoff in der gezeigten Ausführungsform verteilt sind. Die Häute betragen typischerweise 60% der Dicke der Blatthäute, die nur aus Holz bestehen, was das Gewicht reduziert und die strukturelle Leistungsfähigkeit in der kritischen Biegeform senkrecht zur Kante verbessert. Die äußeren und inneren Glasepoxid-Häute werden mit Glasfasern hergestellt, die plus und minus 45 Grad zur Längsrichtung des Blatts orientiert sind.
- Ziehstrangpreßteile haben den Vorteil, gerade Fasern und einen niedrigen Hohlraumanteil im Kohlenstoff-Faserverbundstoff selbst sicherzustellen. Außerdem haben Ziehstrangpreßteile den Vorteil, das Blattaufgußverfahren zu beschleunigen, da die feinen Kohlenstoff-Fasern andernfalls beträchtlich mehr Zeit benötigen würden, um gefüllt zu werden. Das Ziehstrangpreßteil weist einen hohen Faservolumenbruchteil von etwa 70% auf, mit einem mittelfesten, jedoch sehr verarbeitungsfähigen Harz, wie zum Beispiel Vinylester. Wenn das Blatt hergestellt wird, wird das Harz vorzugsweise mit einer „Schälschicht” an den zwei Längsseiten versehen, die entfernt wird, um eine saubere texturierte Oberfläche herzustellen, die eine gute Bindung sicherstellt.
- Das Herstellungsverfahren einer Schale eines Blatts, das in
3 gezeigt wird, weist die Schritte des Aufbringens einer (nicht gezeigten) Gelschicht auf eine Form8 , der ein Transfermedium9 , wie ein Transfergeflecht folgt, und einem 45-Grad-Glasfasergewebe10 und (nicht gezeigtes) Epoxid auf die Form, um die Glasepoxid-Außenhaut herzustellen. Danach werden die Holz- und Ziehstrangpreßstreifen1 ,2 angeordnet, und dann wird ein Metallgeflecht11 , wie ein Aluminiumgeflecht für den Blitzschutz aufgebracht. Die Schale wird dann in einen Behälter gewickelt, im gezeigten Verfahren einen Vakuumsack12 , der durch äußere Einrichtungen13 evakuiert wird. Dann wird ein Harz aus einem Harzreservoir14 durch Harzkanäle15 injiziert, die zwischen benachbarten Streifen ausgebildet sind, aus denen sich das Harz durch die gesamte Konstruktion durch das Vakuum angetrieben ausbreitet. Ein allgemeines Harz, das für den Aufguß verwendet wird, ist Prime20 vor SP Systems. Nach der Aushärtung des Harzes wird eine Glasepoxid-Innenhaut16 auf den Holz- und Ziehstrangpreßstreifen1 ,2 hergestellt.
Claims (22)
- Blatt für eine Windturbine, wobei mindestens ein Drittel der Gesamtlänge, gemessen von der Spitze zur Nabe, des Blatts eine Schicht (
1 ,2 ) längs eines Außenumfangs des Querschnitts des Blatts aufweist, dadurch gekennzeichnet, dass die Schicht (1 ,2 ) mindestens teilweise durch eine Anzahl vorgefertigter ziehstranggepresster Streifen (2 ) eines Faserverbundmaterials und Streifen eines Holzmaterials gebildet wird, die in einer Aufeinanderfolge längs des Außenumfangs angeordnet sind. - Blatt nach Anspruch 1, wobei die Streifen der Außenschicht (
1 ,2 ) mittels eines Harzaufgusses verbunden sind. - Blatt nach Anspruch 2, wobei die Streifen der Außenschicht (
1 ,2 ) mittels eines Vakuumaufgusses eines Harzes verbunden sind. - Blatt nach einem der Ansprüche 1 bis 3, wobei mindestens einige der vorgefertigten ziehstranggepressten Streifen (
2 ) durch Hohlrohre gebildet werden, die aus einem Faserverbundmaterial ausgebildet sind. - Blatt nach Anspruch 4, wobei die ziehstranggepressten Streifen (
2 ) eine Ziehstrangpressrichtung aufweisen, die im Wesentlichen mit einer Längsrichtung des Blatts ausgerichtet sind. - Blatt nach einem der Ansprüche 4 bis 5, wobei das Faserverbundmaterial einen Faservolumenbruchteil von 50 Prozent bis 90 Prozent aufweist.
- Blatt nach Anspruch 6, wobei das Faserverbundmaterial einen Faservolumenbruchteil von 60 Prozent bis 80 Prozent aufweist.
- Blatt nach einem der Ansprüche 4 bis 6, wobei das Faserverbundmaterial einen Kohlenstoff-Faservolumenbruchteil von 50 Prozent bis 90 Prozent aufweist.
- Blatt nach Anspruch 8, wobei das Faserverbundmaterial einen Faservolumenbruchteil von 60 Prozent bis 80 Prozent aufweist.
- Blatt nach einem der vorhergehenden Ansprüche, wobei die Schicht (
1 ,2 ) mindestens teilweise aus einer Anzahl von Streifen gebildet ist, die aus einem Holzmaterial bestehen, die in einer Aufeinanderfolge längs des Außenumfangs angeordnet sind. - Blatt nach Anspruch 10, wobei das Holzmaterial Sperrholz ist.
- Blatt nach Anspruch 10, wobei das Holzmaterial aus Holzfasern besteht, die in einem ausgehärteten Harz gehalten werden.
- Blatt nach einem der Ansprüche 10 bis 12, wobei die Schicht (
1 ,2 ) mindestens teilweise durch Streifen eines Holzmaterials und Streifen eines Faserverbundmaterials in einer Aufeinanderfolge längs des Außenumfangs gebildet wird. - Blatt nach Anspruch 13, wobei die Aufeinanderfolge eine abwechselnde Aufeinanderfolge von Streifen eines Holzmaterials und Streifen eines Faserverbundmaterials ist.
- Blatt nach einem der vorhergehenden Ansprüche, wobei die Schicht in einer Außenschale und einer Innenschale eingeschlossen ist, die aus einem Faserverbundmaterial bestehen.
- Blatt nach einem der vorhergehenden Ansprüche, wobei Belastungsmessfasern in entweder einer oder beiden der Außenschale und der Innenschale eingeschlossen sind.
- Blatt nach Anspruch 16, wobei die Belastungsmessfasern optische Fasern sind, die zusätzlich zu, alternativ als Ersatz für, die Verstärkungsfasern vorhanden sind.
- Blatt nach Anspruch 16, wobei die Belastungsmessfasern Kohlenstoff-Fasern sind, die zusätzlich zu, alternativ als Ersatz für, die Verstärkungsfasern vorhanden sind.
- Blatt nach einem der vorhergehenden Ansprüche, wobei Blitzschutzeinrichtungen, die Blitzrezeptoren aufweisen, in entweder einer oder beiden Schalen enthalten sind.
- Blatt nach Anspruch 19, wobei die Blitzrezeptoren mit einer Breite eines Metallgeflechts (
11 ) oder eines ähnlichen Materials verbunden sind, das sich über den faserverstärkten Bereich der Schalen erstreckt. - Blatt nach einem der vorhergehenden Ansprüche, wobei ein Hochfrequenzabsorptionsmedium in entweder einer oder beiden der Schalen enthalten ist.
- Verfahren zur Herstellung einer Schale für ein Blatt nach einem der Ansprüche 1 bis 21, wobei die Schale ein Schichtmaterial aufweist, das längs eines Außenumfangs des Querschnitts der Schale angeordnet ist, wobei die Schicht vorgefertigte Streifen aufweist, und das Verfahren die folgenden Schritte umfasst: – Aufbringen eines Oberflächenmaterials, vorzugsweise einer Gelschicht, auf eine Form (
8 ) für das Blatt, – optionales Aufbringen eines Metallgeflechts (11 ), eines Glasfasergeflechts und irgendeines Transfermediums (9 ), – Zusammensetzen mindestens zweier einzelner Materialien (1 ,2 ), um die vorgefertigten Streifen zu bilden, – Auswählen mindestens eines der mindestens zwei einzelnen Materialien (1 ,2 ) aus Faserverbundmaterialien, – Anordnen der mindestens zwei einzelnen Materialien (1 ,2 ) auf den anderen aufgebrachten Materialien (10 ), – Einsetzen der so aufgebrachten einzelnen Materialien und anderen Materialien in einen Behälter (12 ), – Evakuieren des Behälters (12 ), Aufgießen eines aushärtenden Harzes und Aushärtenlassen des Harzes, und – Herausnehmen der so gefertigten Schale aus der Form.
Applications Claiming Priority (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DKPA200101125 | 2001-07-19 | ||
DK200101125 | 2001-07-19 | ||
GB0202401 | 2002-02-01 | ||
GB0202401A GB0202401D0 (en) | 2002-02-01 | 2002-02-01 | Wind turbine blade |
PCT/DK2002/000506 WO2003008800A1 (en) | 2001-07-19 | 2002-07-19 | Wind turbine blade |
EP02787103.7A EP1417409B2 (de) | 2001-07-19 | 2002-07-19 | Windturbinenblatt |
Publications (3)
Publication Number | Publication Date |
---|---|
DE60203804D1 DE60203804D1 (de) | 2005-05-25 |
DE60203804T2 DE60203804T2 (de) | 2005-10-06 |
DE60203804T3 true DE60203804T3 (de) | 2017-08-31 |
Family
ID=59297475
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
DE60203804.9T Expired - Lifetime DE60203804T3 (de) | 2001-07-19 | 2002-07-19 | Windturbinenblatt |
Country Status (12)
Country | Link |
---|---|
US (2) | US7198471B2 (de) |
EP (4) | EP3219981B1 (de) |
JP (1) | JP2004535527A (de) |
CN (2) | CN1975152B (de) |
AT (1) | ATE293755T1 (de) |
AU (1) | AU2002354986B2 (de) |
CA (1) | CA2454038C (de) |
DE (1) | DE60203804T3 (de) |
DK (4) | DK1520983T3 (de) |
ES (4) | ES2895673T3 (de) |
PT (1) | PT1417409E (de) |
WO (1) | WO2003008800A1 (de) |
Families Citing this family (174)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3219981B1 (de) | 2001-07-19 | 2021-09-01 | Vestas Wind Systems A/S | Windturbinenschaufel |
DE10336461A1 (de) | 2003-08-05 | 2005-03-03 | Aloys Wobben | Verfahren zur Herstellung eines Rotorblattes einer Windenergieanlage |
US20050186081A1 (en) * | 2004-02-24 | 2005-08-25 | Mohamed Mansour H. | Wind blade spar cap and method of making |
DK200401225A (da) | 2004-08-13 | 2006-02-14 | Lm Glasfiber As | Metode til afskæring af laminatlag, eksempelvis et glasfiber- eller kulfiber-laminatlag i en vindmöllevinge |
WO2006051147A1 (es) * | 2004-11-11 | 2006-05-18 | Gamesa Innovation And Technology, S.L. | Sistema pararrayos para pala de aerogenerador con laminados de fibra de carbono |
EP1833660B1 (de) * | 2004-12-29 | 2016-06-29 | Vestas Wind Systems A/S | Verfahren zur herstellung eines schalenelements eines windturbinenrotorblatts mit einem befestigungselement und ein windturbinenrotorblatt mit einem befestigungselement |
MX2007009390A (es) * | 2005-02-03 | 2008-02-14 | Vestas Wind Sys As | Metodo para fabricar un miembro de forro de paleta de turbina de viento. |
ES2624666T3 (es) | 2005-02-22 | 2017-07-17 | Vestas Wind Systems A/S | Pala de turbina eólica |
WO2006106734A1 (ja) * | 2005-03-30 | 2006-10-12 | Zephyr Corporation | 風車 |
US7802968B2 (en) * | 2005-07-29 | 2010-09-28 | General Electric Company | Methods and apparatus for reducing load in a rotor blade |
TW200726908A (en) * | 2005-10-04 | 2007-07-16 | Arthur Benjamin O Connor | Wind turbine |
US8402652B2 (en) * | 2005-10-28 | 2013-03-26 | General Electric Company | Methods of making wind turbine rotor blades |
US7438533B2 (en) * | 2005-12-15 | 2008-10-21 | General Electric Company | Wind turbine rotor blade |
US7798780B2 (en) * | 2005-12-19 | 2010-09-21 | General Electric Company | Modularly constructed rotorblade and method for construction |
JP4969098B2 (ja) * | 2005-12-21 | 2012-07-04 | 三菱重工業株式会社 | 風車翼の落雷保護装置、該落雷保護装置の組立方法、該落雷保護装置を備える風車翼、及び該風車翼を備える風車 |
US7517198B2 (en) * | 2006-03-20 | 2009-04-14 | Modular Wind Energy, Inc. | Lightweight composite truss wind turbine blade |
JP4699255B2 (ja) * | 2006-03-24 | 2011-06-08 | 三菱重工業株式会社 | 風車翼 |
US20070251090A1 (en) * | 2006-04-28 | 2007-11-01 | General Electric Company | Methods and apparatus for fabricating blades |
US7654799B2 (en) * | 2006-04-30 | 2010-02-02 | General Electric Company | Modular rotor blade for a wind turbine and method for assembling same |
DE102006022279B4 (de) * | 2006-05-11 | 2016-05-12 | Aloys Wobben | Rotorblatt für eine Windenergieanlage |
US20090044535A1 (en) * | 2006-06-12 | 2009-02-19 | Daw Shien Scientific Research And Development, Inc. | Efficient vapor (steam) engine/pump in a closed system used at low temperatures as a better stirling heat engine/refrigerator |
US20090211223A1 (en) * | 2008-02-22 | 2009-08-27 | James Shihfu Shiao | High efficient heat engine process using either water or liquefied gases for its working fluid at lower temperatures |
US20090249779A1 (en) * | 2006-06-12 | 2009-10-08 | Daw Shien Scientific Research & Development, Inc. | Efficient vapor (steam) engine/pump in a closed system used at low temperatures as a better stirling heat engine/refrigerator |
US20080296906A1 (en) * | 2006-06-12 | 2008-12-04 | Daw Shien Scientific Research And Development, Inc. | Power generation system using wind turbines |
CA2657037C (en) * | 2006-07-14 | 2013-05-14 | Vestas Wind Systems A/S | Wind turbine comprising enclosure structure formed as a faraday cage |
CN100412356C (zh) * | 2006-08-31 | 2008-08-20 | 东莞中德风电能源有限公司 | 风能发电机的叶片的制造方法 |
EP2064778A1 (de) * | 2006-09-22 | 2009-06-03 | BAE Systems plc | Struktur |
US8454318B2 (en) | 2006-12-15 | 2013-06-04 | Bladena Aps | Reinforced aerodynamic profile |
ES2496167T3 (es) | 2007-01-16 | 2014-09-18 | Bladena Aps | Pala reforzada para aerogenerador |
DK2108083T3 (da) * | 2007-01-25 | 2013-02-04 | Bladena Aps | Forstærket vindmøllevinge |
CN101595300A (zh) * | 2007-01-29 | 2009-12-02 | 丹麦技术大学 | 风力涡轮机叶片 |
WO2008101506A2 (en) * | 2007-02-19 | 2008-08-28 | Vestas Wind Systems A/S | Wind turbine rotor blade and method of manufacturing such rotor blade |
US7895745B2 (en) * | 2007-03-09 | 2011-03-01 | General Electric Company | Method for fabricating elongated airfoils for wind turbines |
EP1978245A1 (de) | 2007-04-04 | 2008-10-08 | Siemens Aktiengesellschaft | Optimierte Auslegung von Windturbinenrotorblättern |
KR100879029B1 (ko) * | 2007-07-25 | 2009-01-15 | 베스타스 윈드 시스템스 에이/에스 | 고정부재를 구비한 풍력터빈 블레이드 외피부재의 제조방법및 고정부재를 구비한 풍력터빈 블레이드 |
US20090070977A1 (en) * | 2007-09-13 | 2009-03-19 | General Electric Company | Jig And Fixture For Wind Turbine Blade |
US20090084932A1 (en) * | 2007-09-27 | 2009-04-02 | General Electric Company | Wind turbine blade molds |
CN101855396B (zh) * | 2007-11-09 | 2012-07-18 | 维斯塔斯风力系统有限公司 | 用于加强风力涡轮机叶片结构的结构垫、风力涡轮机叶片和制造风力涡轮机叶片的方法 |
US20090140527A1 (en) * | 2007-11-30 | 2009-06-04 | General Electric Company | Wind turbine blade stiffeners |
US8337163B2 (en) * | 2007-12-05 | 2012-12-25 | General Electric Company | Fiber composite half-product with integrated elements, manufacturing method therefor and use thereof |
DE102008007304A1 (de) | 2008-02-02 | 2009-08-06 | Nordex Energy Gmbh | Rotorblatt für Windenergieanlagen |
WO2009111468A1 (en) | 2008-03-03 | 2009-09-11 | Abe Karem | Wing and blade structure using pultruded composites |
GB0806666D0 (en) * | 2008-04-11 | 2008-05-14 | Bond Philip C | Windfarm radar clutter mitigation |
EP2110552B2 (de) | 2008-04-15 | 2018-12-26 | Siemens Aktiengesellschaft | Windturbinenschaufel mit integriertem Blitzableiter und Verfahren zu seiner Herstellung |
DE102008024644B4 (de) | 2008-05-21 | 2018-07-26 | Airbus Defence and Space GmbH | Rotorblatt mit darin integriertem Radarabsorber für eine Windkraftanlage |
CN102066747A (zh) * | 2008-06-23 | 2011-05-18 | 丹麦技术大学 | 具有成角度的梁的风力涡轮机叶片 |
ES2383061T3 (es) | 2008-06-24 | 2012-06-18 | Bladena Aps | Paleta de turnina eólica reforzada |
ES2385516B1 (es) * | 2008-06-27 | 2013-05-31 | Gamesa Innovation & Technology, S.L. | Inserto de pala y método de colocación del mismo. |
DE102008045601A1 (de) * | 2008-06-27 | 2009-12-31 | Repower Systems Ag | Rotorblatt für eine Windenergieanlage und Verfahren und Fertigungform zu seiner Fertigung |
DE102008038620A1 (de) * | 2008-06-27 | 2009-12-31 | Powerblades Gmbh | Verfahren und Fertigungsform zur Fertigung eines Rotorblattes für eine Windenergieanlage |
GB2451192B (en) * | 2008-07-18 | 2011-03-09 | Vestas Wind Sys As | Wind turbine blade |
EP2153964A1 (de) * | 2008-08-14 | 2010-02-17 | Lm Glasfiber A/S | Verfahren zur Herstellung einer Windturbinenschaufel mit Stahldraht-verstärktem Matrixmaterial |
US8137074B2 (en) * | 2008-08-21 | 2012-03-20 | General Electric Company | Wind turbine lightning protection system |
US20100045037A1 (en) * | 2008-08-21 | 2010-02-25 | Daw Shien Scientific Research And Development, Inc. | Power generation system using wind turbines |
US7866951B2 (en) | 2008-08-29 | 2011-01-11 | General Electric Company | Wind turbine blades with cross webs |
DE102008049016A1 (de) * | 2008-09-25 | 2010-04-15 | Repower Systems Ag | Rotorblatt mit einem Gurt mit einer in Längsrichtung abnehmenden Breite, Verfahren zur Herstellung des Rotorblattes und Verlegehilfe für Gelegebänder des Gurtes |
US20110020110A1 (en) * | 2008-10-06 | 2011-01-27 | Flodesign Wind Turbine Corporation | Wind turbine with reduced radar signature |
US20100166547A1 (en) * | 2008-10-06 | 2010-07-01 | Flodesign Wind Turbine Corporation | Wind turbine with reduced radar signature |
CA2741479A1 (en) * | 2008-10-22 | 2010-04-29 | Vec Industries, L.L.C. | Wind turbine blade and method for manufacturing thereof |
DE102008055771C5 (de) † | 2008-11-04 | 2018-06-14 | Senvion Gmbh | Rotorblattgurt |
WO2010065928A1 (en) | 2008-12-05 | 2010-06-10 | Modular Wind Energy, Inc. | Efficient wind turbine blades, wind turbine blade structures, and associated systems and methods of manufacture, assembly and use |
US7942637B2 (en) * | 2008-12-11 | 2011-05-17 | General Electric Company | Sparcap for wind turbine rotor blade and method of fabricating wind turbine rotor blade |
BRPI0924251B1 (pt) * | 2009-02-26 | 2016-03-22 | Tecsis Tecnologia E Sist S Avançados S A | método de manufatura de pás de aerogeradores |
US7942640B2 (en) * | 2009-03-19 | 2011-05-17 | General Electric Company | Method and apparatus for use in protecting wind turbine blades from lightning damage |
US8662853B2 (en) * | 2009-04-13 | 2014-03-04 | Maxiflow Manufacturing Inc. | Wind turbine blade and method of constructing same |
CN101865075B (zh) * | 2009-04-14 | 2012-01-11 | 上海艾郎风电科技发展有限公司 | 兆瓦级风电叶片前缘修形的方法 |
GB2469516A (en) * | 2009-04-17 | 2010-10-20 | Insensys Ltd | Rotor blade with optical strain sensors covered by erosion shield |
DE102009002637A1 (de) * | 2009-04-24 | 2010-10-28 | Wobben, Aloys | Rotorblatt für eine Windenergieanlage |
US8043065B2 (en) * | 2009-05-01 | 2011-10-25 | General Electric Company | Wind turbine blade with prefabricated leading edge segments |
US20120135099A1 (en) * | 2009-05-04 | 2012-05-31 | Mag Ias, Llc | Method and apparatus for rapid molding of wind turbine blades |
US8753091B1 (en) * | 2009-05-20 | 2014-06-17 | A&P Technology, Inc. | Composite wind turbine blade and method for manufacturing same |
DK2449254T3 (da) * | 2009-06-30 | 2013-07-08 | Vestas Wind Sys As | Fremgangsmåde til fremstilling af en vindmøllevinge omfattende to elementer der samles ved adhæsion |
EP2444660A4 (de) * | 2009-07-09 | 2013-05-22 | Mitsubishi Heavy Ind Ltd | Windturbinenschaufel und verfahren zur herstellung einer windturbinenschaufel |
US20110052404A1 (en) * | 2009-08-25 | 2011-03-03 | Zuteck Michael D | Swept blades with enhanced twist response |
US8657581B2 (en) * | 2009-08-28 | 2014-02-25 | Gordon Holdings, Inc. | Thermoplastic rotor blade |
US8424805B2 (en) | 2009-10-07 | 2013-04-23 | Donald Smith | Airfoil structure |
CN102042162B (zh) * | 2009-10-19 | 2013-04-24 | 联合船舶设计发展中心 | 泄压装置 |
US20110103965A1 (en) * | 2009-10-30 | 2011-05-05 | General Electric Company | Wind turbine blades |
US20110100540A1 (en) * | 2009-10-30 | 2011-05-05 | General Electric Company | Methods of manufacture of wind turbine blades and other structures |
US8702397B2 (en) * | 2009-12-01 | 2014-04-22 | General Electric Company | Systems and methods of assembling a rotor blade for use in a wind turbine |
EP2330294B1 (de) | 2009-12-02 | 2013-01-16 | Bladena ApS | Verstärkter, flügelförmiger Körper |
DE102009047570A1 (de) * | 2009-12-07 | 2011-06-09 | Repower Systems Ag | Gurt eines Rotorblatts einer Windenergieanlage |
JP5308323B2 (ja) * | 2009-12-22 | 2013-10-09 | 三菱重工業株式会社 | 風車翼及びそれを用いた風力発電装置 |
CN102834608A (zh) * | 2009-12-25 | 2012-12-19 | 北京可汗之风科技有限公司 | 重组竹风力发电机叶片 |
JP2011137386A (ja) * | 2009-12-25 | 2011-07-14 | Mitsubishi Heavy Ind Ltd | 風車回転翼および風車回転翼の製造方法 |
JP5427597B2 (ja) * | 2009-12-25 | 2014-02-26 | 三菱重工業株式会社 | 風車回転翼 |
US20110135485A1 (en) * | 2009-12-30 | 2011-06-09 | Jing Wang | Spar for a wind turbine rotor blade and method for fabricating the same |
US8142164B2 (en) * | 2009-12-31 | 2012-03-27 | General Electric Company | Rotor blade for use with a wind turbine and method for assembling rotor blade |
US10137542B2 (en) | 2010-01-14 | 2018-11-27 | Senvion Gmbh | Wind turbine rotor blade components and machine for making same |
ES2510398T3 (es) | 2010-01-14 | 2014-10-21 | Neptco, Inc. | Componentes de pala de rotor de aerogenerador y métodos para fabricar los mismos |
DE102010017062B4 (de) | 2010-05-21 | 2019-07-11 | Thyssenkrupp Steel Europe Ag | Rotorblatt einer Windkraftanlage |
US9500179B2 (en) | 2010-05-24 | 2016-11-22 | Vestas Wind Systems A/S | Segmented wind turbine blades with truss connection regions, and associated systems and methods |
US8043066B2 (en) * | 2010-06-08 | 2011-10-25 | General Electric Company | Trailing edge bonding cap for wind turbine rotor blades |
US8115333B2 (en) | 2010-06-23 | 2012-02-14 | Harris Corporation | Wind turbine providing reduced radio frequency interaction and related methods |
EP2400147A1 (de) * | 2010-06-25 | 2011-12-28 | Siemens Aktiengesellschaft | Blattfuss eines Windturbinenblatts |
EP2407292B1 (de) * | 2010-07-14 | 2013-11-13 | Siemens Aktiengesellschaft | Negativform mit vordefinierten Schaumblöcken zum Gießen einer Komponente und Verfahren zur Herstellung der negativen Form |
CN102985683A (zh) * | 2010-07-22 | 2013-03-20 | 北京可汗之风科技有限公司 | 新型竹质叶片结构 |
US8083488B2 (en) * | 2010-08-23 | 2011-12-27 | General Electric Company | Blade extension for rotor blade in wind turbine |
US8523515B2 (en) | 2010-11-15 | 2013-09-03 | General Electric Company | Noise reducer for rotor blade in wind turbine |
US8267657B2 (en) | 2010-12-16 | 2012-09-18 | General Electric Company | Noise reducer for rotor blade in wind turbine |
CN102108946B (zh) * | 2011-01-17 | 2013-01-09 | 南京航空航天大学 | 复合铺层式风力机叶片及其制造方法 |
ES2398553B1 (es) * | 2011-02-24 | 2014-02-06 | Gamesa Innovation & Technology S.L. | Una pala de aerogenerador multi-panel mejorada. |
FR2972503B1 (fr) | 2011-03-11 | 2013-04-12 | Epsilon Composite | Renfort mecanique pour piece en materiau composite, notamment pour une pale d'eolienne de grandes dimensions |
US9580598B2 (en) * | 2011-03-25 | 2017-02-28 | Covestro Llc | Polyurethane composites produced by a vacuum infusion process |
US20120027609A1 (en) * | 2011-05-17 | 2012-02-02 | Prasad Ogde | Wind turbine rotor blade with precured fiber rods and method for producing the same |
GB201108922D0 (en) * | 2011-05-27 | 2011-07-13 | Barlow Nick D | Underwater turbine blade |
US8414261B2 (en) | 2011-05-31 | 2013-04-09 | General Electric Company | Noise reducer for rotor blade in wind turbine |
DE102011105228B3 (de) * | 2011-06-10 | 2012-09-20 | Nordex Energy Gmbh | Windenergieanlagenbauteil mit einer in ein Laminat eingebetteten elektrischen Leitung |
US8728374B1 (en) | 2011-08-02 | 2014-05-20 | Crane Composites Inc. | Method of manufacturing a foundation wall panel |
US8834127B2 (en) | 2011-09-09 | 2014-09-16 | General Electric Company | Extension for rotor blade in wind turbine |
FR2980514B1 (fr) * | 2011-09-23 | 2018-01-05 | Flakt Solyvent-Ventec | Pale de machine tournante a structure modulaire renforcee |
GB2497578B (en) | 2011-12-16 | 2015-01-14 | Vestas Wind Sys As | Wind turbine blades |
US8430638B2 (en) | 2011-12-19 | 2013-04-30 | General Electric Company | Noise reducer for rotor blade in wind turbine |
CN109113924B (zh) * | 2011-12-22 | 2021-04-20 | Lm Wp 专利控股有限公司 | 由具有不同类型的负载支承结构的内侧部分和外侧部分组装的风力涡轮机叶片 |
CN102518567A (zh) * | 2011-12-26 | 2012-06-27 | 无锡韦伯风能技术有限公司 | 轻质高强度叶片及其制造工艺 |
WO2014041151A2 (en) * | 2012-09-17 | 2014-03-20 | Lm Wp Patent Holding A/S | Wind turbine blade with fastening means |
US10875287B2 (en) | 2012-09-18 | 2020-12-29 | Vestas Wind Systems A/S | Wind turbine blades |
DE102012219224B3 (de) | 2012-10-22 | 2014-03-27 | Repower Systems Se | System und Verfahren zum Herstellen eines Rotorblattgurtes |
US10105913B2 (en) * | 2012-11-20 | 2018-10-23 | Vestas Wind Systems A/S | Wind turbine blades and method of manufacturing the same |
CN103862595A (zh) * | 2012-12-10 | 2014-06-18 | 中航惠腾风电设备股份有限公司 | 具双真空系统的风轮叶片模具及用其制作风轮叶片的方法 |
US9470205B2 (en) | 2013-03-13 | 2016-10-18 | Vestas Wind Systems A/S | Wind turbine blades with layered, multi-component spars, and associated systems and methods |
US9128184B1 (en) | 2013-03-14 | 2015-09-08 | Lockheed Martin Corporation | Radar wind turbine |
US20150023799A1 (en) * | 2013-07-19 | 2015-01-22 | Kyle K. Wetzel | Structural Member with Pultrusions |
GB2519333A (en) * | 2013-10-17 | 2015-04-22 | Vestas Wind Sys As | Improvements relating to lightning protection systems for wind turbine blades |
GB2520079A (en) | 2013-11-11 | 2015-05-13 | Vestas Wind Sys As | Wind turbine blades |
GB201320166D0 (en) * | 2013-11-15 | 2014-01-01 | Vestas Wind Sys As | Wind turbine components |
US9494134B2 (en) | 2013-11-20 | 2016-11-15 | General Electric Company | Noise reducing extension plate for rotor blade in wind turbine |
CN106029347B (zh) | 2013-12-23 | 2018-04-17 | 维斯塔斯风力系统有限公司 | 风轮机叶片 |
KR20150080845A (ko) * | 2014-01-02 | 2015-07-10 | 두산중공업 주식회사 | 풍력 발전기용 블레이드의 제어장치, 제어방법, 및 이를 이용하는 풍력 발전기 |
EP2927481B1 (de) * | 2014-03-31 | 2021-09-22 | Siemens Gamesa Renewable Energy A/S | Rotorblatt für eine windturbine |
JP6645986B2 (ja) | 2014-05-05 | 2020-02-14 | ホートン, インコーポレイテッド | 複合ファン |
CN105089931A (zh) * | 2014-05-13 | 2015-11-25 | 通用电气公司 | 风机及其叶片对准方法 |
GB2528850A (en) | 2014-07-31 | 2016-02-10 | Vestas Wind Sys As | Improvements relating to reinforcing structures for wind turbine blades |
DE102014018498A1 (de) * | 2014-12-16 | 2016-06-16 | Senvion Gmbh | Anordnung pultrudierter Stäbe |
US10180125B2 (en) | 2015-04-20 | 2019-01-15 | General Electric Company | Airflow configuration for a wind turbine rotor blade |
DE102015007801A1 (de) * | 2015-06-19 | 2016-12-22 | Senvion Gmbh | Verfahren zur Herstellung eines Bauteils eines Rotorblattes einer Windenergieanlage |
US10337490B2 (en) | 2015-06-29 | 2019-07-02 | General Electric Company | Structural component for a modular rotor blade |
US9897065B2 (en) | 2015-06-29 | 2018-02-20 | General Electric Company | Modular wind turbine rotor blades and methods of assembling same |
US10669984B2 (en) * | 2015-09-22 | 2020-06-02 | General Electric Company | Method for manufacturing blade components using pre-cured laminate materials |
EP3181895A1 (de) * | 2015-12-17 | 2017-06-21 | LM WP Patent Holding A/S | Teilerplattenanordnung für gezahnte windturbinenschaufel |
CN108603487B (zh) | 2016-01-29 | 2021-06-29 | 乌本产权有限公司 | 梁帽和制造方法 |
CN107539461A (zh) * | 2016-06-29 | 2018-01-05 | 山东龙翼航空科技有限公司 | 一种无人机用螺旋桨 |
DK3330529T3 (da) | 2016-12-05 | 2020-10-26 | Nordex Energy Gmbh | Spar cap-enhed til et vindenergianlæg-rotorblad |
US10465652B2 (en) | 2017-01-26 | 2019-11-05 | General Electric Company | Vortex generators for wind turbine rotor blades having noise-reducing features |
US11098691B2 (en) | 2017-02-03 | 2021-08-24 | General Electric Company | Methods for manufacturing wind turbine rotor blades and components thereof |
US10830206B2 (en) | 2017-02-03 | 2020-11-10 | General Electric Company | Methods for manufacturing wind turbine rotor blades and components thereof |
US10738759B2 (en) | 2017-02-09 | 2020-08-11 | General Electric Company | Methods for manufacturing spar caps for wind turbine rotor blades |
US10527023B2 (en) | 2017-02-09 | 2020-01-07 | General Electric Company | Methods for manufacturing spar caps for wind turbine rotor blades |
US10987879B2 (en) * | 2017-03-02 | 2021-04-27 | General Electric Company | Methods of manufacturing rotor blade components for a wind turbine |
ES2917405T3 (es) * | 2017-05-09 | 2022-07-08 | Siemens Gamesa Renewable Energy As | Pala de rotor de turbina eólica con sensores incorporados |
CN111344486B (zh) | 2017-10-02 | 2022-02-25 | 维斯塔斯风力系统有限公司 | 有关风力涡轮机叶片的结构部件的改进 |
US10677216B2 (en) | 2017-10-24 | 2020-06-09 | General Electric Company | Wind turbine rotor blade components formed using pultruded rods |
US10731470B2 (en) * | 2017-11-08 | 2020-08-04 | General Electric Company | Frangible airfoil for a gas turbine engine |
US10821652B2 (en) | 2017-11-21 | 2020-11-03 | General Electric Company | Vacuum forming mold assembly and method for creating a vacuum forming mold assembly |
US10913216B2 (en) | 2017-11-21 | 2021-02-09 | General Electric Company | Methods for manufacturing wind turbine rotor blade panels having printed grid structures |
US11040503B2 (en) | 2017-11-21 | 2021-06-22 | General Electric Company | Apparatus for manufacturing composite airfoils |
US10865769B2 (en) | 2017-11-21 | 2020-12-15 | General Electric Company | Methods for manufacturing wind turbine rotor blade panels having printed grid structures |
US11390013B2 (en) | 2017-11-21 | 2022-07-19 | General Electric Company | Vacuum forming mold assembly and associated methods |
US10920745B2 (en) | 2017-11-21 | 2021-02-16 | General Electric Company | Wind turbine rotor blade components and methods of manufacturing the same |
US11248582B2 (en) * | 2017-11-21 | 2022-02-15 | General Electric Company | Multiple material combinations for printed reinforcement structures of rotor blades |
EP3501809A1 (de) * | 2017-12-22 | 2019-06-26 | Siemens Gamesa Renewable Energy A/S | Pultrudierte faserige verbundstoffstreifen mit nichtplanarem profilquerschnitt für windturbinenschaufelholmkappen |
DE102018100302A1 (de) | 2018-01-09 | 2019-07-11 | Wobben Properties Gmbh | Windenergieanlagen-Rotorblatt |
US11738530B2 (en) | 2018-03-22 | 2023-08-29 | General Electric Company | Methods for manufacturing wind turbine rotor blade components |
US10767623B2 (en) | 2018-04-13 | 2020-09-08 | General Electric Company | Serrated noise reducer for a wind turbine rotor blade |
US10746157B2 (en) | 2018-08-31 | 2020-08-18 | General Electric Company | Noise reducer for a wind turbine rotor blade having a cambered serration |
US20200256312A1 (en) * | 2019-02-10 | 2020-08-13 | Arthur David Stanton | Method of Manufacture and the Resulting Vertical Axis Wind Turbine Airfoil |
EP3708828A1 (de) | 2019-03-14 | 2020-09-16 | Siemens Gamesa Renewable Energy A/S | Verfahren zur bereitstellung eines windturbinenrotorblattes mit blitzschutz und windturbinenrotorblatt |
EP3712423B1 (de) * | 2019-03-21 | 2022-12-28 | Siemens Gamesa Renewable Energy A/S | Verfahren zur reparatur einer beschädigten holmkappe einer windturbinenschaufel einer windturbine |
EP3719312B1 (de) | 2019-04-03 | 2022-06-08 | Siemens Gamesa Renewable Energy A/S | Windturbinenschaufel und windturbine |
US11046420B2 (en) * | 2019-10-23 | 2021-06-29 | The Boeing Company | Trailing edge flap having a waffle grid interior structure |
CN111121285B (zh) * | 2019-12-31 | 2021-04-02 | 南京比尔森热力技术工程有限公司 | 一种新型热水供应设备 |
EP4146457A1 (de) * | 2020-05-08 | 2023-03-15 | Blade Dynamics Limited | Windturbinenschaufel |
SE544491C2 (en) * | 2020-09-24 | 2022-06-21 | Modvion Ab | Rotor blade and method for assembly of a rotor blade |
EP4194683A1 (de) * | 2021-12-09 | 2023-06-14 | General Electric Renovables España S.L. | Windturbinenschaufeln, windturbinenschaufelanordnungen und zugehörige verfahren |
Family Cites Families (44)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2293224A (en) * | 1939-02-24 | 1942-08-18 | Sukohl Heinrich | Propeller for aircraft |
BE508996A (de) * | 1947-11-12 | |||
GB706800A (en) * | 1951-10-09 | 1954-04-07 | Bell Aircraft Corp | Improvements in the construction of rotor blades |
FR1070262A (fr) | 1952-02-02 | 1954-07-21 | Chantiers De France Atel | Pale creuse de rotor à pas variable, notamment pour rotors de moteurs à vent |
DE1045810B (de) | 1957-05-17 | 1958-12-04 | Allgaier Werke G M B H | Aus faserverstaerkten Kunststoffschalen oder -platten bestehender Koerper, insbesondere Trag- oder Antriebsfluegel, und Verfahren und Werkzeug zu seiner Herstellung |
US3390393A (en) * | 1964-09-17 | 1968-06-25 | Bell Aerospace Corp | Airfoil radar antenna |
CA1007240A (en) | 1973-06-04 | 1977-03-22 | James K. Pierce | (polychlorophenoxy)methyl esters of thiocyanic acid |
FR2345600A1 (fr) | 1975-06-09 | 1977-10-21 | Bourquardez Gaston | Eolienne a paliers fluides |
GB1526433A (en) | 1975-08-06 | 1978-09-27 | Secr Defence | Helicopter rotor blades |
US4057450A (en) | 1976-12-30 | 1977-11-08 | Hitco | Method for making buoyancy members |
GB2048174B (en) | 1979-05-02 | 1983-05-18 | Pultrex Ltd | Assembling boat hulls |
DE2921152C2 (de) | 1979-05-25 | 1982-04-22 | Messerschmitt-Bölkow-Blohm GmbH, 8000 München | Rotorblatt für Windkraftwerke |
US4295790A (en) * | 1979-06-21 | 1981-10-20 | The Budd Company | Blade structure for use in a windmill |
US4474536A (en) * | 1980-04-09 | 1984-10-02 | Gougeon Brothers, Inc. | Wind turbine blade joint assembly and method of making wind turbine blades |
NL8104019A (nl) | 1981-08-28 | 1983-03-16 | Jan Bos | Werkwijze voor het vervaardigen van voorwerpen uit gewapende kunststof. |
US4597715A (en) * | 1982-05-19 | 1986-07-01 | North Wind Power Company, Inc. | Wooden wind turbine blade manufacturing process |
US4627791A (en) * | 1982-11-10 | 1986-12-09 | Marshall Andrew C | Aeroelastically responsive composite propeller |
US5786785A (en) | 1984-05-21 | 1998-07-28 | Spectro Dynamics Systems, L.P. | Electromagnetic radiation absorptive coating composition containing metal coated microspheres |
GB2168111B (en) * | 1984-12-08 | 1988-05-18 | Rolls Royce | Rotor aerofoil blade containment |
FR2575970A1 (fr) | 1984-12-21 | 1986-07-18 | Berret Pierre | Structures monolithiques en materiaux composites |
FR2586966B1 (fr) | 1985-09-11 | 1988-02-26 | France Etat Armement | Structures multicanaux en materiaux composites, procedes et demi-produits pour la fabrication de celles-ci |
GB2186833A (en) | 1986-02-20 | 1987-08-26 | Fiberforce Limited | Pultrusion method |
US4883552A (en) * | 1986-12-05 | 1989-11-28 | Phillips Petroleum Company | Pultrusion process and apparatus |
US4976087A (en) * | 1987-12-07 | 1990-12-11 | Edward Pizzino | Method of forming footing and laying first course of block |
US4902215A (en) | 1988-06-08 | 1990-02-20 | Seemann Iii William H | Plastic transfer molding techniques for the production of fiber reinforced plastic structures |
US4976587A (en) | 1988-07-20 | 1990-12-11 | Dwr Wind Technologies Inc. | Composite wind turbine rotor blade and method for making same |
US5304339A (en) | 1990-05-23 | 1994-04-19 | Le Comte Adolf | Method for manufacturing a large-sized object of fiber reinforced synthetic resin |
US5324563A (en) | 1990-08-08 | 1994-06-28 | Bell Helicopter Textron Inc. | Unidirectional carbon fiber reinforced pultruded composite material having improved compressive strength |
CN2080994U (zh) * | 1990-10-13 | 1991-07-17 | 内蒙古动力机厂 | 200w风力发电机叶片 |
DE69220236T2 (de) | 1991-09-13 | 1998-01-15 | Bell Helicopter Textron Inc., Fort Worth, Tex. | In einer richtung laufender graphitpultrusionsstab |
AT398064B (de) | 1992-07-01 | 1994-09-26 | Hoac Austria Flugzeugwerk Wr N | Kunststoff-verbundprofil, insbesondere flügelholm für den flugzeugbau |
US5375324A (en) | 1993-07-12 | 1994-12-27 | Flowind Corporation | Vertical axis wind turbine with pultruded blades |
DK9400343U4 (da) * | 1994-09-07 | 1995-10-13 | Bonus Energy As | Lynsikring af vindmøllevinge |
DE4436197C2 (de) * | 1994-10-11 | 1998-09-24 | Aloys Wobben | Windenergieanlage mit Blitzschutzeinrichtung |
DE4436290C1 (de) | 1994-10-11 | 1996-05-02 | Autoflug Energietech Gmbh | Windkraftanlage mit Blitzschutz |
DE4445899A1 (de) | 1994-12-22 | 1996-06-27 | Autoflug Energietech Gmbh | Windkraftanlage mit Blitzstromableitung |
DE19501267A1 (de) | 1994-12-22 | 1996-08-29 | Autoflug Energietech Gmbh | Windkraftanlage mit Blitzstromableitung |
FR2740380B1 (fr) * | 1995-10-30 | 1998-01-02 | Eurocopter France | Procede de fabrication d'une pale a pas variable en materiau composite pour rotor d'helicoptere |
US6081955A (en) | 1996-09-30 | 2000-07-04 | Martin Marietta Materials, Inc. | Modular polymer matrix composite support structure and methods of constructing same |
DK173460B2 (da) † | 1998-09-09 | 2004-08-30 | Lm Glasfiber As | Vindmöllevinge med lynafleder |
AU768212B2 (en) | 1999-11-03 | 2003-12-04 | Vestas Wind Systems A/S | Method of controlling the operation of a wind turbine and wind turbine for use in said method |
GB0003029D0 (en) | 2000-02-11 | 2000-03-29 | British Aerospace | A method of reinforcing a laminated member such as a skin for an aircraft |
CN2495836Y (zh) * | 2001-04-24 | 2002-06-19 | 胡德诚 | 复合材料机翼形叶片 |
EP3219981B1 (de) | 2001-07-19 | 2021-09-01 | Vestas Wind Systems A/S | Windturbinenschaufel |
-
2002
- 2002-07-19 EP EP17165491.6A patent/EP3219981B1/de not_active Expired - Lifetime
- 2002-07-19 DK DK04029161.9T patent/DK1520983T3/en active
- 2002-07-19 DE DE60203804.9T patent/DE60203804T3/de not_active Expired - Lifetime
- 2002-07-19 ES ES17165491T patent/ES2895673T3/es not_active Expired - Lifetime
- 2002-07-19 DK DK17165491.6T patent/DK3219981T3/da active
- 2002-07-19 JP JP2003514114A patent/JP2004535527A/ja active Pending
- 2002-07-19 CN CN2006101670203A patent/CN1975152B/zh not_active Expired - Lifetime
- 2002-07-19 PT PT02787103T patent/PT1417409E/pt unknown
- 2002-07-19 ES ES04029161.9T patent/ES2624620T3/es not_active Expired - Lifetime
- 2002-07-19 CA CA002454038A patent/CA2454038C/en not_active Expired - Fee Related
- 2002-07-19 US US10/483,963 patent/US7198471B2/en not_active Expired - Lifetime
- 2002-07-19 DK DK06018665.7T patent/DK1746284T4/da active
- 2002-07-19 EP EP06018665.7A patent/EP1746284B2/de not_active Expired - Lifetime
- 2002-07-19 CN CNB028145437A patent/CN1294353C/zh not_active Expired - Lifetime
- 2002-07-19 WO PCT/DK2002/000506 patent/WO2003008800A1/en active IP Right Grant
- 2002-07-19 AU AU2002354986A patent/AU2002354986B2/en not_active Expired
- 2002-07-19 ES ES06018665T patent/ES2574779T5/es not_active Expired - Lifetime
- 2002-07-19 ES ES02787103.7T patent/ES2240828T5/es not_active Expired - Lifetime
- 2002-07-19 EP EP02787103.7A patent/EP1417409B2/de not_active Expired - Lifetime
- 2002-07-19 AT AT02787103T patent/ATE293755T1/de not_active IP Right Cessation
- 2002-07-19 EP EP04029161.9A patent/EP1520983B1/de not_active Revoked
- 2002-07-19 DK DK02787103.7T patent/DK1417409T4/en active
-
2007
- 2007-04-02 US US11/730,463 patent/US7503752B2/en not_active Expired - Lifetime
Also Published As
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE60203804T3 (de) | Windturbinenblatt | |
EP0019691B1 (de) | Aus einzelnen Abschnitten gefertigtes Rotorblatt | |
DE69530376T2 (de) | Verstärkungsplatte mit einem oberflächenmaterial auf cellulosebasis, verfahren zur verstärkung einer holzstruktur und die verstärkte holzstruktur | |
EP2731772B1 (de) | Verfahren zum herstellen eines rotorblatts für eine windenergieanlage | |
AU2002354986A1 (en) | Wind turbine blade | |
EP2904262A1 (de) | Faserverbundbauteil für das rotorblatt einer windturbine | |
DE20320714U1 (de) | Rotorblatt für Windenergieanlagen | |
DE10336461A1 (de) | Verfahren zur Herstellung eines Rotorblattes einer Windenergieanlage | |
EP2670581B1 (de) | Verfahren, halbzeug für die herstellung eines faserverstärkten bauteils einer windenergieanlage und verwendung des halbzeuges | |
DE2721651C3 (de) | Tragflügelhauptanschluß für Luft- und Raumfahrzeuge | |
DE102010055874B3 (de) | Verfahren zur Herstellung eines Rotorblatts einer Windenergieanlage | |
EP3551438B1 (de) | Hinterkantengurt eines rotorblatts einer windenergieanlage, rotorblatt und verfahren zum herstellen eines hinterkantengurts | |
EP0088076A1 (de) | Verbundkörper, insbesondere verbundplatte | |
EP3587801A1 (de) | Rotorblatt mit steg in wabensandwichbauweise | |
DE102010054438A1 (de) | Leiste zum Herstellen eines Bootsrumpfes | |
DE1137321B (de) | Rotorblatt fuer Drehfluegelsysteme | |
CH369589A (de) | Verfahren zum Herstellen eines aus mindestens einer faserverstärkten Kunststoffschale oder -platte bestehenden Bauteiles, insbesondere von aero- bzw. hydrodynamischer Form | |
DE8300153U1 (de) | Stabfoermiges bauelement grosser streckung aus mit kunstharz getraenkten faserwerkstoffen |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
8363 | Opposition against the patent | ||
8327 | Change in the person/name/address of the patent owner |
Owner name: VESTAS WIND SYSTEMS A/S, RANDERS, DK |