CN1294353C - 风力涡轮机叶片及其制造方法 - Google Patents
风力涡轮机叶片及其制造方法 Download PDFInfo
- Publication number
- CN1294353C CN1294353C CNB028145437A CN02814543A CN1294353C CN 1294353 C CN1294353 C CN 1294353C CN B028145437 A CNB028145437 A CN B028145437A CN 02814543 A CN02814543 A CN 02814543A CN 1294353 C CN1294353 C CN 1294353C
- Authority
- CN
- China
- Prior art keywords
- blade
- band
- fiber
- thin layer
- composite material
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000000463 material Substances 0.000 claims abstract description 50
- 239000002131 composite material Substances 0.000 claims abstract description 34
- 229920005989 resin Polymers 0.000 claims abstract description 32
- 239000011347 resin Substances 0.000 claims abstract description 32
- 238000004519 manufacturing process Methods 0.000 claims abstract description 15
- 238000000034 method Methods 0.000 claims abstract description 15
- 239000000835 fiber Substances 0.000 claims description 63
- 239000002023 wood Substances 0.000 claims description 35
- 229920000049 Carbon (fiber) Polymers 0.000 claims description 19
- 239000004917 carbon fiber Substances 0.000 claims description 19
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 claims description 19
- 239000003365 glass fiber Substances 0.000 claims description 10
- 238000005259 measurement Methods 0.000 claims description 7
- 239000013307 optical fiber Substances 0.000 claims description 7
- 238000009755 vacuum infusion Methods 0.000 claims description 4
- 238000005728 strengthening Methods 0.000 claims description 3
- 229920002522 Wood fibre Polymers 0.000 claims description 2
- 238000012216 screening Methods 0.000 claims description 2
- 238000002360 preparation method Methods 0.000 claims 2
- 238000007711 solidification Methods 0.000 claims 2
- 230000008023 solidification Effects 0.000 claims 2
- 230000013011 mating Effects 0.000 claims 1
- 239000002184 metal Substances 0.000 claims 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 abstract description 12
- 229910052799 carbon Inorganic materials 0.000 abstract description 12
- 239000011120 plywood Substances 0.000 abstract 1
- 238000005452 bending Methods 0.000 description 17
- 230000003068 static effect Effects 0.000 description 15
- 238000012360 testing method Methods 0.000 description 10
- 238000009826 distribution Methods 0.000 description 5
- 239000011521 glass Substances 0.000 description 5
- 230000004087 circulation Effects 0.000 description 4
- 238000007906 compression Methods 0.000 description 4
- 239000011162 core material Substances 0.000 description 4
- 230000002787 reinforcement Effects 0.000 description 4
- 239000004593 Epoxy Substances 0.000 description 3
- 101001031591 Mus musculus Heart- and neural crest derivatives-expressed protein 2 Proteins 0.000 description 3
- 230000006835 compression Effects 0.000 description 3
- 239000003822 epoxy resin Substances 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 239000004033 plastic Substances 0.000 description 3
- 229920003023 plastic Polymers 0.000 description 3
- 229920000647 polyepoxide Polymers 0.000 description 3
- 244000274847 Betula papyrifera Species 0.000 description 2
- 235000009113 Betula papyrifera Nutrition 0.000 description 2
- 235000009109 Betula pendula Nutrition 0.000 description 2
- 235000010928 Betula populifolia Nutrition 0.000 description 2
- 235000002992 Betula pubescens Nutrition 0.000 description 2
- 206010041954 Starvation Diseases 0.000 description 2
- XTXRWKRVRITETP-UHFFFAOYSA-N Vinyl acetate Chemical compound CC(=O)OC=C XTXRWKRVRITETP-UHFFFAOYSA-N 0.000 description 2
- 230000006378 damage Effects 0.000 description 2
- 230000002950 deficient Effects 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 230000009977 dual effect Effects 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 239000003292 glue Substances 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- 239000000047 product Substances 0.000 description 2
- 238000010008 shearing Methods 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 229920001169 thermoplastic Polymers 0.000 description 2
- 239000004416 thermosoftening plastic Substances 0.000 description 2
- 244000025254 Cannabis sativa Species 0.000 description 1
- 235000012766 Cannabis sativa ssp. sativa var. sativa Nutrition 0.000 description 1
- 235000012765 Cannabis sativa ssp. sativa var. spontanea Nutrition 0.000 description 1
- 229920000271 Kevlar® Polymers 0.000 description 1
- 241000886545 Leptodea leptodon Species 0.000 description 1
- 240000006240 Linum usitatissimum Species 0.000 description 1
- 235000004431 Linum usitatissimum Nutrition 0.000 description 1
- 229920005830 Polyurethane Foam Polymers 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- 235000009120 camo Nutrition 0.000 description 1
- 235000005607 chanvre indien Nutrition 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 239000012141 concentrate Substances 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000008602 contraction Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 239000004744 fabric Substances 0.000 description 1
- 239000002657 fibrous material Substances 0.000 description 1
- 239000011487 hemp Substances 0.000 description 1
- 238000002847 impedance measurement Methods 0.000 description 1
- 238000001802 infusion Methods 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 239000004761 kevlar Substances 0.000 description 1
- 238000003475 lamination Methods 0.000 description 1
- 239000011496 polyurethane foam Substances 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 239000011342 resin composition Substances 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 238000004088 simulation Methods 0.000 description 1
- 239000012265 solid product Substances 0.000 description 1
- 229920003002 synthetic resin Polymers 0.000 description 1
- 239000000057 synthetic resin Substances 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 239000011800 void material Substances 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F03—MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
- F03D—WIND MOTORS
- F03D1/00—Wind motors with rotation axis substantially parallel to the air flow entering the rotor
- F03D1/06—Rotors
- F03D1/065—Rotors characterised by their construction elements
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F03—MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
- F03D—WIND MOTORS
- F03D1/00—Wind motors with rotation axis substantially parallel to the air flow entering the rotor
- F03D1/06—Rotors
- F03D1/065—Rotors characterised by their construction elements
- F03D1/0675—Rotors characterised by their construction elements of the blades
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C70/00—Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
- B29C70/04—Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
- B29C70/28—Shaping operations therefor
- B29C70/40—Shaping or impregnating by compression not applied
- B29C70/42—Shaping or impregnating by compression not applied for producing articles of definite length, i.e. discrete articles
- B29C70/44—Shaping or impregnating by compression not applied for producing articles of definite length, i.e. discrete articles using isostatic pressure, e.g. pressure difference-moulding, vacuum bag-moulding, autoclave-moulding or expanding rubber-moulding
- B29C70/443—Shaping or impregnating by compression not applied for producing articles of definite length, i.e. discrete articles using isostatic pressure, e.g. pressure difference-moulding, vacuum bag-moulding, autoclave-moulding or expanding rubber-moulding and impregnating by vacuum or injection
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C70/00—Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
- B29C70/04—Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
- B29C70/28—Shaping operations therefor
- B29C70/40—Shaping or impregnating by compression not applied
- B29C70/50—Shaping or impregnating by compression not applied for producing articles of indefinite length, e.g. prepregs, sheet moulding compounds [SMC] or cross moulding compounds [XMC]
- B29C70/52—Pultrusion, i.e. forming and compressing by continuously pulling through a die
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05B—INDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
- F05B2240/00—Components
- F05B2240/20—Rotors
- F05B2240/30—Characteristics of rotor blades, i.e. of any element transforming dynamic fluid energy to or from rotational energy and being attached to a rotor
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/70—Wind energy
- Y02E10/72—Wind turbines with rotation axis in wind direction
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Landscapes
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Laminated Bodies (AREA)
- Moulding By Coating Moulds (AREA)
- Wind Motors (AREA)
Abstract
本发明涉及风力涡轮机叶片,其包含许多预先预制的沿外部圆周顺序布置的条带。条带由纤维合成材料最好是碳纤维构成,也可以由木质材料最好是胶合板或固化树脂中的木质纤维构成。优点是,它使制造与传统制造技术相比具有优良硬度和高强度但又易于制造且又非常便宜的用于风力涡轮机的叶片成为可能。本发明也涉及制造预先预制的条带的方法和制造风力涡轮机叶片的方法。
Description
技术领域
本发明涉及一种风力涡轮机的叶片。
背景技术
当今制造的风力涡轮机叶片包含一根中心内支撑梁(a bearing centralinner beam),该中心内支撑梁一般具有空的方形横截面,并由玻璃纤维和树脂合成物制造,周围环绕两个壳体(shell),该两个壳体形成叶片的上部外表面和下部外表面并决定其空气动力学特性。
壳体可以是单层,或至少沿圆周的一部分是一种层状结构(a sandwichconstruction),包含两个平行的玻璃纤维和树脂层,其间充满例如聚亚安酯泡沫材料。使用木质材料以增强单层壳体的内部或者填充层状结构的空间(space)是众所周知的。
已经实现了力和扭矩随着叶片长度的增加而急剧增加,内支撑梁的强度和硬度(stiffness)也必定急剧增加,因为壳体对叶片总承载特性的贡献很小。
为了使壳体能够承受内支撑梁受力的相当大部分,上述讨论的由于木质材料而增强的结构需要宽大的叶片尺寸和大的木质层的厚度,这样大大增加了叶片的重量并造成叶片的应力增加。
本发明的目的是提供一种风力涡轮机叶片,该风力涡轮机叶片具有层压产品的特性,即与其它材料相比具有高的强度,与固体产品相比具有低的生产成本,但是与生产叶片的成本相比,强度比现有技术的叶片大大提高。
发明内容
该发明目的可以通过一种叶片获得,在大部分纵向部分上,该叶片包含沿叶片横截面的外部圆周的一个薄层(a layer),该薄层由多个预先预制的沿叶片外部圆周顺序布置的条带(strip)构成。
“大部分纵向部分”应理解为在从尖部到中心部位至少叶片总长度的1/3上延伸的那部分,最好为至少叶片总长度的1/2以上。根据优选的实施例,总长度的60-85%,比如70%左右,包含这样的薄层(layer)。
因此,最佳的材料特性可以通过结合不同种类的条带(strip)而获得,比如,通过含有诸如碳纤维、玻璃纤维和/或天然纤维、木质条带、作为形成中空管材的合成条带等不同纤维的拉挤成型的纤维合成物(pultrudedfibrous composite)条带而获得。每一种类条带(strip)的制造比形成整个叶片要简单,并因此要便宜,并且,条带(strip)可以通过恰当的方式粘接在一起,比如,通过注入树脂的方式或真空灌输树脂的方式。
根据本发明,可以获得一种风力涡轮机叶片,其可以降低作用在内支撑梁(inner beam)的受力和扭矩。并且,在壳体外圆周附近的薄层上的抵抗拉力和压力的抗力给叶片提供了一个关于边缘弯曲模式(anedge-wise bending mode)的改良的结构效率(an improved structuralefficiency)。
因此,在一个优选的实施例中,至少一些预先预制的条带由拉挤成型的纤维合成材料(pultruded fibrous composite material)比如碳树脂(carbon-resin)制成。
因此,可以获得一种结构,其具有优良的硬度(stiffness),不易弯曲(buckling)。这样,叶片的内部结构可以由很轻的结构组成,比如,在前边缘(leading edge)和移动边缘(traveling edge)用两个较轻的网状结构(webs)分别替换常用的具有方形横截面的内支撑梁。
在一个优选的实施例中,圆周薄层通过注入树脂或真空灌输树脂的方式进行装配。使用树脂灌输的方式会使制造过程快速、健康和安全,在树脂内没有或仅有极少的空虚(void)。由于空虚极少,从而减少了后续的修整(finishing)。数量有限的纤维被确实灌输到叶片内。树脂主要是胶水而不是粘合物质(matrix)。这使得该结构更能容忍任何可能的空虚。
根据一个优选的实施例,在大部分纵向部分上的叶片包含沿横截面的外圆周的一个薄层,其中该薄层至少沿外圆周以交替的顺序部分地由木质材料的条带和纤维合成材料的条带构成。这样,纤维合成材料优良的硬度和木质材料抵抗弯曲的高抗力结合在一起,以获得一种具有成本效益的恰当性能的壳体。
一个特别可取的实施例包含至少由一种木质材料和天然纤维拉挤成型物(natural fibre pultrusions)制成的一些条带,其中,木质材料可优先选取作为木质材料使用的胶合板,天然纤维拉挤成型物可优先选取作为纤维合成材料使用的碳纤维拉挤成型物(carbon fibre pultrusions)。
该实施例所获得的优点是,这些材料能够共存并且两者都具有低的热膨胀系数。两种类型的材料都能在相类似的低应变的范围内工作,使相对于叶片的重量存在更硬的叶片的可能性。同样,天然纤维可能易于弯曲,虽然木材体积大(bulky),但木材不易弯曲,因此同样由于该原因,两种类型的材料能互补。
一般地,条带可以由木材、层压木材、拉挤成型物(pultrusion)制成,其中,拉挤成型物由人造的或天然的纤维制成,该纤维可用诸如任何树脂、热塑性塑料、泡沫塑料等材料与泡沫塑料、轻质芯材料以任意比例制成,该任何树脂、热塑性塑料、泡沫塑料等材料可以是人造的或来自天然的。至少一些预先预制的条带可以方便地由纤维合成材料形成。纤维材料的纤维可以是任何已知的具有能够增强木质合成物的合适性能的纤维,其中木质合成物可以是碳纤维、玻璃纤维、凯夫拉尔纤维(Kevlarfibres)、天然纤维等,天然纤维可以是大麻或亚麻、椰子壳纤维或他们的任意结合等。
作为例子,碳比木质材料有更高的抗破坏的应变。碳能作为增强剂,但木质首先破坏。在试样实验(coupon testing)中已经利用这一点来分别地证实碳强度和木质强度。添加碳并因此使用薄的壳体(skin)的可能性可以降低壳体歪曲极限(skin buckling margins)。
碳纤维比较昂贵,然而,木质很便宜并能够覆盖叶片区域而使成本降低。然而,木质本身能在高应力叶片内产生厚的效率低的壳体。碳纤维结合木质可以产生更薄的壳体,该壳体在结构上有效并令人满意。同样,木质有很高的容忍缺陷的能力(highly defect tolerant)。由纤维合成材料构成的壳体的总横截面的百分比在具有高纤维材料含量的叶片部分上可优选为在3%-30%的范围内,尤其可以优选在6%-20%的范围内。同样,由纤维构成的壳体的总横截面的百分比可优选为在2%-20%的范围内,尤其可以优选在4%-15%的范围内。
在本发明特别优选的实施例中,至少一些条带由中空管构成,该中空管由一种纤维合成材料形成。因此,材料和重量可以大大节省,而优良的结构性能却被保留下来。
至少一些纤维合成材料的条带最好是拉挤成型物,即由纤维和粘合物质(matrix)的拉挤成型混合物(pultruding mixture)制成的条带,该拉挤成型混合物在拉挤成型物后固化,该拉挤成型物可以是比如乙烯酯之类的可加工的树脂。因此,可以获得具有直纤维和低空虚含量的条带。同样,可以获得低树脂含量,从而导致低收缩和快速固化。
因此,优点是拉挤成型物具有拉挤成型方向,该方向基本上与叶片的纵向方向一致,在该方向上,对纤维的性能有要求。然而,拉挤成型物的终端接头是应力集中源,因此,要特别注意对这些结构因素的测试。
纤维合成材料包含50%-90%的纤维体积含量(fibre volume fraction),优选为60%-80%。尤其是,纤维合成材料可以包含50%-90%的碳纤维体积含量,优选为60%-80%。
根据一个优选的实施例,至少一些预先预制的条带由木质材料制成,这是因为木质材料成本低、重量轻,并且木质材料的材料性能很完美,能够通过结合比如纤维合成材料等其它材料类型的条带的方式形成所需要的叶片材料性能。木质材料可以是木质条带,如果需要的话,该木质条带可以在叶片的纵向方向上粘合在一起。
一个首选的实施例采用了胶合板,尤其是由于均匀的材料性能而作为木质材料的无方向性胶合板。可以采用的其它类型的木质材料由存在于已固化的树脂中的木质纤维组成。木质存在同方向的应力,因此,不但通过使用已建立的设计允许值(established design allowables)而使用新的接头形式和胶水成为可能,而且仍然对木质材料的结构充满信心。
根据本发明的一个实施例,薄层沿外圆周顺序地至少部分地由一种木质材料的条带和一种纤维合成材料的条带构成。这种顺序可以是一种木质材料的条带和一种纤维合成材料的条带相互交替的顺序。这种相互交替的顺序最好仅仅涉及叶片完整圆周的一部分。
可取的是,所讨论的薄层是层状结构(a sandwich construction)的一部分,如前面讨论的,即,薄层封闭在由例如由固化的合成树脂中的玻璃纤维网等纤维合成材料制成的外部壳体和内部壳体内。
样本类型
小型支撑梁:1-支撑梁,150×150mm,2.5m长,(25mm厚轮缘(flanges)),具有半标度外壳(half scale skins),包括拉挤成型物终端、缺陷、木质接头。
6m×1.2m风板(aerofoil):A型,设计成破坏于直接过应力、测试外壳、前后边缘接头。B型样本具有相对薄的外壳以进行弯曲分析。
31m叶片:A叶片,在A131模具中制造,具有与AL40(72×M30固定(fixings))一样的叶片连接(foot fixings),具有同相类似的木质和碳的分布一起建立的外壳(同AL40),具有双重网、相类似的前边缘接头。
结构因素测试 | ||
因素 | 测试 | 检验 |
小型支撑梁 | 3点静弯曲 | 外壳强度、木质和拉挤成型物终端接头 |
6m风板A,厚外壳 | 4点静弯曲 | 前边缘接头,网和外壳接头 |
6m风板B,薄外壳 | 4点静弯曲 | 具有已弯曲外壳的弯曲理论 |
31m叶片 | 边缘静态悬臂弯曲(Cantilever bending static edgewise) | 硬度、频率、衰减(加载到1.35最大应变同AL40,分布状态同A131) |
平放静态悬臂弯曲(Cantilever bending static flatwise) | 同前述边缘,但1.5最大应变同AL40,分布状态同A131。齿环弯曲(测量应变) | |
平放疲劳悬臂弯曲 | 加速疲劳状态,100万次循环,模拟AL40寿命应变循环 | |
平放静态破坏 | 破坏模式和极限 | |
叶片连接静态拉伸和疲劳 | 叶片连接强度极限的确定 |
40m叶片测试 | |
边缘静态悬臂弯曲 | 硬度、频率、衰减,检验加载到1.35极值 |
平放静态悬臂弯曲 | 同前述边缘,检验加载到1.35极值,齿环弯曲(测量应变) |
平放疲劳悬臂弯曲 | 疲劳状态,500万次循环,相当于寿命的1.35加载系数 |
边缘疲劳悬臂弯曲 | 疲劳状态,500万次循环,相当于寿命的1.35加载系数 |
平放静态破坏 | 破坏模式和极限 |
试样实验(Coupon testing) | ||
材料 | 测试 | 检验 |
碳拉挤成型物 | 静态拉伸/压缩和疲劳CRAG测试 | 碳极限非常高 |
木质 | 静态拉伸/压缩和疲劳AL型试样 | 木质接头也能运行或好于前一个接头类型 |
具有木质的碳 | 静态压缩std木质测试 | 碳按预想的运行,木质具有最低强度压缩应力 |
本发明可以安装防雷保护系统,该系统包括两个可替换的防雷引子,该防雷引子最好接近尖部。其中的一个防雷引子安装在迎风侧,另一个防雷引子安装在下风侧。两个防雷引子都连接到铝网眼(aluminum mesh)或类似材料的宽度上,铝网眼或类似材料在叶片凝胶涂层的表面薄层下面的纤维增强区域上伸展,并且,两个防雷引子向下延伸到叶片的跟部,并在此接地。
无线通讯频率比如雷达信号的吸收介质可以有选择性地灌输到结构的其它部分。除了将强化光纤或强化光纤的替代物埋入到叶片外,也可能将光纤埋入到叶片中。可以使用光纤测量风力涡轮机在运行中叶片表面上和叶片表面内部的载荷。
作为替换,碳纤维的阻抗测量可以被用来测量叶片表面上和叶片表面内部的载荷。同样,所使用的用于测量载荷的碳纤维可以是一个或多个强化光纤,或者除了强化光纤外也可以是碳纤维,并用来测量载荷。
附图说明
本发明优选的实施例可以借助附图进行说明。
图1是具有薄层的叶片的横截面图,其中薄层由胶合板条带与纤维拉挤成型物条带相互交替而构成;
图2a是与图1叶片相类似的叶片的横截面图,该横截面显示了沿具有拉挤成型物条带的部分的圆周上的不同分布;
图2b是与显示在图2a中的横截面的叶片相类似的叶片的平面图,因此有沿具有拉挤成型物条带的部分的圆周上相似的分布;
图2c是图2a的叶片表面的图片,其中合成材料的外部壳体被除去;
图3图解了真空灌输过程。
具体实施方式
图1中的横截面所显示的叶片具有一个薄层,该薄层由白桦胶合板1的40×40mm条带与碳纤维拉挤成型物2的6×40mm条带相互交替而构成。薄层1、2在玻璃纤维网和人造树脂合成物的两个C-支撑梁3、4之间沿叶片的中心部分伸展,其中玻璃纤维网和人造树脂合成物表示LE(前边缘)网3和TE(移动边缘)网4并取代前面讨论过的中心内支撑梁。薄层1、2夹在玻璃环氧树脂外壳的内薄层5和外薄层6之间,该玻璃环氧树脂外壳承载剪切应力并提高叶片的横向硬度。在上部壳体和下部壳体所限定的并因此由白桦胶合板1和碳纤维拉挤成型物2以及LE网3和TE网4所构成的空间充满了轻质木质芯7。
图2a、2b、2c所显示的叶片与图1中的叶片相类似,除了碳纤维拉挤成型物2的强化位于上部壳体和下部壳体之间以及LE网3和TE网4之间的接触区域的附近外,在此应力集中最高。在所示的实施例中,使用双重网取代单层网。这将在压缩过程中给予外壳充足的弯曲极限。同样,前网降低了前边缘接头剪切载荷,允许一个较小的前边缘接头区域。这在制造叶片过程中是一个优点。
因为纤维拉挤成型物添加到木质结构中提高了结构的硬度,因此本技术是非常优越的。并不是沿叶片的长度上都使用碳纤维拉挤成型物,仅仅是承载应力所需要的中部70%使用碳纤维拉挤成型物。在所示的实施例中,叶片外壳横截面在应力比较高的区域,分散于木质合成物中的碳纤维拉挤成型物的区域可达10%。典型地,叶片外壳厚度的60%由纯粹的木质材料构成,这在临界边缘弯曲模式(critical edgewise bendingmode)中可降低重量并改善结构效率。外部和内部玻璃环氧树脂外壳是用与叶片纵向方向成±45℃角的玻璃纤维制造。
拉挤成型物具有能够保证在碳纤维合成物中直纤维和低空虚含量的优点。此外,拉挤成型物还具有加快叶片灌输过程的优点,这是因为精细的碳纤维需要相当长的时间进行灌输。拉挤成型物含有高的纤维体积含量,大约为70%,其中,纤维含有中等强度但极易于加工的树脂,比如乙烯酯。最好是,当制造叶片时,树脂随着两个长边上的“剥落板层(peelply)”而送进,然后被移开以产生干净的有织纹的表面以保证良好的粘结。
叶片壳体的制造过程如图3所示,包括步骤:将凝胶涂层(未示出)应用到模具8,然后将介质9,比如传递网眼(transfer mesh)、45℃角的玻璃纤维网10和环氧树脂(未示出),传送给模具以形成外部玻璃环氧树脂外壳。此后,木质和拉挤成型物条带1、2被定位,然后用于防雷保护的诸如铝网眼等金属网眼11被应用。然后,壳体被遮盖在一个容器中,即此过程显示的真空包12中,真空包12由外部装置13抽成真空。然后,树脂从树脂贮备池14通过形成于邻近条带之间的树脂通道15被注入,并通过抽真空扩散到整个结构。通常使用的用于灌输的树脂是来自于SP系统(SP System)的Prime 20。在固化树脂以后,内部玻璃环氧树脂外壳16在木质和拉挤成型物条带1、2的顶部被制造出来。
Claims (27)
1.一种用于风力涡轮机的叶片,其中叶片在从尖部到中心部位所测量的总长度的至少1/3部分上包含一个沿叶片横截面的外周的薄层(1、2),其特征在于,该薄层(1、2)至少部分地由许多预制的沿外周顺序布置的条带(2)构成,这些预制的条带(1、2)并排布置使得在与叶片长度方向垂直的平面内,相邻的条带(1、2)之间的接合面基本上垂直于薄层的表面。
2.一种用于风力涡轮机的叶片,其中叶片在从尖部到中心部位所测量的总长度的至少1/3部分上包含一个沿叶片横截面的外周的薄层(1、2),其特征在于,该薄层(1、2)至少部分地由许多预制的沿外周顺序布置的条带(2)构成,至少其中的一些条带(2)在与叶片长度方向垂直的平面中具有细长的条带横截面,以及
至少这些条带(2)中的一些条带以条带横截面的一个短边沿叶片的横截面的外周布置和/或
至少这些条带(2)中的一些条带以条带横截面的一个长边基本上垂直于叶片的横截面的外周布置。
3.如权利要求1或2所述的叶片,其特征在于,外部薄层(1、2)的条带通过树脂灌输的方式粘接在一起。
4.如权利要求3所述的叶片,其特征在于,外部薄层(1、2)的条带通过真空灌输树脂的方式粘接在一起。
5.如权利要求1或2所述的叶片,其特征在于,至少一些预制的条带由纤维合成材料构成。
6.如权利要求1或2所述的叶片,其特征在于,至少一些预制的条带(2)由形成于纤维合成材料的中空管构成。
7.如权利要求5所述的叶片,其特征在于,由纤维合成材料构成的预制的条带是拉挤成型的条带。
8.一种用于风力涡轮机的叶片,其中叶片在从尖部到中心部位所测量的总长度的至少1/3部分上包含一个沿叶片横截面的外周的薄层(1、2),其特征在于,该薄层(1、2)至少部分地由许多由纤维合成材料构成的、沿外周顺序布置的、预制的拉挤成型的条带(2)构成。
9.如权利要求7或8所述的叶片,其特征在于,所述拉挤成型的条带(2)具有与叶片的纵向方向基本一致的拉挤成型方向。
10.如权利要求5或8所述的叶片,其特征在于,所述纤维合成材料包含50%-90%的纤维体积含量。
11.如权利要求10所述的叶片,其特征在于,所述纤维合成材料包含60%-80%的纤维体积含量。
12.如权利要求5或8所述的叶片,其特征在于,所述纤维合成材料包含50%-90%的碳纤维体积含量。
13.如权利要求12所述的叶片,其特征在于,所述纤维合成材料包含60%-80%的纤维体积含量。
14.如权利要求1、2或8所述的叶片,其特征在于,薄层(1、2)至少部分地由一些由木质材料制成的沿外周顺序布置的条带构成。
15.如权利要求14所述的叶片,其特征在于,所述木质材料是胶合板。
16.如权利要求14所述的叶片,其特征在于,所述木质材料由已固化的树脂中的木质纤维组成。
17.如权利要求14所述的叶片,其特征在于,薄层(1、2)至少部分地由木质材料的条带和纤维合成材料的条带沿外周顺序地构成。
18.如权利要求17所述的叶片,其特征在于,所述顺序是木质材料的条带和纤维合成材料的条带相互交替的顺序。
19.如权利要求1、2或8所述的叶片,其特征在于,所述薄层被封闭于由纤维合成材料制成的外部壳体和内部壳体内。
20.如权利要求1、2或8所述的叶片,其特征在于,载荷测量纤维被封闭于外部壳体和内部壳体中的任意一个或两个内。
21.如权利要求20所述的叶片,其特征在于,所述载荷测量纤维是光纤或强化纤维。
22.如权利要求20所述的叶片,其特征在于,所述载荷测量纤维是碳纤维或强化纤维。
23.如权利要求1、2或8所述的叶片,其特征在于,含有防雷引子的防雷保护装置安装在外部壳体和内部壳体中的任意一个或两个内。
24.如权利要求23所述的叶片,其特征在于,所述防雷引子连接于在壳体的纤维强化区域上伸展的金属网眼(11)的宽度上。
25.如权利要求1、2或8所述的叶片,其特征在于,无线频率吸收介质安装在外部壳体和内部壳体中的任意一个或两个内。
26.用于权利要求1-25中任意一项权利要求所述叶片的预制条带的制造方法,所述叶片包含沿叶片横截面外周布置的薄层材料,所述方法包含以下步骤:
装配至少两个单独的材料(1、2)以构成预制条带;
在纤维合成材料中选择至少两个单独的材料(1、2)中的至少一个:
将装配的至少两个单独的材料(1、2)插入一个容器(12)中:
将容器(12)抽成真空,灌输制备的树脂,并让树脂固化;
从容器(12)中取出如此预制的已装配和固化的条带。
27.用于权利要求1-25中任意一项权利要求所述叶片的壳体的制造方法,所述壳体包含沿壳体横截面外周布置的薄层材料,所述薄层包含预制的条带,所述方法包含以下步骤:
将表面材料应用到制造叶片的模具(8)上;
选择性地应用金属网眼(11)、玻璃纤维网眼;
装配至少两个单独的材料(1、2)以构成预制条带;
在纤维合成材料中选择至少两个单独的材料(1、2)中的至少一个;
在其它应用的材料(10)上定位至少两个单独的材料(1、2);
将如此应用的单独的材料和其它材料插入容器(12)中;
将容器(12)抽成真空,灌输制备的树脂,并让树脂固化:
从模具中分离模塑物,从而预制出壳体。
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DKPA200101125 | 2001-07-19 | ||
DKPA200101125 | 2001-07-19 | ||
GB0202401.6 | 2002-02-01 | ||
GB0202401A GB0202401D0 (en) | 2002-02-01 | 2002-02-01 | Wind turbine blade |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2006101670203A Division CN1975152B (zh) | 2001-07-19 | 2002-07-19 | 风力涡轮机叶片 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN1533476A CN1533476A (zh) | 2004-09-29 |
CN1294353C true CN1294353C (zh) | 2007-01-10 |
Family
ID=59297475
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2006101670203A Expired - Lifetime CN1975152B (zh) | 2001-07-19 | 2002-07-19 | 风力涡轮机叶片 |
CNB028145437A Expired - Lifetime CN1294353C (zh) | 2001-07-19 | 2002-07-19 | 风力涡轮机叶片及其制造方法 |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2006101670203A Expired - Lifetime CN1975152B (zh) | 2001-07-19 | 2002-07-19 | 风力涡轮机叶片 |
Country Status (12)
Country | Link |
---|---|
US (2) | US7198471B2 (zh) |
EP (4) | EP3219981B1 (zh) |
JP (1) | JP2004535527A (zh) |
CN (2) | CN1975152B (zh) |
AT (1) | ATE293755T1 (zh) |
AU (1) | AU2002354986B2 (zh) |
CA (1) | CA2454038C (zh) |
DE (1) | DE60203804T3 (zh) |
DK (4) | DK1520983T3 (zh) |
ES (4) | ES2895673T3 (zh) |
PT (1) | PT1417409E (zh) |
WO (1) | WO2003008800A1 (zh) |
Families Citing this family (174)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3219981B1 (en) | 2001-07-19 | 2021-09-01 | Vestas Wind Systems A/S | Wind turbine blade |
DE10336461A1 (de) | 2003-08-05 | 2005-03-03 | Aloys Wobben | Verfahren zur Herstellung eines Rotorblattes einer Windenergieanlage |
US20050186081A1 (en) * | 2004-02-24 | 2005-08-25 | Mohamed Mansour H. | Wind blade spar cap and method of making |
DK200401225A (da) | 2004-08-13 | 2006-02-14 | Lm Glasfiber As | Metode til afskæring af laminatlag, eksempelvis et glasfiber- eller kulfiber-laminatlag i en vindmöllevinge |
WO2006051147A1 (es) * | 2004-11-11 | 2006-05-18 | Gamesa Innovation And Technology, S.L. | Sistema pararrayos para pala de aerogenerador con laminados de fibra de carbono |
EP1833660B1 (en) * | 2004-12-29 | 2016-06-29 | Vestas Wind Systems A/S | Method of manufacturing a wind turbine blade shell member with a fastening member and a wind turbine blade with a fastening member |
MX2007009390A (es) * | 2005-02-03 | 2008-02-14 | Vestas Wind Sys As | Metodo para fabricar un miembro de forro de paleta de turbina de viento. |
ES2624666T3 (es) | 2005-02-22 | 2017-07-17 | Vestas Wind Systems A/S | Pala de turbina eólica |
WO2006106734A1 (ja) * | 2005-03-30 | 2006-10-12 | Zephyr Corporation | 風車 |
US7802968B2 (en) * | 2005-07-29 | 2010-09-28 | General Electric Company | Methods and apparatus for reducing load in a rotor blade |
TW200726908A (en) * | 2005-10-04 | 2007-07-16 | Arthur Benjamin O Connor | Wind turbine |
US8402652B2 (en) * | 2005-10-28 | 2013-03-26 | General Electric Company | Methods of making wind turbine rotor blades |
US7438533B2 (en) * | 2005-12-15 | 2008-10-21 | General Electric Company | Wind turbine rotor blade |
US7798780B2 (en) * | 2005-12-19 | 2010-09-21 | General Electric Company | Modularly constructed rotorblade and method for construction |
JP4969098B2 (ja) * | 2005-12-21 | 2012-07-04 | 三菱重工業株式会社 | 風車翼の落雷保護装置、該落雷保護装置の組立方法、該落雷保護装置を備える風車翼、及び該風車翼を備える風車 |
US7517198B2 (en) * | 2006-03-20 | 2009-04-14 | Modular Wind Energy, Inc. | Lightweight composite truss wind turbine blade |
JP4699255B2 (ja) * | 2006-03-24 | 2011-06-08 | 三菱重工業株式会社 | 風車翼 |
US20070251090A1 (en) * | 2006-04-28 | 2007-11-01 | General Electric Company | Methods and apparatus for fabricating blades |
US7654799B2 (en) * | 2006-04-30 | 2010-02-02 | General Electric Company | Modular rotor blade for a wind turbine and method for assembling same |
DE102006022279B4 (de) * | 2006-05-11 | 2016-05-12 | Aloys Wobben | Rotorblatt für eine Windenergieanlage |
US20090044535A1 (en) * | 2006-06-12 | 2009-02-19 | Daw Shien Scientific Research And Development, Inc. | Efficient vapor (steam) engine/pump in a closed system used at low temperatures as a better stirling heat engine/refrigerator |
US20090211223A1 (en) * | 2008-02-22 | 2009-08-27 | James Shihfu Shiao | High efficient heat engine process using either water or liquefied gases for its working fluid at lower temperatures |
US20090249779A1 (en) * | 2006-06-12 | 2009-10-08 | Daw Shien Scientific Research & Development, Inc. | Efficient vapor (steam) engine/pump in a closed system used at low temperatures as a better stirling heat engine/refrigerator |
US20080296906A1 (en) * | 2006-06-12 | 2008-12-04 | Daw Shien Scientific Research And Development, Inc. | Power generation system using wind turbines |
CA2657037C (en) * | 2006-07-14 | 2013-05-14 | Vestas Wind Systems A/S | Wind turbine comprising enclosure structure formed as a faraday cage |
CN100412356C (zh) * | 2006-08-31 | 2008-08-20 | 东莞中德风电能源有限公司 | 风能发电机的叶片的制造方法 |
EP2064778A1 (en) * | 2006-09-22 | 2009-06-03 | BAE Systems plc | Structure |
US8454318B2 (en) | 2006-12-15 | 2013-06-04 | Bladena Aps | Reinforced aerodynamic profile |
ES2496167T3 (es) | 2007-01-16 | 2014-09-18 | Bladena Aps | Pala reforzada para aerogenerador |
DK2108083T3 (da) * | 2007-01-25 | 2013-02-04 | Bladena Aps | Forstærket vindmøllevinge |
CN101595300A (zh) * | 2007-01-29 | 2009-12-02 | 丹麦技术大学 | 风力涡轮机叶片 |
WO2008101506A2 (en) * | 2007-02-19 | 2008-08-28 | Vestas Wind Systems A/S | Wind turbine rotor blade and method of manufacturing such rotor blade |
US7895745B2 (en) * | 2007-03-09 | 2011-03-01 | General Electric Company | Method for fabricating elongated airfoils for wind turbines |
EP1978245A1 (en) | 2007-04-04 | 2008-10-08 | Siemens Aktiengesellschaft | Optimised layout for wind turbine rotor blades |
KR100879029B1 (ko) * | 2007-07-25 | 2009-01-15 | 베스타스 윈드 시스템스 에이/에스 | 고정부재를 구비한 풍력터빈 블레이드 외피부재의 제조방법및 고정부재를 구비한 풍력터빈 블레이드 |
US20090070977A1 (en) * | 2007-09-13 | 2009-03-19 | General Electric Company | Jig And Fixture For Wind Turbine Blade |
US20090084932A1 (en) * | 2007-09-27 | 2009-04-02 | General Electric Company | Wind turbine blade molds |
CN101855396B (zh) * | 2007-11-09 | 2012-07-18 | 维斯塔斯风力系统有限公司 | 用于加强风力涡轮机叶片结构的结构垫、风力涡轮机叶片和制造风力涡轮机叶片的方法 |
US20090140527A1 (en) * | 2007-11-30 | 2009-06-04 | General Electric Company | Wind turbine blade stiffeners |
US8337163B2 (en) * | 2007-12-05 | 2012-12-25 | General Electric Company | Fiber composite half-product with integrated elements, manufacturing method therefor and use thereof |
DE102008007304A1 (de) | 2008-02-02 | 2009-08-06 | Nordex Energy Gmbh | Rotorblatt für Windenergieanlagen |
WO2009111468A1 (en) | 2008-03-03 | 2009-09-11 | Abe Karem | Wing and blade structure using pultruded composites |
GB0806666D0 (en) * | 2008-04-11 | 2008-05-14 | Bond Philip C | Windfarm radar clutter mitigation |
EP2110552B2 (en) | 2008-04-15 | 2018-12-26 | Siemens Aktiengesellschaft | Wind turbine blade with an integrated lightning conductor and method for manufacturing the same |
DE102008024644B4 (de) | 2008-05-21 | 2018-07-26 | Airbus Defence and Space GmbH | Rotorblatt mit darin integriertem Radarabsorber für eine Windkraftanlage |
CN102066747A (zh) * | 2008-06-23 | 2011-05-18 | 丹麦技术大学 | 具有成角度的梁的风力涡轮机叶片 |
ES2383061T3 (es) | 2008-06-24 | 2012-06-18 | Bladena Aps | Paleta de turnina eólica reforzada |
ES2385516B1 (es) * | 2008-06-27 | 2013-05-31 | Gamesa Innovation & Technology, S.L. | Inserto de pala y método de colocación del mismo. |
DE102008045601A1 (de) * | 2008-06-27 | 2009-12-31 | Repower Systems Ag | Rotorblatt für eine Windenergieanlage und Verfahren und Fertigungform zu seiner Fertigung |
DE102008038620A1 (de) * | 2008-06-27 | 2009-12-31 | Powerblades Gmbh | Verfahren und Fertigungsform zur Fertigung eines Rotorblattes für eine Windenergieanlage |
GB2451192B (en) * | 2008-07-18 | 2011-03-09 | Vestas Wind Sys As | Wind turbine blade |
EP2153964A1 (en) * | 2008-08-14 | 2010-02-17 | Lm Glasfiber A/S | A method of manufacturing a wind turbine blade comprising steel wire reinforced matrix material |
US8137074B2 (en) * | 2008-08-21 | 2012-03-20 | General Electric Company | Wind turbine lightning protection system |
US20100045037A1 (en) * | 2008-08-21 | 2010-02-25 | Daw Shien Scientific Research And Development, Inc. | Power generation system using wind turbines |
US7866951B2 (en) | 2008-08-29 | 2011-01-11 | General Electric Company | Wind turbine blades with cross webs |
DE102008049016A1 (de) * | 2008-09-25 | 2010-04-15 | Repower Systems Ag | Rotorblatt mit einem Gurt mit einer in Längsrichtung abnehmenden Breite, Verfahren zur Herstellung des Rotorblattes und Verlegehilfe für Gelegebänder des Gurtes |
US20110020110A1 (en) * | 2008-10-06 | 2011-01-27 | Flodesign Wind Turbine Corporation | Wind turbine with reduced radar signature |
US20100166547A1 (en) * | 2008-10-06 | 2010-07-01 | Flodesign Wind Turbine Corporation | Wind turbine with reduced radar signature |
CA2741479A1 (en) * | 2008-10-22 | 2010-04-29 | Vec Industries, L.L.C. | Wind turbine blade and method for manufacturing thereof |
DE102008055771C5 (de) † | 2008-11-04 | 2018-06-14 | Senvion Gmbh | Rotorblattgurt |
WO2010065928A1 (en) | 2008-12-05 | 2010-06-10 | Modular Wind Energy, Inc. | Efficient wind turbine blades, wind turbine blade structures, and associated systems and methods of manufacture, assembly and use |
US7942637B2 (en) * | 2008-12-11 | 2011-05-17 | General Electric Company | Sparcap for wind turbine rotor blade and method of fabricating wind turbine rotor blade |
BRPI0924251B1 (pt) * | 2009-02-26 | 2016-03-22 | Tecsis Tecnologia E Sist S Avançados S A | método de manufatura de pás de aerogeradores |
US7942640B2 (en) * | 2009-03-19 | 2011-05-17 | General Electric Company | Method and apparatus for use in protecting wind turbine blades from lightning damage |
US8662853B2 (en) * | 2009-04-13 | 2014-03-04 | Maxiflow Manufacturing Inc. | Wind turbine blade and method of constructing same |
CN101865075B (zh) * | 2009-04-14 | 2012-01-11 | 上海艾郎风电科技发展有限公司 | 兆瓦级风电叶片前缘修形的方法 |
GB2469516A (en) * | 2009-04-17 | 2010-10-20 | Insensys Ltd | Rotor blade with optical strain sensors covered by erosion shield |
DE102009002637A1 (de) * | 2009-04-24 | 2010-10-28 | Wobben, Aloys | Rotorblatt für eine Windenergieanlage |
US8043065B2 (en) * | 2009-05-01 | 2011-10-25 | General Electric Company | Wind turbine blade with prefabricated leading edge segments |
US20120135099A1 (en) * | 2009-05-04 | 2012-05-31 | Mag Ias, Llc | Method and apparatus for rapid molding of wind turbine blades |
US8753091B1 (en) * | 2009-05-20 | 2014-06-17 | A&P Technology, Inc. | Composite wind turbine blade and method for manufacturing same |
DK2449254T3 (da) * | 2009-06-30 | 2013-07-08 | Vestas Wind Sys As | Fremgangsmåde til fremstilling af en vindmøllevinge omfattende to elementer der samles ved adhæsion |
EP2444660A4 (en) * | 2009-07-09 | 2013-05-22 | Mitsubishi Heavy Ind Ltd | WIND TURBINE BUCKET AND METHOD FOR PRODUCING A WIND TURBINE BUCKET |
US20110052404A1 (en) * | 2009-08-25 | 2011-03-03 | Zuteck Michael D | Swept blades with enhanced twist response |
US8657581B2 (en) * | 2009-08-28 | 2014-02-25 | Gordon Holdings, Inc. | Thermoplastic rotor blade |
US8424805B2 (en) | 2009-10-07 | 2013-04-23 | Donald Smith | Airfoil structure |
CN102042162B (zh) * | 2009-10-19 | 2013-04-24 | 联合船舶设计发展中心 | 泄压装置 |
US20110103965A1 (en) * | 2009-10-30 | 2011-05-05 | General Electric Company | Wind turbine blades |
US20110100540A1 (en) * | 2009-10-30 | 2011-05-05 | General Electric Company | Methods of manufacture of wind turbine blades and other structures |
US8702397B2 (en) * | 2009-12-01 | 2014-04-22 | General Electric Company | Systems and methods of assembling a rotor blade for use in a wind turbine |
EP2330294B1 (en) | 2009-12-02 | 2013-01-16 | Bladena ApS | Reinforced airfoil shaped body |
DE102009047570A1 (de) * | 2009-12-07 | 2011-06-09 | Repower Systems Ag | Gurt eines Rotorblatts einer Windenergieanlage |
JP5308323B2 (ja) * | 2009-12-22 | 2013-10-09 | 三菱重工業株式会社 | 風車翼及びそれを用いた風力発電装置 |
CN102834608A (zh) * | 2009-12-25 | 2012-12-19 | 北京可汗之风科技有限公司 | 重组竹风力发电机叶片 |
JP2011137386A (ja) * | 2009-12-25 | 2011-07-14 | Mitsubishi Heavy Ind Ltd | 風車回転翼および風車回転翼の製造方法 |
JP5427597B2 (ja) * | 2009-12-25 | 2014-02-26 | 三菱重工業株式会社 | 風車回転翼 |
US20110135485A1 (en) * | 2009-12-30 | 2011-06-09 | Jing Wang | Spar for a wind turbine rotor blade and method for fabricating the same |
US8142164B2 (en) * | 2009-12-31 | 2012-03-27 | General Electric Company | Rotor blade for use with a wind turbine and method for assembling rotor blade |
US10137542B2 (en) | 2010-01-14 | 2018-11-27 | Senvion Gmbh | Wind turbine rotor blade components and machine for making same |
ES2510398T3 (es) | 2010-01-14 | 2014-10-21 | Neptco, Inc. | Componentes de pala de rotor de aerogenerador y métodos para fabricar los mismos |
DE102010017062B4 (de) | 2010-05-21 | 2019-07-11 | Thyssenkrupp Steel Europe Ag | Rotorblatt einer Windkraftanlage |
US9500179B2 (en) | 2010-05-24 | 2016-11-22 | Vestas Wind Systems A/S | Segmented wind turbine blades with truss connection regions, and associated systems and methods |
US8043066B2 (en) * | 2010-06-08 | 2011-10-25 | General Electric Company | Trailing edge bonding cap for wind turbine rotor blades |
US8115333B2 (en) | 2010-06-23 | 2012-02-14 | Harris Corporation | Wind turbine providing reduced radio frequency interaction and related methods |
EP2400147A1 (en) * | 2010-06-25 | 2011-12-28 | Siemens Aktiengesellschaft | Root of the blade of a wind turbine |
EP2407292B1 (en) * | 2010-07-14 | 2013-11-13 | Siemens Aktiengesellschaft | Negative mold comprising predefined foam blocks for casting a component and method for producing the negative mold |
CN102985683A (zh) * | 2010-07-22 | 2013-03-20 | 北京可汗之风科技有限公司 | 新型竹质叶片结构 |
US8083488B2 (en) * | 2010-08-23 | 2011-12-27 | General Electric Company | Blade extension for rotor blade in wind turbine |
US8523515B2 (en) | 2010-11-15 | 2013-09-03 | General Electric Company | Noise reducer for rotor blade in wind turbine |
US8267657B2 (en) | 2010-12-16 | 2012-09-18 | General Electric Company | Noise reducer for rotor blade in wind turbine |
CN102108946B (zh) * | 2011-01-17 | 2013-01-09 | 南京航空航天大学 | 复合铺层式风力机叶片及其制造方法 |
ES2398553B1 (es) * | 2011-02-24 | 2014-02-06 | Gamesa Innovation & Technology S.L. | Una pala de aerogenerador multi-panel mejorada. |
FR2972503B1 (fr) | 2011-03-11 | 2013-04-12 | Epsilon Composite | Renfort mecanique pour piece en materiau composite, notamment pour une pale d'eolienne de grandes dimensions |
US9580598B2 (en) * | 2011-03-25 | 2017-02-28 | Covestro Llc | Polyurethane composites produced by a vacuum infusion process |
US20120027609A1 (en) * | 2011-05-17 | 2012-02-02 | Prasad Ogde | Wind turbine rotor blade with precured fiber rods and method for producing the same |
GB201108922D0 (en) * | 2011-05-27 | 2011-07-13 | Barlow Nick D | Underwater turbine blade |
US8414261B2 (en) | 2011-05-31 | 2013-04-09 | General Electric Company | Noise reducer for rotor blade in wind turbine |
DE102011105228B3 (de) * | 2011-06-10 | 2012-09-20 | Nordex Energy Gmbh | Windenergieanlagenbauteil mit einer in ein Laminat eingebetteten elektrischen Leitung |
US8728374B1 (en) | 2011-08-02 | 2014-05-20 | Crane Composites Inc. | Method of manufacturing a foundation wall panel |
US8834127B2 (en) | 2011-09-09 | 2014-09-16 | General Electric Company | Extension for rotor blade in wind turbine |
FR2980514B1 (fr) * | 2011-09-23 | 2018-01-05 | Flakt Solyvent-Ventec | Pale de machine tournante a structure modulaire renforcee |
GB2497578B (en) | 2011-12-16 | 2015-01-14 | Vestas Wind Sys As | Wind turbine blades |
US8430638B2 (en) | 2011-12-19 | 2013-04-30 | General Electric Company | Noise reducer for rotor blade in wind turbine |
CN109113924B (zh) * | 2011-12-22 | 2021-04-20 | Lm Wp 专利控股有限公司 | 由具有不同类型的负载支承结构的内侧部分和外侧部分组装的风力涡轮机叶片 |
CN102518567A (zh) * | 2011-12-26 | 2012-06-27 | 无锡韦伯风能技术有限公司 | 轻质高强度叶片及其制造工艺 |
WO2014041151A2 (en) * | 2012-09-17 | 2014-03-20 | Lm Wp Patent Holding A/S | Wind turbine blade with fastening means |
US10875287B2 (en) | 2012-09-18 | 2020-12-29 | Vestas Wind Systems A/S | Wind turbine blades |
DE102012219224B3 (de) | 2012-10-22 | 2014-03-27 | Repower Systems Se | System und Verfahren zum Herstellen eines Rotorblattgurtes |
US10105913B2 (en) * | 2012-11-20 | 2018-10-23 | Vestas Wind Systems A/S | Wind turbine blades and method of manufacturing the same |
CN103862595A (zh) * | 2012-12-10 | 2014-06-18 | 中航惠腾风电设备股份有限公司 | 具双真空系统的风轮叶片模具及用其制作风轮叶片的方法 |
US9470205B2 (en) | 2013-03-13 | 2016-10-18 | Vestas Wind Systems A/S | Wind turbine blades with layered, multi-component spars, and associated systems and methods |
US9128184B1 (en) | 2013-03-14 | 2015-09-08 | Lockheed Martin Corporation | Radar wind turbine |
US20150023799A1 (en) * | 2013-07-19 | 2015-01-22 | Kyle K. Wetzel | Structural Member with Pultrusions |
GB2519333A (en) * | 2013-10-17 | 2015-04-22 | Vestas Wind Sys As | Improvements relating to lightning protection systems for wind turbine blades |
GB2520079A (en) | 2013-11-11 | 2015-05-13 | Vestas Wind Sys As | Wind turbine blades |
GB201320166D0 (en) * | 2013-11-15 | 2014-01-01 | Vestas Wind Sys As | Wind turbine components |
US9494134B2 (en) | 2013-11-20 | 2016-11-15 | General Electric Company | Noise reducing extension plate for rotor blade in wind turbine |
CN106029347B (zh) | 2013-12-23 | 2018-04-17 | 维斯塔斯风力系统有限公司 | 风轮机叶片 |
KR20150080845A (ko) * | 2014-01-02 | 2015-07-10 | 두산중공업 주식회사 | 풍력 발전기용 블레이드의 제어장치, 제어방법, 및 이를 이용하는 풍력 발전기 |
EP2927481B1 (en) * | 2014-03-31 | 2021-09-22 | Siemens Gamesa Renewable Energy A/S | Rotor blade for a wind turbine |
JP6645986B2 (ja) | 2014-05-05 | 2020-02-14 | ホートン, インコーポレイテッド | 複合ファン |
CN105089931A (zh) * | 2014-05-13 | 2015-11-25 | 通用电气公司 | 风机及其叶片对准方法 |
GB2528850A (en) | 2014-07-31 | 2016-02-10 | Vestas Wind Sys As | Improvements relating to reinforcing structures for wind turbine blades |
DE102014018498A1 (de) * | 2014-12-16 | 2016-06-16 | Senvion Gmbh | Anordnung pultrudierter Stäbe |
US10180125B2 (en) | 2015-04-20 | 2019-01-15 | General Electric Company | Airflow configuration for a wind turbine rotor blade |
DE102015007801A1 (de) * | 2015-06-19 | 2016-12-22 | Senvion Gmbh | Verfahren zur Herstellung eines Bauteils eines Rotorblattes einer Windenergieanlage |
US10337490B2 (en) | 2015-06-29 | 2019-07-02 | General Electric Company | Structural component for a modular rotor blade |
US9897065B2 (en) | 2015-06-29 | 2018-02-20 | General Electric Company | Modular wind turbine rotor blades and methods of assembling same |
US10669984B2 (en) * | 2015-09-22 | 2020-06-02 | General Electric Company | Method for manufacturing blade components using pre-cured laminate materials |
EP3181895A1 (en) * | 2015-12-17 | 2017-06-21 | LM WP Patent Holding A/S | Splitter plate arrangement for a serrated wind turbine blade |
CN108603487B (zh) | 2016-01-29 | 2021-06-29 | 乌本产权有限公司 | 梁帽和制造方法 |
CN107539461A (zh) * | 2016-06-29 | 2018-01-05 | 山东龙翼航空科技有限公司 | 一种无人机用螺旋桨 |
DK3330529T3 (da) | 2016-12-05 | 2020-10-26 | Nordex Energy Gmbh | Spar cap-enhed til et vindenergianlæg-rotorblad |
US10465652B2 (en) | 2017-01-26 | 2019-11-05 | General Electric Company | Vortex generators for wind turbine rotor blades having noise-reducing features |
US11098691B2 (en) | 2017-02-03 | 2021-08-24 | General Electric Company | Methods for manufacturing wind turbine rotor blades and components thereof |
US10830206B2 (en) | 2017-02-03 | 2020-11-10 | General Electric Company | Methods for manufacturing wind turbine rotor blades and components thereof |
US10738759B2 (en) | 2017-02-09 | 2020-08-11 | General Electric Company | Methods for manufacturing spar caps for wind turbine rotor blades |
US10527023B2 (en) | 2017-02-09 | 2020-01-07 | General Electric Company | Methods for manufacturing spar caps for wind turbine rotor blades |
US10987879B2 (en) * | 2017-03-02 | 2021-04-27 | General Electric Company | Methods of manufacturing rotor blade components for a wind turbine |
ES2917405T3 (es) * | 2017-05-09 | 2022-07-08 | Siemens Gamesa Renewable Energy As | Pala de rotor de turbina eólica con sensores incorporados |
CN111344486B (zh) | 2017-10-02 | 2022-02-25 | 维斯塔斯风力系统有限公司 | 有关风力涡轮机叶片的结构部件的改进 |
US10677216B2 (en) | 2017-10-24 | 2020-06-09 | General Electric Company | Wind turbine rotor blade components formed using pultruded rods |
US10731470B2 (en) * | 2017-11-08 | 2020-08-04 | General Electric Company | Frangible airfoil for a gas turbine engine |
US10821652B2 (en) | 2017-11-21 | 2020-11-03 | General Electric Company | Vacuum forming mold assembly and method for creating a vacuum forming mold assembly |
US10913216B2 (en) | 2017-11-21 | 2021-02-09 | General Electric Company | Methods for manufacturing wind turbine rotor blade panels having printed grid structures |
US11040503B2 (en) | 2017-11-21 | 2021-06-22 | General Electric Company | Apparatus for manufacturing composite airfoils |
US10865769B2 (en) | 2017-11-21 | 2020-12-15 | General Electric Company | Methods for manufacturing wind turbine rotor blade panels having printed grid structures |
US11390013B2 (en) | 2017-11-21 | 2022-07-19 | General Electric Company | Vacuum forming mold assembly and associated methods |
US10920745B2 (en) | 2017-11-21 | 2021-02-16 | General Electric Company | Wind turbine rotor blade components and methods of manufacturing the same |
US11248582B2 (en) * | 2017-11-21 | 2022-02-15 | General Electric Company | Multiple material combinations for printed reinforcement structures of rotor blades |
EP3501809A1 (en) * | 2017-12-22 | 2019-06-26 | Siemens Gamesa Renewable Energy A/S | Pultruded fibrous composite strips having non-planar profiles cross-section for wind turbine blade spar caps |
DE102018100302A1 (de) | 2018-01-09 | 2019-07-11 | Wobben Properties Gmbh | Windenergieanlagen-Rotorblatt |
US11738530B2 (en) | 2018-03-22 | 2023-08-29 | General Electric Company | Methods for manufacturing wind turbine rotor blade components |
US10767623B2 (en) | 2018-04-13 | 2020-09-08 | General Electric Company | Serrated noise reducer for a wind turbine rotor blade |
US10746157B2 (en) | 2018-08-31 | 2020-08-18 | General Electric Company | Noise reducer for a wind turbine rotor blade having a cambered serration |
US20200256312A1 (en) * | 2019-02-10 | 2020-08-13 | Arthur David Stanton | Method of Manufacture and the Resulting Vertical Axis Wind Turbine Airfoil |
EP3708828A1 (en) | 2019-03-14 | 2020-09-16 | Siemens Gamesa Renewable Energy A/S | A method for providing a wind turbine blade with lightning protection and a wind turbine blade |
EP3712423B1 (en) * | 2019-03-21 | 2022-12-28 | Siemens Gamesa Renewable Energy A/S | Method of repairing a damaged spar cap of a wind turbine blade of a wind turbine |
EP3719312B1 (en) | 2019-04-03 | 2022-06-08 | Siemens Gamesa Renewable Energy A/S | Wind turbine blade and wind turbine |
US11046420B2 (en) * | 2019-10-23 | 2021-06-29 | The Boeing Company | Trailing edge flap having a waffle grid interior structure |
CN111121285B (zh) * | 2019-12-31 | 2021-04-02 | 南京比尔森热力技术工程有限公司 | 一种新型热水供应设备 |
EP4146457A1 (en) * | 2020-05-08 | 2023-03-15 | Blade Dynamics Limited | Wind turbine blade |
SE544491C2 (en) * | 2020-09-24 | 2022-06-21 | Modvion Ab | Rotor blade and method for assembly of a rotor blade |
EP4194683A1 (en) * | 2021-12-09 | 2023-06-14 | General Electric Renovables España S.L. | Wind turbine blades, wind turbine blade assemblies and related methods |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4474536A (en) * | 1980-04-09 | 1984-10-02 | Gougeon Brothers, Inc. | Wind turbine blade joint assembly and method of making wind turbine blades |
US4643647A (en) * | 1984-12-08 | 1987-02-17 | Rolls-Royce Plc | Rotor aerofoil blade containment |
CN2080994U (zh) * | 1990-10-13 | 1991-07-17 | 内蒙古动力机厂 | 200w风力发电机叶片 |
US5375324A (en) * | 1993-07-12 | 1994-12-27 | Flowind Corporation | Vertical axis wind turbine with pultruded blades |
CN2495836Y (zh) * | 2001-04-24 | 2002-06-19 | 胡德诚 | 复合材料机翼形叶片 |
Family Cites Families (39)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2293224A (en) * | 1939-02-24 | 1942-08-18 | Sukohl Heinrich | Propeller for aircraft |
BE508996A (zh) * | 1947-11-12 | |||
GB706800A (en) * | 1951-10-09 | 1954-04-07 | Bell Aircraft Corp | Improvements in the construction of rotor blades |
FR1070262A (fr) | 1952-02-02 | 1954-07-21 | Chantiers De France Atel | Pale creuse de rotor à pas variable, notamment pour rotors de moteurs à vent |
DE1045810B (de) | 1957-05-17 | 1958-12-04 | Allgaier Werke G M B H | Aus faserverstaerkten Kunststoffschalen oder -platten bestehender Koerper, insbesondere Trag- oder Antriebsfluegel, und Verfahren und Werkzeug zu seiner Herstellung |
US3390393A (en) * | 1964-09-17 | 1968-06-25 | Bell Aerospace Corp | Airfoil radar antenna |
CA1007240A (en) | 1973-06-04 | 1977-03-22 | James K. Pierce | (polychlorophenoxy)methyl esters of thiocyanic acid |
FR2345600A1 (fr) | 1975-06-09 | 1977-10-21 | Bourquardez Gaston | Eolienne a paliers fluides |
GB1526433A (en) | 1975-08-06 | 1978-09-27 | Secr Defence | Helicopter rotor blades |
US4057450A (en) | 1976-12-30 | 1977-11-08 | Hitco | Method for making buoyancy members |
GB2048174B (en) | 1979-05-02 | 1983-05-18 | Pultrex Ltd | Assembling boat hulls |
DE2921152C2 (de) | 1979-05-25 | 1982-04-22 | Messerschmitt-Bölkow-Blohm GmbH, 8000 München | Rotorblatt für Windkraftwerke |
US4295790A (en) * | 1979-06-21 | 1981-10-20 | The Budd Company | Blade structure for use in a windmill |
NL8104019A (nl) | 1981-08-28 | 1983-03-16 | Jan Bos | Werkwijze voor het vervaardigen van voorwerpen uit gewapende kunststof. |
US4597715A (en) * | 1982-05-19 | 1986-07-01 | North Wind Power Company, Inc. | Wooden wind turbine blade manufacturing process |
US4627791A (en) * | 1982-11-10 | 1986-12-09 | Marshall Andrew C | Aeroelastically responsive composite propeller |
US5786785A (en) | 1984-05-21 | 1998-07-28 | Spectro Dynamics Systems, L.P. | Electromagnetic radiation absorptive coating composition containing metal coated microspheres |
FR2575970A1 (fr) | 1984-12-21 | 1986-07-18 | Berret Pierre | Structures monolithiques en materiaux composites |
FR2586966B1 (fr) | 1985-09-11 | 1988-02-26 | France Etat Armement | Structures multicanaux en materiaux composites, procedes et demi-produits pour la fabrication de celles-ci |
GB2186833A (en) | 1986-02-20 | 1987-08-26 | Fiberforce Limited | Pultrusion method |
US4883552A (en) * | 1986-12-05 | 1989-11-28 | Phillips Petroleum Company | Pultrusion process and apparatus |
US4976087A (en) * | 1987-12-07 | 1990-12-11 | Edward Pizzino | Method of forming footing and laying first course of block |
US4902215A (en) | 1988-06-08 | 1990-02-20 | Seemann Iii William H | Plastic transfer molding techniques for the production of fiber reinforced plastic structures |
US4976587A (en) | 1988-07-20 | 1990-12-11 | Dwr Wind Technologies Inc. | Composite wind turbine rotor blade and method for making same |
US5304339A (en) | 1990-05-23 | 1994-04-19 | Le Comte Adolf | Method for manufacturing a large-sized object of fiber reinforced synthetic resin |
US5324563A (en) | 1990-08-08 | 1994-06-28 | Bell Helicopter Textron Inc. | Unidirectional carbon fiber reinforced pultruded composite material having improved compressive strength |
DE69220236T2 (de) | 1991-09-13 | 1998-01-15 | Bell Helicopter Textron Inc., Fort Worth, Tex. | In einer richtung laufender graphitpultrusionsstab |
AT398064B (de) | 1992-07-01 | 1994-09-26 | Hoac Austria Flugzeugwerk Wr N | Kunststoff-verbundprofil, insbesondere flügelholm für den flugzeugbau |
DK9400343U4 (da) * | 1994-09-07 | 1995-10-13 | Bonus Energy As | Lynsikring af vindmøllevinge |
DE4436197C2 (de) * | 1994-10-11 | 1998-09-24 | Aloys Wobben | Windenergieanlage mit Blitzschutzeinrichtung |
DE4436290C1 (de) | 1994-10-11 | 1996-05-02 | Autoflug Energietech Gmbh | Windkraftanlage mit Blitzschutz |
DE4445899A1 (de) | 1994-12-22 | 1996-06-27 | Autoflug Energietech Gmbh | Windkraftanlage mit Blitzstromableitung |
DE19501267A1 (de) | 1994-12-22 | 1996-08-29 | Autoflug Energietech Gmbh | Windkraftanlage mit Blitzstromableitung |
FR2740380B1 (fr) * | 1995-10-30 | 1998-01-02 | Eurocopter France | Procede de fabrication d'une pale a pas variable en materiau composite pour rotor d'helicoptere |
US6081955A (en) | 1996-09-30 | 2000-07-04 | Martin Marietta Materials, Inc. | Modular polymer matrix composite support structure and methods of constructing same |
DK173460B2 (da) † | 1998-09-09 | 2004-08-30 | Lm Glasfiber As | Vindmöllevinge med lynafleder |
AU768212B2 (en) | 1999-11-03 | 2003-12-04 | Vestas Wind Systems A/S | Method of controlling the operation of a wind turbine and wind turbine for use in said method |
GB0003029D0 (en) | 2000-02-11 | 2000-03-29 | British Aerospace | A method of reinforcing a laminated member such as a skin for an aircraft |
EP3219981B1 (en) | 2001-07-19 | 2021-09-01 | Vestas Wind Systems A/S | Wind turbine blade |
-
2002
- 2002-07-19 EP EP17165491.6A patent/EP3219981B1/en not_active Expired - Lifetime
- 2002-07-19 DK DK04029161.9T patent/DK1520983T3/en active
- 2002-07-19 DE DE60203804.9T patent/DE60203804T3/de not_active Expired - Lifetime
- 2002-07-19 ES ES17165491T patent/ES2895673T3/es not_active Expired - Lifetime
- 2002-07-19 DK DK17165491.6T patent/DK3219981T3/da active
- 2002-07-19 JP JP2003514114A patent/JP2004535527A/ja active Pending
- 2002-07-19 CN CN2006101670203A patent/CN1975152B/zh not_active Expired - Lifetime
- 2002-07-19 PT PT02787103T patent/PT1417409E/pt unknown
- 2002-07-19 ES ES04029161.9T patent/ES2624620T3/es not_active Expired - Lifetime
- 2002-07-19 CA CA002454038A patent/CA2454038C/en not_active Expired - Fee Related
- 2002-07-19 US US10/483,963 patent/US7198471B2/en not_active Expired - Lifetime
- 2002-07-19 DK DK06018665.7T patent/DK1746284T4/da active
- 2002-07-19 EP EP06018665.7A patent/EP1746284B2/en not_active Expired - Lifetime
- 2002-07-19 CN CNB028145437A patent/CN1294353C/zh not_active Expired - Lifetime
- 2002-07-19 WO PCT/DK2002/000506 patent/WO2003008800A1/en active IP Right Grant
- 2002-07-19 AU AU2002354986A patent/AU2002354986B2/en not_active Expired
- 2002-07-19 ES ES06018665T patent/ES2574779T5/es not_active Expired - Lifetime
- 2002-07-19 ES ES02787103.7T patent/ES2240828T5/es not_active Expired - Lifetime
- 2002-07-19 EP EP02787103.7A patent/EP1417409B2/en not_active Expired - Lifetime
- 2002-07-19 AT AT02787103T patent/ATE293755T1/de not_active IP Right Cessation
- 2002-07-19 EP EP04029161.9A patent/EP1520983B1/en not_active Revoked
- 2002-07-19 DK DK02787103.7T patent/DK1417409T4/en active
-
2007
- 2007-04-02 US US11/730,463 patent/US7503752B2/en not_active Expired - Lifetime
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4474536A (en) * | 1980-04-09 | 1984-10-02 | Gougeon Brothers, Inc. | Wind turbine blade joint assembly and method of making wind turbine blades |
US4643647A (en) * | 1984-12-08 | 1987-02-17 | Rolls-Royce Plc | Rotor aerofoil blade containment |
CN2080994U (zh) * | 1990-10-13 | 1991-07-17 | 内蒙古动力机厂 | 200w风力发电机叶片 |
US5375324A (en) * | 1993-07-12 | 1994-12-27 | Flowind Corporation | Vertical axis wind turbine with pultruded blades |
CN2495836Y (zh) * | 2001-04-24 | 2002-06-19 | 胡德诚 | 复合材料机翼形叶片 |
Also Published As
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN1294353C (zh) | 风力涡轮机叶片及其制造方法 | |
AU2002354986A1 (en) | Wind turbine blade | |
US20200049128A1 (en) | Wind turbine blades | |
CN104812557B (zh) | 在风轮机叶片翼梁帽盖和整流罩间形成结构连接的方法 | |
DK2110552T3 (en) | Wind turbine blade with an integrated lightning arrester and method for manufacturing it | |
EP2511477B1 (en) | Wind turbine blade with transition region | |
CN114630957A (zh) | 风力涡轮机叶片 | |
US20200384720A1 (en) | Cores for Composite Material Sandwich Panels | |
AU2007200545A1 (en) | Wind turbine blade |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
ASS | Succession or assignment of patent right |
Owner name: VESTAS WIND SYSTEM GROUP CO.,LTD. Free format text: FORMER OWNER: NEG MAIKANG CO.,LTD. Effective date: 20091113 |
|
C41 | Transfer of patent application or patent right or utility model | ||
TR01 | Transfer of patent right |
Effective date of registration: 20091113 Address after: Danish Lander Patentee after: VESTAS WIND SYSTEMS A/S Address before: Danish Lander Patentee before: NEG MICON A/S |
|
CX01 | Expiry of patent term |
Granted publication date: 20070110 |
|
CX01 | Expiry of patent term |