WO2006106734A1 - 風車 - Google Patents

風車 Download PDF

Info

Publication number
WO2006106734A1
WO2006106734A1 PCT/JP2006/306473 JP2006306473W WO2006106734A1 WO 2006106734 A1 WO2006106734 A1 WO 2006106734A1 JP 2006306473 W JP2006306473 W JP 2006306473W WO 2006106734 A1 WO2006106734 A1 WO 2006106734A1
Authority
WO
WIPO (PCT)
Prior art keywords
wind turbine
hub
fitting structure
windmill
blade
Prior art date
Application number
PCT/JP2006/306473
Other languages
English (en)
French (fr)
Inventor
Ryosuke Ito
Atsushi Kataoka
Hideki Nudeshima
Takashi Yoshida
Original Assignee
Zephyr Corporation
Toray Industries, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zephyr Corporation, Toray Industries, Inc. filed Critical Zephyr Corporation
Priority to CN2006800107695A priority Critical patent/CN101151457B/zh
Priority to EP06730421.2A priority patent/EP1876351B1/en
Priority to DK06730421.2T priority patent/DK1876351T3/en
Priority to US11/910,137 priority patent/US20080273981A1/en
Priority to JP2007512794A priority patent/JP5016482B2/ja
Publication of WO2006106734A1 publication Critical patent/WO2006106734A1/ja

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D1/00Wind motors with rotation axis substantially parallel to the air flow entering the rotor 
    • F03D1/06Rotors
    • F03D1/065Rotors characterised by their construction elements
    • F03D1/0658Arrangements for fixing wind-engaging parts to a hub
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2230/00Manufacture
    • F05B2230/60Assembly methods
    • F05B2230/601Assembly methods using limited numbers of standard modules which can be adapted by machining
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/20Rotors
    • F05B2240/30Characteristics of rotor blades, i.e. of any element transforming dynamic fluid energy to or from rotational energy and being attached to a rotor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2260/00Function
    • F05B2260/30Retaining components in desired mutual position
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05CINDEXING SCHEME RELATING TO MATERIALS, MATERIAL PROPERTIES OR MATERIAL CHARACTERISTICS FOR MACHINES, ENGINES OR PUMPS OTHER THAN NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES
    • F05C2201/00Metals
    • F05C2201/02Light metals
    • F05C2201/021Aluminium
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05CINDEXING SCHEME RELATING TO MATERIALS, MATERIAL PROPERTIES OR MATERIAL CHARACTERISTICS FOR MACHINES, ENGINES OR PUMPS OTHER THAN NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES
    • F05C2253/00Other material characteristics; Treatment of material
    • F05C2253/04Composite, e.g. fibre-reinforced
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a wind turbine, and more particularly to a connection structure between a hub of a wind turbine shaft and a blade root portion.
  • a plurality of wind turbine blades are provided in a number of about three, and their roots are fixedly connected to the hub of the wind turbine shaft and rotated with the rotation of the wind turbine shaft.
  • the simplest and most popular method is to fix the base of the blade to the knob by fastening with a through-bolt.
  • the main body of the wings is made of fiber-reinforced plastic (hereinafter sometimes simply referred to as FRP), especially carbon fiber reinforced plastic (hereinafter simply referred to as CFRP).
  • FRP fiber-reinforced plastic
  • CFRP carbon fiber reinforced plastic
  • the bolt fastening force is not limited by the vibration or centrifugal force generated by the rotation of the windmill. Cracks may occur in the blade starting from bolt holes where stress concentration occurs, and internal members may deteriorate due to water intrusion into the blade.
  • the wing body when the wing body is provided with a bolt hole, in order to maintain the shape and strength of the bolt hole portion, it may be necessary to separately insert a solid member into the fastening portion.
  • the increase in the weight of the wing is unavoidable, and the light weight effect as described above may be impaired.
  • an increase in the weight of the wing leads to an increase in the inertia moment of the wing and an increase in the kinetic energy of the wing itself.As a result, the brake brake performance is improved, the motor capacity, the weight is increased, and the support arm is reinforced. This increases the cost of other parts. Power! In other words, an increase in the kinetic energy of a wing may lead to increased damage to the surroundings if the wing breaks or scatters.
  • Patent Document 1 Japanese Patent Laid-Open No. 2000-120524
  • an object of the present invention is to provide a connection structure between a wing and a hub that basically does not require a bolt fastening structure, and achieve a light weight of the wing.
  • the object is to provide a wind turbine having a structure that can easily ensure the strength, rigidity and construction accuracy of the connecting portion.
  • the wind turbine according to the present invention is characterized in that the hub and the blade root portion are connected by an undercut fitting structure in the radiation direction of the wind turbine shaft.
  • This undercut fitting structure has, for example, a shape in which the blade root portion is narrowed toward the wind turbine shaft in the radial direction of the wind turbine shaft, and then the width is narrowed, while the width is narrowed on the nozzle side. Is formed with a notch or void where the blade root can be fitted, and by this fitting, the widened portion of the blade root can be locked toward the radial direction of the wind turbine shaft.
  • the cross section having a cross-sectional area within the range of is located closer to the wind turbine shaft than the cross section having the minimum cross-sectional area.
  • the gap between the hub and the blade root is preferably in the range of 0 to 0.5 mm.
  • the undercut fitting structure portion is fixed to the positioning surface of the hub by a pressing means in the wind turbine axis direction. That is, the undercut fitting structure portion is fixed at a predetermined position in the windmill axis direction by contact between the positioning surface of the hub and the pressing means, and with respect to the radiation direction of the windmill axis, It is a structure fixed by an undercut fitting structure. In any direction, the blade root portion is fixed without requiring bolt fastening. At least one fixed surface of the positioning surface or the pressing means is formed on a surface perpendicular to the wind turbine axis. It is preferable.
  • an undercut fitting structure is formed on each fixing surface of the positioning surface or the pressing means.
  • the hub and blade root may be in contact with a plane or a surface with a radius of curvature of 5 to: LOOmm. preferable.
  • a plurality of blade root portions may be connected to one hub.
  • a plurality of blade roots are connected to a hub so as to be arranged at an equal angle on a circumference around the rotation axis of the wind turbine shaft.
  • the blade main body part that constitutes a part of the blade root part is formed by using fiber reinforced plastic, such as a lightweight sheet. ⁇ .
  • this fiber reinforced plastic also has a carbon fiber reinforced plastic strength in order to achieve an excellent weight reduction effect while maintaining the strength and rigidity of the wing.
  • the apparent density of the blade body is preferably in the range of 0.2 to 1. Og / cm 3 .
  • the undercut fitting structure formed at the wing root is covered with a metal frame material! be able to.
  • a structure covered with a metal frame material is preferable.
  • the metal frame material is preferably made of an aluminum frame material (including an aluminum alloy frame material) in consideration of weight reduction.
  • the thickness of the adhesive layer between the wing body and the metal frame material constituting the undercut fitting structure portion is preferably in the range of 0.05 to 0.5 mm.
  • the blade body portion and the metal frame member constituting the undercut fitting structure portion are connected by the undercut fitting structure. It is preferable.
  • the metal frame material may be divided into a plurality of parts.
  • the metal frame material may be divided into a plurality of parts at places other than the undercut fitting structure portion.
  • the undercut fitting structure may be formed through contact between the hub and the metal frame member.
  • the connecting portion of the blade root portion to the hub is provided with flexibility to restrain displacement of the blade relative to the hub when the fixing of the blade to the hub is released. It can be configured to have a strip.
  • the tensile strength of the strip is preferably in the range of 1.5 to 5.
  • OGPa and the tensile fracture strain is preferably in the range of 3 to 15%.
  • the tensile stress generated in the strip is 1% or less of the tensile strength of the strip.
  • the strip is flexed so that almost no tensile load is applied to the strip, or the flexibility is applied to the strip to allow the blade to have a margin. It is preferable to connect the strips and apply a tensile load to restrain the blades to the strips only when it is necessary to prevent the blades from scattering.
  • connection structure to the blade root part of the strip.
  • the above article A structure in which a part of the body is included in a part of the wing can be adopted. Further, a structure in which a part of the strip is bound to a part of the wing can also be adopted. In addition, it can be bonded together with an adhesive.
  • the above-mentioned strip body has a tensile strength that can prevent the wings from scattering, and a flexibility that can adopt a connection structure with the wings that hardly exerts a force on the strip during normal operation. If it is, it will not be specifically limited.
  • a preferable material for the strip include those containing at least one of glass fiber, aramid fiber, and steel wire.
  • one strip can be restrained by using one strip for each blade. It is also possible to adopt a structure in which the displacement of a plurality of wings is restrained using a strip.
  • the type of the wind turbine according to the present invention is not particularly limited, but the present invention is particularly suitable for a horizontal axis type wind turbine in which the wind turbine shaft extends in the horizontal direction.
  • the blade on which the centrifugal force acts in the radial direction of the windmill axis by rotation, is connected to the hub at the base portion by an undercut fitting structure.
  • the undercut fitting structure portion can be easily fixed in a predetermined position by fixing the undercut fitting structure portion in the windmill axis direction to the positioning surface of the hub with a pressing means. Therefore, the blade root portion basically does not require any conventional bolt fastening structure and does not require a bolt hole.
  • connection and fixing of the blade and the hub can be achieved without using a bolt fastening structure directly on the blade body.
  • the problem of cracking can be solved, construction can be facilitated and accuracy can be improved.
  • Shika also eliminates the need for bolt holes and simplifies the shape of the blades and knobs for easy manufacturing. Can help reduce costs and costs.
  • the wing body is made of FRP, the strength, rigidity, and construction accuracy of the connecting part with the hub can be easily secured by the undercut fitting structure while reducing the weight of the wing. .
  • the bolt holes in the FRP blade body can be made unnecessary, water can easily be prevented from entering the blade, and the weather resistance can be improved.
  • the shape is simple, the wing Molding also becomes easy.
  • the wing body in the case of FRP wings, can be made hollow, or a structure with an extremely lightweight core material can be used. become.
  • FIG. 1 is a plan view of a blade portion of a wind turbine according to an embodiment of the present invention.
  • FIG. 2 is an enlarged plan view of a connecting portion between a blade root portion and a hub of the wind turbine shown in FIG.
  • FIG. 3 is a cross-sectional view of the undercut fitting structure portion formed at the blade root portion along the line AA in FIG. 2.
  • FIG. 4 is a cross-sectional view of an undercut fitting structure portion showing a structural example different from FIG.
  • FIG. 5 is a partial cross-sectional view of an undercut fitting structure portion taken along line BB in FIG.
  • FIG. 6 is a partial cross-sectional view of an undercut fitting structure portion showing a structural example different from FIG.
  • FIG. 7 is a partial cross-sectional view of an undercut fitting structure portion showing still another structural example different from FIG.
  • FIG. 8 is a partial cross-sectional view showing an example of the structure of the undercut fitting structure along the line A—A or C—C in FIG.
  • FIG. 9 is an enlarged partial plan view showing an example when a strip is added to the wind turbine of FIG. 1.
  • FIG. 10 is an enlarged partial plan view showing another example of a structure for adding a strip to the wind turbine of FIG. 1.
  • FIG. 1 and FIG. 2 show a wind turbine according to an embodiment of the present invention, and in particular, an example in which the blade main body portion is constituted by FRP.
  • the FRP used in the wind turbine blade according to the present invention is not particularly limited.
  • the reinforcing fiber include inorganic fibers such as carbon fiber and glass fiber, and organic fibers such as Kepler fiber, polyethylene fiber, and polyamide fiber. Reinforcing fibers made of fibers are listed. Carbon fiber is particularly preferable from the viewpoint of controllability of blade strength and rigidity.
  • matrix resins for FRP include thermosetting resins such as epoxy resins, unsaturated polyester resins, vinyl ester resins, phenol resins, and polyamide resins, polyolefin resins.
  • Thermoplastic resins such as fat, dicyclopentadiene resin and polyurethane resin can also be used.
  • the structure of the FRP blade body part is a structure in which only the outer shell structure (surface material only) is made of FRP and the interior is hollow, and a lightweight core material is interposed or filled inside the FRP outer shell. Any so-called sandwich structure can be used.
  • the core material it is possible to use an elastic body, a foam material, or a hard cam material, and a foam material is particularly preferable for light weight.
  • FIG. 1 is a plan view of a blade portion of a horizontal axis type wind turbine.
  • the windmill 1 includes a windmill shaft 2 as a rotation shaft, and a hub 3 that rotates integrally with the windmill shaft 2 is provided around the windmill shaft 2.
  • three blades 4 are connected to the hub 3 at the root portion thereof.
  • the main body 4a of each blade 4 is made of FRP, especially CFRP, and the hub 3 and blade root are connected to the radial direction of the wind turbine shaft 2 by an undercut fitting structure! RU
  • the undercut fitting structure portion 5 is formed on the undercut fitting structure portion 6 formed on the blade root portion and the undercut fitting structure portion 6 formed on the hub 3 side. Thus, it is constituted by a fitting hole portion 7 for locking the undercut fitting structure portion 6 with respect to the radiation outer direction of the wind turbine shaft 2. More specifically, as shown in FIG. 2, the undercut fitting structure portion 6 formed at the blade root portion is reduced in width as viewed from the plane as it approaches the wind turbine shaft 2, and then the width is reduced. Is formed in an enlarged shape so that the fitting hole 7 can fit the undercut fitting structure 6 with a slight clearance (preferably a gap within a range of 0 to 0.5 mm). It is formed in a planar shape along the planar shape of this undercut fitting structure 6! Speak.
  • the undercut fitting structure portion 6 formed at the blade root portion is covered with a frame member 8 made of metal, particularly aluminum.
  • the structure of the AA cross section in FIG. 2 is configured as shown in FIG. 3 and FIG. 4, for example.
  • the cross-sectional force having a cross-sectional area within the range of 1.1 to 2.0 times the minimum cross-sectional area It is preferable that the wind turbine shaft is disposed on the side of the cross section having the cross sectional area.
  • the wing body consists of a CFRP surface material 9 and an acrylic low-density foam 10 placed inside as a core material, and the CFRP wing body force aluminum Covered with frame material 8
  • the aluminum frame material 8 consists of two members 8a and 8b.
  • the wing body is made of aluminum-rum frame material 8 with two members 8c, 8d formed in a bowl shape and the tips are overlapped with each other. Cover the blade body and contact the surface material 9 with an adhesive.
  • the structure of the BB cross section in FIG. 2 is configured, for example, as shown in FIGS.
  • one surface 7a of the fitting hole 7 of the hub 3 is formed on the positioning surface, and the positioning surface 7a is formed on the blade root portion by a pressing plate 11 as a pressing means.
  • the undercut fitting structure 6 is positioned and fixed in the windmill axis direction.
  • both the positioning surface 7a of the fitting hole 7 and the pressing surface 11a of the pressing plate 11 are formed in a plane perpendicular to the wind turbine axis, and the blade is easily placed at a predetermined axial position. 4 can be positioned and fixed, and the three wings 4 can be fixed at the same time with one holding plate 11.
  • the undercut fitting structure portion 12 formed in the blade root portion and the fitting hole portion 13 of the hub 3 are connected to the undercut fitting structure in the plane direction shown in FIG.
  • an undercut fitting structure is adopted so that the locking function can be exerted in the direction of the wind turbine shaft in the radial direction of the wind turbine shaft. That is, the thickness force of the undercut fitting structure 12 formed at the blade root portion is formed so as to become smaller and then expand as it approaches the wind turbine shaft, and the fitting hole portion 13 extends in the wind turbine axis direction.
  • the depth is also set to a shape corresponding to the shape in the thickness direction of the undercut fitting structure portion 12.
  • the convex surface 12a of the undercut fitting structure portion 12 in the windmill axis direction is locked to the concave surface 13a of the fitting hole portion 13.
  • the pressing surface 11a of the pressing plate 11 is a force formed on a surface perpendicular to the wind turbine axis. Even in this structure, the three pressing blades 11 can fix the three blades 4 simultaneously. Compared to the structure shown in FIG. 5, the force that locks and connects (restrains) blade 4 to hub 3 is greater than the centrifugal force applied to blade 4.
  • the undercut fitting structure portion 14 formed in the blade root portion and the fitting hole portion 15 of the hub 3 have the undercut fitting structure in the plane direction shown in FIG.
  • a saddle type undercut fitting structure is adopted so that the locking function can be exerted with respect to the radial direction of the windmill axis.
  • a hook-shaped locking portion 14a is provided on one side of the insertion tip of the undercut fitting structure portion 14 formed at the blade root portion, and is formed at the inner back of the fitting hole portion 15.
  • a bowl-shaped recess 15a is formed.
  • a marginal space 16 for inserting the hook-shaped locking portion 14a into the hook-shaped recess 15a is formed at the innermost portion of the hook-shaped recess 15a to prevent backlash after insertion.
  • an insert member 17 is inserted into the margin space 16. After inserting the insert member 17, the wing 4 may be fixed by the holding plate 11. Even in this case, the three wings 4 can be fixed simultaneously by the single pressing plate 11.
  • the outer diameter shape of the undercut fitting structure portion as shown in FIG. 3 or FIG. 4 can be adopted.
  • a tapered outer shape (taper fitting structure) as shown in FIG. 8 can also be adopted.
  • the side surface 19a of the fitting hole portion 19 of the hub 18 is formed in a tapered surface, and the side surface 20a of the undercut fitting structure portion 20 formed in the blade root portion corresponds thereto. It is formed on a tapered surface.
  • the conventional bolt fastening structure is not required to connect the blade root to the hub, eliminating the problems of fatigue and cracking associated with bolt fastening and facilitating construction and improving accuracy. Can be achieved.
  • By eliminating the need for bolt holes it is possible to simplify the shape of the blade blade and the hub part, simplify manufacturing, reduce costs, and easily prevent water from entering the blade. The weather resistance can be improved.
  • the wing body part made of FRP, especially CFRP, it is possible to easily ensure the strength, rigidity and construction accuracy of the connecting part with the hub while reducing the weight of the wing.
  • a strip 31 is provided around the wind turbine shaft 2 through a spacer (not shown) in some cases, and the strip 31 is then attached to the root portion of each blade 4. Adopting a structure linked to wear.
  • a strip 32 is stretched around the wind turbine shaft 2 at a position away from the wind turbine shaft 2, and the blade 32 is included in the root portion of each blade 4 so that each blade 4 It is also possible to adopt a structure that is connected to the root portion of the. In any case, basically, in the strips 31 and 32, during normal operation (normal blade rotation), the binding force of the blade 4 is not substantially applied. When the fixing of the wing 4 is released due to fatigue breakage of the connecting part, etc., the V Thus, the wing 4 is restrained to prevent the wing from scattering.
  • the tensile strength of the strips 31 and 32 is in the range of 1.5 to 5. OGPa, and the tensile breaking strain is in the range of 3 to 15%. It is preferable. Further, it is preferable that the tensile stress generated in the strips 31 and 32 during the rated operation of the wind turbine is 1% or less of the tensile strength of the strips. Furthermore, examples of preferable materials for the strips 31 and 32 include those containing at least one of glass fiber, aramid fiber, and steel wire.
  • the present invention is suitable for all types of wind turbines, particularly for small wind turbines, wind turbines with blades made of FRP, and horizontal axis wind turbines.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Wind Motors (AREA)

Abstract

 ハブと翼根元部とを、風車軸の放射線方向に対してアンダーカット嵌合構造により連結したことを特徴とする風車であり、とくに、FRP製の翼を備えた小型の風車に好適な構成である。この構成により、翼根元部には、基本的にボルト締結構造を必要とせずに翼とハブを連結でき、翼の軽量化を達成しつつ、翼とハブの連結部の強度、剛性、施工精度を良好に保つことが可能になる。

Description

明 細 書
風車
技術分野
[0001] 本発明は、風車に関し、とくに風車軸のハブと翼根元部との連結構造に関する。
背景技術
[0002] 風車の翼は、通常 3枚程度の複数設けられ、その根元部が風車軸のハブに固定連 結されて風車軸の回転とともに回転される。とくに小型の風車においては、貫通ボル トによる締結によって翼の根元部をノヽブに固定する方法力 最も簡単であり、よく用い られている。近年、高強度、高剛性の翼を軽量ィ匕するために、翼の本体部を繊維強 化プラスチック(以下、単に FRPと呼ぶこともある。)、中でも炭素繊維強化プラスチッ ク(以下、単に CFRPと呼ぶこともある。)で構成することも行われつつある(例えば、 特許文献 1)。このような FRP製翼についても、通常、上記のように貫通ボルトを使用 した締結による翼固定方法が採用されている。
[0003] し力しながら、翼本体にボルト孔を備えかつボルトを用いて直接翼本体を締結する 固定方法では、風車の回転によって発生する振動や遠心力により、ボルト締結力の 大小に関わらず、応力集中が生じるボルト孔を起点として翼に亀裂が発生することが あり、翼内部への水の侵入による内部材の劣化が生じることもある。
[0004] また、翼本体にボルト孔を備えた場合、ボルト孔部の形態や強度を保持するために 、締結部の内部に中実部材を別途挿入する必要が生じることもあり、それによつて翼 の重量増加が避けられず、上記のような軽量ィ匕効果が損なわれる場合がある。また、 翼の重量増加は、翼の慣性モーメントの増加、および翼自体の運動エネルギーの増 加へとつながり、結果的に、制動ブレーキの性能向上や、モータ容量、重量増、支持 アームの補強など、他の部位のコスト増を招く。力!]えて、翼の運動エネルギーの増加 は、万が一翼が破損、飛散した場合に周囲への被害増加につながるおそれがある。
[0005] さらに、ボルトによる締結は、施工精度を要求するため、例えば、個人が自宅等の 高所で、若しくは山間部の山小屋などで設置することが多い小型風車の場合、振動 発生の原因となりやすい。 特許文献 1:特開 2000— 120524号公報
発明の開示
発明が解決しょうとする課題
[0006] そこで本発明の課題は、上記のような現状に鑑み、基本的にボルト締結構造を必 要としない翼とハブとの連結構造を提供し、かつ、翼の軽量ィ匕を達成しつつ、この連 結部の強度、剛性、施工精度を容易に確保できる構造を備えた風車を提供すること にある。
課題を解決するための手段
[0007] 上記課題を解決するために、本発明に係る風車は、ハブと翼根元部とを、風車軸の 放射線方向に対してアンダーカット嵌合構造により連結したことを特徴とするものから なる。このアンダーカット嵌合構造とは、例えば、翼根元部が、風車軸の放射線方向 に、風車軸に近づくにつれー且幅が狭められた後幅が広がる形状を有し、一方、ノヽ ブ側には、この翼根元部を嵌合できる切り欠き部あるいは空所部が形成され、該嵌 合により、翼根元部における幅が広がった形状部分を、風車軸の放射線外側方向に 向けて係止可能な構造、つまり、該翼根元部が風車軸の放射線外側方向に抜け出 ることを防止するアンダーカット機能を果たすことが可能な構造のことを言う。
[0008] この本発明に係る風車においては、上記アンダーカット嵌合構造を構成する翼根 元部の、風車軸の放射線方向に垂直な断面に関して、最小断面積の 1. 1〜2. 0倍 の範囲内の断面積を有する断面が、最小断面積を有する断面よりも風車軸側に配置 されていることが好ましい。また、上記アンダーカット嵌合構造において、ハブと翼根 元部との間の隙間が 0〜0. 5mmの範囲内にあることが好ましい。
[0009] また、本発明に係る風車にお 、ては、上記アンダーカット嵌合構造部分が、風車軸 方向に、ハブの位置決め面に対し押さえ手段で固定されていることが好ましい。すな わち、上記アンダーカット嵌合構造部分は、このハブの位置決め面と押さえ手段との 当接により風車軸方向に所定の位置に固定され、かつ、風車軸の放射線方向に対し ては、アンダーカット嵌合構造により固定される構造である。いずれの方向に対しても 、翼根元部には、ボルト締結を要することなく固定されることになる。この位置決め面 または押さえ手段の少なくとも一方の固定面は、風車軸に対し垂直な面に形成され ていることが好ましい。
[0010] このような構成においては、上記位置決め面または押さえ手段のそれぞれの固定 面に、アンダーカット嵌合構造が構成されていることが好ましい。また、上記ハブの位 置決め面の一部をなすアンダーカット嵌合構造部分において、ハブと翼根元部とは 平面もしくは曲率半径が 5〜: LOOmmの範囲内の面で接触していることも好ましい。
[0011] また、本発明に係る風車においては、複数の翼根元部が、一つのハブに連結され ている構成とすることができる。また、複数の翼根元部が、風車軸の回転軸心を中心 とする円周上に均等角度配置となるようにハブに連結されて 、ることが好ま U、。
[0012] また、上記押さえ手段を有する構成においては、一つの押さえ手段で複数の翼の アンダーカット嵌合構造部分が同時に固定される構造とすることで、一つの押さえ手 段のみで容易に全ての翼を同時に固定することが可能になる。このような構造とする ことで、施工の容易性、精度も容易に確保される。
[0013] また、本発明に係る風車においては、翼根元部の一部を構成する翼本体部が、繊 維強化プラスチックを用いて形成されて ヽることが軽量ィ匕の面カゝら好ま ヽ。とくに、 翼の強度、剛性を保ちつつ、優れた軽量化効果を奏するために、この繊維強化ブラ スチックが炭素繊維強化プラスチック力もなることが好ましい。この場合、翼本体部の 見かけ密度としては、 0. 2〜1. Og/cm3の範囲内にあることが好ましい。
[0014] 翼本体部が、繊維強化プラスチックを用いて形成されている場合、翼根元部に形成 されたアンダーカット嵌合構造部分は、金属製枠材で覆われて!/ヽる構造とすることが できる。とくに上記のように、アンダーカット嵌合構造部分力 風車軸方向に、ハブの 位置決め面に対し押さえ手段で固定される構造の場合には、この固定面が接触面と なり、より高い表面強度や精度を要求されるので、金属製枠材で覆われている構造と することが好ましい。金属製枠材としては、軽量化も併せ考慮すると、アルミニウム製 枠材 (アルミニウム合金製枠材を含む)からなることが好ま ヽ。この翼の本体部のァ ンダーカット嵌合構造部分と上記金属製枠材とは、例えば、接着剤で接合されている 構成とすることができる。翼本体部とアンダーカット嵌合構造部分を構成する上記金 属製枠材との間の接着剤の層の厚みとしては、 0. 05-0. 5mmの範囲内にあること が好ましい。 [0015] また、上記のような金属製枠材を備えた構造においては、翼本体部とアンダーカツ ト嵌合構造部分を構成する上記金属製枠材とがアンダーカット嵌合構造により連結さ れていることが好ましい。また、上記金属製枠材が複数の部品に分割されている構成 とすることもできる。また、上記金属製枠材は、アンダーカット嵌合構造部分以外の箇 所で複数の部品に分割されていてもよい。さら〖こ、ハブと上記金属製枠材との接触を 介してアンダーカット嵌合構造が形成されている構成とすることもできる。
[0016] また、本発明に係る風車においては、翼根元部のハブへの連結部に、翼のハブに 対する固定が解放された場合に翼のハブに対する変位を拘束する、柔軟性を備えた 条体が設けられて ヽる構成とすることができる。
[0017] すなわち、本発明におけるアンダーカット嵌合構造による連結に加えて、柔軟性を 備えた条体により、翼のハブに対する固定が解放された場合に翼のハブに対する変 位を拘束するようにした構造である。基本的に、この条体には、通常運転時 (通常の 翼回転時)には、実質的に翼の拘束力は加わらないようにし (条体に力が加わらない ようにし)、上記翼の固定が連結部の疲労破壊等により解放された場合に、条体によ り翼がある距離以上にハブカも離れないように翼を拘束し、翼の飛散を防止するよう にしたものである。したがって、条体自身には、疲労は発生せず、条体を翼の飛散防 止のために機能させるときには、条体自身としては確実に予定していた強度特性等 を発揮させることができるようになり、翼の飛散防止も確実に達成されるようになる。
[0018] 上記条体の引張強度としては、 1. 5〜5. OGPaの範囲内にあり、かつ、引張破断 歪としては、 3〜15%の範囲内にあることが好ましい。このような構成により、翼の飛 散を適切に防止可能となる。
[0019] また、風車の定格運転時において、上記条体に発生する引張応力が条体の引張 強度の 1%以下であることが好ましい。つまり、上述したように、通常運転時には、条 体にはほとんど引張荷重が力からないように条体を撓ませて、あるいは条体にその柔 軟性を利用して余裕を持たせて、翼に条体を連結しておき、翼の飛散防止が必要な 時にのみ、条体に翼を拘束するための引張荷重が力かるようにしておくことが好まし い。
[0020] 条体の翼根元部への連結構造としては、種々の形態を採り得る。例えば、上記条 体の一部が上記翼の一部に内包されている構造を採用することができる。また、上記 条体の一部が上記翼の一部に縛着されている構造を採用することもできる。さらに、 これらととも〖こ、接着剤を用いて接着しておくこともできる。
[0021] 上記条体としては、翼の飛散を防止できるだけの引張強度、通常運転時にはほと んど条体に力が作用しない翼との連結構造を採用することができるだけの柔軟性を 備えていれば、特に限定されない。上記条体の好ましい材質としては、例えば、ガラ ス繊維、ァラミド繊維、鋼線材の少なくとも一種を含むものが挙げられる。
[0022] また、条体と翼根元部との連結構造に関しては、一つの翼に対して 1本の条体を用 V、て拘束するようにすることもできるし、実質的に 1本の条体を用 、て複数の翼の変 位が拘束されている構造を採用することもできる。
[0023] 本発明に係る風車のタイプはとくに限定しないが、本発明は、風車軸が水平方向に 延びる水平軸型風車にとくに好適なものである。
[0024] 上記のような本発明に係る風車においては、回転により風車軸の放射線方向に遠 心力が作用する翼は、その根元部において、アンダーカット嵌合構造によりハブに連 結される。風車軸方向に対しては、アンダーカット嵌合構造部分を、風車軸方向に、 ハブの位置決め面に対し押さえ手段で固定すれば、容易に所定位置に固定できる。 したがって、翼根元部には、基本的に従来のようなボルト締結構造を全く必要とせず 、ボルト孔も不要である。
発明の効果
[0025] このように本発明に係る風車によれば、翼とハブとの連結、固定を、翼本体への直 接ボルト締結構造を使用せずに達成でき、ボルト締結に伴う翼の疲労や亀裂発生の 問題を解消できるとともに、施工の容易化、精度向上を達成でき、しカゝも、ボルト孔加 ェを不要化して、翼やノヽブ部分の形状を簡素化することにより製造の容易化、コスト ダウンをは力ることができる。
[0026] また、翼本体部を FRP製とすれば、翼重量を軽量化しつつ、アンダーカット嵌合構 造により、ハブとの連結部の強度、剛性、施工精度を容易に確保できるようになる。ま た、 FRP製翼本体部のボルト孔を不要化できるので、翼内部への水の侵入を容易に 防止でき、耐候性等の向上をは力ることもできる。また、形状が簡単であるので、翼の 成形も容易になる。
[0027] とくに、 FRP製の翼とする場合、翼本体の内部を中空にしたり、極めて軽量なコア 材を介在させたりする構造を採用できるので、翼の軽量ィ匕を一層促進することが可能 になる。
図面の簡単な説明
[0028] [図 1]本発明の一実施態様に係る風車の翼部の平面図である。
[図 2]図 1の風車の翼根元部とハブとの連結部の拡大平面図である。
[図 3]図 2の A— A線に沿う翼根元部に形成されたアンダーカット嵌合構造部の断面 図である。
[図 4]図 3とは別の構造例を示すアンダーカット嵌合構造部の断面図である。
[図 5]図 2の B— B線に沿うアンダーカット嵌合構造部分の部分断面図である。
[図 6]図 5とは別の構造例を示すアンダーカット嵌合構造部分の部分断面図である。
[図 7]図 5とはさらに別の構造例を示すアンダーカット嵌合構造部分の部分断面図で ある。
[図 8]図 2の A— A線または C— C線に沿うアンダーカット嵌合構造部分の構造例を示 す部分断面図である。
[図 9]図 1の風車に条体を付加した場合の一例を示す拡大部分平面図である。
[図 10]図 1の風車への別の条体付加構造例を示す拡大部分平面図である。
符号の説明
[0029] 1 風車
2 風車軸
3、 18 ノヽブ
4 翼
4a 翼本体部
5 アンダーカット嵌合構造部分
6、 12、 14、 20 翼根元部に形成されたアンダーカット嵌合構造部
7、 13、 15、 19 嵌合穴部
7a 嵌合穴部の位置決め面 8 アルミニウム製枠材
9 CFRP製表面材
10 コア材としてのアクリル製低密度発泡体
11、 21 押さえ手段としての押さえ板
11a 押さえ板の押さえ面
16 余裕空間
17 インサート部材
19a、 20a テーパ面
31, 32 条体
発明を実施するための最良の形態
以下に、本発明の望ましい実施の形態を、図面を参照しながら説明する。
図 1および図 2は、本発明の一実施態様に係る風車を示しており、とくに、翼本体部 を FRPで構成した場合の例を示して ヽる。本発明に係る風車の翼に使用する FRPと しては、とくに限定されないが、強化繊維としては、例えば、炭素繊維、ガラス繊維等 の無機繊維や、ケプラー繊維、ポリエチレン繊維、ポリアミド繊維などの有機繊維から なる強化繊維が挙げられる。翼の強度や剛性の制御の容易性の面からは、とくに炭 素繊維が好ましい。 FRPのマトリックス榭脂としては、たとえば、エポキシ榭脂、不飽 和ポリエステル榭脂、ビニルエステル榭脂、フエノール榭脂等の熱硬化性榭脂が挙 げられ、さらには、ポリアミド榭脂、ポリオレフイン榭脂、ジシクロペンタジェン榭脂、ポ リウレタン榭脂等の熱可塑性榭脂も使用可能である。また、 FRP製翼本体部の構造 としては、その外殻構造のみ (表面材のみ)を FRP製として内部を中空にした構造、 F RP製外郭の内部に軽量のコア材を介在または充填した、いわゆるサンドイッチ構造 のいずれも採用可能である。コア材としては、弾性体や発泡材、ハ-カム材の使用が 可能であり、軽量ィ匕のためにはとくに発泡材が好ましい。発泡材の材質としては特に 限定されず、たとえば、ポリウレタンやアクリル、ポリスチレン、ポリイミド、塩化ビニル、 フエノールなどの高分子材料の低密度フォーム材などを使用できる。ノ、二カム材とし ては特に限定されず、たとえばアルミニウム合金、紙、ァラミドペーパー等を使用する ことができる。 [0031] 図 1は、水平軸型の風車の翼部の平面図を示しており、図 1において、 1は風車全 体を指している。風車 1は、回転軸としての風車軸 2を備えており、風車軸 2の回りに は、風車軸 2と一体的に回転されるハブ 3が設けられている。このハブ 3に、本実施態 様では、 3枚の翼 4が、その根元部において連結される。各翼 4の本体部 4aは FRP、 とくに CFRPを用いて構成されており、ハブ 3と翼根元部とは、風車軸 2の放射線方向 に対してアンダーカット嵌合構造により連結されて!、る。
[0032] このアンダーカット嵌合構造部分 5は、翼根元部に形成されたアンダーカット嵌合構 造部 6と、ハブ 3側に形成され、翼 4側のアンダーカット嵌合構造部 6を嵌合し、それ によって風車軸 2の放射線外側方向に対してアンダーカット嵌合構造部 6を係止する 嵌合穴部 7とから構成されている。より詳しくは、図 2にも示すように、翼根元部に形成 されたアンダーカット嵌合構造部 6は、風車軸 2に近づくにつれ、ー且平面方向から 見た幅が縮小され、その後に幅が拡大された形状に形成されており、嵌合穴部 7は、 このアンダーカット嵌合構造部 6を僅かなクリアランス (好ましくは、 0〜0. 5mmの範 囲内の隙間)をもって嵌合できるよう、このアンダーカット嵌合構造部 6の平面形状に 沿った平面形状に形成されて!ヽる。
[0033] 翼根元部に形成されたアンダーカット嵌合構造部 6は、本実施態様では、金属製の 、とくにアルミニウム製の枠材 8で覆われている。
[0034] 図 2における A— A断面の構造は、例えば図 3や図 4に示すように構成されている。
この場合、アンダーカット嵌合構造を構成する翼根元部の、風車軸の放射線方向に 垂直な断面に関して、最小断面積の 1. 1〜2. 0倍の範囲内の断面積を有する断面 力 最小断面積を有する断面よりも風車軸側に配置されていることが好ましい。図 3 に示す構造では、翼本体部が、 CFRP製の表面材 9と、その内部にコア材として配置 されたアクリル製の低密度発泡体 10からなり、その CFRP製翼本体部力 アルミ-ゥ ム製枠材 8で覆われている。アルミニウム製枠材 8は 2つの部材 8a、 8bからなり、両部 材はコ字状先端部同士が突き合わされた形態で CFRP製翼本体部に被せられ、表 面材 9との間は接着剤で接合されている。図 4に示す構造では、翼本体部が、アルミ -ゥム製枠材 8は 2つの部材 8c、 8dのコ字状先端部を鉤状に形成して先端部同士を 重ね合わせた形態で CFRP製翼本体部に被せられ、表面材 9との間は接着剤で接 合されている。鉤状部の重ね合わせた形態とすることで、両部材 8c、 8dの位置ずれ が防止されるようになって!/、る。
[0035] 図 2における B—B断面の構造は、例えば図 5〜図 7に示すように構成されている。
図 5に示す構造では、ハブ 3の嵌合穴部 7の一面 7aが、位置決め面に形成され、こ の位置決め面 7aに対し、押さえ手段としての押さえ板 11によって、翼根元部に形成 されたアンダーカット嵌合構造部 6を押さえることにより、該アンダーカット嵌合構造部 6が風車軸方向に位置決め、固定されている。本実施態様では、嵌合穴部 7の位置 決め面 7aおよび押さえ板 11の押さえ面 11aの両方とも、風車軸に対し垂直な面に形 成されており、簡単に所定の軸方向位置に翼 4を位置決め、固定できるとともに、一 枚の押さえ板 11で 3枚の翼 4を同時に固定できるようになって 、る。
[0036] 図 6に示す構造では、翼根元部に形成されたアンダーカット嵌合構造部 12および ハブ 3の嵌合穴部 13が、図 2に示した平面方向におけるアンダーカット嵌合構造とと もに、風車軸方向に関しても、風車軸の放射線外側方向に対して係止機能を発揮で きるよう、アンダーカット嵌合構造が採用されている。すなわち、翼根元部に形成され たアンダーカット嵌合構造部 12の厚み力 風車軸に近づくにつれ、ー且小さくなつた 後拡大するように形成されているとともに、嵌合穴部 13の風車軸方向深さもアンダー カット嵌合構造部 12の厚み方向の形状に対応する形状に設定されている。換言す れば、風車軸方向における、アンダーカット嵌合構造部 12の凸面 12aが、嵌合穴部 13の凹面 13aに係止されるようになつている。この場合、押さえ板 11の押さえ面 11a のみが、風車軸に対し垂直な面に形成されている力 この構造においても、一枚の 押さえ板 11で 3枚の翼 4を同時に固定できる。図 5に示した構造に比べ、翼 4に加わ る遠心力に対し、翼 4をハブ 3に係止、連結する(拘束する)力は大きい。
[0037] 図 7に示す構造では、翼根元部に形成されたアンダーカット嵌合構造部 14および ハブ 3の嵌合穴部 15が、図 2に示した平面方向におけるアンダーカット嵌合構造とと もに、風車軸方向に関しても、風車軸の放射線外側方向に対して係止機能を発揮で きるよう、鉤型のアンダーカット嵌合構造が採用されている。すなわち、翼根元部に形 成されたアンダーカット嵌合構造部 14の挿入先端部の一面側に、鉤型の係止部 14 aが設けられており、嵌合穴部 15の内奥部にも、鉤型の係止部 14aの形状に対応す る形状の鉤型の凹部 15aが形成されている。また、鉤型の凹部 15aの最奥部には、 鉤型の係止部 14aを鉤型の凹部 15aに挿入するための余裕空間 16が形成されてお り、挿入後のガタを防止するために、この余裕空間 16にはインサート部材 17が挿入 されている。インサート部材 17挿入後に、押さえ板 11によって翼 4を固定すればよい 。この場合にも、一枚の押さえ板 11で 3枚の翼 4を同時に固定できる。
[0038] また、図 2における A— A断面あるいは C C断面の構造としては、図 3や図 4に示 したようなアンダーカット嵌合構造部の外径形状を採用することもできるし、例えば図 8に示すようなテーパ外形形状 (テーパ嵌合構造)を採用することもできる。図 8に示 す構造では、ハブ 18の嵌合穴部 19の側面 19aがテーパ面に形成されており、翼根 元部に形成されたアンダーカット嵌合構造部 20の側面 20aがそれに対応するテーパ 面に形成されている。このような構造では、押さえ板 21で各翼を押さえる際、嵌合部 に多少の寸法誤差があつたとしても、テーパ面同士の食い込み嵌合構造によって吸 収することが可能になる。
[0039] このように、アンダーカット嵌合構造部分や押さえ手段による押さえ構造には、各種 形態を採用可能である。いずれの構造においても、翼根元部とハブとの連結に従来 のようなボルト締結構造は不要であり、ボルト締結に伴う疲労や亀裂発生の問題を解 消できるとともに、施工の容易化、精度向上を達成できる。ボルト孔加工を不要化す ることで、翼ゃノ、ブ部分の形状を簡素化して製造の容易ィ匕、コストダウンをはかること ができるとともに、翼内部への水の侵入を容易に防止でき、耐候性等の向上をはかる ことができる。
[0040] また、翼の本体部を FRP製、とくに CFRP製とすることにより、翼重量を軽量化しつ つ、ハブとの連結部の強度、剛性、施工精度を容易に確保できる。
[0041] さらに、本発明においては、上記のようなアンダーカット嵌合構造に加えて、翼根元 部のハブへの連結部に、翼のハブに対する固定が解放された場合に翼のハブに対 する変位を拘束する、柔軟性を備えた条体が設けられて ヽる構成を付加することもで きる。
[0042] 例えば図 9に示すように、風車軸 2の周囲に、場合によってはスぺーサ(図示略)を 介して、条体 31を設け、そこから条体 31を各翼 4の根元部に連結した構造を採用で きる。また、図 10に示すように、風車軸 2の周囲に風車軸 2とは離れた位置に条体 32 を張りめぐらせ、条体 32を各翼 4の根元部に内包させることにより各翼 4の根元部に 連結した構造を採用することもできる。いずれの場合にあっても、基本的に、条体 31 、 32には、通常運転時 (通常の翼回転時)には、実質的に翼 4の拘束力は加わらな V、ようにし (条体に力が加わらな 、ようにし)、上記翼 4の固定が連結部の疲労破壊等 により解放された場合に、条体 31、 32により翼 4がある距離以上にハブ 3から離れな V、ように翼 4を拘束し、翼の飛散を防止するようにしたものである。
[0043] 上記条体 31、 32の引張強度としては、前述したように、 1. 5〜5. OGPaの範囲内 にあり、かつ、引張破断歪としては、 3〜 15%の範囲内にあることが好ましい。また、 風車の定格運転時において、上記条体 31、 32に発生する引張応力が条体の引張 強度の 1%以下であることが好ましい。さらに、上記条体 31、 32の好ましい材質とし ては、例えば、ガラス繊維、ァラミド繊維、鋼線材の少なくとも一種を含むものが挙げ られる。
産業上の利用可能性
[0044] 本発明は、あらゆる風車に適用可能である力 とくに、小型の風車、翼が FRP製の 風車、水平軸型の風車に好適なものである。

Claims

請求の範囲
[I] ハブと翼根元部とを、風車軸の放射線方向に対してアンダーカット嵌合構造により 連結したことを特徴とする風車。
[2] 前記アンダーカット嵌合構造を構成する翼根元部の、風車軸の放射線方向に垂直 な断面に関して、最小断面積の 1. 1〜2. 0倍の範囲内の断面積を有する断面が、 最小断面積を有する断面よりも風車軸側に配置されている、請求項 1に記載の風車
[3] 前記アンダーカット嵌合構造において、ハブと翼根元部との間の隙間が 0〜0. 5m mの範囲内にある、請求項 1または 2に記載の風車。
[4] 前記アンダーカット嵌合構造部分が、風車軸方向に、ハブの位置決め面に対し押 さえ手段で固定されている、請求項 1〜3のいずれかに記載の風車。
[5] 前記位置決め面または押さえ手段の少なくとも一方の固定面が、風車軸に対し垂 直な面に形成されている、請求項 4に記載の風車。
[6] 前記位置決め面または押さえ手段のそれぞれの固定面に、アンダーカット嵌合構 造が構成されて 、る、請求項 4または 5に記載の風車。
[7] 前記ハブの位置決め面の一部をなすアンダーカット嵌合構造部分において、ハブ と翼根元部とは平面もしくは曲率半径が 5〜: LOOmmの範囲内の面で接触している、 請求項 4〜6の!、ずれかに記載の風車。
[8] 複数の翼根元部が、一つのハブに連結されている、請求項 1〜7のいずれかに記 載の風車。
[9] 複数の翼根元部が、風車軸の回転軸心を中心とする円周上に均等角度配置となる ようにハブに連結されて!、る、請求項 1〜8の!、ずれかに記載の風車。
[10] 一つの押さえ手段で複数の翼のアンダーカット嵌合構造部分が同時に固定されて いる、請求項 4〜9のいずれかに記載の風車。
[II] 翼根元部の一部を構成する翼本体部が、繊維強化プラスチックを用いて形成され ている、請求項 1〜10のいずれかに記載の風車。
[12] 繊維強化プラスチックが炭素繊維強化プラスチック力もなる、請求項 11に記載の風 車。
[13] 翼本体部の見かけ密度が 0. 2〜1. OgZcm3の範囲内にある、請求項 11または 1 2に記載の風車。
[14] 翼根元部に形成されたアンダーカット嵌合構造部分における翼本体部が金属製枠 材で覆われて 、る、請求項 11〜 13の!、ずれかに記載の風車。
[15] 前記金属製枠材がアルミニウム製枠材からなる、請求項 14に記載の風車。
[16] 翼本体部とアンダーカット嵌合構造部分を構成する前記金属製枠材とが接着剤で 接合されている、請求項 14または 15に記載の風車。
[17] 翼本体部とアンダーカット嵌合構造部分を構成する前記金属製枠材との間の接着 剤の層の厚みが 0. 05〜0. 5mmの範囲内にある、請求項 16に記載の風車。
[18] 翼本体部とアンダーカット嵌合構造部分を構成する前記金属製枠材とがアンダー カット嵌合構造により連結されている、請求項 14〜17のいずれかに記載の風車。
[19] 前記金属製枠材が複数の部品に分割されている、請求項 14〜18のいずれかに記 載の風車。
[20] ハブと前記金属製枠材との接触を介してアンダーカット嵌合構造が形成されている
、請求項 14〜 19のいずれかに記載の風車。
[21] 翼根元部のハブへの連結部に、翼のハブに対する固定が解放された場合に翼の ハブに対する変位を拘束する、柔軟性を備えた条体が設けられている、請求項 1〜2
0の!、ずれかに記載の風車。
[22] 前記条体の引張強度が 1. 5〜5. OGPaの範囲内にあり、かつ、引張破断歪が 3〜
15%の範囲内にある、請求項 21に記載の風車。
[23] 風車の定格運転時において、前記条体に発生する引張応力が条体の引張強度の
1 %以下である、請求項 21または 22に記載の風車。
[24] 前記条体の一部が前記翼根元部の一部に内包されている、請求項 21〜23のいず れかに記載の風車。
[25] 前記条体が、ガラス繊維、ァラミド繊維、鋼線材の少なくとも一種を含む、請求項 21
〜24の!、ずれかに記載の風車。
[26] 実質的に 1本の条体を用いて複数の翼の変位が拘束されている、請求項 21〜25 の!、ずれかに記載の風車。 風車軸が水平方向に延びる水平軸型風車からなる、請求項 1〜26のいずれかに 記載の風車。
PCT/JP2006/306473 2005-03-30 2006-03-29 風車 WO2006106734A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN2006800107695A CN101151457B (zh) 2005-03-30 2006-03-29 风车
EP06730421.2A EP1876351B1 (en) 2005-03-30 2006-03-29 Windmill
DK06730421.2T DK1876351T3 (en) 2005-03-30 2006-03-29 Windmill
US11/910,137 US20080273981A1 (en) 2005-03-30 2006-03-29 Windmill
JP2007512794A JP5016482B2 (ja) 2005-03-30 2006-03-29 風車

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-098138 2005-03-30
JP2005098138 2005-03-30

Publications (1)

Publication Number Publication Date
WO2006106734A1 true WO2006106734A1 (ja) 2006-10-12

Family

ID=37073297

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/306473 WO2006106734A1 (ja) 2005-03-30 2006-03-29 風車

Country Status (6)

Country Link
US (1) US20080273981A1 (ja)
EP (1) EP1876351B1 (ja)
JP (1) JP5016482B2 (ja)
CN (1) CN101151457B (ja)
DK (1) DK1876351T3 (ja)
WO (1) WO2006106734A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014507599A (ja) * 2011-03-10 2014-03-27 フォイト・パテント・ゲーエムベーハー 軸流タービンのためのロータ配列
WO2014192297A1 (ja) * 2013-05-28 2014-12-04 テラル株式会社 ロータ
JP6002865B1 (ja) * 2015-09-03 2016-10-05 積水化成品工業株式会社 風車用ブレード
JP2018168789A (ja) * 2017-03-30 2018-11-01 積水化成品工業株式会社 風車用ブレード

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8657581B2 (en) 2009-08-28 2014-02-25 Gordon Holdings, Inc. Thermoplastic rotor blade
WO2012009482A2 (en) * 2010-07-13 2012-01-19 Nature's Energy Banc Connection mechanism for mounting blades for a wind turbine
CN102011713A (zh) * 2010-07-22 2011-04-13 北京可汗之风科技有限公司 一种风力发电机叶片的芯材设计
CN102195423B (zh) * 2011-05-20 2012-11-21 国电联合动力技术有限公司 一种固定轴支撑的双定子永磁直驱风力发电机
JP6490421B2 (ja) 2014-12-25 2019-03-27 テラル株式会社 ロータ
US10443608B2 (en) 2015-03-30 2019-10-15 Mitsubishi Electric Corporation Impeller
US10060411B2 (en) * 2015-07-22 2018-08-28 General Electric Company Rotor blade root assembly for a wind turbine
JP6554437B2 (ja) * 2015-09-03 2019-07-31 積水化成品工業株式会社 ロボットアーム

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5360405A (en) * 1976-11-12 1978-05-31 Toshiba Corp Turbine blade
JPS5731579U (ja) * 1980-07-30 1982-02-19
JPS6350463Y2 (ja) * 1982-08-25 1988-12-26
JPH0614495U (ja) * 1992-07-30 1994-02-25 三菱重工業株式会社 動 翼
JPH0635279B2 (ja) * 1984-12-08 1994-05-11 ロ−ルス・ロイス・ピ−エルシ− ロ−タ−翼
JP2000352398A (ja) * 1999-06-09 2000-12-19 Sumitomo Precision Prod Co Ltd 複合材製回転翼のシャンク部構造
JP2002201909A (ja) * 2000-12-28 2002-07-19 Ishikawajima Harima Heavy Ind Co Ltd ブレード保持構造
JP2004245174A (ja) * 2003-02-17 2004-09-02 Kochi Prefecture 風力発電装置用ブレード
JP2004316466A (ja) * 2003-04-11 2004-11-11 Sekisui Chem Co Ltd 風力発電用ブレード

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US292057A (en) * 1884-01-15 Wind-wheel
US1175460A (en) * 1911-08-18 1916-03-14 Expl Des Procedes Westinghouse Leblanc Sa Wheel with elastic nave for steam or gas turbines and turbo-compressors.
US1527097A (en) * 1923-11-05 1925-02-17 Watson Claude Reversible windmill
US1819728A (en) * 1930-09-12 1931-08-18 Homer G Baugh Multiple blade propeller
US2118201A (en) * 1936-01-14 1938-05-24 Harry C Hood Self-governing windmill
US3132841A (en) * 1958-05-12 1964-05-12 Gen Motors Corp Compressor blade and manufacture thereof
US3572969A (en) * 1969-05-13 1971-03-30 Gen Motors Corp Turbomachine rotor
US4349318A (en) * 1980-01-04 1982-09-14 Avco Corporation Boltless blade retainer for a turbine wheel
US4389161A (en) * 1980-12-19 1983-06-21 United Technologies Corporation Locking of rotor blades on a rotor disk
JPS57168005A (en) * 1981-04-10 1982-10-16 Hitachi Ltd Rotor structue for axial machines
US4669164A (en) * 1986-01-27 1987-06-02 Phelps William D Method and apparatus for the manufacture of variable dimension fans
US5476366A (en) * 1994-09-20 1995-12-19 Baldor Electric Co. Fan construction and method of assembly
US5573377A (en) * 1995-04-21 1996-11-12 General Electric Company Assembly of a composite blade root and a rotor
US6102664A (en) * 1995-12-14 2000-08-15 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Blading system and method for controlling structural vibrations
FR2746456B1 (fr) * 1996-03-21 1998-04-30 Snecma Dispositif de retenue du pied des aubes d'une soufflante
US5836800A (en) * 1997-04-03 1998-11-17 Liu; Chin-Hsiang Pinwheel
US5935360A (en) * 1997-09-24 1999-08-10 General Electric Company Method for repairing a strip bonded to an article surface
US6004101A (en) * 1998-08-17 1999-12-21 General Electric Company Reinforced aluminum fan blade
DE19903550C1 (de) * 1999-01-29 2000-05-25 Muehlbauer Luftfahrttechn Gmbh Blattwurzel für Propeller- und Rotorblätter
AU2002354986B2 (en) * 2001-07-19 2006-11-30 Vestas Wind Systems A/S Wind turbine blade
US6619924B2 (en) * 2001-09-13 2003-09-16 General Electric Company Method and system for replacing a compressor blade
FR2831207B1 (fr) * 2001-10-24 2004-06-04 Snecma Moteurs Plates-formes pour aubes d'un ensemble rotatif
US6940185B2 (en) * 2003-04-10 2005-09-06 Advantek Llc Advanced aerodynamic control system for a high output wind turbine
GB0424481D0 (en) * 2004-11-05 2004-12-08 Rolls Royce Plc Composite aerofoil
FR2881174B1 (fr) * 2005-01-27 2010-08-20 Snecma Moteurs Dispositif de positionnement d'une aube et disque aubage comportant un tel dispositif

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5360405A (en) * 1976-11-12 1978-05-31 Toshiba Corp Turbine blade
JPS5731579U (ja) * 1980-07-30 1982-02-19
JPS6350463Y2 (ja) * 1982-08-25 1988-12-26
JPH0635279B2 (ja) * 1984-12-08 1994-05-11 ロ−ルス・ロイス・ピ−エルシ− ロ−タ−翼
JPH0614495U (ja) * 1992-07-30 1994-02-25 三菱重工業株式会社 動 翼
JP2000352398A (ja) * 1999-06-09 2000-12-19 Sumitomo Precision Prod Co Ltd 複合材製回転翼のシャンク部構造
JP2002201909A (ja) * 2000-12-28 2002-07-19 Ishikawajima Harima Heavy Ind Co Ltd ブレード保持構造
JP2004245174A (ja) * 2003-02-17 2004-09-02 Kochi Prefecture 風力発電装置用ブレード
JP2004316466A (ja) * 2003-04-11 2004-11-11 Sekisui Chem Co Ltd 風力発電用ブレード

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1876351A4 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014507599A (ja) * 2011-03-10 2014-03-27 フォイト・パテント・ゲーエムベーハー 軸流タービンのためのロータ配列
WO2014192297A1 (ja) * 2013-05-28 2014-12-04 テラル株式会社 ロータ
JP2014231759A (ja) * 2013-05-28 2014-12-11 テラル株式会社 ロータ
US9938957B2 (en) 2013-05-28 2018-04-10 Teral Inc. Rotor
JP6002865B1 (ja) * 2015-09-03 2016-10-05 積水化成品工業株式会社 風車用ブレード
WO2017037930A1 (ja) * 2015-09-03 2017-03-09 積水化成品工業株式会社 風車用ブレード
KR101878158B1 (ko) * 2015-09-03 2018-07-13 세키스이가세이힝코교가부시키가이샤 풍차용 블레이드
JP2018168789A (ja) * 2017-03-30 2018-11-01 積水化成品工業株式会社 風車用ブレード

Also Published As

Publication number Publication date
US20080273981A1 (en) 2008-11-06
JP5016482B2 (ja) 2012-09-05
CN101151457B (zh) 2013-01-16
EP1876351B1 (en) 2017-07-19
JPWO2006106734A1 (ja) 2008-09-11
EP1876351A4 (en) 2012-11-28
EP1876351A1 (en) 2008-01-09
DK1876351T3 (en) 2017-10-23
CN101151457A (zh) 2008-03-26

Similar Documents

Publication Publication Date Title
WO2006106734A1 (ja) 風車
US4966527A (en) Composite blade construction for a propeller or rotor blade
KR20120035194A (ko) 풍차 회전날개 및 풍차 회전날개의 제조 방법
JP2007533883A5 (ja)
WO2011077545A1 (ja) 風車回転翼
US20100119373A1 (en) Wind Turbine Rotor Blade
AU2004261415A1 (en) Bearing structure
JP3825346B2 (ja) 風力発電装置用複合材ブレード
RU2568543C1 (ru) Крепежная бобышка и кожух вентилятора
MXPA06014917A (es) Pala de turbina eolica.
KR20110100192A (ko) 풍력 터빈 날개 및 이를 사용하는 풍력 터빈 발전장치
JP2011137386A5 (ja)
JP2013510994A (ja) タービンブレード又は圧縮機ブレード
KR101958948B1 (ko) 모노리식 블레이드, 모노리식 블레이드를 구비한 회전익기 로터, 및 관련된 회전익기
WO2011078337A1 (ja) 風車回転翼および風力発電用風車
CN114630959A (zh) 风力涡轮机叶片
JP2007170328A (ja) 風力発電用風車翼およびその製造方法
JP4561344B2 (ja) 翼部材
JP2011256829A (ja) ケース及び取付用ボス
JP2006274989A (ja) 風車
JP6475767B2 (ja) 風車翼、及び風車翼の補強方法
WO2019101450A1 (en) Wind turbine with hub interconnection means
WO2007083630A1 (ja) 空気入りタイヤ用ランフラット支持体
JPH11311101A (ja) 繊維強化樹脂製翼構造体
JP2018168789A (ja) 風車用ブレード

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680010769.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007512794

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 11910137

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2006730421

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2006730421

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: RU

WWP Wipo information: published in national office

Ref document number: 2006730421

Country of ref document: EP