DE2737329A1 - Verfahren und vorrichtung zur kontinuierlichen herstellung von metallegierungen - Google Patents

Verfahren und vorrichtung zur kontinuierlichen herstellung von metallegierungen

Info

Publication number
DE2737329A1
DE2737329A1 DE19772737329 DE2737329A DE2737329A1 DE 2737329 A1 DE2737329 A1 DE 2737329A1 DE 19772737329 DE19772737329 DE 19772737329 DE 2737329 A DE2737329 A DE 2737329A DE 2737329 A1 DE2737329 A1 DE 2737329A1
Authority
DE
Germany
Prior art keywords
static mixer
alloy
granulate
molten metal
flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
DE19772737329
Other languages
English (en)
Other versions
DE2737329C3 (de
DE2737329B2 (de
Inventor
Kurt Dr Rer Nat Buxmann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Alcan Holdings Switzerland AG
Original Assignee
Alusuisse Holdings AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alusuisse Holdings AG filed Critical Alusuisse Holdings AG
Publication of DE2737329A1 publication Critical patent/DE2737329A1/de
Publication of DE2737329B2 publication Critical patent/DE2737329B2/de
Application granted granted Critical
Publication of DE2737329C3 publication Critical patent/DE2737329C3/de
Expired legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/02Making non-ferrous alloys by melting
    • C22C1/026Alloys based on aluminium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/40Static mixers
    • B01F25/45Mixers in which the materials to be mixed are pressed together through orifices or interstitial spaces, e.g. between beads
    • B01F25/452Mixers in which the materials to be mixed are pressed together through orifices or interstitial spaces, e.g. between beads characterised by elements provided with orifices or interstitial spaces
    • B01F25/4524Mixers in which the materials to be mixed are pressed together through orifices or interstitial spaces, e.g. between beads characterised by elements provided with orifices or interstitial spaces the components being pressed through foam-like inserts or through a bed of loose bodies, e.g. balls
    • B01F25/45241Mixers in which the materials to be mixed are pressed together through orifices or interstitial spaces, e.g. between beads characterised by elements provided with orifices or interstitial spaces the components being pressed through foam-like inserts or through a bed of loose bodies, e.g. balls through a bed of balls

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Powder Metallurgy (AREA)
  • Manufacture Of Alloys Or Alloy Compounds (AREA)

Description

DIPL-CHEM. DR. ELISABETH JUNG MX")MÜNCHEN40.
DIPL-PHYS. DR. JÖRGEN SCHIRDEWAHN DR.-ING. GERHARD SC H M ITT-N I LS O N PATENTANWÄLTE
SCHWEIZERISCHE ALUMINIUM AG I8. August 1977(Dr.SchN/ez)
Chippis, Schweiz u.Z.: L 512 M+a
" Verfahren und Vorrichtung zur kontinuierlichen Herstellung von Metallegierungen "
beanspruchte Priorität: Schweiz, Nr. 6766/77, vom 2.Juni 1977
Die Erfindung betrifft ein Verfahren und eine Vorrichtung zur kontinuierlichen Herstellung von Metallegierungen.
An die Legierungsherstellung in Metallgiessereien werden eine Reihe von verfahrenstechnischen Anforderungen gestellt, welche im Stand der Technik nur unvollkommen erfüllt sind. Darnach soll das Produkt des Verfahrens hohen Homogenitätsanforderungen genügen und möglichst wenig eingeschleppte nichtmetallische Verunreinigungen aufweisen. Für die Dosiervorrichtung wird eine rechnerische Dosiergenauigkeit von + 0. 2 bis 2 % während der gesamten Dosierzeit gefordert. Daneben soll das Verfahren zu möglichst geringen Materialverlusten infolge Krätzebildung und Abbrand der Zulegierungsmetalle führen. Vom betriebswirtschaftlichen Standpunkt aus wird verlangt, dass das Verfahren leicht automatisiert werden kann, dass es unter möglichst geringem Zeitaufwand und unter möglichst günstigen arbeitshygienischen Bedingungen abläuft, und dass die Materialverluste infolge von Anfahr- und Abschaltvorgängen minimal sind.
Nach dem Stand der Technik wird die Aufgabe der Legierungsherstellung überwiegend durch mechanisches Rühren gelöst, worunter das Herstellen einer Relativbewegung zwischen den beiden zu vermischenden Komponenten durch mechanische Kräfte zu verstehen ist, wobei beide Komponenten relativ zum Ruhesystem in Bewegung sind, und die mechanischen Kräfte durch bewegliche Rührwerke oder durch in die Metallschmelze eingeblasenes Spülgas erzeugt v/erden können. Wird dieses
809849/0532
mechanische Rühren im chargenweisen Betrieb durchgeführt, so ergeben sich dadurch Tür das Verfahren einige wesentliche Nachteile.
Mechanische Rührvorrichtungen sind verhältnismässig verschleissanfällig und benötigen daher einen hohen Wartungsaufwand. Bei vielen Ofenlinien muss mechanisches Rühren aus Platzgründen mit der Hand erfolgen. Da die Qualität des Verfahrens damit weitgehend von der Sorgfalt des einzelnen Giessereiarbeiters abhängt, anderseits die Arbeit vom arbeitsphysiologischen Gesichtspunkt aus als unangenehm empfunden wird und arbeitshygienische Bedenken erweckt, resultieren daraus Fehlanalysen und nicht eingeplante Verzögerungen des Arbeite ablaufe durch Nachgattieren. Wird demgegenüber durch Gasspülung gerührt, so müssen entspechende Spülsteine in die Rezipienten eingebaut oder Spüllanzen verwendet werden, beides Vorrichtungen, welche als besonders verschleissanfällig erscheinen. Durch das mechanische Rühren, insbesondere durch Gasspülung, wird zusätzliche Krätze gebildet, wobei sich im ungünstigen Fall die Zusatzmetalle in der Krätze anreichern können. Weiter werden durch dieses Vorgehen nicht nur die Zusatzmetalle eingeführt, sondern auch nichtmetallische Einschlüsse, beispielsweise Oxide, gleichmässig in der Metallschmelze verteilt. Dies ergibt Probleme infolge mangelnder Qualität bei und nach der Weiterverarbeitung des Gusses in Form von grauen Zeilen, von Werkzeugverschleiss und Porosität von Folien. Das mechanische Einrühren von Zusatzmetallen führt zu Verkrustungserscheinungen an Ofenwänden und dadurch zu hohem Wartungsaufwand.Der schwerwiegendste Nachteil liegt indessen in dem Umstand, dass die Homogenitätsanforderung (Mischgüte) bei mechanischem Rühren für viele Zusatzmetalle wie Mn, Ti, Sr, Fe usw. nicht erreicht wird, so dass der Umweg über die kostenaufwendigen Vorlegierungen beschritten werden muss. (Vgl. beispielsweise Aluminium-Vorlegierung DIN 1725 Blatt 3, Juni 1973; H. NIELSEN (Hg) Aluminium-Taschenbuch, 13. Ausgabe, Düsseldorf 1974, S. 12-14).
809849/0532
273732$"
Während in den erwähnten Betriebsarten die für den Mischvorgang erforderliche Relativbewegung von bewegten Rührelementen erzeugt wird, welche ihre Bewegungsenergie auf die zu vermischenden Komponenten übertragen, verwendet der statische Mischer eine Relativbewegung, bei der feste Mischelemente als Hindernisse fungieren, und die zu vermischenden Komponenten ihre Bewegungsenergie von einer Fördereinrichtung erhalten, welche den im Mischer auftretenden Druckabfall überwindet. Statische Mischer bestehen nach dem Stand der Technik aus einem Rohrsystem mit einer Reihe derartiger feststehender Mischelemente, welche durch wiederholtes Teilen und Verlagern der Komponentenströme den Mischvorgang bewirken. Ein derartiger statischer Mischer kann charakterisiert werden durch die Homogenität (Mischgüte) des gemischten Produktes, den Druckabfall in dem Rezipientensystem und den allenfalls vorhandenen, erheblichen Wärmeübergang (Vgl. BRUENEMANN/JOHN, Chemie-Ing.-Technik, 43^ (1971), 348, sowie speziell zum Vk
Ing. Technik, 49, (1977), 39-40).
(1971), 348, sowie speziell zum Wärmeübergang J. GOMÖRI, Chemie-
Statische Mischer eignen sich namentlich dazu, um hochviskose oder aggressive Flüssigkeiten untereinander oder mit Feststoffen kontinuierlich zu mischen. Sie haben sich aber auch auf dem besonderen Anwendungsgebiet des Mischens von Gasströmen, beispielsweise in der Klimatechnik, in den Zentralen von Kälte- Wärme-Prüfanlagen sowie in Trocknungsanlagen für die verschiedensten Güter besonders
It It
bewährt. (J. GOMORI, Statisches Mischen von Gasströmen, Chem. Ing.-Technik, 49, (1977), 39-40). Nach dem Stand der Technik teilen dabei die feststehenden Leitelemente die Flüssigkeits- oder Gasströme, leiten Teilströme um und führen Teilströme wiederum zusammen, wodurch Schichten von Material .wechselnder Zusammensetzung erzeugt werden, deren Anzahl mit der Anzahl der verwendeten Leitelemente wächst. Durch geeignete Wahl der Lcitelemente, insbesondere durch * Maximierung ihrer Anzahl innerhalb vorgegebener Rahmenbedingungen
809849/0532
lässt sich theoretisch jede erforderliche Mischqualität erreichen.
Statische Mischer weisen nach dem Stand der Technik keine beweglichen Teile auf; der im Mischer auftretende Druckabfall muss von der Fördereinrichtung überwunden werden. Die erforderliche Mischarbeit wird dabei neben anderem durch eine Herabsetzung der kinetischen Energie der Stoffströme geleistet und äussert sich durch entsprechenden
Il Il
Druck- und Geschwindigkeitsverlust der Mischung (J. GOMORI, a. a. O., O. A. PATTISON, Motionless Inline Mixers, Chem. Eng. 1969, (5), 94 ff; T. BOR, The Static Mixer as a Chemical Reactor, Brit. Chem. Eng. 1971, 610-612; H.BRUENEMANN/G. JOHN, Mischgüte und Druckverlust statischer Mischer mit verschiedenen Bauformen, Chemie-Ing. Technik £3, (1971), 348-356, ULLMANN1S ENZYCLOPADIE der technischen Chemie, 4.A. 1972, Band 2, 267 ff.).
In den im Stand der Technik offenbarten Ausführungsformen sind die statischen Mischer indessen für die Legierungsherstellung nicht geeignet, da der Transport von Metallschmelzen in geschlossenen Rohrsystemen zusätzliche verfahrenstechnische Probleme schafft. Wird der Mischer als geschlossener Strömungskanal ausgeführt, der seinen Eingangsdruck von konventionellen Pumpen bezieht, und wird dabei die Verbindung zwischen Strömungskanal und Leitelementen dauerhaft ausgeführt, so besteht die Gefahr, dass die Vorrichtung wegen der dauerhaften Verankerung der Leitelemente im Strömungskanal verstopft. Dabei fördert gerade die Maximierung der Anzahl der Leitelemente, welche zur Optimierung der Mischungsqualität wünschbar erscheint, diesen Vorgang erheblich (US-PS 2 894 732 der Shell Co., 3 051 452, 3 051 453 und 3 182 965, 3 206 170 der American Enka Co., US-PS 3 195 865 der Dow Badische Co.).
809849/0532
Weiter führt die Ausführung des Mischers als geschlossener Strömungskanal zu hohem Druckablall infolge der Reibung der Mischungskoniponenten an den Leitelementen.Je höher die Anzahl dieser Leitelemente dabei ist, umso stärker ausgeprägt ist der Druckabfall zwischen Eintritt des Materials in den Mischer und seinem Austritt daraus. Im günstigsten Fall beträgt der Druckverlust im statischen Mischer den vierfachen Wert eines vergleichbaren leeren Strömungskanals (O.A. PATTISON, a.a.O., S. 95), was dazu führt, dass der Druckabfall im Mischer durch eine entsprechende Fördereinrichtung überwunden werden muss.
Schliesslich bewirkt die Ausführung des Mischers als geschlossener Strömungskanal mit fest eingebauten Leitelementen, dass die letzteren schlecht zugänglich und daher schlecht mechanisch zu reinigen sind. Dies führt gegebenenfalls zu erhöhter Korrosionsgefahr und zu entsprechend niedriger betrieblicher Lebensdauer der Vorrichtung. Bei wertvollem Mischgut fallen darüber hinaus die aus demselben Grund entstehenden Stoffverluste ins Gewicht. Diese sind um so höher, je höher die aus anderen Gründen erwünschte Anzahl der Leitelemente im Mischer ist.
Endlich verlangt die übliche Ausführungsform des statischen Mischers eine verhältnismässig komplizierte Geometrie der Leit- und Mischelemente, damit die sogenannte Kanalbildung im Mischgut vermieden wird, worunter grobe Inhomogenitäten des Produkts in Form von einzelnen Durchbrüchen einer einzelnen Mischungskomponente zu verstehen sind. (BRUENEMANN/JOHN, a.a.O. S.352). In einer der üblichen Ausführungsformen des statischen Mischers ist diesem Problem dadurch Rechnung getragen worden, dass je ein oder mehrere links- und rechtswendige Leitelemente in Form verdrillter Bleche
809849/0532
hintereinander in Serie angeordnet worden sind (O.A. P/rTTlsOPf, a.a.O. S. 95). Eine besonders komplizierte Geometrie weisen die Misch- und Leitelemente in der Ausführungsiorm von US-PS 3 195 865 auf. Derartig komplizierte geometrische Anordnungen verursachen hohe Fertigungskosten, welche noch dadurch erhöht werden, dass an die mechanischen Eigenschaften der Verbindung zwischen Leitelement und Strömungskanal hohe Anforderungen gestellt werden müssen, damit die verhältnismässig hohen Druckunterschiede kompensiert werden können.
Der Erfindung liegt die Aufgabe zugrunde, das Prinzip des statischen Mischers für das Gebiet der Legierungsherstellung aus Metallschmelze und fester Zulegierung verfügbar zu machen und an die besonderen Anforderungen dieses Gebiets anzupassen.
Diese Aufgabe wurde dadurch gelöst, dass eine Metallschmelze auf Grund ihres metallostatischen Druckes einen dem atmosphärischen Luftdruck zugänglichen, mit einer losen und auswechselbaren Schüttschicht aus Granulat gefüllten Durchlaufbehälter durchströmt, dass der Legierungszusatz durch eine mechanische Dosier- und Fördereinrichtung in die strömende Metallschmelze eingetragen wird, dass dadurch der feste Legierungszusatz gelöst wird, dass die Mischungskomponenten beim Durchströmen der Schüttschicht von den als Leit- und Mischelementen wirkenden Granulatpartikeln mehrmals zerteilt und wiedervereinigt werden und den Durchlaufbehälter in gemischtem Zustand verlassen.
Mit der Erfindung werden die geschilderten Nachteile des Standes der Technik so weit wie möglich vermieden.
Das Prinzip des statischen Mischers wird in dem erfindungsgemässen Verfahren für die Zwecke der Legierungsherstellung spezifisch abgewandelt. Dies erfolgt in erster Linie dadurch, dass die Mischkammer
809849/0532 ORIGINAL WSPECTEO
unter atmosphärischem Luftdruck steht, und die Mischarbeit durch die Differenz des metallostatischen Druckes der Schmelze zwischen Ein- und Austritt aus dem Durchlaufbehälter geleistet wird. Ein besonderer Vorteil liegt dabei darin, dass das Strömungshindernis, welches nach dem Stand der Technik dauerhaft mit der Mischkammer verbunden ist, in der Vorrichtung zur Durchführung des erfindungsgemässen Verfahrens auswechselbar ausgeführt ist, wodurch eine leichte Reinigung des Mischaggregates gewährleistet wird und anderseits ein Verstopfen der Vorrichtung durch erstarrtes Metall sich weniger nachteilig auswirkt als in einer Vorrichtung mit dauerhaft eingebautem Strömungshindernis. Vorteilhafterweise kann die Mischgüte durch geeignete Auswahl der Partikelgrösse der Schüttschicht unmittelbar beeinflusst und an die Anforderungen des Einzelfalles angepasst werden.
Gegenüber dem im Stand der Technik offenbarten Verfahren des chargenweisen manuellen Zumischens weist das erfindungsgemässe Verfahren den Vorteil auf, dass die Qualität der Legierung nicht mehr von der Arbeitsleistung des Giessereiarbeiters abhängt, welcher mit dem manuellen Durchmischen der Schmelze betraut ist, und dass es folglich ermöglicht, die Konstanz der Endkonzentration der Zulegierungselemente zu erhöhen. Da ein mechanisches Rühren unterbleibt, wird darüberhinaus die Krätzebildung gegenüber der chargenweisen Legierungsherstellung erheblich vermindert.
Gegenüber dem Stand der Technik des chargenweisen Zumischens weist das erfindungsgemässe Verfahren den weiteren Vorteil auf, dass mit ihm auch schwerer lösliche Zusatzmetalle, wie beispielsweise Mangan oder Titan in der Form des Reinmetalls, ohne Umweg über Vorlegierungen zulegiert werden können, insbesondere, wenn als Metallschmelze
809849/0532
eine Aluminiumschmelze verwendet wird, welch«9 bei einer 800°C übersteigenden Temperatur unmittelbar der Elektrolysezelle entnommen wird. Durch das erfihdungsgemässe Verfahren wird darüberhinaus die Gefahr vermindert, dass durch das manuelle Rühren entweder mit dem Rührwerkzeug oder durch Beschädigung der Ofenwand Verunreinigungen in das legierte Endprodukt eingeschleppt werden, welche die Qualität des Produktes beeinträchtigen und unter Umständen zu erheblichen wirtschaftlichen Verlusten führen können.
Das Verfahren kann dadurch abgewandelt werden, dass eine eingewogene Menge des Zusatzmetalls vor dem Einlaufen der Schmelze auf das Granulat der Schüttschicht gelegt, und anschliessend die Schmelze durchgeleitet wird. Eine andere Ausführungsart besteht darin, dass das Granulat der Schüttschicht und die eingewogene Menge der Zulegierung vermischt und erst anschliessend in den Durchlaufbehälter verbracht werden, und dass die Metallschmelze anschliessend durch dieses Gemisch durchgeleitet wird. Als Legierungszusatz kann auch ein Gemisch des Zusatzmetalls verwendet werden, aus der dieses letztere durch die strömende Schmelze extrahiert wird.
Verschiedene Ausführungsformen der Erfindung sind in den Figuren beispielhaft dargestellt; dabei bedeutet
Figur 1: ein konstruktives Fliessbild des Verfahrens zur
Herstellung von Metallegierungen unter Verwendung des statischen Mischers;
809849/0532
Figur 2: einen Querschnitt durch einen statischen Mischer
zur Legierungsherstellung mit eingebauter Abstehkammer;
Figur 3: einen Querschnitt durch einen statischen Mischer zur
Legierungsherstellung, bei dem der Eintritt der Metallschmelze und der Austritt der Legierung auf verschiedenen Niveaus erfolgt;
Figur 4-5: verschiedene Formen von Dosierungsvorrichtungen für die Zuführung mehrerer verschiedener Zulegierungsmaterialien in den statischen Mischer.
Das in dem konstruktiven Fliessbild (Fig. 1) schematisch dargestellte Verfahren umfasst die drei apparativen Komplexe des Ofens (I), des statischen Mischers (II) im engeren Sinn, und der Dosier- und Fördereinrichtung für die Zulegierung (III). Aus dem Abstehofen (a) gelangt die unlegierte Metallschmelze (b) zunächst in die mit einer losen Schüttschicht gefüllte Filterkammer (c) des statischen Mischers, wo sie mit der kontinuierlich zugeführten Zulegierung (d) vermischt wird. Anschliessend an die Filterkammer (c) fliesst das Produkt in eine Abstehkammer (e), wo ihm Proben entnommen werden können, welche der Analyse (f) zugeführt werden. Vom Ergebnis derselben hängt es ab, ob die Dosierung der Zulegierung geändert wird, was mit dem Pfeil (g) versinnbildlicht wird. Anschliessend kann das Produkt in einer zweiten Abstehkammer (h) gesammelt werden und von dieser schliesslich in die Giessmaschine (i) gelangen.
809849/0532
Zwei verschiedene Ausführungsformen der Mischkammer sind in den Fig. 2 und 3 beispielhaft dargestellt und gestatten die nachstehende Ausführung des Verfahrens: Die unlegierte Metallschmelze 1, vorzugsweise eine Aluminiumschmelze, welche beispielsweise nach der in der Patentanmeldung Nr. 3807/76 niedergelegten Erfindung bei einer 8000C übersteigenden Temperatur unmittelbar der Elektrolysezelle entnommen werden kann, fliesst zunächst in einen Durchlaufbehälter 2 aus feuerfestem Material, welcher mit einer losen Schüttschicht aus Granulat 4 gefüllt ist. Diese Schüttschicht kann nach dem Gebrauch der Vorrichtung ausgewechselt werden, wodurch die Reinigung der Mischkammer gewährleistet ist. Eine geeignete Auswahl der Partikelgrösse des . Granulats gestattet es dabei, die Mischgüte der Legierung entsprechend den Anforderungen des Einzelfalles zu variieren.
Als Material für das Granulat kommen beispielsweise Korund, Zirkonoxid. Kohlenstoff, Silikate, namentlich Quarz und Kombinationen dieser Materialien in Frage. Hinsichtlich der Partikelgrösse hat es sich als zweckmässig erwiesen, diskrete Durchmesser durch Aussieben zu gewinnen und anstelle von Gemischen mit Gauss' scher Normalverteilung der Partikeldurchmesser zu verwenden. Für die Herstellung von Aluminiumlegierungen haben sich beispielsweise Granulate aus Korund mit einem grössten Durchmesser von 5 bis 6 cm bewährt. Zur Erzielung einer konstanten Mischgüte empfielt es sich, die Schüttschicht aus einem Grundmaterial aufzubauen, welches aus Partikeln eines inerten Materials, beispielsweise Korund, mit einem grössten individuellen Durchmesser zwischen 5 und 6 cm besteht, und dieses Grundmaterial wie folgt mit Zusätzen zu kombinieren: Handelt es sich bei der Zulegierung um ein schwer legierbares Material, so kann es vorteilhaft sein, eine Schicht von 20 - 30 cm der Schüttschicht
809849/0532
mit einem feineren Granulat, beispielsweise aus Quarz, zu versehen, dessen Partikelgrösse in erhitztem Zustand unter jenem der Zulegierung liegt. Dadurch werden die schwer legierbaren Zusätze in den oberen Regionen der Schüttschicht zurückgehalten und die Zulegierung wird gewissermassen aus ihren eigenen Partikeln extrahiert, was die Erzielung höherer Konzentrationen schwer legierbarer Zusätze ermöglicht.
Gute Ergebnisse können auch dadurch erzielt werden, dass die Schüttschicht Granulat zweier verschiedener diskreter Partikelgrössen auf das Filterbett verteilt enthält, deren Durchmesser in einem Verhältnis von mindestens 6 : 1 stehen. Dabei hat es sich als zweckmässig erwiesen, für die Partikel mit dem kleineren Durchmesser ein Material mit geringerer Wärmeleitfähigkeit zu verwenden als für die Partikel mit dem grösseren Durchmesser.
Die Zulegierung 3 gelangt durch eine der in den Figuren 4 bis 5 dargestellten Dosiervorrichtungen in feinstückiger Form oder als Granulat in die Mischkammer, wobei im Falle mehrerer Komponenten dieser Zulegierung die Dosiervorrichtung bereits für eine gewisse Vormischung sorgt. Es hat sich dabei als zweckmässig erwiesen, ein Granulat der Zulegierung mit einem grössten Durchmesser zwischen 0.5 und 1 cm zu verwenden.
809849/0532
Die starre Schüttschicht 4 im Durchlaufbehälter 2 wirkt in dieser Anordnung als Strömungshindernis, dessen Qualität durch eine entsprechende Wahl der Partikelgrössc variiert werden kann. Zur Vermeidung von Abbrand und Krätzebildung können die noch nicht völlig vermischten Komponenten durch einen Deckel, welcher den Flüssigkeitsspiegel der Metallschmelze berührt, vor dem Luftsauerstoff geschützt werden. Die Vorrichtung der Figuren 2 und 3 erscheint nach dem Gesagten vor allem geeignet, um Metalle zuzulegieren, deren Auflösungsgeschwindigkeit so gering ist, dass sie gemäss dem Stand der Technik in Form von Vorlegierungen zugeführt werden müssen (Mn, Cr, Ti usw.), deren Zuführung mit Schwierigkeiten infolge Abbrennen oder Verdampfen verbunden ist (Mn, Zn), oder welches in feinstückiger Form wirtschaftlicher oder in besserer Qualität angeboten wird (z.B. Silizium). Die fertig gemischte Legierung 5 tritt nach dem Durchströmen dieser Schüttschicht aus der Mischkammer aus, entweder nachdem sie in einer Abstehkammer gesammelt worden ist, welche ihrerseits durch eine Trennwand 6 begrenzt wird, welche eine oder mehrere Durchlauföffnungen 8 aufweist (Fig. 2), oder durch eine Austrittsöffnung am unteren Rand des Durchlaufbehälters (Fig. 3). Das legierte Produkt kann anschliessend in eine zweite Abstehkammer (Fig. 1, h) eingeleitet werden und von dort in die Giessmaschine eingeführt werden. Proben für die Analyse der chemischen Zusammensetzung des Produktes können sowohl aus der Aufstiegskammer in einer Anordnung nach Fig. 2, als auch aus der Abstehkammer (Fig. 1, h) entnommen werden.
Ueblicherweise werden die Zulegierungen in der Form von Granulaten zugeführt, welche verhältnismässig schwer rieselfähig sind und mittlere bis hohe Verschleisseigenschaften aufweisen, welche es bei der Auslegung der Fördermittel entsprechend zu berücksichtigen gilt. Von diesen letzteren wird eine rechnerische Dosiergenauigkeit von jf 0. 2 - 2 % bezogen auf eine Minute Dosierzeit gefordert, aber in der Praxis angestrebt, dass die Abweichungen unter + 1 % liegen.
809849/0532
In der in Figur 4 dargestellten Vorrichtung befinden sich die Zulegierungskompcncnten in einem oder mehreren Fördersilos S, in deren Auslaufkonus ein umlaufender Schneckenförderer 10 ragt, welcher mit einem Elektromotor 11 angetrieben wird. Wird der Schneckenförderer in der einen Drehrichtung betrieben, so dient er gegebenenfalls zum Vormischen der verschiedenen Granulate; wird er reversiert, so ermöglicht er eine Zwangsentleerung des Silos und damit eine sehr fein regelbare und konstante Förderung des Granulates bzw. der verschiedenen Granulate, welche anschliessend durch einen Abfüllstutzen 12 in einen Zulauftrichter 13 gelangen, welcher so ausgelegt ist, dass er eine grössere Zahl von derartigen Abfüllstutzen aufnehmen kann. Die Verwendung des Schneckenförderers 10 im Auslaufkonus der Fördersilos 9 ermöglicht es, auch Granulat, welches durch aus sere Einwirkungen zusammengebacken ist, beim Fördern zu zerkleinern und derart wiederum in eine riesel- und dosierfähige Form zu bringen. Der Auslauftricnter 13 mündet seinerseits in einen horizontal montierten Schneckenförderer 14, der durch einen Elektromotor 15 angetrieben wird. Der Fördervorgang innerhalb dieses zweiten Schneckenförderers 14 bewirkt eine entsprechende Vormischung der verschiedenen Zulegierungskomponenten, welche schliesslich durch einen Abfüllstutzen 16 auf die Oberfläche der strömenden Metallschmelze gelangen. Um Oxidation durch Luftsauerstoff und erhöhte Krätzebildung zu vermeiden,wird die Höhe des freien Falls (16, 1) nach Möglichkeit minimiert und die Oberfläche der strömenden Schmelze gegebenenfalls durch eine Abdeckplatte abgeschirmt (in den Figuren 4 und 5 nicht eingezeichnet).
In der in Figur 5 dargestellten Dosiervorrichtung befinden sich die Zulegierungskomponenten in mehreren Fördersilos 9, in deren Auslaufkonus in der in Figur 4 dargestellten Art ein umlaufender Schneckenförderer 10 ragt. Die Abfüllstutzen dieser Fördersilos münden in eine
809849/0532
geneigte Schwingrinne 17, welche mittels Federverbindungen auf dem Untergrund gelagert ist und durch einen Magnetantrieb 18 mit variabler Frequenz angeregt werden kann. Bei entsprechender Wahl des Neigungswinkels der Rinne und der Anregungsfrequenz bewegt sich das Granulat auf der Unterlage sowohl springend als auch rutschend. Eine etwas dickere Schicht des Granulats verhält sich dabei annähernd wie eine einheitliche Masse, die in der Art eines plastischen Stosses auf die Unterlage auftrifft. Durch diesen Fördervorgang wird eine Vormischung der verschiedenen Materialien bewirkt, bevor diese auf die Oberfläche der Metallschmelze 1 und dadurch in die Mischkammer 2 gelangen, in welcher die eigentliche Legierungsbildung stattfindet. An Stelle der Schwingrinne kann auch ein umlaufender Bandoder Tragkettenförderer verwendet werden, wobei bei einem solchen allerdings der Vormischungseffekt geringer bleibt.
Das Verfahren wird dadurch gesteuert, dass die einzelnen Antriebsvorrichtungen für die Dosiervorrichtung (Elektromotoren 11 und 15 bzw. Magnetantrieb 18) über einen elektronischen Rechenautomaten eingestellt werden. Als Eingangswert für diesen Rechenautomaten kann dabei der Sollwert oder Istwert der Analyse der Legierung verwendet werden, wobei letzterer durch periodische Probenahme aus einer Abstehkammer (Figur 1, H-h) ermittelt wird. Daneben können als Eingangswerte auch die Analyse des im Giessofen befindlichen Metalls, die Analyse der verwendeten Vorlegierungen, und/oder die Barrenzahl, das Barrengewicht und die Giessgeschwindigkeit Anwendung finden.
Nach dem Stand der Technik muss zwischen der Probenahme aus dem Abstehgefäss. (Figur 1, II - h) und dem Ausdrucken der Analysenwerte mit einer seitlichen Verzögerung von einigen Minuten gerechnet werden. Ueber geeignete Analysencomputer können indessen die meisten der erv/ähnten Analysenwerte direkt zum Ansteuern der Dosiervorrichtung verwendet werden, wodurch ein manuelles Einlesen derselben in den
809849/0532
Prozessrechenautomaten entfällt. Ein derart steuerbares Verfahren erscheint namentlich geeignet zum Einsatz von kontinuierlichen Giessmaschinen für Bandguss oder Horizontalstrangguss.
In einem betrieblichen Anwendungsbeispiel wurde Magnesium in Form von Einzelstücken zu je 100 g in eine Mischkammer entsprechend Figur 2 eingetragen und die Anlage mit einem Durchsatz von 6 t Aluminiumschmelze pro Stunde gefahren, wobei die Eintrittstemperatur des Aluminiums 7000C betrug. Bei einem Volumen des leeren Mischers von 0. 5 m3, entsprechend ungefähr 0. 2 m^ nach Einbringen der Schüttschicht, wurde eine rechnerische Dosiergenauigkeit von ±0.2 - 2 % bezogen auf eine Stunde Dosierzeit gefordert. Die Homogenitätsanforderungen des legierten Produktes lag bei ^ 5 % des Gewichts der Zulegierung im Endprodukt während einer Zeitdauer von über 95 % der gesamten Betriebszeit, ausschliesslich der Zeit für Anfahr- und Abschaltvorgänge.
809849/0532
L e tr s e i \ e

Claims (1)

  1. - 16
    Ansprüche
    1. Verfahren zur kontinuierlichen Herstellung von Metallegierungen,
    dadurch gekennzeichnet, dass eine Metallschmelze auf Grund ihres metallostatischen Druckes einen dem atmosphärischen Luftdruck zugänglichen, mit einer losen und auswechselbaren Schüttschicht aus Granulat gefüllten Durchlaufbehälter durchströmt, dass der Legierungszusatz durch eine mechanische Dosier- und Fördereinrichtung in die strömende Metallschmelze eingetragen wird, dass dadurch der feste Legierungszusatz gelöst wird und dass die Mischungskomponenten beim Durchströmen der Schüttschicht von den als Leit- und Mischelementen wirkenden Granulatpartikeln mehrmals zerteilt und wiedervereinigt werden und den Durchlaufbehälter in gemischtem Zustand verlassen.
    2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass in Anpassung an die jeweils gewünschte Mischgüte eine passende Partikelgrösse des Granulats der Schüttschicht gewählt wird.
    oder 2, 3. Verfahren nach Anspruch 1 / dadurch gekennzeichnet, dass die Endkonzentration des Legierungszusatzes dadurch gesteuert wird, dass Analysenproben aus einer Abstehkammer (5) entnommen werden und auf Grund des Analysenergebnisses die Dosierleistung der Fördereinrichtung verändert wird.
    sprüche 1 bis 3, 4· Verfahren nach einem der An-/ dadurch gekennzeichnet, dass mehrere verschiedene Legierungszusätze nach einer Vormischung in der Fördereinrichtung in die Metallschmelze eingetragen werden.
    809849/0532 ORIGINAL INSPECTED
    sprüche 1 bis 4, 5. Verfahren nach einem der An-/ dadurch gekennzeichnet, dass
    die Legierungszusätze in Granulatform eingetragen werden.
    6. Verfahren nach Anspruch 5, dadurch . ,
    gekennzeichnet, dass der grösste Durchmesser der einzelnen Granulatpartikel des Legierungszusatzes mindestens 0. 5 cm und höchstens 1 cm beträgt.
    sprüche 1 bis 4,
    7. Verfahren nach einem der An-/ dadurch gekennzeichnet, dass
    die Legierungszusätze in feinstückiger Form eingetragen werden.
    sprüche 1 bis 7,
    8. Verfahren nach einem der An-/ dadurch gekennzeichnet, dass
    die Legierungszusätze in der Form von Gemischen eingetragen werden, auf der Oberfläche der Schüttschicht (4) festgehalten werden und dass durch die strömende Metallschmelze das Legierungsmetall aus dem Gemisch extrahiert wird.
    Ansprüche 1 bis 7, 9. Verfahren nach einem der / dadurch gekennzeichnet, dass
    das Granulat der Schüttschicht und die erforderliche Menge des Legierungszusatzes vermischt und anschliessend in den Durchlaufbehälter verbracht werden, und dass die Metallschmelze anschliessend durch dieses Gemisch durchgeleitet wird.
    Ansprüche 1 bis 8, lQ. Verfahren nach einem der / dadurch gekennzeichnet, dass eine eingewogene Menge des Legierungszusatzes vor dem Einlaufen der Schmelze auf das Granulat der Schüttschicht gelegt wird und anschliessend die Schmelze durchgeleitet wird.
    809849/0532
    11. Statischer Mischer zur Herstellung von Metallegierungen nach dem Verfahren nach einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, dass er aus einer Kombination eines unter atmosphärischem Luftdruck stehenden Durchlaufbehälters (2) für die Metallschmelze (1) mit einer mechanischen Dosier- und Fördereinrichtung (9, 10, 14; 9, 10, 17) für den Legierungs zusatz (3) besteht, und dass der Durchlaufbehälter (2) ein Strömungshindernis für die Metallschmelze in der Form
    einer auswechselbaren Schüttschicht aus wärmebeständigem
    Granulat ( 4) enthält.
    12. Statischer Mischer nach Anspruch 11, dadurch gekennzeichnet, dass der Durchlaufbehälter (2\aus einar einzigen, granulatgefüllten Filterkammer besteht, und Ein- und Austritt der Metallschmelze (1) auf verschiedenen Niveaus erfolgen.
    13. Statischer Mischer nach Anspruch H, dadurch gekennzeichnet, dass der Durchlaufbehälter (2) aus einer FiIterkaramer (c) und mindestens einer Abstehkammer te) besteht.
    sprüche 11 bis 13,
    14# Statischer Mischer nach ej.neni <jer An-/ dadurch gekennzeichnet, dass der Durchlaufbehälter 12) einen Deckel aufweist, welcher den Flüssigkeitsspiegel der Metallschmelze (1) berührt.
    sprüche 11 bis 14,
    25# Statischer Mischer nach ' einem der An-/ dadurch gekennzeichnet, dass das Granulat (4) mindestens einem der nachfolgenden Materialien besteht: Korund, Zirkonoxid, Kohlenstoff, Silikate. ·
    809849/0532
    -Jf-
    16° Statischer Mischer nach einem der Ansprüche 11 bis 15,
    dadurch gekennzeichnet, dass das Granulat (4) ausgesiebt ist und die einzelnen Granulatpartikel einen grössten Durchmesser von . mindestens 5 cm und höchstens 6 cm aufweist.
    17. Statischer Mischer nach einem der Ansprüche 11 bis 16, dadurch gekennzeichnet, dass das Granulat (4) zwei verschiedene diskrete Partikelgrössen aufweist, deren Durchmesser in einem Verhältnis von mindestens 6 : 1 stehen, und die Wärmeleitfähigkeit des Materials mit der kleineren Partikelgrösse kleiner ist als diejenige des Materials mit der grösseren Partikelgrösse.
    18. Statischer Mischer nach einem der Ansprüche 11 bis 17, zeichnet, dass die Schüttschicht aus zwei Schichten verschiedener Partikelgrösse besteht, von denen diejenige mit der kleineren Partikelgrösse über der anderen angeordnet ist und die Legierungszusätze zurückhält.
    19. Statischer Mischer nach einem der Ansprüche 11 bis 18, zeichnet, dass die Dosier- und Fördereinrichtung aus nlindestens einem Fördersilo (9) besteht, in dessen Auslaufkonus eine von einem Elektromotor (11) angetriebene Förderschnecke (10) eingebaut ist.
    20. Statischer Mischer nach einem der Anspruch·» 11 bis 19, dadurch gekenn-/
    /zeichnet, dass die Dosier- und Fördereinrichtung eine in horizontaler Achse umlaufende Förderschnecke (14) mit Zulauftrichter (13) aufweist, welche zur Vormischung der verschiedenen Legierungszusätze (3) untereinander vor dem Eintragen in die Metallschmelze U) dient.
    809843/0532
    21. Statischer Mischer nach einen der Ansprüche 11 bis 19,
    dadurch gekenn-/
    /zeichnet, dass die Dosier- un<I Fördereinrichtung eine auf Federn gelagerte, schiefe Schwingrinne (17) aufweist, welche von einem Magnetantrieb (18) bewegt wird und zur Vormischung der verschiedenen Legierungszusätze (3) untereinander vor dam Eintragen in die Metallschmelze (1) dient.
    22. Statischer Mischer nach einem der Ansprüche 11 bis 19,-
    dadurch gekenn-/
    /zeichnet, dass die Dosier- und Fördereinrichtung einen umlaufenden Bandförderer enthält, welcher zur Vormischung der verschiedenen Legierungszusätze (3) untereinander vor dem. Eintragen in die Metallschmelze (1) dient*
    809849/0532
DE2737329A 1977-06-02 1977-08-18 Verfahren und Vorrichtung zur kontinuierlichen Herstellung von Legierungen Expired DE2737329C3 (de)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CH676677A CH631489A5 (de) 1977-06-02 1977-06-02 Verfahren zur kontinuierlichen herstellung von metallegierungen.

Publications (3)

Publication Number Publication Date
DE2737329A1 true DE2737329A1 (de) 1978-12-07
DE2737329B2 DE2737329B2 (de) 1979-06-28
DE2737329C3 DE2737329C3 (de) 1980-02-21

Family

ID=4314705

Family Applications (1)

Application Number Title Priority Date Filing Date
DE2737329A Expired DE2737329C3 (de) 1977-06-02 1977-08-18 Verfahren und Vorrichtung zur kontinuierlichen Herstellung von Legierungen

Country Status (13)

Country Link
US (1) US4174965A (de)
JP (1) JPS542206A (de)
AT (1) AT364537B (de)
BE (1) BE867752A (de)
CA (1) CA1107081A (de)
CH (1) CH631489A5 (de)
DE (1) DE2737329C3 (de)
FR (1) FR2393073A1 (de)
GB (1) GB2000195B (de)
IT (1) IT1094856B (de)
NL (1) NL7805711A (de)
NO (1) NO148750C (de)
ZA (1) ZA783088B (de)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4386958A (en) * 1981-05-04 1983-06-07 Olin Corporation Process and flotation box for inclusion removal
JPS629906A (ja) * 1985-07-08 1987-01-17 永大産業株式会社 強化単板の製造方法
JPS6230002A (ja) * 1985-07-31 1987-02-09 永大産業株式会社 強化単板の製造方法
JPS62238340A (ja) * 1986-04-07 1987-10-19 Toyota Motor Corp 酸化還元反応を利用したアルミニウム合金の製造方法
GB8610717D0 (en) * 1986-05-01 1986-06-04 Alform Alloys Ltd Production of alloys
GB8622458D0 (en) * 1986-09-18 1986-10-22 Alcan Int Ltd Alloying aluminium
US6840302B1 (en) * 1999-04-21 2005-01-11 Kobe Steel, Ltd. Method and apparatus for injection molding light metal alloy

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3172757A (en) * 1965-03-09 Treatment of molten light metals
US2806781A (en) * 1955-01-20 1957-09-17 Air Reduction Method and apparatus for conveying finely-divided material
LU55578A1 (de) * 1967-03-18 1968-05-06
US3537987A (en) * 1969-08-28 1970-11-03 Intalco Aluminum Corp Method of filtering molten light metals
GB1367069A (en) * 1970-10-22 1974-09-18 British Aluminium Co Ltd Removal of non-metallic constituents from liquid metal
US3737305A (en) * 1970-12-02 1973-06-05 Aluminum Co Of America Treating molten aluminum
US3929464A (en) * 1973-08-31 1975-12-30 Union Carbide Corp Desulfurization of molten ferrous metals

Also Published As

Publication number Publication date
JPS542206A (en) 1979-01-09
NO148750B (no) 1983-08-29
ATA399078A (de) 1981-03-15
DE2737329C3 (de) 1980-02-21
IT7823920A0 (it) 1978-05-26
US4174965A (en) 1979-11-20
AT364537B (de) 1981-10-27
FR2393073B1 (de) 1985-05-17
CH631489A5 (de) 1982-08-13
FR2393073A1 (fr) 1978-12-29
GB2000195B (en) 1982-06-16
BE867752A (fr) 1978-10-02
ZA783088B (en) 1979-05-30
NL7805711A (nl) 1978-12-05
NO148750C (no) 1983-12-07
IT1094856B (it) 1985-08-10
NO781901L (no) 1978-12-05
GB2000195A (en) 1979-01-04
CA1107081A (en) 1981-08-18
DE2737329B2 (de) 1979-06-28

Similar Documents

Publication Publication Date Title
AT503909B1 (de) Vorrichtung zum chargieren von materialien in eine metallurgische anlage
DE2014651A1 (de) Reinigungsmittel für Zahnprothesen
DE2737329C3 (de) Verfahren und Vorrichtung zur kontinuierlichen Herstellung von Legierungen
EP1721019A1 (de) Verfahren zur herstellung einer sinterrohmischung
DE2510963A1 (de) Vorrichtung zum einfaerben von farblosem kunststoff-granulat
DE2645805A1 (de) Einrichtung zur abflussregulierung schmelzfluessiger materialien
DE2533755A1 (de) Verfahren und vorrichtung zur durchfuehrung nassmetallurgischer prozesse
DE2457660B2 (de) Vorrichtung zum kontinuierlichen Ausfällen von Zementkupfer aus einer mit Eisenstücken versetzten Kupferlösung
DE2133802A1 (de) Verfahren zur aufbereitung von mineralischen korngemengen nach der dichte und vorrichtung zur durchfuehrung des verfahrens
EP0232221B1 (de) Verfahren und Vorrichtung zur Aufbereitung feinteiligen Aluminiumschrotts
DE2500027B2 (de) Misch- und Granuliervorrichtung
DE1758638B1 (de) Schachtofen
DE102006051871A1 (de) Transportvorrichtung für Schüttgut
DE1782327C3 (de)
DE2459750A1 (de) Verfahren und vorrichtung zum herstellen eines homogenen agglomerats aus feinteiligen pulvern
US4203580A (en) Static mixer for the production of metal alloys
DE1901746A1 (de) Verfahren und Vorrichtung zum Vermahlen von mineralischem Gut
DE3508620C2 (de)
DE19960393A1 (de) Anlage zur kontinuierlichen Produktion von unter anderem Lacken, Farben oder Beschichtungsmaterialien
EP0162357B1 (de) Vorrichtung zum Beimischen eines ersten Granulates zu einem zweiten Granulat
DE1237537B (de) Vorrichtung zum kontinuierlichen Herstellen von Mischungen aus koernigem Mineralgut und fluessigen Zuschlagstoffen
DE2044318C3 (de) Verwendung eines Differential-Schneckenmischers zur kontinuierlichen Herstellung eines Salzes in granulierter Form
DE229765C (de)
DE689882C (de) Vorrichtung zur Behandlung von Getreide mit chemischen Fluessigkeiten
DE3404313C2 (de) Verfahren zum Mischen disperser Feststoffe nach dem Schwerkraftprinzip

Legal Events

Date Code Title Description
OAP Request for examination filed
OD Request for examination
C3 Grant after two publication steps (3rd publication)
8339 Ceased/non-payment of the annual fee