CN1294353C - 风力涡轮机叶片及其制造方法 - Google Patents

风力涡轮机叶片及其制造方法 Download PDF

Info

Publication number
CN1294353C
CN1294353C CNB028145437A CN02814543A CN1294353C CN 1294353 C CN1294353 C CN 1294353C CN B028145437 A CNB028145437 A CN B028145437A CN 02814543 A CN02814543 A CN 02814543A CN 1294353 C CN1294353 C CN 1294353C
Authority
CN
China
Prior art keywords
blade
band
fiber
thin layer
composite material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
CNB028145437A
Other languages
English (en)
Other versions
CN1533476A (zh
Inventor
奥利·冈恩斯科夫
尼古拉斯·达德利·巴洛
马克·汉考克
托马斯·弗朗斯基
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Vestas Wind Systems AS
Original Assignee
Neg Micon AS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=59297475&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=CN1294353(C) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Priority claimed from GB0202401A external-priority patent/GB0202401D0/en
Application filed by Neg Micon AS filed Critical Neg Micon AS
Publication of CN1533476A publication Critical patent/CN1533476A/zh
Application granted granted Critical
Publication of CN1294353C publication Critical patent/CN1294353C/zh
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D1/00Wind motors with rotation axis substantially parallel to the air flow entering the rotor 
    • F03D1/06Rotors
    • F03D1/065Rotors characterised by their construction elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D1/00Wind motors with rotation axis substantially parallel to the air flow entering the rotor 
    • F03D1/06Rotors
    • F03D1/065Rotors characterised by their construction elements
    • F03D1/0675Rotors characterised by their construction elements of the blades
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/28Shaping operations therefor
    • B29C70/40Shaping or impregnating by compression not applied
    • B29C70/42Shaping or impregnating by compression not applied for producing articles of definite length, i.e. discrete articles
    • B29C70/44Shaping or impregnating by compression not applied for producing articles of definite length, i.e. discrete articles using isostatic pressure, e.g. pressure difference-moulding, vacuum bag-moulding, autoclave-moulding or expanding rubber-moulding
    • B29C70/443Shaping or impregnating by compression not applied for producing articles of definite length, i.e. discrete articles using isostatic pressure, e.g. pressure difference-moulding, vacuum bag-moulding, autoclave-moulding or expanding rubber-moulding and impregnating by vacuum or injection
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/28Shaping operations therefor
    • B29C70/40Shaping or impregnating by compression not applied
    • B29C70/50Shaping or impregnating by compression not applied for producing articles of indefinite length, e.g. prepregs, sheet moulding compounds [SMC] or cross moulding compounds [XMC]
    • B29C70/52Pultrusion, i.e. forming and compressing by continuously pulling through a die
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/20Rotors
    • F05B2240/30Characteristics of rotor blades, i.e. of any element transforming dynamic fluid energy to or from rotational energy and being attached to a rotor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Laminated Bodies (AREA)
  • Moulding By Coating Moulds (AREA)
  • Wind Motors (AREA)

Abstract

本发明涉及风力涡轮机叶片,其包含许多预先预制的沿外部圆周顺序布置的条带。条带由纤维合成材料最好是碳纤维构成,也可以由木质材料最好是胶合板或固化树脂中的木质纤维构成。优点是,它使制造与传统制造技术相比具有优良硬度和高强度但又易于制造且又非常便宜的用于风力涡轮机的叶片成为可能。本发明也涉及制造预先预制的条带的方法和制造风力涡轮机叶片的方法。

Description

风力涡轮机叶片及其制造方法
技术领域
本发明涉及一种风力涡轮机的叶片。
背景技术
当今制造的风力涡轮机叶片包含一根中心内支撑梁(a bearing centralinner beam),该中心内支撑梁一般具有空的方形横截面,并由玻璃纤维和树脂合成物制造,周围环绕两个壳体(shell),该两个壳体形成叶片的上部外表面和下部外表面并决定其空气动力学特性。
壳体可以是单层,或至少沿圆周的一部分是一种层状结构(a sandwichconstruction),包含两个平行的玻璃纤维和树脂层,其间充满例如聚亚安酯泡沫材料。使用木质材料以增强单层壳体的内部或者填充层状结构的空间(space)是众所周知的。
已经实现了力和扭矩随着叶片长度的增加而急剧增加,内支撑梁的强度和硬度(stiffness)也必定急剧增加,因为壳体对叶片总承载特性的贡献很小。
为了使壳体能够承受内支撑梁受力的相当大部分,上述讨论的由于木质材料而增强的结构需要宽大的叶片尺寸和大的木质层的厚度,这样大大增加了叶片的重量并造成叶片的应力增加。
本发明的目的是提供一种风力涡轮机叶片,该风力涡轮机叶片具有层压产品的特性,即与其它材料相比具有高的强度,与固体产品相比具有低的生产成本,但是与生产叶片的成本相比,强度比现有技术的叶片大大提高。
发明内容
该发明目的可以通过一种叶片获得,在大部分纵向部分上,该叶片包含沿叶片横截面的外部圆周的一个薄层(a layer),该薄层由多个预先预制的沿叶片外部圆周顺序布置的条带(strip)构成。
“大部分纵向部分”应理解为在从尖部到中心部位至少叶片总长度的1/3上延伸的那部分,最好为至少叶片总长度的1/2以上。根据优选的实施例,总长度的60-85%,比如70%左右,包含这样的薄层(layer)。
因此,最佳的材料特性可以通过结合不同种类的条带(strip)而获得,比如,通过含有诸如碳纤维、玻璃纤维和/或天然纤维、木质条带、作为形成中空管材的合成条带等不同纤维的拉挤成型的纤维合成物(pultrudedfibrous composite)条带而获得。每一种类条带(strip)的制造比形成整个叶片要简单,并因此要便宜,并且,条带(strip)可以通过恰当的方式粘接在一起,比如,通过注入树脂的方式或真空灌输树脂的方式。
根据本发明,可以获得一种风力涡轮机叶片,其可以降低作用在内支撑梁(inner beam)的受力和扭矩。并且,在壳体外圆周附近的薄层上的抵抗拉力和压力的抗力给叶片提供了一个关于边缘弯曲模式(anedge-wise bending mode)的改良的结构效率(an improved structuralefficiency)。
因此,在一个优选的实施例中,至少一些预先预制的条带由拉挤成型的纤维合成材料(pultruded fibrous composite material)比如碳树脂(carbon-resin)制成。
因此,可以获得一种结构,其具有优良的硬度(stiffness),不易弯曲(buckling)。这样,叶片的内部结构可以由很轻的结构组成,比如,在前边缘(leading edge)和移动边缘(traveling edge)用两个较轻的网状结构(webs)分别替换常用的具有方形横截面的内支撑梁。
在一个优选的实施例中,圆周薄层通过注入树脂或真空灌输树脂的方式进行装配。使用树脂灌输的方式会使制造过程快速、健康和安全,在树脂内没有或仅有极少的空虚(void)。由于空虚极少,从而减少了后续的修整(finishing)。数量有限的纤维被确实灌输到叶片内。树脂主要是胶水而不是粘合物质(matrix)。这使得该结构更能容忍任何可能的空虚。
根据一个优选的实施例,在大部分纵向部分上的叶片包含沿横截面的外圆周的一个薄层,其中该薄层至少沿外圆周以交替的顺序部分地由木质材料的条带和纤维合成材料的条带构成。这样,纤维合成材料优良的硬度和木质材料抵抗弯曲的高抗力结合在一起,以获得一种具有成本效益的恰当性能的壳体。
一个特别可取的实施例包含至少由一种木质材料和天然纤维拉挤成型物(natural fibre pultrusions)制成的一些条带,其中,木质材料可优先选取作为木质材料使用的胶合板,天然纤维拉挤成型物可优先选取作为纤维合成材料使用的碳纤维拉挤成型物(carbon fibre pultrusions)。
该实施例所获得的优点是,这些材料能够共存并且两者都具有低的热膨胀系数。两种类型的材料都能在相类似的低应变的范围内工作,使相对于叶片的重量存在更硬的叶片的可能性。同样,天然纤维可能易于弯曲,虽然木材体积大(bulky),但木材不易弯曲,因此同样由于该原因,两种类型的材料能互补。
一般地,条带可以由木材、层压木材、拉挤成型物(pultrusion)制成,其中,拉挤成型物由人造的或天然的纤维制成,该纤维可用诸如任何树脂、热塑性塑料、泡沫塑料等材料与泡沫塑料、轻质芯材料以任意比例制成,该任何树脂、热塑性塑料、泡沫塑料等材料可以是人造的或来自天然的。至少一些预先预制的条带可以方便地由纤维合成材料形成。纤维材料的纤维可以是任何已知的具有能够增强木质合成物的合适性能的纤维,其中木质合成物可以是碳纤维、玻璃纤维、凯夫拉尔纤维(Kevlarfibres)、天然纤维等,天然纤维可以是大麻或亚麻、椰子壳纤维或他们的任意结合等。
作为例子,碳比木质材料有更高的抗破坏的应变。碳能作为增强剂,但木质首先破坏。在试样实验(coupon testing)中已经利用这一点来分别地证实碳强度和木质强度。添加碳并因此使用薄的壳体(skin)的可能性可以降低壳体歪曲极限(skin buckling margins)。
碳纤维比较昂贵,然而,木质很便宜并能够覆盖叶片区域而使成本降低。然而,木质本身能在高应力叶片内产生厚的效率低的壳体。碳纤维结合木质可以产生更薄的壳体,该壳体在结构上有效并令人满意。同样,木质有很高的容忍缺陷的能力(highly defect tolerant)。由纤维合成材料构成的壳体的总横截面的百分比在具有高纤维材料含量的叶片部分上可优选为在3%-30%的范围内,尤其可以优选在6%-20%的范围内。同样,由纤维构成的壳体的总横截面的百分比可优选为在2%-20%的范围内,尤其可以优选在4%-15%的范围内。
在本发明特别优选的实施例中,至少一些条带由中空管构成,该中空管由一种纤维合成材料形成。因此,材料和重量可以大大节省,而优良的结构性能却被保留下来。
至少一些纤维合成材料的条带最好是拉挤成型物,即由纤维和粘合物质(matrix)的拉挤成型混合物(pultruding mixture)制成的条带,该拉挤成型混合物在拉挤成型物后固化,该拉挤成型物可以是比如乙烯酯之类的可加工的树脂。因此,可以获得具有直纤维和低空虚含量的条带。同样,可以获得低树脂含量,从而导致低收缩和快速固化。
因此,优点是拉挤成型物具有拉挤成型方向,该方向基本上与叶片的纵向方向一致,在该方向上,对纤维的性能有要求。然而,拉挤成型物的终端接头是应力集中源,因此,要特别注意对这些结构因素的测试。
纤维合成材料包含50%-90%的纤维体积含量(fibre volume fraction),优选为60%-80%。尤其是,纤维合成材料可以包含50%-90%的碳纤维体积含量,优选为60%-80%。
根据一个优选的实施例,至少一些预先预制的条带由木质材料制成,这是因为木质材料成本低、重量轻,并且木质材料的材料性能很完美,能够通过结合比如纤维合成材料等其它材料类型的条带的方式形成所需要的叶片材料性能。木质材料可以是木质条带,如果需要的话,该木质条带可以在叶片的纵向方向上粘合在一起。
一个首选的实施例采用了胶合板,尤其是由于均匀的材料性能而作为木质材料的无方向性胶合板。可以采用的其它类型的木质材料由存在于已固化的树脂中的木质纤维组成。木质存在同方向的应力,因此,不但通过使用已建立的设计允许值(established design allowables)而使用新的接头形式和胶水成为可能,而且仍然对木质材料的结构充满信心。
根据本发明的一个实施例,薄层沿外圆周顺序地至少部分地由一种木质材料的条带和一种纤维合成材料的条带构成。这种顺序可以是一种木质材料的条带和一种纤维合成材料的条带相互交替的顺序。这种相互交替的顺序最好仅仅涉及叶片完整圆周的一部分。
可取的是,所讨论的薄层是层状结构(a sandwich construction)的一部分,如前面讨论的,即,薄层封闭在由例如由固化的合成树脂中的玻璃纤维网等纤维合成材料制成的外部壳体和内部壳体内。
样本类型
小型支撑梁:1-支撑梁,150×150mm,2.5m长,(25mm厚轮缘(flanges)),具有半标度外壳(half scale skins),包括拉挤成型物终端、缺陷、木质接头。
6m×1.2m风板(aerofoil):A型,设计成破坏于直接过应力、测试外壳、前后边缘接头。B型样本具有相对薄的外壳以进行弯曲分析。
31m叶片:A叶片,在A131模具中制造,具有与AL40(72×M30固定(fixings))一样的叶片连接(foot fixings),具有同相类似的木质和碳的分布一起建立的外壳(同AL40),具有双重网、相类似的前边缘接头。
                                    结构因素测试
 因素   测试  检验
 小型支撑梁   3点静弯曲  外壳强度、木质和拉挤成型物终端接头
 6m风板A,厚外壳   4点静弯曲  前边缘接头,网和外壳接头
 6m风板B,薄外壳   4点静弯曲  具有已弯曲外壳的弯曲理论
 31m叶片   边缘静态悬臂弯曲(Cantilever bending static edgewise)  硬度、频率、衰减(加载到1.35最大应变同AL40,分布状态同A131)
  平放静态悬臂弯曲(Cantilever bending static flatwise)  同前述边缘,但1.5最大应变同AL40,分布状态同A131。齿环弯曲(测量应变)
  平放疲劳悬臂弯曲  加速疲劳状态,100万次循环,模拟AL40寿命应变循环
  平放静态破坏  破坏模式和极限
  叶片连接静态拉伸和疲劳  叶片连接强度极限的确定
                        40m叶片测试
  边缘静态悬臂弯曲   硬度、频率、衰减,检验加载到1.35极值
  平放静态悬臂弯曲   同前述边缘,检验加载到1.35极值,齿环弯曲(测量应变)
  平放疲劳悬臂弯曲   疲劳状态,500万次循环,相当于寿命的1.35加载系数
  边缘疲劳悬臂弯曲   疲劳状态,500万次循环,相当于寿命的1.35加载系数
  平放静态破坏   破坏模式和极限
                          试样实验(Coupon testing)
  材料   测试   检验
  碳拉挤成型物   静态拉伸/压缩和疲劳CRAG测试   碳极限非常高
  木质   静态拉伸/压缩和疲劳AL型试样   木质接头也能运行或好于前一个接头类型
  具有木质的碳   静态压缩std木质测试   碳按预想的运行,木质具有最低强度压缩应力
本发明可以安装防雷保护系统,该系统包括两个可替换的防雷引子,该防雷引子最好接近尖部。其中的一个防雷引子安装在迎风侧,另一个防雷引子安装在下风侧。两个防雷引子都连接到铝网眼(aluminum mesh)或类似材料的宽度上,铝网眼或类似材料在叶片凝胶涂层的表面薄层下面的纤维增强区域上伸展,并且,两个防雷引子向下延伸到叶片的跟部,并在此接地。
无线通讯频率比如雷达信号的吸收介质可以有选择性地灌输到结构的其它部分。除了将强化光纤或强化光纤的替代物埋入到叶片外,也可能将光纤埋入到叶片中。可以使用光纤测量风力涡轮机在运行中叶片表面上和叶片表面内部的载荷。
作为替换,碳纤维的阻抗测量可以被用来测量叶片表面上和叶片表面内部的载荷。同样,所使用的用于测量载荷的碳纤维可以是一个或多个强化光纤,或者除了强化光纤外也可以是碳纤维,并用来测量载荷。
附图说明
本发明优选的实施例可以借助附图进行说明。
图1是具有薄层的叶片的横截面图,其中薄层由胶合板条带与纤维拉挤成型物条带相互交替而构成;
图2a是与图1叶片相类似的叶片的横截面图,该横截面显示了沿具有拉挤成型物条带的部分的圆周上的不同分布;
图2b是与显示在图2a中的横截面的叶片相类似的叶片的平面图,因此有沿具有拉挤成型物条带的部分的圆周上相似的分布;
图2c是图2a的叶片表面的图片,其中合成材料的外部壳体被除去;
图3图解了真空灌输过程。
具体实施方式
图1中的横截面所显示的叶片具有一个薄层,该薄层由白桦胶合板1的40×40mm条带与碳纤维拉挤成型物2的6×40mm条带相互交替而构成。薄层1、2在玻璃纤维网和人造树脂合成物的两个C-支撑梁3、4之间沿叶片的中心部分伸展,其中玻璃纤维网和人造树脂合成物表示LE(前边缘)网3和TE(移动边缘)网4并取代前面讨论过的中心内支撑梁。薄层1、2夹在玻璃环氧树脂外壳的内薄层5和外薄层6之间,该玻璃环氧树脂外壳承载剪切应力并提高叶片的横向硬度。在上部壳体和下部壳体所限定的并因此由白桦胶合板1和碳纤维拉挤成型物2以及LE网3和TE网4所构成的空间充满了轻质木质芯7。
图2a、2b、2c所显示的叶片与图1中的叶片相类似,除了碳纤维拉挤成型物2的强化位于上部壳体和下部壳体之间以及LE网3和TE网4之间的接触区域的附近外,在此应力集中最高。在所示的实施例中,使用双重网取代单层网。这将在压缩过程中给予外壳充足的弯曲极限。同样,前网降低了前边缘接头剪切载荷,允许一个较小的前边缘接头区域。这在制造叶片过程中是一个优点。
因为纤维拉挤成型物添加到木质结构中提高了结构的硬度,因此本技术是非常优越的。并不是沿叶片的长度上都使用碳纤维拉挤成型物,仅仅是承载应力所需要的中部70%使用碳纤维拉挤成型物。在所示的实施例中,叶片外壳横截面在应力比较高的区域,分散于木质合成物中的碳纤维拉挤成型物的区域可达10%。典型地,叶片外壳厚度的60%由纯粹的木质材料构成,这在临界边缘弯曲模式(critical edgewise bendingmode)中可降低重量并改善结构效率。外部和内部玻璃环氧树脂外壳是用与叶片纵向方向成±45℃角的玻璃纤维制造。
拉挤成型物具有能够保证在碳纤维合成物中直纤维和低空虚含量的优点。此外,拉挤成型物还具有加快叶片灌输过程的优点,这是因为精细的碳纤维需要相当长的时间进行灌输。拉挤成型物含有高的纤维体积含量,大约为70%,其中,纤维含有中等强度但极易于加工的树脂,比如乙烯酯。最好是,当制造叶片时,树脂随着两个长边上的“剥落板层(peelply)”而送进,然后被移开以产生干净的有织纹的表面以保证良好的粘结。
叶片壳体的制造过程如图3所示,包括步骤:将凝胶涂层(未示出)应用到模具8,然后将介质9,比如传递网眼(transfer mesh)、45℃角的玻璃纤维网10和环氧树脂(未示出),传送给模具以形成外部玻璃环氧树脂外壳。此后,木质和拉挤成型物条带1、2被定位,然后用于防雷保护的诸如铝网眼等金属网眼11被应用。然后,壳体被遮盖在一个容器中,即此过程显示的真空包12中,真空包12由外部装置13抽成真空。然后,树脂从树脂贮备池14通过形成于邻近条带之间的树脂通道15被注入,并通过抽真空扩散到整个结构。通常使用的用于灌输的树脂是来自于SP系统(SP System)的Prime 20。在固化树脂以后,内部玻璃环氧树脂外壳16在木质和拉挤成型物条带1、2的顶部被制造出来。

Claims (27)

1.一种用于风力涡轮机的叶片,其中叶片在从尖部到中心部位所测量的总长度的至少1/3部分上包含一个沿叶片横截面的外周的薄层(1、2),其特征在于,该薄层(1、2)至少部分地由许多预制的沿外周顺序布置的条带(2)构成,这些预制的条带(1、2)并排布置使得在与叶片长度方向垂直的平面内,相邻的条带(1、2)之间的接合面基本上垂直于薄层的表面。
2.一种用于风力涡轮机的叶片,其中叶片在从尖部到中心部位所测量的总长度的至少1/3部分上包含一个沿叶片横截面的外周的薄层(1、2),其特征在于,该薄层(1、2)至少部分地由许多预制的沿外周顺序布置的条带(2)构成,至少其中的一些条带(2)在与叶片长度方向垂直的平面中具有细长的条带横截面,以及
至少这些条带(2)中的一些条带以条带横截面的一个短边沿叶片的横截面的外周布置和/或
至少这些条带(2)中的一些条带以条带横截面的一个长边基本上垂直于叶片的横截面的外周布置。
3.如权利要求1或2所述的叶片,其特征在于,外部薄层(1、2)的条带通过树脂灌输的方式粘接在一起。
4.如权利要求3所述的叶片,其特征在于,外部薄层(1、2)的条带通过真空灌输树脂的方式粘接在一起。
5.如权利要求1或2所述的叶片,其特征在于,至少一些预制的条带由纤维合成材料构成。
6.如权利要求1或2所述的叶片,其特征在于,至少一些预制的条带(2)由形成于纤维合成材料的中空管构成。
7.如权利要求5所述的叶片,其特征在于,由纤维合成材料构成的预制的条带是拉挤成型的条带。
8.一种用于风力涡轮机的叶片,其中叶片在从尖部到中心部位所测量的总长度的至少1/3部分上包含一个沿叶片横截面的外周的薄层(1、2),其特征在于,该薄层(1、2)至少部分地由许多由纤维合成材料构成的、沿外周顺序布置的、预制的拉挤成型的条带(2)构成。
9.如权利要求7或8所述的叶片,其特征在于,所述拉挤成型的条带(2)具有与叶片的纵向方向基本一致的拉挤成型方向。
10.如权利要求5或8所述的叶片,其特征在于,所述纤维合成材料包含50%-90%的纤维体积含量。
11.如权利要求10所述的叶片,其特征在于,所述纤维合成材料包含60%-80%的纤维体积含量。
12.如权利要求5或8所述的叶片,其特征在于,所述纤维合成材料包含50%-90%的碳纤维体积含量。
13.如权利要求12所述的叶片,其特征在于,所述纤维合成材料包含60%-80%的纤维体积含量。
14.如权利要求1、2或8所述的叶片,其特征在于,薄层(1、2)至少部分地由一些由木质材料制成的沿外周顺序布置的条带构成。
15.如权利要求14所述的叶片,其特征在于,所述木质材料是胶合板。
16.如权利要求14所述的叶片,其特征在于,所述木质材料由已固化的树脂中的木质纤维组成。
17.如权利要求14所述的叶片,其特征在于,薄层(1、2)至少部分地由木质材料的条带和纤维合成材料的条带沿外周顺序地构成。
18.如权利要求17所述的叶片,其特征在于,所述顺序是木质材料的条带和纤维合成材料的条带相互交替的顺序。
19.如权利要求1、2或8所述的叶片,其特征在于,所述薄层被封闭于由纤维合成材料制成的外部壳体和内部壳体内。
20.如权利要求1、2或8所述的叶片,其特征在于,载荷测量纤维被封闭于外部壳体和内部壳体中的任意一个或两个内。
21.如权利要求20所述的叶片,其特征在于,所述载荷测量纤维是光纤或强化纤维。
22.如权利要求20所述的叶片,其特征在于,所述载荷测量纤维是碳纤维或强化纤维。
23.如权利要求1、2或8所述的叶片,其特征在于,含有防雷引子的防雷保护装置安装在外部壳体和内部壳体中的任意一个或两个内。
24.如权利要求23所述的叶片,其特征在于,所述防雷引子连接于在壳体的纤维强化区域上伸展的金属网眼(11)的宽度上。
25.如权利要求1、2或8所述的叶片,其特征在于,无线频率吸收介质安装在外部壳体和内部壳体中的任意一个或两个内。
26.用于权利要求1-25中任意一项权利要求所述叶片的预制条带的制造方法,所述叶片包含沿叶片横截面外周布置的薄层材料,所述方法包含以下步骤:
装配至少两个单独的材料(1、2)以构成预制条带;
在纤维合成材料中选择至少两个单独的材料(1、2)中的至少一个:
将装配的至少两个单独的材料(1、2)插入一个容器(12)中:
将容器(12)抽成真空,灌输制备的树脂,并让树脂固化;
从容器(12)中取出如此预制的已装配和固化的条带。
27.用于权利要求1-25中任意一项权利要求所述叶片的壳体的制造方法,所述壳体包含沿壳体横截面外周布置的薄层材料,所述薄层包含预制的条带,所述方法包含以下步骤:
将表面材料应用到制造叶片的模具(8)上;
选择性地应用金属网眼(11)、玻璃纤维网眼;
装配至少两个单独的材料(1、2)以构成预制条带;
在纤维合成材料中选择至少两个单独的材料(1、2)中的至少一个;
在其它应用的材料(10)上定位至少两个单独的材料(1、2);
将如此应用的单独的材料和其它材料插入容器(12)中;
将容器(12)抽成真空,灌输制备的树脂,并让树脂固化:
从模具中分离模塑物,从而预制出壳体。
CNB028145437A 2001-07-19 2002-07-19 风力涡轮机叶片及其制造方法 Expired - Lifetime CN1294353C (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
DKPA200101125 2001-07-19
DKPA200101125 2001-07-19
GB0202401.6 2002-02-01
GB0202401A GB0202401D0 (en) 2002-02-01 2002-02-01 Wind turbine blade

Related Child Applications (1)

Application Number Title Priority Date Filing Date
CN2006101670203A Division CN1975152B (zh) 2001-07-19 2002-07-19 风力涡轮机叶片

Publications (2)

Publication Number Publication Date
CN1533476A CN1533476A (zh) 2004-09-29
CN1294353C true CN1294353C (zh) 2007-01-10

Family

ID=59297475

Family Applications (2)

Application Number Title Priority Date Filing Date
CN2006101670203A Expired - Lifetime CN1975152B (zh) 2001-07-19 2002-07-19 风力涡轮机叶片
CNB028145437A Expired - Lifetime CN1294353C (zh) 2001-07-19 2002-07-19 风力涡轮机叶片及其制造方法

Family Applications Before (1)

Application Number Title Priority Date Filing Date
CN2006101670203A Expired - Lifetime CN1975152B (zh) 2001-07-19 2002-07-19 风力涡轮机叶片

Country Status (12)

Country Link
US (2) US7198471B2 (zh)
EP (4) EP3219981B1 (zh)
JP (1) JP2004535527A (zh)
CN (2) CN1975152B (zh)
AT (1) ATE293755T1 (zh)
AU (1) AU2002354986B2 (zh)
CA (1) CA2454038C (zh)
DE (1) DE60203804T3 (zh)
DK (4) DK1520983T3 (zh)
ES (4) ES2895673T3 (zh)
PT (1) PT1417409E (zh)
WO (1) WO2003008800A1 (zh)

Families Citing this family (174)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3219981B1 (en) 2001-07-19 2021-09-01 Vestas Wind Systems A/S Wind turbine blade
DE10336461A1 (de) 2003-08-05 2005-03-03 Aloys Wobben Verfahren zur Herstellung eines Rotorblattes einer Windenergieanlage
US20050186081A1 (en) * 2004-02-24 2005-08-25 Mohamed Mansour H. Wind blade spar cap and method of making
DK200401225A (da) 2004-08-13 2006-02-14 Lm Glasfiber As Metode til afskæring af laminatlag, eksempelvis et glasfiber- eller kulfiber-laminatlag i en vindmöllevinge
WO2006051147A1 (es) * 2004-11-11 2006-05-18 Gamesa Innovation And Technology, S.L. Sistema pararrayos para pala de aerogenerador con laminados de fibra de carbono
EP1833660B1 (en) * 2004-12-29 2016-06-29 Vestas Wind Systems A/S Method of manufacturing a wind turbine blade shell member with a fastening member and a wind turbine blade with a fastening member
MX2007009390A (es) * 2005-02-03 2008-02-14 Vestas Wind Sys As Metodo para fabricar un miembro de forro de paleta de turbina de viento.
ES2624666T3 (es) 2005-02-22 2017-07-17 Vestas Wind Systems A/S Pala de turbina eólica
WO2006106734A1 (ja) * 2005-03-30 2006-10-12 Zephyr Corporation 風車
US7802968B2 (en) * 2005-07-29 2010-09-28 General Electric Company Methods and apparatus for reducing load in a rotor blade
TW200726908A (en) * 2005-10-04 2007-07-16 Arthur Benjamin O Connor Wind turbine
US8402652B2 (en) * 2005-10-28 2013-03-26 General Electric Company Methods of making wind turbine rotor blades
US7438533B2 (en) * 2005-12-15 2008-10-21 General Electric Company Wind turbine rotor blade
US7798780B2 (en) * 2005-12-19 2010-09-21 General Electric Company Modularly constructed rotorblade and method for construction
JP4969098B2 (ja) * 2005-12-21 2012-07-04 三菱重工業株式会社 風車翼の落雷保護装置、該落雷保護装置の組立方法、該落雷保護装置を備える風車翼、及び該風車翼を備える風車
US7517198B2 (en) * 2006-03-20 2009-04-14 Modular Wind Energy, Inc. Lightweight composite truss wind turbine blade
JP4699255B2 (ja) * 2006-03-24 2011-06-08 三菱重工業株式会社 風車翼
US20070251090A1 (en) * 2006-04-28 2007-11-01 General Electric Company Methods and apparatus for fabricating blades
US7654799B2 (en) * 2006-04-30 2010-02-02 General Electric Company Modular rotor blade for a wind turbine and method for assembling same
DE102006022279B4 (de) * 2006-05-11 2016-05-12 Aloys Wobben Rotorblatt für eine Windenergieanlage
US20090044535A1 (en) * 2006-06-12 2009-02-19 Daw Shien Scientific Research And Development, Inc. Efficient vapor (steam) engine/pump in a closed system used at low temperatures as a better stirling heat engine/refrigerator
US20090211223A1 (en) * 2008-02-22 2009-08-27 James Shihfu Shiao High efficient heat engine process using either water or liquefied gases for its working fluid at lower temperatures
US20090249779A1 (en) * 2006-06-12 2009-10-08 Daw Shien Scientific Research & Development, Inc. Efficient vapor (steam) engine/pump in a closed system used at low temperatures as a better stirling heat engine/refrigerator
US20080296906A1 (en) * 2006-06-12 2008-12-04 Daw Shien Scientific Research And Development, Inc. Power generation system using wind turbines
CA2657037C (en) * 2006-07-14 2013-05-14 Vestas Wind Systems A/S Wind turbine comprising enclosure structure formed as a faraday cage
CN100412356C (zh) * 2006-08-31 2008-08-20 东莞中德风电能源有限公司 风能发电机的叶片的制造方法
EP2064778A1 (en) * 2006-09-22 2009-06-03 BAE Systems plc Structure
US8454318B2 (en) 2006-12-15 2013-06-04 Bladena Aps Reinforced aerodynamic profile
ES2496167T3 (es) 2007-01-16 2014-09-18 Bladena Aps Pala reforzada para aerogenerador
DK2108083T3 (da) * 2007-01-25 2013-02-04 Bladena Aps Forstærket vindmøllevinge
CN101595300A (zh) * 2007-01-29 2009-12-02 丹麦技术大学 风力涡轮机叶片
WO2008101506A2 (en) * 2007-02-19 2008-08-28 Vestas Wind Systems A/S Wind turbine rotor blade and method of manufacturing such rotor blade
US7895745B2 (en) * 2007-03-09 2011-03-01 General Electric Company Method for fabricating elongated airfoils for wind turbines
EP1978245A1 (en) 2007-04-04 2008-10-08 Siemens Aktiengesellschaft Optimised layout for wind turbine rotor blades
KR100879029B1 (ko) * 2007-07-25 2009-01-15 베스타스 윈드 시스템스 에이/에스 고정부재를 구비한 풍력터빈 블레이드 외피부재의 제조방법및 고정부재를 구비한 풍력터빈 블레이드
US20090070977A1 (en) * 2007-09-13 2009-03-19 General Electric Company Jig And Fixture For Wind Turbine Blade
US20090084932A1 (en) * 2007-09-27 2009-04-02 General Electric Company Wind turbine blade molds
CN101855396B (zh) * 2007-11-09 2012-07-18 维斯塔斯风力系统有限公司 用于加强风力涡轮机叶片结构的结构垫、风力涡轮机叶片和制造风力涡轮机叶片的方法
US20090140527A1 (en) * 2007-11-30 2009-06-04 General Electric Company Wind turbine blade stiffeners
US8337163B2 (en) * 2007-12-05 2012-12-25 General Electric Company Fiber composite half-product with integrated elements, manufacturing method therefor and use thereof
DE102008007304A1 (de) 2008-02-02 2009-08-06 Nordex Energy Gmbh Rotorblatt für Windenergieanlagen
WO2009111468A1 (en) 2008-03-03 2009-09-11 Abe Karem Wing and blade structure using pultruded composites
GB0806666D0 (en) * 2008-04-11 2008-05-14 Bond Philip C Windfarm radar clutter mitigation
EP2110552B2 (en) 2008-04-15 2018-12-26 Siemens Aktiengesellschaft Wind turbine blade with an integrated lightning conductor and method for manufacturing the same
DE102008024644B4 (de) 2008-05-21 2018-07-26 Airbus Defence and Space GmbH Rotorblatt mit darin integriertem Radarabsorber für eine Windkraftanlage
CN102066747A (zh) * 2008-06-23 2011-05-18 丹麦技术大学 具有成角度的梁的风力涡轮机叶片
ES2383061T3 (es) 2008-06-24 2012-06-18 Bladena Aps Paleta de turnina eólica reforzada
ES2385516B1 (es) * 2008-06-27 2013-05-31 Gamesa Innovation & Technology, S.L. Inserto de pala y método de colocación del mismo.
DE102008045601A1 (de) * 2008-06-27 2009-12-31 Repower Systems Ag Rotorblatt für eine Windenergieanlage und Verfahren und Fertigungform zu seiner Fertigung
DE102008038620A1 (de) * 2008-06-27 2009-12-31 Powerblades Gmbh Verfahren und Fertigungsform zur Fertigung eines Rotorblattes für eine Windenergieanlage
GB2451192B (en) * 2008-07-18 2011-03-09 Vestas Wind Sys As Wind turbine blade
EP2153964A1 (en) * 2008-08-14 2010-02-17 Lm Glasfiber A/S A method of manufacturing a wind turbine blade comprising steel wire reinforced matrix material
US8137074B2 (en) * 2008-08-21 2012-03-20 General Electric Company Wind turbine lightning protection system
US20100045037A1 (en) * 2008-08-21 2010-02-25 Daw Shien Scientific Research And Development, Inc. Power generation system using wind turbines
US7866951B2 (en) 2008-08-29 2011-01-11 General Electric Company Wind turbine blades with cross webs
DE102008049016A1 (de) * 2008-09-25 2010-04-15 Repower Systems Ag Rotorblatt mit einem Gurt mit einer in Längsrichtung abnehmenden Breite, Verfahren zur Herstellung des Rotorblattes und Verlegehilfe für Gelegebänder des Gurtes
US20110020110A1 (en) * 2008-10-06 2011-01-27 Flodesign Wind Turbine Corporation Wind turbine with reduced radar signature
US20100166547A1 (en) * 2008-10-06 2010-07-01 Flodesign Wind Turbine Corporation Wind turbine with reduced radar signature
CA2741479A1 (en) * 2008-10-22 2010-04-29 Vec Industries, L.L.C. Wind turbine blade and method for manufacturing thereof
DE102008055771C5 (de) 2008-11-04 2018-06-14 Senvion Gmbh Rotorblattgurt
WO2010065928A1 (en) 2008-12-05 2010-06-10 Modular Wind Energy, Inc. Efficient wind turbine blades, wind turbine blade structures, and associated systems and methods of manufacture, assembly and use
US7942637B2 (en) * 2008-12-11 2011-05-17 General Electric Company Sparcap for wind turbine rotor blade and method of fabricating wind turbine rotor blade
BRPI0924251B1 (pt) * 2009-02-26 2016-03-22 Tecsis Tecnologia E Sist S Avançados S A método de manufatura de pás de aerogeradores
US7942640B2 (en) * 2009-03-19 2011-05-17 General Electric Company Method and apparatus for use in protecting wind turbine blades from lightning damage
US8662853B2 (en) * 2009-04-13 2014-03-04 Maxiflow Manufacturing Inc. Wind turbine blade and method of constructing same
CN101865075B (zh) * 2009-04-14 2012-01-11 上海艾郎风电科技发展有限公司 兆瓦级风电叶片前缘修形的方法
GB2469516A (en) * 2009-04-17 2010-10-20 Insensys Ltd Rotor blade with optical strain sensors covered by erosion shield
DE102009002637A1 (de) * 2009-04-24 2010-10-28 Wobben, Aloys Rotorblatt für eine Windenergieanlage
US8043065B2 (en) * 2009-05-01 2011-10-25 General Electric Company Wind turbine blade with prefabricated leading edge segments
US20120135099A1 (en) * 2009-05-04 2012-05-31 Mag Ias, Llc Method and apparatus for rapid molding of wind turbine blades
US8753091B1 (en) * 2009-05-20 2014-06-17 A&P Technology, Inc. Composite wind turbine blade and method for manufacturing same
DK2449254T3 (da) * 2009-06-30 2013-07-08 Vestas Wind Sys As Fremgangsmåde til fremstilling af en vindmøllevinge omfattende to elementer der samles ved adhæsion
EP2444660A4 (en) * 2009-07-09 2013-05-22 Mitsubishi Heavy Ind Ltd WIND TURBINE BUCKET AND METHOD FOR PRODUCING A WIND TURBINE BUCKET
US20110052404A1 (en) * 2009-08-25 2011-03-03 Zuteck Michael D Swept blades with enhanced twist response
US8657581B2 (en) * 2009-08-28 2014-02-25 Gordon Holdings, Inc. Thermoplastic rotor blade
US8424805B2 (en) 2009-10-07 2013-04-23 Donald Smith Airfoil structure
CN102042162B (zh) * 2009-10-19 2013-04-24 联合船舶设计发展中心 泄压装置
US20110103965A1 (en) * 2009-10-30 2011-05-05 General Electric Company Wind turbine blades
US20110100540A1 (en) * 2009-10-30 2011-05-05 General Electric Company Methods of manufacture of wind turbine blades and other structures
US8702397B2 (en) * 2009-12-01 2014-04-22 General Electric Company Systems and methods of assembling a rotor blade for use in a wind turbine
EP2330294B1 (en) 2009-12-02 2013-01-16 Bladena ApS Reinforced airfoil shaped body
DE102009047570A1 (de) * 2009-12-07 2011-06-09 Repower Systems Ag Gurt eines Rotorblatts einer Windenergieanlage
JP5308323B2 (ja) * 2009-12-22 2013-10-09 三菱重工業株式会社 風車翼及びそれを用いた風力発電装置
CN102834608A (zh) * 2009-12-25 2012-12-19 北京可汗之风科技有限公司 重组竹风力发电机叶片
JP2011137386A (ja) * 2009-12-25 2011-07-14 Mitsubishi Heavy Ind Ltd 風車回転翼および風車回転翼の製造方法
JP5427597B2 (ja) * 2009-12-25 2014-02-26 三菱重工業株式会社 風車回転翼
US20110135485A1 (en) * 2009-12-30 2011-06-09 Jing Wang Spar for a wind turbine rotor blade and method for fabricating the same
US8142164B2 (en) * 2009-12-31 2012-03-27 General Electric Company Rotor blade for use with a wind turbine and method for assembling rotor blade
US10137542B2 (en) 2010-01-14 2018-11-27 Senvion Gmbh Wind turbine rotor blade components and machine for making same
ES2510398T3 (es) 2010-01-14 2014-10-21 Neptco, Inc. Componentes de pala de rotor de aerogenerador y métodos para fabricar los mismos
DE102010017062B4 (de) 2010-05-21 2019-07-11 Thyssenkrupp Steel Europe Ag Rotorblatt einer Windkraftanlage
US9500179B2 (en) 2010-05-24 2016-11-22 Vestas Wind Systems A/S Segmented wind turbine blades with truss connection regions, and associated systems and methods
US8043066B2 (en) * 2010-06-08 2011-10-25 General Electric Company Trailing edge bonding cap for wind turbine rotor blades
US8115333B2 (en) 2010-06-23 2012-02-14 Harris Corporation Wind turbine providing reduced radio frequency interaction and related methods
EP2400147A1 (en) * 2010-06-25 2011-12-28 Siemens Aktiengesellschaft Root of the blade of a wind turbine
EP2407292B1 (en) * 2010-07-14 2013-11-13 Siemens Aktiengesellschaft Negative mold comprising predefined foam blocks for casting a component and method for producing the negative mold
CN102985683A (zh) * 2010-07-22 2013-03-20 北京可汗之风科技有限公司 新型竹质叶片结构
US8083488B2 (en) * 2010-08-23 2011-12-27 General Electric Company Blade extension for rotor blade in wind turbine
US8523515B2 (en) 2010-11-15 2013-09-03 General Electric Company Noise reducer for rotor blade in wind turbine
US8267657B2 (en) 2010-12-16 2012-09-18 General Electric Company Noise reducer for rotor blade in wind turbine
CN102108946B (zh) * 2011-01-17 2013-01-09 南京航空航天大学 复合铺层式风力机叶片及其制造方法
ES2398553B1 (es) * 2011-02-24 2014-02-06 Gamesa Innovation & Technology S.L. Una pala de aerogenerador multi-panel mejorada.
FR2972503B1 (fr) 2011-03-11 2013-04-12 Epsilon Composite Renfort mecanique pour piece en materiau composite, notamment pour une pale d'eolienne de grandes dimensions
US9580598B2 (en) * 2011-03-25 2017-02-28 Covestro Llc Polyurethane composites produced by a vacuum infusion process
US20120027609A1 (en) * 2011-05-17 2012-02-02 Prasad Ogde Wind turbine rotor blade with precured fiber rods and method for producing the same
GB201108922D0 (en) * 2011-05-27 2011-07-13 Barlow Nick D Underwater turbine blade
US8414261B2 (en) 2011-05-31 2013-04-09 General Electric Company Noise reducer for rotor blade in wind turbine
DE102011105228B3 (de) * 2011-06-10 2012-09-20 Nordex Energy Gmbh Windenergieanlagenbauteil mit einer in ein Laminat eingebetteten elektrischen Leitung
US8728374B1 (en) 2011-08-02 2014-05-20 Crane Composites Inc. Method of manufacturing a foundation wall panel
US8834127B2 (en) 2011-09-09 2014-09-16 General Electric Company Extension for rotor blade in wind turbine
FR2980514B1 (fr) * 2011-09-23 2018-01-05 Flakt Solyvent-Ventec Pale de machine tournante a structure modulaire renforcee
GB2497578B (en) 2011-12-16 2015-01-14 Vestas Wind Sys As Wind turbine blades
US8430638B2 (en) 2011-12-19 2013-04-30 General Electric Company Noise reducer for rotor blade in wind turbine
CN109113924B (zh) * 2011-12-22 2021-04-20 Lm Wp 专利控股有限公司 由具有不同类型的负载支承结构的内侧部分和外侧部分组装的风力涡轮机叶片
CN102518567A (zh) * 2011-12-26 2012-06-27 无锡韦伯风能技术有限公司 轻质高强度叶片及其制造工艺
WO2014041151A2 (en) * 2012-09-17 2014-03-20 Lm Wp Patent Holding A/S Wind turbine blade with fastening means
US10875287B2 (en) 2012-09-18 2020-12-29 Vestas Wind Systems A/S Wind turbine blades
DE102012219224B3 (de) 2012-10-22 2014-03-27 Repower Systems Se System und Verfahren zum Herstellen eines Rotorblattgurtes
US10105913B2 (en) * 2012-11-20 2018-10-23 Vestas Wind Systems A/S Wind turbine blades and method of manufacturing the same
CN103862595A (zh) * 2012-12-10 2014-06-18 中航惠腾风电设备股份有限公司 具双真空系统的风轮叶片模具及用其制作风轮叶片的方法
US9470205B2 (en) 2013-03-13 2016-10-18 Vestas Wind Systems A/S Wind turbine blades with layered, multi-component spars, and associated systems and methods
US9128184B1 (en) 2013-03-14 2015-09-08 Lockheed Martin Corporation Radar wind turbine
US20150023799A1 (en) * 2013-07-19 2015-01-22 Kyle K. Wetzel Structural Member with Pultrusions
GB2519333A (en) * 2013-10-17 2015-04-22 Vestas Wind Sys As Improvements relating to lightning protection systems for wind turbine blades
GB2520079A (en) 2013-11-11 2015-05-13 Vestas Wind Sys As Wind turbine blades
GB201320166D0 (en) * 2013-11-15 2014-01-01 Vestas Wind Sys As Wind turbine components
US9494134B2 (en) 2013-11-20 2016-11-15 General Electric Company Noise reducing extension plate for rotor blade in wind turbine
CN106029347B (zh) 2013-12-23 2018-04-17 维斯塔斯风力系统有限公司 风轮机叶片
KR20150080845A (ko) * 2014-01-02 2015-07-10 두산중공업 주식회사 풍력 발전기용 블레이드의 제어장치, 제어방법, 및 이를 이용하는 풍력 발전기
EP2927481B1 (en) * 2014-03-31 2021-09-22 Siemens Gamesa Renewable Energy A/S Rotor blade for a wind turbine
JP6645986B2 (ja) 2014-05-05 2020-02-14 ホートン, インコーポレイテッド 複合ファン
CN105089931A (zh) * 2014-05-13 2015-11-25 通用电气公司 风机及其叶片对准方法
GB2528850A (en) 2014-07-31 2016-02-10 Vestas Wind Sys As Improvements relating to reinforcing structures for wind turbine blades
DE102014018498A1 (de) * 2014-12-16 2016-06-16 Senvion Gmbh Anordnung pultrudierter Stäbe
US10180125B2 (en) 2015-04-20 2019-01-15 General Electric Company Airflow configuration for a wind turbine rotor blade
DE102015007801A1 (de) * 2015-06-19 2016-12-22 Senvion Gmbh Verfahren zur Herstellung eines Bauteils eines Rotorblattes einer Windenergieanlage
US10337490B2 (en) 2015-06-29 2019-07-02 General Electric Company Structural component for a modular rotor blade
US9897065B2 (en) 2015-06-29 2018-02-20 General Electric Company Modular wind turbine rotor blades and methods of assembling same
US10669984B2 (en) * 2015-09-22 2020-06-02 General Electric Company Method for manufacturing blade components using pre-cured laminate materials
EP3181895A1 (en) * 2015-12-17 2017-06-21 LM WP Patent Holding A/S Splitter plate arrangement for a serrated wind turbine blade
CN108603487B (zh) 2016-01-29 2021-06-29 乌本产权有限公司 梁帽和制造方法
CN107539461A (zh) * 2016-06-29 2018-01-05 山东龙翼航空科技有限公司 一种无人机用螺旋桨
DK3330529T3 (da) 2016-12-05 2020-10-26 Nordex Energy Gmbh Spar cap-enhed til et vindenergianlæg-rotorblad
US10465652B2 (en) 2017-01-26 2019-11-05 General Electric Company Vortex generators for wind turbine rotor blades having noise-reducing features
US11098691B2 (en) 2017-02-03 2021-08-24 General Electric Company Methods for manufacturing wind turbine rotor blades and components thereof
US10830206B2 (en) 2017-02-03 2020-11-10 General Electric Company Methods for manufacturing wind turbine rotor blades and components thereof
US10738759B2 (en) 2017-02-09 2020-08-11 General Electric Company Methods for manufacturing spar caps for wind turbine rotor blades
US10527023B2 (en) 2017-02-09 2020-01-07 General Electric Company Methods for manufacturing spar caps for wind turbine rotor blades
US10987879B2 (en) * 2017-03-02 2021-04-27 General Electric Company Methods of manufacturing rotor blade components for a wind turbine
ES2917405T3 (es) * 2017-05-09 2022-07-08 Siemens Gamesa Renewable Energy As Pala de rotor de turbina eólica con sensores incorporados
CN111344486B (zh) 2017-10-02 2022-02-25 维斯塔斯风力系统有限公司 有关风力涡轮机叶片的结构部件的改进
US10677216B2 (en) 2017-10-24 2020-06-09 General Electric Company Wind turbine rotor blade components formed using pultruded rods
US10731470B2 (en) * 2017-11-08 2020-08-04 General Electric Company Frangible airfoil for a gas turbine engine
US10821652B2 (en) 2017-11-21 2020-11-03 General Electric Company Vacuum forming mold assembly and method for creating a vacuum forming mold assembly
US10913216B2 (en) 2017-11-21 2021-02-09 General Electric Company Methods for manufacturing wind turbine rotor blade panels having printed grid structures
US11040503B2 (en) 2017-11-21 2021-06-22 General Electric Company Apparatus for manufacturing composite airfoils
US10865769B2 (en) 2017-11-21 2020-12-15 General Electric Company Methods for manufacturing wind turbine rotor blade panels having printed grid structures
US11390013B2 (en) 2017-11-21 2022-07-19 General Electric Company Vacuum forming mold assembly and associated methods
US10920745B2 (en) 2017-11-21 2021-02-16 General Electric Company Wind turbine rotor blade components and methods of manufacturing the same
US11248582B2 (en) * 2017-11-21 2022-02-15 General Electric Company Multiple material combinations for printed reinforcement structures of rotor blades
EP3501809A1 (en) * 2017-12-22 2019-06-26 Siemens Gamesa Renewable Energy A/S Pultruded fibrous composite strips having non-planar profiles cross-section for wind turbine blade spar caps
DE102018100302A1 (de) 2018-01-09 2019-07-11 Wobben Properties Gmbh Windenergieanlagen-Rotorblatt
US11738530B2 (en) 2018-03-22 2023-08-29 General Electric Company Methods for manufacturing wind turbine rotor blade components
US10767623B2 (en) 2018-04-13 2020-09-08 General Electric Company Serrated noise reducer for a wind turbine rotor blade
US10746157B2 (en) 2018-08-31 2020-08-18 General Electric Company Noise reducer for a wind turbine rotor blade having a cambered serration
US20200256312A1 (en) * 2019-02-10 2020-08-13 Arthur David Stanton Method of Manufacture and the Resulting Vertical Axis Wind Turbine Airfoil
EP3708828A1 (en) 2019-03-14 2020-09-16 Siemens Gamesa Renewable Energy A/S A method for providing a wind turbine blade with lightning protection and a wind turbine blade
EP3712423B1 (en) * 2019-03-21 2022-12-28 Siemens Gamesa Renewable Energy A/S Method of repairing a damaged spar cap of a wind turbine blade of a wind turbine
EP3719312B1 (en) 2019-04-03 2022-06-08 Siemens Gamesa Renewable Energy A/S Wind turbine blade and wind turbine
US11046420B2 (en) * 2019-10-23 2021-06-29 The Boeing Company Trailing edge flap having a waffle grid interior structure
CN111121285B (zh) * 2019-12-31 2021-04-02 南京比尔森热力技术工程有限公司 一种新型热水供应设备
EP4146457A1 (en) * 2020-05-08 2023-03-15 Blade Dynamics Limited Wind turbine blade
SE544491C2 (en) * 2020-09-24 2022-06-21 Modvion Ab Rotor blade and method for assembly of a rotor blade
EP4194683A1 (en) * 2021-12-09 2023-06-14 General Electric Renovables España S.L. Wind turbine blades, wind turbine blade assemblies and related methods

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4474536A (en) * 1980-04-09 1984-10-02 Gougeon Brothers, Inc. Wind turbine blade joint assembly and method of making wind turbine blades
US4643647A (en) * 1984-12-08 1987-02-17 Rolls-Royce Plc Rotor aerofoil blade containment
CN2080994U (zh) * 1990-10-13 1991-07-17 内蒙古动力机厂 200w风力发电机叶片
US5375324A (en) * 1993-07-12 1994-12-27 Flowind Corporation Vertical axis wind turbine with pultruded blades
CN2495836Y (zh) * 2001-04-24 2002-06-19 胡德诚 复合材料机翼形叶片

Family Cites Families (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2293224A (en) * 1939-02-24 1942-08-18 Sukohl Heinrich Propeller for aircraft
BE508996A (zh) * 1947-11-12
GB706800A (en) * 1951-10-09 1954-04-07 Bell Aircraft Corp Improvements in the construction of rotor blades
FR1070262A (fr) 1952-02-02 1954-07-21 Chantiers De France Atel Pale creuse de rotor à pas variable, notamment pour rotors de moteurs à vent
DE1045810B (de) 1957-05-17 1958-12-04 Allgaier Werke G M B H Aus faserverstaerkten Kunststoffschalen oder -platten bestehender Koerper, insbesondere Trag- oder Antriebsfluegel, und Verfahren und Werkzeug zu seiner Herstellung
US3390393A (en) * 1964-09-17 1968-06-25 Bell Aerospace Corp Airfoil radar antenna
CA1007240A (en) 1973-06-04 1977-03-22 James K. Pierce (polychlorophenoxy)methyl esters of thiocyanic acid
FR2345600A1 (fr) 1975-06-09 1977-10-21 Bourquardez Gaston Eolienne a paliers fluides
GB1526433A (en) 1975-08-06 1978-09-27 Secr Defence Helicopter rotor blades
US4057450A (en) 1976-12-30 1977-11-08 Hitco Method for making buoyancy members
GB2048174B (en) 1979-05-02 1983-05-18 Pultrex Ltd Assembling boat hulls
DE2921152C2 (de) 1979-05-25 1982-04-22 Messerschmitt-Bölkow-Blohm GmbH, 8000 München Rotorblatt für Windkraftwerke
US4295790A (en) * 1979-06-21 1981-10-20 The Budd Company Blade structure for use in a windmill
NL8104019A (nl) 1981-08-28 1983-03-16 Jan Bos Werkwijze voor het vervaardigen van voorwerpen uit gewapende kunststof.
US4597715A (en) * 1982-05-19 1986-07-01 North Wind Power Company, Inc. Wooden wind turbine blade manufacturing process
US4627791A (en) * 1982-11-10 1986-12-09 Marshall Andrew C Aeroelastically responsive composite propeller
US5786785A (en) 1984-05-21 1998-07-28 Spectro Dynamics Systems, L.P. Electromagnetic radiation absorptive coating composition containing metal coated microspheres
FR2575970A1 (fr) 1984-12-21 1986-07-18 Berret Pierre Structures monolithiques en materiaux composites
FR2586966B1 (fr) 1985-09-11 1988-02-26 France Etat Armement Structures multicanaux en materiaux composites, procedes et demi-produits pour la fabrication de celles-ci
GB2186833A (en) 1986-02-20 1987-08-26 Fiberforce Limited Pultrusion method
US4883552A (en) * 1986-12-05 1989-11-28 Phillips Petroleum Company Pultrusion process and apparatus
US4976087A (en) * 1987-12-07 1990-12-11 Edward Pizzino Method of forming footing and laying first course of block
US4902215A (en) 1988-06-08 1990-02-20 Seemann Iii William H Plastic transfer molding techniques for the production of fiber reinforced plastic structures
US4976587A (en) 1988-07-20 1990-12-11 Dwr Wind Technologies Inc. Composite wind turbine rotor blade and method for making same
US5304339A (en) 1990-05-23 1994-04-19 Le Comte Adolf Method for manufacturing a large-sized object of fiber reinforced synthetic resin
US5324563A (en) 1990-08-08 1994-06-28 Bell Helicopter Textron Inc. Unidirectional carbon fiber reinforced pultruded composite material having improved compressive strength
DE69220236T2 (de) 1991-09-13 1998-01-15 Bell Helicopter Textron Inc., Fort Worth, Tex. In einer richtung laufender graphitpultrusionsstab
AT398064B (de) 1992-07-01 1994-09-26 Hoac Austria Flugzeugwerk Wr N Kunststoff-verbundprofil, insbesondere flügelholm für den flugzeugbau
DK9400343U4 (da) * 1994-09-07 1995-10-13 Bonus Energy As Lynsikring af vindmøllevinge
DE4436197C2 (de) * 1994-10-11 1998-09-24 Aloys Wobben Windenergieanlage mit Blitzschutzeinrichtung
DE4436290C1 (de) 1994-10-11 1996-05-02 Autoflug Energietech Gmbh Windkraftanlage mit Blitzschutz
DE4445899A1 (de) 1994-12-22 1996-06-27 Autoflug Energietech Gmbh Windkraftanlage mit Blitzstromableitung
DE19501267A1 (de) 1994-12-22 1996-08-29 Autoflug Energietech Gmbh Windkraftanlage mit Blitzstromableitung
FR2740380B1 (fr) * 1995-10-30 1998-01-02 Eurocopter France Procede de fabrication d'une pale a pas variable en materiau composite pour rotor d'helicoptere
US6081955A (en) 1996-09-30 2000-07-04 Martin Marietta Materials, Inc. Modular polymer matrix composite support structure and methods of constructing same
DK173460B2 (da) 1998-09-09 2004-08-30 Lm Glasfiber As Vindmöllevinge med lynafleder
AU768212B2 (en) 1999-11-03 2003-12-04 Vestas Wind Systems A/S Method of controlling the operation of a wind turbine and wind turbine for use in said method
GB0003029D0 (en) 2000-02-11 2000-03-29 British Aerospace A method of reinforcing a laminated member such as a skin for an aircraft
EP3219981B1 (en) 2001-07-19 2021-09-01 Vestas Wind Systems A/S Wind turbine blade

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4474536A (en) * 1980-04-09 1984-10-02 Gougeon Brothers, Inc. Wind turbine blade joint assembly and method of making wind turbine blades
US4643647A (en) * 1984-12-08 1987-02-17 Rolls-Royce Plc Rotor aerofoil blade containment
CN2080994U (zh) * 1990-10-13 1991-07-17 内蒙古动力机厂 200w风力发电机叶片
US5375324A (en) * 1993-07-12 1994-12-27 Flowind Corporation Vertical axis wind turbine with pultruded blades
CN2495836Y (zh) * 2001-04-24 2002-06-19 胡德诚 复合材料机翼形叶片

Also Published As

Publication number Publication date
ES2574779T3 (es) 2016-06-22
DK3219981T3 (da) 2021-10-25
CA2454038C (en) 2009-09-29
EP3219981B1 (en) 2021-09-01
EP1520983A1 (en) 2005-04-06
AU2002354986B2 (en) 2006-11-30
ES2240828T3 (es) 2005-10-16
EP3219981A1 (en) 2017-09-20
DK1746284T3 (en) 2016-06-20
EP1417409B1 (en) 2005-04-20
DK1746284T4 (da) 2021-10-18
WO2003008800A1 (en) 2003-01-30
ES2240828T5 (es) 2017-08-29
EP1417409B2 (en) 2017-04-05
US20070183888A1 (en) 2007-08-09
CN1975152B (zh) 2012-03-21
CN1975152A (zh) 2007-06-06
DK1417409T4 (en) 2017-07-31
EP1417409A1 (en) 2004-05-12
EP1520983B1 (en) 2017-04-12
JP2004535527A (ja) 2004-11-25
DK1520983T3 (en) 2017-05-15
US20040253114A1 (en) 2004-12-16
PT1417409E (pt) 2005-09-30
DE60203804D1 (de) 2005-05-25
ES2895673T3 (es) 2022-02-22
ES2624620T3 (es) 2017-07-17
EP1746284B1 (en) 2016-04-20
ATE293755T1 (de) 2005-05-15
DK1417409T3 (da) 2005-08-22
US7198471B2 (en) 2007-04-03
EP1746284B2 (en) 2021-09-29
DE60203804T2 (de) 2005-10-06
EP1746284A1 (en) 2007-01-24
DE60203804T3 (de) 2017-08-31
CA2454038A1 (en) 2003-01-30
US7503752B2 (en) 2009-03-17
ES2574779T5 (es) 2022-02-17
CN1533476A (zh) 2004-09-29

Similar Documents

Publication Publication Date Title
CN1294353C (zh) 风力涡轮机叶片及其制造方法
AU2002354986A1 (en) Wind turbine blade
US20200049128A1 (en) Wind turbine blades
CN104812557B (zh) 在风轮机叶片翼梁帽盖和整流罩间形成结构连接的方法
DK2110552T3 (en) Wind turbine blade with an integrated lightning arrester and method for manufacturing it
EP2511477B1 (en) Wind turbine blade with transition region
CN114630957A (zh) 风力涡轮机叶片
US20200384720A1 (en) Cores for Composite Material Sandwich Panels
AU2007200545A1 (en) Wind turbine blade

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
ASS Succession or assignment of patent right

Owner name: VESTAS WIND SYSTEM GROUP CO.,LTD.

Free format text: FORMER OWNER: NEG MAIKANG CO.,LTD.

Effective date: 20091113

C41 Transfer of patent application or patent right or utility model
TR01 Transfer of patent right

Effective date of registration: 20091113

Address after: Danish Lander

Patentee after: VESTAS WIND SYSTEMS A/S

Address before: Danish Lander

Patentee before: NEG MICON A/S

CX01 Expiry of patent term

Granted publication date: 20070110

CX01 Expiry of patent term