DE3828312A1 - Herstellung einer silberhalogenidemulsion - Google Patents

Herstellung einer silberhalogenidemulsion

Info

Publication number
DE3828312A1
DE3828312A1 DE3828312A DE3828312A DE3828312A1 DE 3828312 A1 DE3828312 A1 DE 3828312A1 DE 3828312 A DE3828312 A DE 3828312A DE 3828312 A DE3828312 A DE 3828312A DE 3828312 A1 DE3828312 A1 DE 3828312A1
Authority
DE
Germany
Prior art keywords
gelatin
silver halide
color
emulsion
compounds
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
DE3828312A
Other languages
English (en)
Inventor
Franz Dipl Chem Dr Moll
Bruno Dipl Chem Dr Muecke
Klaus Dipl Chem Dr Wagner
Herbert Dipl Chem Dr Gareis
Wolfgang Graesser
Peter Dipl Ing Dr Koepff
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Agfa Gevaert AG
Original Assignee
Agfa Gevaert AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agfa Gevaert AG filed Critical Agfa Gevaert AG
Priority to DE3828312A priority Critical patent/DE3828312A1/de
Priority to US07/389,544 priority patent/US4992362A/en
Priority to DE58908871T priority patent/DE58908871D1/de
Priority to EP89114620A priority patent/EP0355568B1/de
Priority to JP1211565A priority patent/JPH02111940A/ja
Publication of DE3828312A1 publication Critical patent/DE3828312A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03CPHOTOSENSITIVE MATERIALS FOR PHOTOGRAPHIC PURPOSES; PHOTOGRAPHIC PROCESSES, e.g. CINE, X-RAY, COLOUR, STEREO-PHOTOGRAPHIC PROCESSES; AUXILIARY PROCESSES IN PHOTOGRAPHY
    • G03C1/00Photosensitive materials
    • G03C1/005Silver halide emulsions; Preparation thereof; Physical treatment thereof; Incorporation of additives therein
    • G03C1/06Silver halide emulsions; Preparation thereof; Physical treatment thereof; Incorporation of additives therein with non-macromolecular additives
    • G03C1/08Sensitivity-increasing substances
    • G03C1/09Noble metals or mercury; Salts or compounds thereof; Sulfur, selenium or tellurium, or compounds thereof, e.g. for chemical sensitising
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03CPHOTOSENSITIVE MATERIALS FOR PHOTOGRAPHIC PURPOSES; PHOTOGRAPHIC PROCESSES, e.g. CINE, X-RAY, COLOUR, STEREO-PHOTOGRAPHIC PROCESSES; AUXILIARY PROCESSES IN PHOTOGRAPHY
    • G03C1/00Photosensitive materials
    • G03C1/005Silver halide emulsions; Preparation thereof; Physical treatment thereof; Incorporation of additives therein
    • G03C1/04Silver halide emulsions; Preparation thereof; Physical treatment thereof; Incorporation of additives therein with macromolecular additives; with layer-forming substances
    • G03C1/047Proteins, e.g. gelatine derivatives; Hydrolysis or extraction products of proteins

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Silver Salt Photography Or Processing Solution Therefor (AREA)

Description

Die Erfindung betrifft ein Verfahren zur Herstellung einer lichtempfindlichen Silberhalogenidemulsion durch Fällung des Silberhalogenids in Gegenwart von Gelatine, Ausflocken und Waschen des in Gegenwart der Gelatine gefällten Silberhalogenids und Redispergieren unter Zusatz weiterer Gelatine.
Die Oxidation von Gelatinen zur Inertisierung, d. h. zur Zerstörung fotografisch aktiver Substanzen, aber auch zur Entfernung bakterieller Verunreinigungen oder zur Aufhellung der Farbe der Gelatine, ist bekannt, wobei als Oxidationsmittel Wasserstoffperoxid, Persäuren wie Perameisensäure, Peressigsäure, Periodsäure, Chloramin T (N-Chlor-p-toluolsulfonsäureamid-Natrium) u. ä. verwendet werden.
Aus EP-A-02 27 444 und EP-A-02 28 256 ist bekannt, daß die Verwendung oxidierter Gelatine für die Herstellung tafelförmiger Silberhalogenidemulsionen, insbesondere bei großem Chloridanteil der Emulsion vorteilhaft ist. Nachteilig ist aber, daß solche Gelatinen zu einem intolerablen Anstieg des Schleiers führen.
Aufgabe der Erfindung war es daher, die Herstellung einer Silberhalogenidemulsion so zu modifizieren, daß einerseits ein verbessertes Kornwachstum erzielt, andererseits ein unerwünscht hoher Schleier vermieden wird.
Es wurde nun gefunden, daß sich diese Aufgabe dadurch lösen läßt, daß bei dem eingangs beschriebenen Verfahren die Fällung in Gegenwart einer Gelatine mit einer Goldzahl von höchstens 10 µMol/g Gelatine und einem Cysteingehalt von höchstens 6 ppm und die Redispergierung mit einer Gelatine mit einer Goldzahl von mindestens 23 µMol/g Gelatine durchgeführt wird. Die Gelatine zur Redispergierung kann Cysteingehalte von 6 bis 16 ppm haben.
Gelatinen mit einem Goldwert von mindestens 23 µMol/g werden bei der üblichen alkalischen oder sauren Äscherung erhalten. Gelatinen mit einem Goldwert von höchstens 10 µMol/g und einem Cysteingehalt von höchstens 6 ppm erhält man aus den üblichen Gelatinen durch Oxidation mit den vorstehend angegebenen Oxidationsmitteln.
Vorzugsweise beträgt das Gelatine-zu-Silber-Gewichtsverhältnis (Ge-Si) der fertigen Emulsion 1 : 1 bis 1 : 5, wobei Silber als Silbernitrat in die Rechnung eingesetzt wird.
Das Gewichtsverhältnis der Gelatinemenge bei der Fällung zur Gelatinemenge, die bei der Redispergierung zugesetzt wird, beträgt insbesondere 1 : 1 bis 1 : 10, vorzugsweise 1 : 1 bis 1 : 5.
Die oxidierte Gelatine kann sauer oder alkalisch aufgeschlossen sein. Das Rohmaterial kann Knochen oder Haut sein. Knochen als Rohmaterial wird jedoch bevorzugt, da hieraus leichter Inertgelatinen, d. h. Gelatinen mit geringen Anteilen an fotografisch aktiven Verunreinigungen, wie Thiosulfat oder Sulfit, hergestellt werden können.
Die Oxidation der Gelatine kann zu jedem beliebigen Zeitpunkt der Herstellung der Gelatine erfolgen. Die Oxidation kann auch in der Gelatinelösung vor Beginn der Emulsionsfällung erfolgen.
Der pH-Wert während der Oxidation kann in weiten Grenzen schwanken und liegt vorzugsweise zwischen pH 2 und pH 8. Höhere und niedrigere pH-Werte sind möglich, jedoch werden dann die physikalischen Eigenschaften der Gelatine verschlechtert.
Die Oxidation der Gelatine kann durch Bestimmung des Goldwertes oder des Cysteingehaltes kontrolliert und entsprechend den gewünschten Werten beendet werden.
Zur Bestimmung der Goldzahl wird die Gelatine mit Tetrachlorogoldsäure bei pH 2 potentiometrisch titriert. Der Goldverbrauch ergibt die Goldzahl. Nicht oxidierte Gelatinen zeigen nach dieser Methode Goldzahlen von 23 µMol/g. Dies entspricht etwa einem Methioningehalt von 50 µMol/g.
Die Bestimmung des Cysteingehaltes der Gelatine erfolgt nach einem von H. Meichelbeck, A.G. Hack und Chr. Sentler in z. Ges. Textilindustrie 70, 242 (1968) beschriebenen Verfahren. Hierbei wird 1 g Gelatine unter Zugabe von 1 ml Wasser und 1 ml 30 gew.-%iger H₂SO₄ 60 Minuten im siedenden Wasserbad hydrolysiert und nach dem Abkühlen mit 3 m Tris(hydroxymethyl)-aminomethan (TRIS) und einem TRIS/HCl-Puffer auf pH 7,4 eingestellt.
Als Farbreagens dient 5,5′-Dithiobis-(2-nitrobenzoesäure) (DTNB). Ausgemessen wird bei 412 nm. Als Vergleichslösung wird die gleiche Lösung wie die Meßlösung, aber ohne Hydrolysat verwendet. Da jedoch die Gelatinehydrolysate unterschiedliche Färbungen aufweisen, die in diesem Bereich absorbieren, muß das Hydrolysat mit allen Zusätzen außer DTNB ebenfalls gemessen und von der Extinktion der Meßlösung abgezogen werden.
Der Puffer wird wie folgt hergestellt: 121 g TRIS werden in 500 ml Wasser gelöst und der pH-Wert mit HCl auf 7,4 eingestellt. Die Lösung wird dann auf 1000 ml aufgefüllt.
Reagenslösung: 10 ml TRIS/HCl-Puffer werden mit Wasser auf etwa 50 ml verdünnt, darin werden 25 mg Reagens (DTNB) und 20 mg EDTA-Salz gelöst. Der pH-Wert wird mit HCl auf 4 eingestellt. Die Lösung wird auf 100 ml aufgefüllt.
Zur Einstellung des pH-Wertes des Gelatinehydrolysates wird außerdem 3 m TRIS benötigt.
Um exakte Werte zu erhalten, ist eine Doppelbestimmung unerläßlich. Die Schwankungsbreite der Messungen darf nicht größer als ±1 ppm sein.
Aus dem Meßwert ergibt sich der Cysteingehalt mittels einer zuvor festgelegten Eichkurve. Wie bei H. Meichelbeck et al., loc. cit. angegeben, kann auch ohne Eichkurve aus dem Meßwert der Cysteingehalt rechnerisch erhalten werden.
Sowohl Goldzahlbestimmung als auch Cysteinanalyse sind ausgezeichnet reproduzierbar.
Die Gelatinen können entsalzt oder nicht entsalzt sein. Bevorzugt werden Inertgelatinen, die dadurch gekennzeichnet sind, daß diese nur wenig fotografisch aktive Verbindungen enthalten. Nicht entsalzte Inert-Gelatinen weisen oftmals einen hohen Gehalt an Ca-Ionen auf.
Das als lichtempfindlicher Bestandteil in der fotografischen Emulsion befindliche Silberhalogenid kann als Halogenid Chlorid, Bromid oder Iodid bzw. Mischungen davon enthalten. Beispielsweise kann der Halogenidanteil wenigstens einer Schicht zu 0 bis 15 Mol-% aus Iodid, zu 0 bis 100 Mol-% aus Chlorid und zu 0 bis 100 Mol-% aus Bromid bestehen. Im Falle von Farbnegativ- und Farbumkehrfilmen werden üblicherweise Silberbromidiodidemulsionen, im Falle von Farbnegativ- und Farbumkehrpapier üblicherweise Silberchloridbromidemulsionen verwendet. Es kann sich um überwiegend kompakte Kristalle handeln, die z. B. regulär kubisch oder oktaedrisch sind oder Übergangsformen aufweisen können. Vorzugsweise können aber auch plättchenförmige Kristalle vorliegen, deren durchschnittliches Verhältnis von Durchmesser zu Dicke bevorzugt wenigstens 5 : 1 ist, wobei der Durchmesser eines Kornes definiert ist als der Durchmesser eines Kreises mit einem Kreisinhalt entsprechend der projizierten Fläche des Kornes. Die Schichten können aber auch tafelförmige Silberhalogenidkristalle aufweisen, bei denen das Verhältnis von Durchmesser zu Dicke wesentlich größer als 5 : 1 ist, z. B. 12 : 1 bis 30 : 1.
Die Silberhalogenidkörner können auch einen mehrfach geschichteten Kornaufbau aufweisen, im einfachsten Fall mit einem inneren und einem äußeren Kornbereich (core/ shell), wobei die Halogenidzusammensetzung und/oder sonstige Modifizierungen, wie z. B. Dotierungen der einzelnen Kornbereiche unterschiedlich sind. Die mittlere Korngröße der Emulsionen liegt vorzugsweise zwischen 0,2 µm und 2,0 µm, die Korngrößenverteilung kann sowohl homo- als auch heterodispers sein. Homodisperse Korngrößenverteilung bedeutet, daß 95% der Körner nicht mehr als ±30% von der mittleren Korngröße abweichen. Die Emulsionen können neben dem Silberhalogenid auch organische Silbersalze enthalten, z. B. Silberbenztriazolat oder Silberbehenat.
Es können zwei oder mehrere Arten von Silberhalogenidemulsionen, die getrennt hergestellt werden, als Mischung verwendet werden.
Die fotografischen Emulsionen können nach verschiedenen Methoden (z. B. P. Glafkides, Chimie et Physique Photographique, Paul Montel, Paris (1967), G. F. Duffin, Photographic Emulsion Chemistry, The Focal Press, London (1966), V. L. Zelikman et al., Making and Coating Photographic Emulsion, The Focal Press, London (1966) aus löslichen Silbersalzen und löslichen Halogeniden hergestellt werden.
Die Fällung des Silberhalogenids kann im sauren, neutralen oder alkalischen pH-Bereich durchgeführt werden, wobei vorzugsweise Silberhalogenidkomplexbildner zusätzlich verwendet werden. Zu letzteren gehören z. B. Ammoniak, Thioether, Imidazol, Ammoniumthiocyanat oder überschüssiges Halogenid. Die Zusammenführung der wasserlöslichen Silbersalze und der Halogenide erfolgt wahlweise nacheinander nach dem single-jet- oder gleichzeitig nach dem double-jet-Verfahren oder nach beliebiger Kombination beider Verfahren. Bevorzugt wird die Dosierung mit steigenden Zuflußraten, wobei die "kritische" Zufuhrgeschwindigkeit, bei der gerade noch keine Neukeime entstehen, nicht überschritten werden sollte. Der pAg-Bereich kann während der Fällung in weiten Grenzen variieren, vorzugsweise wird das sogenannte pAg-gesteuerte Verfahren benutzt, bei dem ein bestimmter pAg-Wert konstant gehalten oder ein definiertes pAg-Profil während der Fällung durchfahren wird. Neben der bevorzugten Fällung bei Halogenidüberschuß ist aber auch die sogenannte inverse Fällung bei Silberionenüberschuß möglich. Außer durch Fällung können die Silberhalogenidkristalle auch durch physikalische Reifung (Ostwaldreifung), in Gegenwart von überschüssigem Halogenid und/oder Silberhalogenidkomplexierungsmittel wachsen. Das Wachstum der Emulsionskörner kann sogar überwiegend durch Ostwaldreifung erfolgen, wobei vorzugsweise eine feinkörnige, sogenannte Lippmann- Emulsion, mit einer schwerer löslichen Emulsion gemischt und auf letzterer umgelöst wird.
Während der Fällung und/oder der physikalischen Reifung der Silberhalogenidkörner können auch Salze oder Komplexe von Metallen, wie Cd, Zn, Pb, Tl, Bi, Ir, R, Fe vorhanden sein.
Ferner kann die Fällung auch in Gegenwart von Sensibilisierungsfarbstoffen erfolgen. Komplexierungsmittel und/oder Farbstoffe lassen sich zu jedem beliebigen Zeitpunkt unwirksam machen, z. B. durch Änderung des pH- Wertes oder durch eine oxidative Behandlung.
Nach abgeschlossener Kristallbildung oder auch schon zu einem früheren Zeitpunkt werden durch das Flocken und Waschen die löslichen Salze aus der Emulsion entfernt.
Die Silberhalogenidemulsion wird im allgemeinen einer chemischen Sensibilisierung unter definierten Bedingungen - pH, pAg, Temperatur, Gelatine-, Silberhalogenid- und Sensibilisatorkonzentration - bis zum Erreichen des Empfindlichkeits- und Schleieroptimums unterworfen. Die Verfahrensweise ist z. B. bei H. Frieser "Die Grundlagen der Photographischen Prozesse mit Silberhalogeniden" Seite 675-734, Akademische Verlagsgesellschaft (1968), beschrieben.
Dabei kann die chemische Sensibilisierung unter Zusatz von Verbindungen von Schwefel, Selen, Tellur und/oder Edelmetallverbindungen (z. B. Gold, Platin, Palladium, Iridium) erfolgen, weiterhin können Thiocyanatverbindungen, oberflächenaktive Verbindungen, wie Thioether, heterocyclische Stickstoffverbindungen (z. B. Imidazole, Azaindene) oder auch spektrale Sensibilisatoren (beschrieben z. B. bei F. Hamer "The Cyanine Dyes and Related Compounds", 1964, bzw. Ullmanns Encyclopädie der technischen Chemie, 4. Auflage, Bd. 18, S. 431 ff. und Research Disclosure Nr. 17643, Abschnitt III) zugegeben werden. Ersatzweise oder zusätzlich kann eine Reduktionssensibilisierung unter Zugabe von Reduktionsmitteln (Zinn-II-Salze, Amine, Hydrazinderivate, Aminoborane, Silane, Formamidinsulfinsäure) durch Wasserstoff, durch niedrigen pAg (z. B. kleiner 5) und/oder hohen pH (z. B. über 8) durchgeführt werden.
Die fotografischen Emulsionen können Verbindungen zur Verhinderung der Schleierbildung oder zur Stabilisierung der fotografischen Funktion während der Produktion, der Lagerung oder der fotografischen Verarbeitung enthalten.
Besonders geeignet sind Azaindene, vorzugsweise Tetra- und Pentaazaindene, insbesondere solche, die mit Hydroxyl- oder Aminogruppen substituiert sind. Derartige Verbindungen sind z. B. von Birr, Z. Wiss. Phot. 47 (1952), S. 2-58 beschrieben worden. Weiter können als Antischleiermittel Salze von Metallen wie Quecksilber oder Cadmium, aromatische Sulfon- oder Sulfinsäuren wie Benzolsulfinsäure oder stickstoffhaltige Heterocyclen wie Nitrobenzimidazol, Nitroindazol, gegebenenfalls substituierte Benztriazole oder Benzthiazoliumsalze eingesetzt werden. Besonders geeignet sind Mercaptogruppen enthaltende Heterocyclen, z. B. Mercaptobenzthiazole, Mercaptobenzimidazole, Mercaptotetrazole, Mercaptothiadiazole, Mercaptopyrimidine, wobei diese Mercaptoazole auch eine wasserlöslichmachende Gruppe, z. B. eine Carboxylgruppe oder Sulfogruppe, enthalten können. Weitere geeignete Verbindungen sind in Research Disclosure Nr. 17643 (1978), Abschnitt VI, veröffentlicht.
Die Stabilisatoren können den Silberhalogenidemulsionen vor, während oder nach deren Reifung zugesetzt werden. Selbstverständlich kann man die Verbindungen auch anderen fotografischen Schichten, die einer Halogensilberschicht zugeordnet sind, zusetzen.
Es können auch Mischungen aus zwei oder mehreren der genannten Verbindungen eingesetzt werden.
Die fotografischen Emulsionsschichten oder andere hydrophile Kolloidschichten des erfindungsgemäß hergestellten lichtempfindlichen Materials können oberflächenaktive Mittel für verschiedene Zwecke enthalten, wie Überzugshilfen, zur Verhinderung der elektrischen Aufladung, zur Verbesserung der Gleiteigenschaften, zum Emulgieren der Dispersion, zur Verhinderung der Adhäsion und zur Verbesserung der fotografischen Charakteristika (z. B. Entwicklungsbeschleunigung, hoher Kontrast, Sensibilisierung usw.). Neben natürlichen oberflächenaktiven Verbindungen, z. B. Saponin, finden hauptsächlich synthetische oberflächenaktive Verbindungen (Tenside) Verwendung: nicht-ionische Tenside, z. B. Alkylenoxidverbindungen, Glycerinverbindungen oder Glycidolverbindungen, kationische Tenside, z. B. höhere Alkylamine, quartäre Ammoniumsalze, Pyridinverbindungen und andere heterocyclische Verbindungen, Sulfoniumverbindungen oder Phosphoniumverbindungen, anionische Tenside, enthaltend eine Säuregruppe, z. B. Carbonsäure-, Sulfonsäure-, eine Phosphorsäure-, Schwefelsäureester- oder Phosphorsäureestergruppe, ampholytische Tenside, z. B. Aminosäure- und Aminosulfonsäureverbindungen sowie Schwefel- oder Phosphorsäureester eines Aminoalkohols.
Die fotografischen Emulsionen können unter Verwendung von Methinfarbstoffen oder anderen Farbstoffen spektral sensibilisiert werden. Besonders geeignete Farbstoffe sind Cyaninfarbstoffe, Merocyaninfarbstoffe und komplexe Merocyaninfarbstoffe.
Eine Übersicht über die als Spektralsensibilisatoren geeigneten Polymethinfarbstoffe, deren geeignete Kombinationen und supersensibilisierend wirkenden Kombinationen enthält Research Disclosure 17643/1978 in Abteilung IV.
Insbesondere sind die folgenden Farbstoffe - geordnet nach Spektralgebieten - geeignet:
  • 1. als Rotsensibilisatoren
    9-Ethylcarbocyanine mit Benzthiazol, Benzselenazol oder Naphthothiazol als basische Endgruppen, die in 5- und/oder 6-Stellung durch Halogen, Methyl, Methoxy, Carbalkoxy, Aryl substituiert sein können sowie 9-Ethyl-naphthoxathia- bzw. -selencarbocyanine und 9-Ethyl-naphthothiaoxa- bzw. -benzimidazocarbocyanine, vorausgesetzt, daß die Farbstoffe mindestens eine Sulfoalkylgruppe am heterocyclischen Stickstoff tragen.
  • 2. als Grünsensibilisatoren
    9-Ethylcarbocyanine mit Benzoxazol, Naphthoxazol oder einem Benzoxazol und einem Benzthiazol als basische Endgruppen sowie Benzimidazocarbocyanine, die ebenfalls weiter substituiert sein können und ebenfalls mindestens eine Sulfoalkylgruppe am heterocyclischen Stickstoff enthalten müssen.
  • 3. als Blausensibilisatoren
    symmetrische oder asymmetrische Benzimidazo-, Oxa-, Thia- oder Selenacyanine mit mindestens einer Sulfoalkylgruppe am heterocyclischen Stickstoff und gegebenenfalls weiteren Substituenten am aromatischen Kern sowie Apomerocyanine mit einer Rhodaningruppe.
Die Emulsionen können außer den erfindungsgemäßen Gelatinen zusätzliche Bindemittel, wie synthetische oder natürliche, schichtbildende Polymere enthalten.
Die erfindungsgemäßen Emulsionen eignen sich für alle Arten von fotografischen Materialien, wie Röntgenfilmen, Schwarz-Weiß-Film, Schwarz-Weiß-Papier, insbesondere aber für farbfotografische Materialien.
Beispiele für farbfotografische Materialien sind Farbnegativfilme, Farbumkehrfilme, Farbpositivfilme, farbfotografisches Papier, farbumkehrfotografisches Papier, farbempfindliche Materialien für das Farbdiffusionstransfer-Verfahren oder das Silberfarb-Bleichverfahren.
Geeignete Träger zur Herstellung farbfotografischer Materialien sind z. B. Filme und Folien von halbsynthetischen und synthetischen Polymeren, wie Cellulosenitrat, Celluloseacetat, Cellulosebutyrat, Polystyrol, Polyvinylchlorid, Polyethylenterephthalat und Polycarbonat und mit einer Barytschicht oder α-Olefinpolymerschicht (z. B. Polyethylen) laminiertes Papier. Diese Träger können mit Farbstoffen und Pigmenten, beispielsweise Titandioxid, gefärbt sein. Sie können auch zum Zwecke der Abschirmung von Licht schwarz gefärbt sein. Die Oberfläche des Trägers wird im allgemeinen einer Behandlung unterzogen, um die Adhäsion der fotografischen Emulsionsschicht zu verbessern, beispielsweise einer Corona-Entladung mit nachfolgendem Antrag einer Substratschicht.
Die farbfotografischen Materialien enthalten üblicherweise mindestens je eine rotempfindliche, grünempfindliche und blauempfindliche Silberhalogenidemulsionsschicht sowie gegebenenfalls Zwischenschichten und Schutzschichten.
Wesentliche Bestandteile der fotografischen Emulsionsschichten sind neben Bindemittel und Silberhalogenidkörnchen die Farbkuppler.
Den unterschiedlich sensibilisierten Emulsionsschichten werden nicht diffundierende monomere oder polymere Farbkuppler zugeordnet, die sich in der gleichen Schicht oder in einer dazu benachbarten Schicht befinden können. Gewöhnlich werden den rotempfindlichen Schichten Blaugrünkuppler, den grünempfindlichen Schichten Purpurkuppler und den blauempfindlichen Schichten Gelbkuppler zugeordnet.
Farbkuppler zur Erzeugung des blaugrünen Teilfarbenbildes sind in der Regel Kuppler vom Phenol- oder α- Naphtholtyp.
Farbkuppler zur Erzeugung des purpurnen Teilfarbenbildes sind in der Regel Kuppler vom Typ des 5-Pyrazolons, des Indazolons oder Pyrauoloazole.
Farbkuppler zur Erzeugung des gelben Teilfarbenbildes sind in der Regel Kuppler mit einer offenkettigen Ketomethylengruppierung, insbesondere Kuppler vom Typ des α-Acylacetamids; geeignete Beispiele hierfür sind α- Benzoylacetanilidkuppler und α-Pivaloylacetanilidkuppler.
Bei den Farbkupplern kann es sich um 4-Äquivalentkuppler, aber auch um 2-Äquivalentkuppler handeln. Letztere leiten sich von den 4-Äquivalentkupplern dadurch ab, daß sie in der Kupplungsstelle einen Substituenten enthalten, der bei der Kupplung abgespalten wird. Zu den 2- Äquivalentkupplern sind solche zu rechnen, die farblos sind, als auch solche, die eine intensive Eigenfarbe aufweisen, die bei der Farbkupplung verschwindet bzw. durc die Farbe des erzeugten Bildfarbstoffes ersetzt wird (Maskenkuppler), und die Weißkuppler, die bei Reaktion mit Farbentwickleroxidationsprodukten im wesentlichen farblose Produkte ergeben. Zu den 2-Äquivalentkupplern sind ferner solche Kuppler zu rechnen, die in der Kupplungsstelle einen abspaltbaren Rest enthalten, der bei Reaktion mit Farbentwickleroxidationsprodukten in Freiheit gesetzt wird und dabei entweder direkt oder nachdem aus dem primär abgespaltenen Rest eine oder mehrere weitere Gruppen abgespalten worden sind (z. B. DE-A-27 03-145, DE-A-28 55 697, DE-A-31 05 026, DE-A- 33 19 428), eine bestimmte erwünschte fotografische Wirksamkeit entfaltet, z. B. als Entwicklungsinhibitor oder -accelerator. Beispiele für solche 2-Äquivalentkuppler sind die bekannten DIR-Kuppler wie auch DAR- bzw. FAR-Kuppler.
DIR-Kuppler, die Entwicklungsinhibitoren vom Azoltyp, z. B. Triazole und Benzotriazole freisetzen, sind in DE- A-24 14 006, 26 10 546, 26 59 417, 27 54 281, 27 26 180, 36 26 219, 36 30 564, 36 36 824, 36 44 416 und 28 42 063 beschrieben. Weitere Vorteile für die Farbwiedergabe, d. h. Farbtrennung und Farbreinheit, und für die Detailwiedergabe, d. h. Schärfe und Körnigkeit, sind mit solchen DIR-Kupplern zu erzielen, die z. B. den Entwicklungsinhibitor nicht unmittelbar als Folge der Kupplung mit einem oxidierten Farbentwickler abspalten, sondern erst nach einer weiteren Folgereaktion, die beispielsweise mit einer Zeitsteuergruppe erreicht wird. Beispiele dafür sind in DE-A-28 55 697, 32 99 671, 38 18 231, 35 18 797, in EP-A-1 57 146 und 2 04 175, in US-A- 41 46 396 und 44 38 393 sowie in GB-A-20 72 363 beschrieben.
DIR-Kuppler, die einen Entwicklungsinhibitor freisetzen, der im Entwicklerbad zu im wesentlichen fotografisch unwirksamen Produkten zersetzt wird, sind beispielsweise in DE-A-32 09 486 und in EP-A-1 67 168 und 2 19 713 beschrieben. Mit dieser Maßnahme wird eine störungsfreie Entwicklung und Verarbeitungskonstanz erreicht.
Bei Einsatz von DIR-Kupplern, insbesondere von solchen, die einen gut diffundierbaren Entwicklungsinhibitor abspalten, lassen sich durch geeignete Maßnahmen bei der optischen Sensibilisierung Verbesserungen der Farbwiedergabe, z. B. eine differenziertere Farbwiedergabe, erzielen, wie beispielsweise in EP-A-1 15 304, 1 67 173, GB-A-21 65 058, DE-A-37 00 419 und US-A-47 07 436 beschrieben.
Die DIR-Kuppler können in einem mehrschichtigen fotografischen Material den unterschiedlichsten Schichten zugesetzt werden, z. B. auch lichtunempfindlichen oder Zwischenschichten. Vorzugsweise werden sie jedoch den lichtempfindlichen Silberhalogenidemulsionsschichten zugesetzt, wobei die charakteristischen Eigenschaften der Silberhalogenidemulsion, z. B. deren Iodidgehalt, die Struktur der Silberhalogenidkörner oder deren Korngrößenverteilung von Einfluß auf die erzielten fotografischen Eigenschaften sind. Der Einfluß der freigesetzten Inhibitoren kann beispielsweise durch den Einbau einer Inhibitorfängerschicht gemäß DE-A-24 31 223 begrenzt werden. Aus Gründen der Reaktivität oder Stabilität kann es vorteilhaft sein, einen DIR-Kuppler einzusetzen, der in der jeweiligen Schicht, in der er eingebracht ist, eine von der in dieser Schicht zu erzeugenden Farbe abweichende Farbe bei der Kupplung bildet.
Zur Steigerung der Empfindlichkeit, des Kontrastes und der maximalen Dichte können vor allem DAR- bzw. FAR- Kuppler eingesetzt werden, die einen Entwicklungsbeschleuniger oder ein Schleiermittel abspalten. Verbindungen dieser Art sind beispielsweise in DE-A-25 34 466, 32 09 110, 33 33 355, 34 10 616, 34 29 545, 34 41 823, in EP-A-89 834, 1 10 511, 1 18 087, 1 47 765 und in US-A- 46 18 572 und 46 56 123 beschrieben.
Als Beispiel für den Einsatz von BAR-Kuppler (Bleach Accelerator Releasing Coupler) wird auf EP-A-1 93 389 verwiesen.
Es kann vorteilhaft sein, die Wirkung einer aus einem Kuppler abgespaltenen fotografisch wirksamen Gruppe dadurch zu modifizieren, daß eine intermolekulare Reaktion dieser Gruppe nach ihrer Freisetzung mit einer anderen Gruppe gemäß DE-A-35 06 805 eintritt.
Da bei den DIR-, DAR- bzw. FAR-Kupplern hauptsächlich die Wirksamkeit des bei der Kupplung freigesetzten Restes erwünscht ist und es weniger auf die farbbildenden Eigenschaften dieser Kuppler ankommt, sind auch solche DIR-, DAR- bzw. FAR-Kuppler geeignet, die bei der Kupplung im wesentlichen farblose Produkte ergeben (DE- A-15 47 640).
Der abspaltbare Rest kann auch ein Ballastrest sein, so daß bei der Reaktion mit Farbentwickleroxidationsprodukten Kupplungsprodukte erhalten werden, die diffusionsfähig sind oder zumindest eine schwache bzw. eingeschränkte Beweglichkeit aufweisen (US-A-44 20 556).
Das Material kann weiterhin von Kupplern verschiedene Verbindungen enthalten, die beispielsweise einen Entwicklungsinhibitor, einen Entwicklungsbeschleuniger, einen Bleichbeschleuniger, einen Entwickler, ein Silberhalogenidlösungsmittel, ein Schleiermittel oder ein Antischleiermittel in Freiheit setzen können, beispielsweise sogenannte DIR-Hydrochinone und andere Verbindungen, wie sie beispielsweise in US-A-46 36 546, 43 45 024, 46 84 604 und in DE-A-31 45 640, 25 15 213, 24 47 079 und in EP-A-1 98 438 beschrieben sind. Diese Verbindungen erfüllen die gleiche Funktion wie die DIR-, DAR- oder FAR-Kuppler, außer, daß sie keine Kupplungsprodukte bilden.
Hochmolekulare Farbkuppler sind beispielsweise in DE-C- 12 97 417, DEA-24 07 569, DE-A-31 48 125, DE-A- 32 17 200, DE-A-33 20 079, DE-A-33 24 932, DE-A- 33 31 743, DE-A-33 40 376, EP-A-27 284, US-A-40 80 211 beschrieben. Die hochmolekularen Farbkuppler werden in der Regel durch Polymerisation von ethylenisch ungesättigten monomeren Farbkupplern hergestellt. Sie können aber auch durch Polyaddition oder Polykondensation erhalten werden.
Die Einarbeitung der Kuppler oder anderer Verbindungen in Silberhalogenidemulsionsschichten kann in der Weise erfolgen, daß zunächst von der betreffenden Verbindung eine Lösung, eine Dispersion oder eine Emulsion hergestellt und dann der Gießlösung für die betreffende Sicht zugefügt wird. Die Auswahl des geeigneten Lösungs- oder Dispersionsmittels hängt von der jeweiligen Löslichkeit der Verbindung ab.
Methoden zum Einbringen von in Wasser im wesentlichen unlöslichen Verbindungen durch Mahlverfahren sind beispielsweise in DE-A-26 09 741 und DE-A-26 09 742 beschrieben.
Hydrophobe Verbindungen können auch unter Verwendung von hochsiedenden Lösungsmitteln, sogenannten Ölbildnern, in die Gießlösung eingebracht werden. Entsprechende Methoden sind beispielsweise in US-A-23 22 027, US-A- 28 01 170, US-A-28 01 171 und EP-A-00 43 037 beschrieben.
Anstelle der hochsiedenden Lösungsmittel können Oligomere oder Polymere, sogenannte polymere Ölbildner Verwendung finden.
Die Verbindungen können auch in Form beladener Latices in die Gießlösung eingebracht werden. Verwiesen wird beispielsweise auf DE-A-25 41 230, DE-A-25 41 274, DE-A- 28 35 856, EP-A-00 14 921, EP-A-00 69 671, EP-A- 01 30 115, US-A-42 91 113.
Die diffusionsfeste Einlagerung anionischer wasserlöslicher Verbindungen (z. B. von Farbstoffen) kann auch mit Hilfe von kationischen Polymeren, sogenannten Beizenpolymeren erfolgen.
Geeignete Ölbildner sind z. B. Phthalsäurealkylester, Phosphonsäureester, Phosporsäureester, Citronensäureester, Benzoesäureester, Amide, Fettsäureester, Trimesinsäureester, Alkohole, Phenole, Anilinderivate und Kohlenwasserstoffe.
Beispiele für geeignete Ölbildner sind Dibutylphthalat, Dicyclohexylphthalat, Di-2-ethylhexylphthalat, Decylphthalat, Triphenylphosphat, Tricresylphosphat, 2-Ethylhexyldiphenylphosphat, Tricyclohexylphosphat, Tri-2- ethylhexylphosphat, Tridecylphosphat, Tributoxyethylphosphat, Trichlorpropylphosphat, Di-2-ethylhexylphenylphosphat, 2-Ethylhexylbenzoat, Dodecylbenzoat, 2- Ethylhexyl-p-hydroxybenzoat, Diethyldodecanamid, N- Tetradecylpyrrolidon, Isostearylalkohol, 2,4-Di-tert.- amylphenol, Dioctylacelat, Glycerintributyrat, Isostearyllactat, Trioctylcitrat, N,N-Dibutyl-2-butoxy-5- tert.-octylanilin, Paraffin, Dodecylbenzol und Diisopropylnaphthalin.
Jede der unterschiedlich sensibilisierten, lichtempfindlichen Schichten kann aus einer einzigen Schicht bestehen oder auch zwei oder mehr Silberhalogenidemulsionsteilschichten umfassen (DE-C-11 21 470). Dabei sind rotempfindliche Silberhalogenidemulsionsschichten dem Schichtträger häufig näher angeordnet als grünempfindliche Silberhalogenidemulsionsschichten und diese wiederum näher als blauempfindliche, wobei sich im allgemeinen zwischen grünempfindlichen Schichten und blauempfindlichen Schichten eine nicht lichtempfindliche gelbe Filterschicht befindet.
Bei geeignet geringer Eigenempfindlichkeit der grün- bzw. rotempfindlichen Schichten kann man unter Verzicht auf die Gelbfilterschicht andere Schichtanordnungen wählen, bei denen auf den Träger z. B. die blauempfindlichen, dann die rotempfindlichen und schließlich die grünempfindlichen Schichten folgen.
Die in der Regel zwischen Schichten unterschiedlicher Spektralempfindlichkeit angeordneten nicht lichtempfindlichen Zwischenschichten können Mittel enthalten, die eine unerwünschte Diffusion von Entwickleroxidationsprodukten aus einer lichtempfindlichen in eine andere lichtempfindliche Schicht mit unterschiedlicher spektraler Sensibilisierung verhindern.
Geeignete Mittel, die auch Scavenger oder EOP-Fänger genannt werden, werden in Research Disclosure 17 643 (Dez. 1978), Kapitel VII, 17 842/1979, Seite 94-97 und 18 716/1979, Seite 650 sowie in EP-A-69 070, 98 072, 1 24 877, 1 25 522 und in US-A-4 63 226 beschrieben.
Liegen mehrere Teilschichten gleicher spektraler Sensibilisierung vor, so können sich diese hinsichtlich ihrer Zusammensetzung, insbesondere was Art und Menge der Silberhalogenidkörnchen betrifft, unterscheiden. Im allgemeinen wird die Teilschicht mit höherer Empfindlichkeit von Träger entfernter angeordnet sein als die Teilschicht mit geringerer Empfindlichkeit. Teilschichten gleicher spektraler Sensibilisierung können zueinander benachbart oder durch andere Schichten, z. B. durch Schichten anderer spektraler Sensibilisierung getrennt sein. So können z. B. alle hochempfindlichen und alle niedrigempfindlichen Schichten jeweils zu einem Schichtpaket zusammengefaßt sein (DE-A-19 58 709, DE-A- 25 30 645, DE-A-26 22 922).
Das fotografische Material kann weiterhin UV-Licht absorbierende Verbindungen, Weißtöner, Abstandshalter, Filterfarbstoffe, Formalinfänger, Lichtschutzmittel, Antioxidantien, DMin-Farbstoffe, Zusätze zur Verbesserung der Farbstoff-, Kuppler- und Weißenstabilisierung sowie zur Verringerung des Farbschleiers, Weichmacher (Latices), Biocide und anderes enthalten.
UV-Licht absorbierende Verbindungen sollen einerseits die Bildfarbstoffe vor dem Ausbleichen durch UV-reiches Tageslicht schützen und andererseits als Filterfarbstoffe das UV-Licht im Tageslicht bei der Belichtung absorbieren und so die Farbwiedergabe eines Films verbessern. Üblicherweise werden für die beiden Aufgaben Verbindungen unterschiedlicher Struktur eingesetzt. Beispiele sind arylsubstituierte Benzotriazolverbindungen (US-A-35 33 794), 4-Thiazolidonverbindungen (US-A- 33 14 794 und 33 52 681), Benzophenonverbindungen (JP-A- 2 784/71), Zimtsäureesterverbindungen (US-A-37 05 805 und 37 07 375), Butadienverbindungen (US-A-40 45 229) oder Benzoxazolverbindungen (US-A-37 00 455).
Es können auch ultraviolettabsorbierende Kuppler (wie Blaugrünkuppler des α-Naphtholtyps) und ultraviolettabsorbierende Polymere verwendet werden. Diese Ultraviolettabsorbentien können durch Beizen in einer speziellen Schicht fixiert sein.
Für sichtbares Licht geeignete Filterfarbstoffe umfassen Oxonolfarbstoffe, Hemioxonolfarbstoffe, Styrylfarbstoffe, Merocyaninfarbstoffe, Cyaninfarbstoffe und Azofarbstoffe. Von diesen Farbstoffen werden Oxonolfarbstoffe, Hemioxonolfarbstoffe und Merocyaninfarbstoffe besonders vorteilhaft verwendet.
Geeignete Weißtöner sind z. B. in Research Disclosure 17 643 (Dez. 1978), Kapitel V, in US-A-26 32 701, 32 69 840 und in GB-A-8 52 075 und 13 19 763 beschrieben.
Bestimmte Bindemittelschichten, insbesondere die vom Träger am weitesten entfernte Schicht, aber auch gelegentlich Zwischenschichten, insbesondere, wenn sie während der Herstellung die vom Träger am weitesten entfernte Schicht darstellen, können fotografisch inerte Teilchen anorganischer oder organischer Natur enthalten, z. B. als Mattierungsmittel oder als Abstandshalter (DE- A-33 31 542, DE-A-34 24 893, Research Disclosure 17 643, Dez. 1978, Kapitel XVI).
Der mittlere Teilchendurchmesser der Abstandshalter liegt insbesondere im Bereich von 0,2 bis 10 µm. Die Abstandshalter sind wasserunlöslich und können alkaliunlöslich oder alkalilöslich sein, wobei die alkalilöslichen im allgemeinen im alkalischen Entwicklungsbad aus dem fotografischen Material entfernt werden. Beispiele für geeignete Polymere sind Polymethylmethacrylat, Copolymere aus Acrylsäure und Methylmethacrylat sowie Hydroxypropylmethylcellulosehexahydrophthalat.
Zusätze zur Verbesserung der Farbstoff-, Kuppler- und Weißenstabilität sowie zur Verringerung des Farbschleiers (Research Disclosure 17 643/1978, Kapitel VII) können den folgenden chemischen Stoffklassen angehören: Hydrochinone, 6-Hydroxychromane, 5-Hydroxycumarane, Spirochromane, Spiroindane, p-Alkoxyphenole, sterische gehinderte Phenole, Gallussäurederivate, Methylendioxybenzole, Aminophenole, sterisch gehinderte Amine, Derivate mit veresterten oder verätherten phenolischen Hydroxylgruppen, Metallkomplexe.
Verbindungen, die sowohl eine sterisch gehinderte Amin- Partialstruktur als auch eine sterisch gehinderte Phenol-Partialstruktur in einem Molekül aufweisen (US-A- 42 68 593), sind besonders wirksam zur Verhinderung der Beeinträchtigung (Verschlechterung bzw. Abbau) von gelben Farbbildern als Folge der Entwicklung von Wärme, Feuchtigkeit und Licht. Um die Beeinträchtigung (Verschlechterung bzw. den Abbau) von purpurroten Farbbildern, insbesondere ihre Beeinträchtigung (Verschlechterung bzw. Abbau) als Folge der Einwirkung von Licht, zu verhindern, sind Spiroindane (JP-A-1 59 644/81) und Chromane, die durch Hydrochinondiether oder -monoether substituiert sind (JP-A-89 835/80) besonders wirksam.
Die Schichten des fotografischen Materials können mit den üblichen Härtungsmitteln gehärtet werden. Geeignete Härtungsmittel sind z. B. Formaldehyd, Glutaraldehyd und ähnliche Aldehydverbindungen, Diacetyl, Cyclopentadion und ähnliche Ketonverbindungen, Bis-(2-chlorethylharnstoff), 2-Hydroxy-4,6-dichlor-1,3,5-triazin und andere Verbindungen, die reaktives Halogen enthalten (US-A- 32 88 775, US-A-27 32 303, GB-A-9 74 723 und GB-A- 11 67 207) Divinylsulfonverbindungen, 5-Acetyl-1,3-diacryloylhexahydro-1,3,5-triazin und andere Verbindungen, die eine reaktive Olefinbindung enthalten (US-A- 36 35 718, US-A-32 32 763 und GB-A-9 94 869); N-Hydroxymethylphthalimid und andere N-Methylolverbindungen (US- A-27 32 316 und US-A-25 86 168); Isocyanate (US-A- 31 03 437); Aziridinverbindungen (US-A-30 17 280 und US- A-29 83 611); Säurederivate (US-A-27 25 294 und US-A- 27 25 295); Verbindungen vom Carbodiimidtyp (US-A- 31 00 704); Carbamoylpyridiniumsalze (DE-A-22 25 230 und DE-A-24 39 551); Carbamoyloxypyridiniumverbindungen (DE- A-24 08 814); Verbindungen mit einer Phosphor-Halogen- Bindung (JP-A-1 13 929/83); N-Carbonyloximid-Verbindungen (JP-A-43 353/81); N-Sulfonyloximido-Verbindungen (US-A- 41 11 926), Dihydrochinolinverbindungen (US-A- 40 13 468), 2-Sulfonyloxypyridiniumsalze (JP-A- 1 10 762/81), Formamidiniumsalze (EP-A-01 62 308), Verbindungen mit zwei oder mehr N-Acyloximino-Gruppen (US- A-40 52 373), Epoxyverbindungen (US-A-30 91 537), Verbindungen vom Isoxazoltyp (US-A-33 21 313 und US-A- 35 43 292); Halogencarboxyaldehyde, wie Mucochlorsäure; Dioxanderivate, wie Dihydroxydioxan und Di-chlordioxan; und anorganische Härter, wie Chromalaun und Zirkonsulfat.
Die Härtung kann in bekannter Weise dadurch bewirkt werden, daß das Härtungsmittel der Gießlösung für die zu härtende Schicht zugesetzt wird, oder dadurch, daß die zu härtende Schicht mit einer Schicht überschichtet wird, die ein diffusionsfähiges Härtungsmittel enthält.
Unter den aufgeführten Klassen gibt es langsam wirkende und schnell wirkende Härtungsmittel sowie sogenannte Soforthärter, die besonders vorteilhaft sind. Unter Soforthärtern werden Verbindungen verstanden, die geeignete Bindemittel so vernetzen, daß unmittelbar nach Beguß, spätestens nach 24 Stunden, vorzugsweise spätestens nach 8 Stunden, die Härtung so weit abgeschlossen ist, daß keine weitere durch die Vernetzungsreaktion bedingte Änderung der Sensitometrie und der Quellung des Schichtverbandes auftritt. Unter Quellung wird die Differenz von Naßschichtdicke und Trockenschichtdicke bei der wäßrigen Verarbeitung des Films verstanden (Photogr. Sci., Eng. 8 (1964), 275; Photogr. Sci. Eng. (1972), 449).
Bei diesen mit Gelatine sehr schnell reagierenden Härtungsmitteln handelt es sich z. B. um Carbamoylpyridiniumsalze, die mit freien Carboxylgruppen der Gelatine zu reagieren vermögen, so daß letztere mit freien Aminogruppen der Gelatine unter Ausbildung von Peptidbindungen und Vernetzung der Gelatine reagieren.
Es gibt diffusionsfähige Härtungsmittel, die auf alle Schichten innerhalb eines Schichtverbandes in gleicher Weise härtend wirken. Es gibt aber auch schichtbegrenzt wirkende, nicht diffundierende, niedermolekulare und hochmolekulare Härter. Mit ihnen kann man einzelnen Schichten, z. B. die Schutzschicht, besonders stark vernetzen. Dies ist wichtig, wenn man die Silberhalogenid- Schicht wegen der Silberdeckkrafterhöhung wenig härtet und mit der Schutzschicht die mechanischen Eigenschaften verbessern muß (EP-A-01 14 699).
Farbfotografische Negativmaterialien werden üblicherweise durch Entwickeln, Bleichen, Fixieren und Wässern oder durch Entwickeln, Bleichen, Fixieren und Stabilisieren ohne nachfolgende Wässerung verarbeitet, wobei Bleichen und Fixieren zu einem Verarbeitungsschritt zusammengefaßt sein können. Als Farbentwicklerverbindung lassen sich sämtliche Entwicklerverbindungen verwenden, die die Fähigkeit besitzen, in Form ihres Oxidationsproduktes mit Farbkupplern zu Azomethin- bzw. Indophenolfarbstoffen zu reagieren. Geeignete Farbentwicklerverbindungen sind aromatische, mindestens eine primäre Aminogruppe enthaltende Verbindungen vom p-Phenylendiamintyp, beispielsweise N,N-Dialkyl-p-phenylendiamine wie N,N- Diethyl-p-phenylendiamin, 1-(N-Ethyl-N-methansulfonamidoethyl)-3- methyl-p-phenylendiamin, 1-(N-Ethyl-N- hydroxyethyl)-3-methyl-p-phenylendiamin und 1-(N-Ethyl- N-methoxyethyl)-3-methyl-p-phenylendiamin. Weitere brauchbare Farbentwickler sind beispielsweise in J. Amer. Chem. Soc. 73, 3106 (1951) und G. Haist, Modern Photographic Processing, 1979, John Wiley and Sons, New York, Seite 545 ff. beschrieben.
Nach der Farbentwicklung kann ein saures Stoppbad oder eine Wässerung folgen.
Üblicherweise wird das Material unmittelbar nach der Farbentwicklung gebleicht und fixiert. Als Bleichmittel können z. B. Fe(III)-Salze und Fe(III)-Komplexsalze wie Ferricyanide, Dichromate, wasserlösliche Kobaltkomplexe verwendet werden. Besonders bevorzugt sind Eisen-(III)- Komplexe von Aminopolycarbonsäuren, insbesondere z. B. von Ethylendiamintetraessigsäure, Propylendiamintetraessigsäure, Diethylentriaminpentaessigsäure, Nitrilotriessigsäure, Iminodiessigsäure, N-Hydroxyethylethylendiamintriessigsäure, Alkyliminodicarbonsäuren und von entsprechenden Phosphonsäuren. Geeignet als Bleichmittel sind weiterhin Persulfate und Peroxide, z. B. Wasserstoffperoxid.
Auf das Bleichfixierbad oder Fixierbad folgt meist eine Wässerung, die als Gegenstromwässerung ausgeführt ist oder aus mehreren Tanks mit eigener Wasserzufuhr besteht.
Günstige Ergebnisse können bei Verwendung eines darauf folgenden Schlußbades, das keinen oder nur wenig Formaldehyd enthält, erhalten werden.
Die Wässerung kann aber durch ein Stabilisierbad vollständig ersetzt werden, das üblicherweise im Gegenstrom geführt wird. Dieses Stabilisierbad übernimmt bei Formaldehydzusatz auch die Funktion eines Schlußbades.
Bei Farbumkehrmaterialien erfolgt zunächst eine Entwicklung mit einem Schwarz-Weiß-Entwickler, dessen Oxidationsprodukt nicht zur Reaktion mit den Farbkupplern befähigt ist. Es schließt sich eine diffuse Zweitbelichtung und dann Entwicklung mit einem Farbentwickler, Bleichen und Fixieren an.
Für die Beispiele wurden die folgenden alkalisch geäscherten Knochengelatinen verwendet.
Beispiel 1
Mit Gelatine 1 wurde nach dem double-jet-Verfahren bei 56°C eine Silberbromidchloridemulsion mit 10 Mol-% Silberchlorid hergestellt. Am Ende der Silberhalogenidfällung betrug das GeSi 0,15. Die Emulsion wurde durch Zugabe eines Flockmittels und Erniedrigung des pH-Wertes auf 3,5 geflockt und anschließend gewaschen. Danach wurde der pH-Wert wieder auf 4,5 eingestellt, weitere Gelatine 1 zugesetzt und die Emulsion unter Erwärmen redispergiert. Nach der Redispergierung betrug das GeSi 0,65. Die Emulsion wurde anschließend unter Zusatz von Thiosulfat zur optimalen Empfindlichkeit gereift (Emulsion A).
Nach dem gleichen Verfahren wurde eine weitere Emulsion mit Gelatine 2 bei Fällung und Redispergierung hergestellt (Emulsion B).
Nach dem gleichen Verfahren wurde eine weitere Emulsion mit Gelatine 2 bei der Fällung und Gelatine 1 bei der Redispergierung hergestellt (Emulsion C).
Die Korngrößenverteilungen wurden mit dem Möllerzähler bestimmt (G. Möller Int. Congr. Phot. Sci. Moscow 1970, p. 125).
Die Emulsionen wurden pro 100 g AgNO₃ 180 mg eines Blausensibilisators und 120 g eines Gelbkupplers versehen und auf eine PE-beschichtete Papierunterlage vergossen. Über die Emulsionsschicht wurde eine Gelatineschicht mit einem Härtungsmittel gezogen. Die Schichten wurden nach dem Trocknen in einem Sensitometer belichtet und nach dem EP 2-Prozeß entwickelt.
Die Bestimmung des latenten Bildes erfolgte 6 Stunden nach der Belichtung, wobei der belichtete Streifen bei Raumtemperatur gelagert wurde.
Die direkt entwickelten und die nach 6stündiger Lagerung entwickelten Materialien wurden miteinander verglichen und ergaben E Latentbild [log I · t].
Die Kornverteilungen sind in Fig. 1 (Emulsion A), Fig. 2 (B) und Fig. 3 (C) dargestellt.
Die Beispiele zeigen, daß die Verwendung von oxidierter Gelatine im Ansatz eine verbesserte Kornverteilung, d. h. sehr monodisperse Emulsionen, ergibt. Bei der Verwendung von oxidierter Gelatine in der Nachreifung ergibt sich jedoch ein höherer Schleier. Außerdem ist der Rückgang des latenten Bildes merklich stärker. Wird dagegen die nicht oxidierte Gelatine in der Nachreifung verwendet, wird ein besserer Schleier und ein stabileres latentes Bild bei unverändert guter Kornverteilung erhalten.
Beispiel 2
Beispiel 1 wurde wiederholt mit Gelatine 3 anstelle von Gelatine 1 und Gelatine 4 anstelle von Gelatine 2. Die Silberchloridbromidemulsion enthielt 95 Mol-% Silberchlorid, die Reifung zur optimalen Empfindlichkeit erfolgte unter Zusatz von Goldsalzen und Thiosulfat. Alle anderen Parameter blieben unverändert. Es resultierten die Emulsionen D (nur Gelatine 3), E (nur Gelatine 4) und F (Gelatine 4 bei der Fällung, Gelatine 3 bei der Redispergierung).
Die Emulsionen wurden wie in Beispiel 1 beschrieben mit einem Blausensibilisator und einem Gelbkuppler versehen und dann auf einen PE-beschichteten Papierträger vergossen. Über der Emulsion wird eine Gelatineschicht mit einem Härtungsmittel angebracht.
Die Emulsionen wurden wie in Beispiel 1 geprüft.
Es zeigt sich auch, daß mit dieser entsalzten, inerten Knochengelatine durch die Oxidation zwar ein verbessertes Kornwachstum, aber ein höherer Schleier entsteht. Bei Verwendung der oxidierten Gelatine nur bei der Fällung und Verwendung der nicht oxidierten Gelatine in der Nachreifung wird ein gutes Kornwachstum bei gutem Schleier und guter Latentbildstabilität erreicht.

Claims (6)

1. Verfahren zur Herstellung einer lichtempfindlichen Silberhalogenidemulsion durch Fällung des Silberhalogenids in Gegenwart von Gelatine, Ausflocken und Waschen des in Gegenwart der Gelatine gefällten Silberhalogenids und Redispergieren unter Zusatz weiterer Gelatine, dadurch gekennzeichnet, daß die Fällung in Gegenwart einer Gelatine mit einer Goldzahl von höchstens 10 µMol/g Gelatine und einem Cysteingehalt von höchstens 6 ppm und die Redispergierung mit einer Gelatine mit einer Goldzahl von mindestens 23 µMol/g Gelatine durchgeführt wird.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß die Gelatine zur Redispergierung einen Cysteingehalt von 6 bis 16 ppm hat.
3. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß das Gelatine-zu-Silber-Gewichtsverhältnis der fertigen Emulsion 1 : 1 bis 1 : 5 beträgt, wobei Silber als Silbernitrat in die Rechnung eingesetzt wird.
4. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß das Gewichtsverhältnis der bei der Fällung verwendeten Gelatinemenge zu der bei der Redispergierung zugesetzten Gelatinemenge 1 : 1 bis 1 : 10 beträgt.
5. Fotografisches Silberhalogenidaufzeichnungsmaterial, dadurch gekennzeichnet, daß es wenigstens eine Silberhalogenidemulsionsschicht mit einer gemäß Ansprüchen 1 bis 4 hergestellten Silberhalogenidemulsion enthält.
6. Fotografisches Silberhalogenidaufzeichnungsmaterial, dadurch gekennzeichnet, daß alle lichtempfindlichen Silberhalogenidemulsionsschichten gemäß Ansprüchen 1 bis 4 hergestellte Silberhalogenidemulsionen enthalten.
DE3828312A 1988-08-20 1988-08-20 Herstellung einer silberhalogenidemulsion Withdrawn DE3828312A1 (de)

Priority Applications (5)

Application Number Priority Date Filing Date Title
DE3828312A DE3828312A1 (de) 1988-08-20 1988-08-20 Herstellung einer silberhalogenidemulsion
US07/389,544 US4992362A (en) 1988-08-20 1989-08-04 Production of a silver halide emulsion
DE58908871T DE58908871D1 (de) 1988-08-20 1989-08-08 Herstellung einer Silberhalogenidemulsion.
EP89114620A EP0355568B1 (de) 1988-08-20 1989-08-08 Herstellung einer Silberhalogenidemulsion
JP1211565A JPH02111940A (ja) 1988-08-20 1989-08-18 ハロゲン化銀乳剤の製造

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE3828312A DE3828312A1 (de) 1988-08-20 1988-08-20 Herstellung einer silberhalogenidemulsion

Publications (1)

Publication Number Publication Date
DE3828312A1 true DE3828312A1 (de) 1990-03-01

Family

ID=6361251

Family Applications (2)

Application Number Title Priority Date Filing Date
DE3828312A Withdrawn DE3828312A1 (de) 1988-08-20 1988-08-20 Herstellung einer silberhalogenidemulsion
DE58908871T Expired - Fee Related DE58908871D1 (de) 1988-08-20 1989-08-08 Herstellung einer Silberhalogenidemulsion.

Family Applications After (1)

Application Number Title Priority Date Filing Date
DE58908871T Expired - Fee Related DE58908871D1 (de) 1988-08-20 1989-08-08 Herstellung einer Silberhalogenidemulsion.

Country Status (4)

Country Link
US (1) US4992362A (de)
EP (1) EP0355568B1 (de)
JP (1) JPH02111940A (de)
DE (2) DE3828312A1 (de)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5412075A (en) * 1992-03-11 1995-05-02 Eastman Kodak Company Control of methionine content in photographic grade gelatin

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE231430C (de) *
BE484325A (de) * 1947-08-13
US3888676A (en) * 1973-08-27 1975-06-10 Du Pont Silver halide films with wide exposure latitude and low gradient
US4131467A (en) * 1977-11-23 1978-12-26 E. I. Du Pont De Nemours And Company 4,7-Dihydroxybenzimidazole hydrobromide as antifogger
US4496652A (en) * 1978-12-26 1985-01-29 E. I. Du Pont De Nemours And Company Silver halide crystals with two surface types
CA1284050C (en) * 1985-12-19 1991-05-14 Joe E. Maskasky Process for precipitating a tabular grain emulsion in the presence of a gelatino-peptizer and an emulsion produced thereby
CA1284051C (en) * 1985-12-19 1991-05-14 Joe E. Maskasky Chloride containing emulsion and a process for emulsion preparation

Also Published As

Publication number Publication date
EP0355568A3 (de) 1991-01-23
US4992362A (en) 1991-02-12
EP0355568A2 (de) 1990-02-28
EP0355568B1 (de) 1995-01-11
JPH02111940A (ja) 1990-04-24
DE58908871D1 (de) 1995-02-23

Similar Documents

Publication Publication Date Title
DE3830512A1 (de) Fotografisches aufzeichnungsmaterial
EP0464409A1 (de) Farbfotografisches Aufzeichnungsmaterial
EP0607801B1 (de) Farbfotografisches Aufzeichnungsmaterial
DE4039022A1 (de) Farbfotografisches aufzeichnungsmaterial
EP0351588B1 (de) Farbfotografisches Aufzeichnungsmaterial
EP0515873B1 (de) Farbfotografisches Aufzeichnungsmaterial
EP0607800B1 (de) Farbfotografisches Aufzeichnungsmaterial
DE3926849A1 (de) Farbfotografisches silberhalogenidmaterial
EP0546416B1 (de) Farbfotografisches Aufzeichnungsmaterial
EP0447656A1 (de) Farbfotografisches Silberhalogenidmaterial und seine Entwicklung
EP0550907B1 (de) Fotografisches Aufzeichnungsmaterial
EP0355568B1 (de) Herstellung einer Silberhalogenidemulsion
EP0703493B1 (de) Farbfotografisches Silberhalogenidmaterial
EP0616256B1 (de) Farbfotografisches Aufzeichnungsmaterial
DE4224027C2 (de) Silberhalogenidemulsionsherstellung
DE3838467C2 (de) Fotografisches Aufzeichnungsmaterial
EP0722117B1 (de) Farbfotografisches Silberhalogenidmaterial
DE3931629A1 (de) Silberhalogenidemulsion und fotografisches material
EP0504692B1 (de) Farbfotografischer Umkehrfilm
EP0709731A2 (de) Farbfotografisches Silberhalogenidmaterial
DE3828311A1 (de) Fotografische, gleatinehaltige silberhalogenidemulsion
DE4227749A1 (de) Fotografisches Silberhalogenidmaterial
EP0554756A1 (de) Farbfotografisches Aufzeichnungsmaterial
DE3833387A1 (de) Farbfotografisches silberhalogenidmaterial
EP0564909A1 (de) Verfahren zur Herstellung eines fotografischen Bildes

Legal Events

Date Code Title Description
8130 Withdrawal