DE2550456A1 - Verfahren und vorrichtung zum reinigen des arbeitsmittels einer diffusionspumpe - Google Patents

Verfahren und vorrichtung zum reinigen des arbeitsmittels einer diffusionspumpe

Info

Publication number
DE2550456A1
DE2550456A1 DE19752550456 DE2550456A DE2550456A1 DE 2550456 A1 DE2550456 A1 DE 2550456A1 DE 19752550456 DE19752550456 DE 19752550456 DE 2550456 A DE2550456 A DE 2550456A DE 2550456 A1 DE2550456 A1 DE 2550456A1
Authority
DE
Germany
Prior art keywords
pump
liquid
boiler
pressure
line
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
DE19752550456
Other languages
English (en)
Inventor
Alvin E Buggele
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of DE2550456A1 publication Critical patent/DE2550456A1/de
Ceased legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04FPUMPING OF FLUID BY DIRECT CONTACT OF ANOTHER FLUID OR BY USING INERTIA OF FLUID TO BE PUMPED; SIPHONS
    • F04F9/00Diffusion pumps

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Vaporization, Distillation, Condensation, Sublimation, And Cold Traps (AREA)

Description

PATENTANWALT DR.-ING. HANS LEYH 2 550456
D-8 München 80,
Lucile-Grahn-Straße 38
Unser Zeichen: Λ 13 192
Alvin E. BUGGELE 7 Milan Manor Drive Milan, Ohio U.S.A.
Verfahren und Vorrichtung zum Reinigen des Arbeitsmittels einer Diffusionspumpe
Die Erfindung betrifft ein Verfahren zum Reinigen des Arbeitsmittels einer Diffusionspumpe. Sie betrifft ferner eine Diffusionspumpe zur Erzeugung eines hohen Vakuums, bei der während des Betriebes Verunreinigungen aus dem Arbeitsmittel der Pumpe abgetrennt werden können.
Diffusionspumpen zur Erzeugung eines Hochvakuums sind bekannt. Die früheren Arbeiten von Gaede um 1914 auf diesem Gebiet wurden ergänzt von Langmuir durch die Entwicklung einer Vertikaldüsendiffus ionspumpe (US-PS 1 393 350), einer Pilzpumpe (US-PS 1 320 884) sowie einer Modifikation der letzteren mit einer Mehrzahl von Düsen (US-PS 1 367 865). Diese Pumpen arbeiten nach folgendem Prinzip. Eine Flüssigkeit, die relativ schwere Moleküle hat, wird in der Pumpe durch Erhöhen der Temperatur verdampft. Der
Lh/fi - 2 -
609820/0380
Dampf, der schwere Moleküle enthält, wird durch geeignete Düsen in eine Richtung von der zu evakuierenden Zone weg zu einer mechanischen Vordruckpumpe geleitet. Die beschleunigten Dampfmoleküle drücken gegen die Moleküle vor der Düse und treiben sie der mechanischen Vordruckpumpe zu, wodurch der Druck innerhalb der evakuierten Zone verringere wird. Die Dämpfe werden an einer kühlen Wand der Pumpe zurückkondensiert, wo die Flüssigkeit zum Boden der Pumpe zurücklaufen kann, um wieder erhitzt und verdampft zu werden.
Ursprünglich wurde in diesen Diffusionspumpen als Arbeitsflüssigkeit Quecksilber verwendet, später auch organische Öle und Siliconflüssigkeiten, die heute das Quecksilber fast gänzlich ersetzt haben. Insbesondere sind Siliconöle, z.B. DC-705 (Pentaphenyltrimethy 1— trisiloxan) in Gebrauch (hergestellt von Dow Corning Corporation).
Bei der Arbeit dieser Pumpen wurde schon seit langem beobachtet, daß die Verdampfungsoberfläche des Arbeitsmittels in einer Desilliervorrichtung sich bei schnellem Verdampfen in sehr unterschiedliche Turbulenzgebiete zu unterteilen scheint, was als "schizoide" Verdampfungsoberfläche bezeichnet wurde. In einem Gebiet der Oberfläche, auch Arbeitsfläche genannt, findet eine sehr schnelle Verdampfung der Flüssigkeit statt, während in einem anderen Gebiet, das als träges Gebiet bezeichnet wird, sehr wenig Verdampfung erfolgt. Diese Erscheinung ist beschrieben in dem Artikel "Torpid Phenomena and Pump Oils" von Hickmann, "The Journal of Vacuum Science and Technology',1 Band 9 Nr. 2 und in dem Artikel "Surface Behavior in the Pot Still" von Hickmann, in "Industrial and Engeneering Chemistry", Band 44 Nr. 8. Weil die tragen Bereiche der Verdampfungsoberfläche im Innern des Pumpenboilers die Dämpfe in einem sehr geringen Maß freilassen, sind das Saugvermögen, der Durchsatz und das erreichbare Endvakuum vom Ausmaß der tragen Verdampfungsoberflächenbereiche her begrenzt.
β 0 9 R ? 0 / 0 3 8.6
Es sind hierzu schon Vorschläge zur Verbesserung gemacht worden, um das Problem der Trägheit, (Torpidität) in Diffusionspumpen zu meistern. (US-PS 2 080 481 sowie der Artikel "A New Type of Diffusion Pump Boiler for Ultrahigh Vacuum Use" von Okamoto und Mura Kami, in "Vacuum", Band 17 Nr. 2). Es wird hierbei eine zentrale Reinigungswanne innerhalb des Boilers vorgeschlagen, um bestimmte Verunreinigungen, die darin während des Siedens überfliessen, abzusondern. Ferner wird eine Heizung für den Boiler verwendet, die eine starke Turbulenz im Arbeitsmittel erzeugen soll (Stevenson Flash Boiler), sowie andere Einrichtungen, um eine Zirkulation des Arbeitsmittels im Boiler zu bewirken, wie Umrühren der Flüssigkeit und dergleichen oder die gesteuerte Zufuhr der Wärme derart, daß eine Zirkulation erreicht wird (N-Boiler von Murakami).
Es konnte hierbei zwar der Moleküldurchsatz etwas erhöht werden, eine Reinigung des Arbeitsmittels im Boiler war jedoch nicht möglich und die Ursachen der Trägheit konnten nicht beseitigt werden. So lange daher träge Bereiche in der Verdampfungsoberfläche vorherrschen, bleiben der Moleküldurchsatz und das erreichbare Vakuum stark eingeschränkt.
Eine weitere Einschränkung des erreichbaren Endvakuums bei Diffusionspumpen wird durch die sogenannte "Rückströmung" bewirkt. Die Rückströmung stellt eine Rückwanderung von Molekülen von den Düsen in den Pumpenbehältern dar und sie tritt bei Diffusionspumpenprozessen auf. Wenn der Druck im zu evakuierenden Behälter abnimmt, nimmt die Stärke der Rückströmung zu und wenn sie gleich dem Durchsatz des Gases ist, folgt keine weitere Druckabnahme mehr im Druckbehälter. (Diese Erscheinung wird beschrieben in den US-Patenten 3 034 700 und 2 080 421 von Hickmann, im US-Patent 2 905 374 von Scatchard, im US-Patent 2 291 054 von Nelson, im US-Patent 3 317 122 von Bächler und im US-Patent 3 171 384 von Hayashi). Beispielsweise wird in den Patenten
- 4 ORIGINAL INSPECTED
bü962Ü/Q38S
3 034 700 und 3 317 122 vorgeschlagen, die Rückströmung durch Abkühlen des Diffusionspumpenkörpers hinter der Düse oder gegenüber den oberen Stufen eines mehrstufigen Düsensystems zu verringern, wobei die unteren Teile des Pumpenkörpers warm gehalten werden. Ein anderer Weg besteht darin, eines oder mehrere gekühlte Leitbleche zwischen dem Rezipienten und der Pumpe vorzusehen. Das Leitblech versucht in erster Linie verunreinigende Gase zu kondensieren und aufzufangen, wodurch verhütet wird, daß Dämpfe in den Rezipienten zurückströmen. Viele dieser Gase stammen von Materialien im Rezipienten, d.h. im Pumpenkörper, die unter dem Einfluß des Hochvakuums ausgegast wurden. Während gekühlte Leitbleche oder Prallbleche sich bei der Verringerung des Rückströmvorganges als einigermaßen zweckmäßig erwiesen haben, sind sie nicht geeignet, alle vorbeiströmenden Gase aufzufangen, wenn sie einmal mit Kondensat gefüllt sind und sie verlieren dann ihre Wirksamkeit. Wenn die Prallbleche erwärmt sind, tropfen die Kondensate in den Boiler und können nicht mehr entfernt werden.
Obwohl Moleküle des Arbeitsmittels selbst,, die bei Diffusionspumpendüsen austreten, eine geringe Neigung zum Rückströmen haben, sind es hauptsächlich leichte Moleküle, die durch den Pumpenkörper zu der Druckkammer mit dem niedrigeren Druck rückströmen, wodurch die Qualität des erreichbaren Vakuums beträchtlich eingeschränkt wird. Leichte Substanzen sind solche Verunreinigungen im Arbeitsmittel, die ein niedrigeres Molekulargewicht haben als das Arbeitsmittel selbst und sie können auseinandergebrochene Moleküle des Arbeitsmittels selbst enthalten, das im Falle des Arbeitsmittels DC-705 ein Pentamer ist. Eine Möglichkeit zur teilweisen Entfernung solcher Verunreinigungen wird im US-Patent 3 034 700 und in dem ersten oben genannten Aufsatz von Hickmann, Seite 976, beschrieben. Dort wird vorgeschlagen, das kondensierte Destillat in ringförmigen Destillierkolben in der Vordruckleitung der Diffusionspumpe zu sammeln. Die Destillate enthalten leichte Substanzen, die aus dem
609820/0386
2 b 5 O 4 5 6
Pumpenkörper entwichen sind und zusammen mit Gasen aus dem Druckbehälter in den Anschluß der Vordruckleitung gelangt sind.
Die genannten Diffusionspumpen tragen zwar zur Reduzierung der Trägheit der Verdampfungsoberfläche der Flüssigkeit im Boiler und zur Verminderung der Rückströmung von leichten Substanzen bei, wodurch das erreichbare Endvakuum besser wird, die Pumpen arbeiten aber noch nicht zufriedenstellend, sie erreichen keine insgesamt kontinuierlich arbeitende Verdampfungsoberfläche, noch wird das Ausmaß der Rückströmung beträchtlich reduziert oder eine gute Flüssigkeitstrennung erreicht.
Der Erfindung liegt daher die Aufgabe zugrunde, ein Verfahren und eine Diffusionspumpe anzugeben, die die geschilderten Nachteile verringern bzw. beseitigen.
Erfindungsgemäß wird dies dadurch erreicht, daß aus der Masse des Arbeitsmittels im Boiler wenigstens ein wesentlicher Teil an seiner Oberfläche abgezogen wird, nachdem eine Verdampfung der Flüssigkeit eingesetzt hat, daß ferner wenigstens ein Teil der Flüssigkeit, die an den Innenflächen hinabläuft, aufgefangen und aus der Vordruckleitung der Pumpe ausgetragen wird, und daß aus der Pumpenkammer wenigstens ein Teil der Flüssigkeit, die an deren Innenflächen hinabläuft, aufgefangen und abgeführt wird.
Die erfindungsgemäße Diffusionspumpe ist in der Lage, die Arbeitsflüssigkeit während des Betriebs kontinuierlich zu reinigen bzw. zu trennen, wobei eine durchgehende im wesentlichen 100%-ig arbeitende Verdampfungsoberfläche erzielt wird und ferner die Rückströmung stark reduziert wird, wodurch das erreichbare Endvakuum beträchtlich verbessert wird. Die Pumpe ermöglicht einen hohen Trennungsgrad auch zwischen Flüssigkeit mit nur wenig unterschiedlicher Flüchtigkeit und daher z.B. in Raffinerien, bei denen eine
ORIGINAL INSPECTED - 6 -
609820/0396
hohe Reinheit und Trennung von Flüssigkeit verlangt wird, einsetzbar ist. Es wurde festgestellt, daß das Problem der Trägheit fast gänzlich der Anwesenheit von verunreinigenden schweren Substanzen zuzuschreiben ist, die im Arbeitsmittel enthalten sind. Die schweren Substanzen haben ein höheres Molekulargewicht als das Treibmittel und sie umfassen in weitem Umfang polymerisierte Moleküle von leichteren Substanzen. Diese schweren Substanzen neigen dazu, sich zu nicht verdampfenden Inseln auf der Verdampfungsoberfläche anzusammeln, wodurch sie das Freiwerden von Molekülen des Arbeitsmittels in diesen Bereichen unterdrücken.
Nach der Erfindung ist es möglich, im wesentlichen alle schweren oder schwereren Substanzen aus dem Treibmittel während des Betriebes auszuscheiden, wodurch die Trägheitsbereiche auf der Verdampfungsoberfläche im wesentlichen beseitigt werden. Hierdurch erhält man eine im wesentlichen 100%ig arbeitende Oberfläche, was zu einem größeren Moleküldurchsatz und einem stark verbesserten Pumpenwirkungsgrad führt. Die Absonderung der schweren Substanzen wird zum Teil durch ein periodisches Abschöpfen der Verdampfungsoberfläche des Arbeitsmittels im Boiler während des Betriebes vorgenommen, wobei Abflußöffnungen zum Abschöpfen rund um den Umfang des Boilers vorgesehen und bei großen Pumpen, die konzentrische ringförmige Kanäle im Boiler haben, auch auf das Zentrum des Boilers zu angeordnet sind. Die Abschöpföffnungen sind zweckmäßigerweise in verschiedenen Ebenen im Boiler angeordnet und sie werden, wenn die Abzugsleitungen geöffnet sind, mit einem Sammelkessel verbunden, der unter niedrigerem Innendruck als der Boiler steht.
Die Pumpe umfaßt ferner zweckmäßigerweise Einrichtungen zum Abführen von kondensierten Destillaten aus der Vordruckleitung. In der Vordruckleitung sind Destillierkolben eingebaut, die die Kondensate auffangen, die an den Innenwänden herabfliessen. Mit Ventilen versehene Leitungen verbinden die Destillierkolben mit
B 0 9 8 2 0 / 0 3 β Ö
- 7
einem SammeIkessei, der unter niedrigerm Innendruck als der Vordruckanschluß steht. Kondensate in der Vordruckleitung enthalten eine hohe Konzentration von leichten Substanzen und die Entfernung dieser leichten Substanzen verhindert ihr Rückströmen in den Boiler zur Wiederverdampfung und eine mögliche Polymerisation zu schweren Molekülen. Auf diese Weise wird die Rückströmung fast ausgeschlossen, da die meisten leichten Substanzen bzw. leichten Moleküle am Wiedereintreten in den Dampfumlauf gehindert werden. Die Anwesenheit von leichten Substanzen bzw. Molekülen im Pumpenbehälter ist die Hauptursache der Rückströmung, die das Endvakuum herabsetzt. Wie bereits ausgeführt, wird durch die Verhinderung der Rückströmung der leichten Substanzen in den Boiler auch die Trägheit durch Absonderung von polymerisierten Molekülen aus dem Boiler reduziert.
Die leichten Verunreinigungen können über die Vordruckleitung nicht vollständig ausgeschieden werden. Gewöhnlich ist eine sehr kleine Menge von leichten Substanzen vorhanden, deren Molekulargewichte nur knapp unter dem des Arbeitsmittels selbst liegen. Wenn eine maximale Pumpenleistung erreicht werden soll, so sollten diese Substanzen auch entfernt werden. Es ist relativ schwierig, sie in der Vordruckleitung zu isolieren, wo der Druck relativ hoch ist und die Druckdifferenzen nur gering and und v/o die Konzentration solcher leichten oder leichteren Moleküle gewöhnlich nicht so groß ist wie in der Pumpenkammer. Die schwereren Substanzen, die nicht so flüchtig sind, wie die leichten Substanzen, die im Vordruck isoliert werden können, kondensieren an den Pumpenkammerwänden fast genau so schnell wie das Arbeitsmittel. Deshalb sind ständig Moleküle der schwereren Substanzen in der Pumpenkammer vorhanden und bereit zur Rückströmung in den Druckbehälter und zur Verbindung durch Polymerisation zur Bildung von schweren Molekülen, die im Boiler zur Bildung von Trägheit oder Erstarrung, d.h. zur Bildung von trägen oder mehr oder weniger starren Bereichen führen. Da sie etwas flüchtiger als das Arbeitsmittel
609820/0386
selbst sind, neigen die noch keine Verbindungen eingegangenen schwereren Moleküle bereitwilliger als die Arbeitsmoleküle selbst zurückzuströmen zum Bereich des niedrigeren Druckes der Vakuumkammer. Wenn nach Trennung und Entfernung der meisten leichten Moleküle aus der Vordruckleitung der Druck ausreichend niedrig gemacht werden kann, mit einem stärkeren Druckgefälle und die Temperatur in der Vordruckleitung genügend hoch gehalten werden kann, so können die schwereren Substanzen in größerer Konzentration in den Vordruckanschluß hineingezogen werden, ehe sie kondensieren, dann darin kondensieren und in den Destillierkolben aufgefangen werden. Die Substanzen könnten dann in hoher Konzentration im Kondensat enthalten sein und aus den Destillierkolben abgeführt werden. Um eine solche Trennung zu erreichen, wäre jedoch eine starke Vordruckpumpe, die an den Vordruckanschluß angeschlossen ist und sehr hohe Temperaturen in der Vordruckleitung erforderlich. In den meisten Fällen ist eine solche große Vordruckpumpe zur Trennung unzweckmäßig und unwirtschaftlich. Auch würden einige leichtere Substanzen unter solchen Bedingungen im Laufe der Zeit durch die Pumpe abgesaugt und ausgestoßen werden, die dann auf diese Weise verloren gingen und für die Trennung und Analyse oder die Wiederverwertung nicht mehr zur Verfügung stünden.
Das Problem von Spuren von schwereren Molekülen in der Pumpenkammer wird erfindungsgemäß jedoch gelöst. Auf der inneren Oberfläche der Pumpenkammer, wo der Druck niedrig ist und ein starker Druckgradient vorhanden ist, ist eine Reihe von öestillierkolbenartigen Blechen oder Abflußrinnen derart angeordnet, daß sie einen großen Teil der schwereren Substanzen auffangen, die an der Pumpenkammer kondensieren, ehe diese Kondensate die Möglichkeit haben, wieder zu verdampfen und in die Vakuumkammer hinein zurückzuströmen. Mit Ventilen versehene Abzugsleitungen führen von jeder der Abflußrinnen zu einem Sammelkessel mit niedrigerem Druck als der Pumpenkammerdruck auf der Höhe der entsprechenden Abflußrinnen beträgt. Einige dieser
609820/0386
7550456
Abflußrinnen sind auf mehreren Ebenen mit Abzugsleitungen versehen, so daß das Arbeitsmittelkondensat, das sich auf dem Boden von bestimmten Rinnen befinden kann, zum Boiler zurückgeführt werden kann, wogegen Kondensate, welche schwerere Verunreinigungen enthalten, von den höheren Zonen der Abflußrinnen in einen Sammekessel abgeführt werden können.
In einem Vakuumsystem, das eine Anzahl von Diffusionspumpen umfaßt, kann eine Pumpe in der vorstehend beschriebenen Ausführungsform als Hilfspumpe für die übrigen Pumpen dienen, die die Boilerfunktion und die Vordruckfunktion wahrnehmen. Die Boilerflüssigkeit kann dann zwischen den Pumpen ausgetauscht werden, so daß die Flüssigkeit jeder Pumpe einen hohen Reinigungsgrad erhält.
Wie bereits erwähnt, ist das Verfahren und die Vorrichtung nach der Erfindung auch zur präzisen Flüssigkeitstrennung geeignet. Die Einrichtung zur Abschöpfung der Boileroberfläche und zur KondensatSammlung und Kondensattrennung in der Vordruckleitung und in der Kammer der Diffusionspumpe kann auch für andere Trennmethoden verwendet werden, z.B. auch für die Trennung von Erdölbestandteilen, Uranisotopen, Metallen und anderen organischen und anorganischen Chemikalien.
Die erfindungsgemäße Pumpe wird im Vergleich mit bekannten Pumpen (US-PS 2 206 093; 2 386 298; 2 436 849; 2 905 374; 3 251 537; 3 317 122 und 3 536 420) und anhand der Zeichnung im einzelnen beschrieben.
Fig. 1 zeigt schematisch im Aufriß eine Vakuumkammer und eine damit verbundene Diffusionspumpe nach der Erfindung.
Fig. 2 zeigt die Pumpe in größerem Maßstab.
Fig. 3 zeigt im Schnitt eine bekannte pilzförmige Diffusionspumpe.
- 10-
6Q382Q/Q386
Fig. 4 zeigt im Schnitt und perspektivisch einen Boiler einer bekannten Pumpe.
Fig. 5 zeigt im Schnitt eine weitere Ausführungsform einer Pumpe nach der Erfindung.
Fig. 6 zeigt einen Schnitt längs der Linie 6-6 von Fig. 5.
Fig. 7 zeigt vergrößert einen Schnitt längs der Linie 7-7 von Fig. 6, wobei einzelne Teile wegen der Übersichtlichkeit weggelassen worden sind.
Fig. 1 zeigt eine Vakuumkammer 10, die mit der Unterdruckseite einer selbstreinigenden Diffusionspumpe 11 verbunden ist. Die Pumpe 11 umfaßt eine Pumpenkammer 12, ein Dampfsteigrohr mit Düse 13, einen Boiler 14, eine Vordruckleitung 16, Destilliergefäße 17, mit Ventilen versehene Abzugsleitungen 18, eine Leitung 19, die über eine kalte Kondensationskammer 21 im Vordruck zu einer mechanischen Vakuumpumpe 22 führt, Kessel 23 und 24, in denen die Verunreinigungen gesammelt werden, die vom Boiler 14 bzw. vom Vordruckanschluß 16 abgezogen werden, ein Vordruckmeßgerät 26, ein Gebläse 27 zur Kühlung der Pumpenkammer 12 sowie eine Zufuhreinrichtung 28 für die Zufuhr von Verunreinigungen in den Boiler. An die Vakuumkammer sind ein Druckmesser 29, eine Zufuhreinrichtung 31 für Verunreinigungen mit einem Ventil 32, ein Hilfsentlüftungsventil 33 und ein Prallblech 34 angeschlossen, das gekühlt werden kann und eine gekühlte Kondensationseinrichtung bildet für die gasförmigen Bestandteile, die auf die Pumpenkammer 12 zu wandern. Zusätzliche Prallbleche 37 und 38 können zwischen dem Ventil 36 und der Pumpenkammer 12 liegen. Die Kessel 23 und für die Verunreinigungen sind durch mit Ventilen versehene Leitungen 39 und 41 mit einer Quelle niedrigeren Drucks als dem verbunden, der im Boiler 14 und in der Vordruckleitung 16 herrscht, so daß die Kessel 23 und 24 Flüssigkeit aus dem Boiler 14 und den Destillierkolben 17 abziehen, wenn die entsprechenden Ventile geöffnet
- 11 -
6 09820/0386
sind. Die Vakuumquelle kann entweder die mechanische Pumpe 22 selbst oder irgendeine andere geeignete Quelle sein, da die Drücke im Boiler 14 und in der Vordruckleitung 16 während des Betriebs der Pumpe 11 nicht-extrem niedrig sind, scjwie der Druck im oberen Ende der Pumpenkammer 12. An den Kesseln 23 und 24 sind Abzugsventile 35 und 36 angebracht, um Verunreinigungen abzuführen, wenn die Kessel 23 und 24 in geeigneter Weise von der Vakuumquelle, vom Boiler und von der Vordruckleitung getrennt sind. Zum selben Zweck sind Entlüftungsventile 40 und 45 an den Kesseln 23 und 24 vorgesehen.
Ein Teil der Pumpe 11 ist in Fig. 2 in vergrößertem Maßstab gezeigt. Der Boiler 14 enthält das Arbeitsmittel 42 bis zur Höhe einer der Abschöpfung dienenen Abflußleitung 43, die nach innen zum Boiler zu offen ist. Die Leitung 43 kann durch ein Ventil 44 geöffnet und mit einer Leitung 46 verbunden werden, die zum Kessel 23 führt. Auf der gegenüberliegenden Seite des Boilers 14 befindet sich die Vorrichtung 28 zur Zugabe von Verunreinigungen, die aus einem offenen Meßrohr 47 und einem Ventil 48 besteht, das Flüssigkeiten vom Behälter 47 ins Innere des Boilers 14 zuführt. Solche verunreinigende Flüssigkeiten können zugeführt werden, um ihren Einfluß auf die Pumpenleistung und die Fähigkeit der Pumpe zur Reinigung und zur Flüssigkeitstrennung zu untersuchen. Die Einrichtung 28 kann auch dazu benutzt werden, das Arbeitsmittel im Boiler 14 zu ergänzen, wenn leichtere oder schwerere Verunreinigungen abgeschöpft und abgelassen sind. Der Flüssigkeitspegel, wie in Fig. 2 gezeigt, sollte im Laufe der Abschöpfung beibehalten werden, da die Abschöpfung in der Pumpe nur auf einer Ebene erfolgt. Das Steigrohr und die Düse 13 haben Ausströmöffnungen oder Düsen 49a, 49b und 49c, die nach unten abgewinkelt sind, um auf der Hochvakuumseite 51 der Diffusionspumpe einen Unterdruck zu erzeugen, wenn das Arbeitsmittel durch die Düsen strömt. Am Boden der Pumpenkammer 12 sind verschiedene Öffnungen 52 nach außen rund um das Steigrohr und die Düse 13 an-
609820/0386
gebracht, damit alle Flüssigkeiten, die innen im unteren Teil des Steigrohres und der Düse kondensieren, zum Boiler 14 zurückströmen, wobei sie den Eingang der Vordruckleitung passieren und von dort aus durch ein Rohr 53 und die Leitung 4 3 in den Boiler 14 gelangen, in ähnlicher Weise fließen Kondensate von der Oberfläche der Kammer 12 über die Leitungen 53 und 43 in den Boiler zurück.
Die Vordruckleitung 16 der Pumpe umfaßt ein Paar außenliegender Destillierkolben 17a und 17b sowie die Leitungen 18a, 18b und 18c, die dazu dienen, kondensierte Flüssigkeit von der Vordruckleitung 16 abzuführen. Jede der Leitungen 18 kann über ein Ventil mit dem Kessel 24 verbunden werden, der unter niedrigerem Druck als die Vordruckleitung 16 steht. Die weiter unten liegende Leitung 53, die nach innen zum Boiler 14 offen bleibt, führt dem Boiler diejenigen Kondensate zu, welche durch die Leitungen 18 nicht abgeleitet worden sind. Ein elektrisches Heizband 54 ist um die Vordruckleitung 16 gewickelt, beginnend über der Leitung 53 bis unter die Leitung 19, damit die Temperatur innerhalb der Vordruckleitung 16 auf einer vorbestimmbaren, im wesentlichen konstanten Höhe über die Länge der Vordruckleitung bzw. des Vordruckanschlusses 16 gehalten werden kann. Dies ermöglicht es den kondensierbaren Flüssigkeiten im gasförmigen Zustand in die Vordruckleitung einzutreten und in dieser weiterhin aufzuströmen, ehe sie an den Wänden dort kondensieren. Da die Temperatur nahezu konstant längs der Vordruckleitung ist, können leichte Substanzen mit verschiedenen Flüchtigkeiten in verschiedenen Höhen kondensieren unter dem Einfluß der kleinen Druckschwankungen über der Länge der Vordruckleitung 16. Der höchste Druck in der Vordruckleitung herrscht in der Nähe der Leitung 19 und der niedrigste Druck nahe bei der Pumpenkammer 12. '
Wie Fig. 2 zeigt, ist eine mit Ventilen versehene Abzugsleitung am Boden des Boilers 14 angebracht, um das Arbeitsmittel 42 aus
- 13 -
609820/0386
- 13 - 7550456
dem Boiler abzulassen, wenn die Diffusionspumpe nicht betrieben wird. Die Glaswände des Boilers 14 sind mit Thermoelementen 57 und 58 zur Temperaturüberwachung an verschiedenen Stellen innerhalb des Boilers 14 versehen. Die Thermoelemente 58 liegen auf der Rückseite des Boilers. Die Vordruckleitung 16 enthält ebenfalls ein Thermoelement 59 zur Temperaturüberwachung an der betreffenden Stelle. Der Vordruck wird mittels des Manometers 26 (Fig. 1) überwacht, während der Druck in der Vakuumkammer 1O durch das Druckmeßgerät 29 angezeigt wird.
In einem Versuchslauf der Pumpe 11 wurde 5 Jahre altes Siliconarbeitsmittel DC-705 (Molekulargewicht 546) aus der Zyklotrondiffusionspumpe der Michigan State University im Boiler 14 der Pumpe verwendet. Das Öl hatte sich durch den langen Gebrauch dunkelbraun verfärbt. In einem Anfangsversuch, der mit einer einstufigen Glasdiffusionspumpe G4 durchgeführt wurde, erreichte das Öl ein maximales Vakuum oder einen minimalen Druck von 2,5 · Torr (mm Quecksilbersäule) bei 4stündigem Pumpenbetrieb. Neues Öl DC-7O5 hatte einen niedrigsten Druck von 1,0· 10 Torr bei 3 1/2-stündigem Betrieb in der G-4-Testpumpe. Die Boilergröße und die Verdampfungsoberfläche einer einstufigen Pumpe G-4 sind angenähert so wie bei der vorliegenden Pumpe. Jede Pumpe hat ein Boilerfassungsvermögen von etwa 55 Millilitern.
Nach eintägigem Betrieb der vorliegenden Pumpe errecht das 5 Jahre alte öl DC-705 ein maximales Vakuum in der Vakuumkammer von 5 · 10 ^ Torr. Der Grund für die Differenz im Endvakuum zwischen der G-4 Pumpe und der vorliegenden Pumpe bei Verwendung desselben 5 Jahre alten Öles liegt hauptsächlich darin, daß die vorliegende Pumpe eine große Anzahl von Anschüssen zwischen der Pumpenkamir.er 12 und der Vakuumkammer 10 hat (von denen einige in Fig. 1 dargestellt sind). Diese Verbindungsleitungen ließen eine geringe Menge an Gasen in das System eindringen, wodurch der Mindestdruck im System bei allen Versuchen mit der Pumpe anstieg. Das Ausgasen der Dichtungsmaterialien an den Verbindungsstellen trug ebenfalls
- 14 -
609820/0386
?550456
zu der Gasbelastung des Systems bei.
Während des ersten Betriebstages mit dem 5 Jahre alten Öl in der vorliegenden Pumpe variierte der Druck im Behälter 10 von etwa 10~4 Torr bis etwa 5 · 1O~5 Torr. Während etwa 80% der Zeit trat eine träge oder starre Verdampfungsoberfläche auf. Während kurzer Perioden arbeitete die Verdampfungsoberfläche jedoch auch im wsentlichen voll. Zwischen den tragen undden arbeitenden Perioden zeigte sich eine Mischoberfläche mit zahlreichen vorhandenen kleinen arbeitenden Bereichen in der sonst trägen oder starren Oberfläche. In den iOO%ig arbeitenden Perioden ergab sich ein verbesserter Druck in der Kammer 10, wobei der Druck in dieser oft um 0,5 Dekaden, d.h. um das 5-fache gesenkt werden konnte. Eine 100%ig arbeitende Verdampfungsoberfläche erschien während des ersten Betriebstages ungefähr während 20% der Zeit.
Wenn die Absonderungen von leichten und schweren Verunreinigungen aus dem Treibmittel begann, wurde sofort ein ausgeprägtes Ansteigen der Pumpenleistung beobachtet. Innerhalb von 8 Stunden von der ersten Absonderung solcher Unreinheiten an wurde der Druck im Behälter 10 über mehr als eine Dekade gesenkt, auf ein Niveau von etwa 1 · 10 bis 5 · 1O~6 Torr. Etwa während des zweiten Tages des Pumpenbetriebes wurden die nachfolgenden Flüssigkeitsmengen, die die angezeigten Verunreinigungen enthielten, in der gezeigten Reihenfolge entfernt, nämlich 10 ml leichte Substanzen; 3 ml leichte Substanzen; 8 ml schwere Substanzen; 2 ml leichte Substanzen und 2 ml leichte Substanzen.
Nach der Entfernung dieser Verunreinigungen wurde ein Druck in der Vakuumkammer erreicht, der zwischen 8 . 1O und 1 · 10 variierte. Es ergab sich hierbei eine im wesentlichen 100%ig arbeitende Verdampfungsoberfläche im Boiler über etwa 90% der Zeit.
Nach 7-tägigem Betrieb der Anlage erreichte das Vakuum im Behälter
- 15 -
60 9 820/038 8
Werte zwischen etwa 5 · 10 und 1 · 10 Torr. Es wurde dabei während etwa 99% der Zeit eine im wesentlichen 100%ig arbeitende Verdampfungsoberfläche erzielt.
Während des achten Tages wurden weitere 2 ml des Arbeitsmittels, das leichte Substanzen enthielt, aus der Vordruckleitung abgeführt. Nach dieser letzten Reinigung zeigte sich eine kontinuierliche im wesentlichen 100%ig arbeitende Verdampfungsoberfläche. Der Druck im Behälter 10 blieb zwischen etwa 10 und 10 Torr.
In dieser Arbeitsperiode der Diffusionspumpe, in der der Druck in der Vakuumkammer zwischen etwa 5 .10 und 1 · 10 Torr variierte, wurde ein Versuch ausgeführt, um die Wirksamkeit des Prallbleches 34 (Fig. 1) zu untersuchen. Das Prallblech 34 wurde auf Temperaturen zwischen etwa -400Cund -29°Cgehalten. Wenn das Prallblech auf eine Temperatur von +50C erwärmt wurde, so stieg 'der Druck in der Verkuumkammer auf etwa 5*10 Torr, was auf die Verdampfung von erhitzten Kondensaten zurückzuführen ist, die vom Prallblech in der Vakuumkammer zurückgehalten worden sind. Die Anlage erholte sich- jedoch später wieder von diesem Druckanstieg und wenn die Temperatur des Prallblöches im Vakuumbehälter 15°C überstieg, wurde wieder ein Vakuum von etwa 10 Torr erreicht und aufrechterhalten. Man erhielt somit folgendes Ergebnis. Wenn das Arbeitsmittel öl auf einem äußerst hohen Reinheitsgrad gehalten wird, kann ein Hochvakuum durch die Verwendung von nur einem wassergekühltem Prallblech in der Vakuumkammer erreicht werden. Wassergekühlte Prallbleche (oder auch Fanbleche) können zu enormen Kosteneinsparungen führen, z.B. bei der Untersuchung von Einrichtungen unter Weltraumbedingungen, wo jede einer großen Anzahl von Diffusionspumpen gewöhnlich ein Fangblech in der Vakuumkammer benötigt, das mit teueren Kältemitteln, wie z.B. flüssigem Stickstoff oder flüssigem Helium gekühlt wird.
Während des vorstehend beschriebenen Versuches der erfindungsgemäßen
- 16 -
609820/0306
Pumpe sank der Vordruck allmählich und stetig ab, ebenso wie der Druck in der Vakuumkammer absank und die kontinuierlich im wesentlichen 100%ig arbeitende Verdampfungsoberfläche annähernd erreicht wurde und zwar bei einem Druck von etwa 4* 10 Torr bis etwa 2 · 10 Torr. Während dieser Periode blieb die Temperatur in der Vordruckleitung, die durch das elektrische Heizband 54 (Fig. 2) geregelt wurde, etwa bei127°Cund schwankte nicht besonders. Das allmähliche Absinken des Drucks in der Vordruckleitung veränderte somit stetig die Gleichgewichtsbedingungen innerhalb der Vordruckleitung, so daß eine Substanz mit einem bestimmten Dampfdruck auf einer fortlaufend ansteigenden Höhe in der Vordruckleitung kondensierte, sobald hier der Druck zurückging. Somit kann eine bestimmte Substanz, die nach nur einigen Stunden oder nach einem Tag Pumpenbetrieb (vor der Reinigung des Arbeitsmittels) in der Nähe des Eingangs der Vordruckleitung kondensiert ist, später gerade über dem unteren Destillierkolben 17b kondensieren und darin aufgefangen werden. Noch später kann dieselbe Substanz eine noch höher gelegene Stelle zum Kondensieren innerhalb der Vordruckleitung 16 erreichen, wobei sie sich im oberen Destillierkolben 17a ansammelt.
Wegen dieses stetigen Wechsels der Bedingungen bzw. der Gleichgewjkhtsparameter in der Vordruckleitung sind die flüchtigsten leichten Substanzen die ersten Verunreinigungen aus der Gruppe der leichten Substanzen, die sich in den Destilliergefäßen 17a und 17b ansammeln. Die Destilliergefäße werden von diesen leichten Substanzen entleert, wobei auch die Abflußleitung 18c geöffnet werden kann und der Druck in der Vordruckleitung geht zunehmend zurück. Die nächste Entleerung von leichten Substanzen aus der Vordruckleitung erfolgt dann, wenn der Druck etwas niedriger ist, so daß die in der Flüssigkeit enthaltenen Verunreinigungen, die durch die Destilliergefäße ausgesondert werden, nunmehr etwas schwerere, weniger flüchtige leichte Substanzen enthalten. Wenn irgendwelche der leichtesten und flüchtigsten Substanzen noch in
• - 17 -
6098 20/0386
der Anlage vorhanden sind, so werden sie unter den neuen Bedingungen im wesentlichen vollständig die Vordruckleitung verlassen und zwar über die Leitung 19 in Richtung auf die mechanische Vordruckpumpe zu. Das anfängliche Ablassen von leichten Substanzen sollte somit ausreichen, um nahezu alle dieser flüchtigsten Substanzen auszusondern, insbesondere wenn die Trennung und Wiedergewinnung dieser Substanzen gewünscht ist. Wenn die Anlage weiter betrieben wird, werden fortlaufend die leichten Substanzen und die leichteren Substanzen entfernt. Zuletzt werden die schwereren, am wenigsten flüchtigsten Substanzen weitgehend aus der Vordruckleitung ausgesondert. Bei jedem System von Gleichgewichtsbedingungen, die zu einem bestimmten Zeitpunkt in der Vordruckleitung vorherrschen, entsteht eine leichte Druckänderung längs der Vordruckleitung 16, wie bereits ausgeführt worden ist. Der Druck schwankt vom niedrigsten Druck am Einlaßende der Vordruckleitung bis zum höchsten am Auslaßende im Bereich der Leitung 19. Leichte Substanzen verschiedener Flüchtigkeit können somit über die Leitungen 18a, 18b und 18c während des Betriebes abgeführt werden.
Nach dem anfänglichen Abführen der leichten Substanzen und einer weitgehenden Stabilisierung des Druckes in der Vordruckleitung kann die weitere Entfernung von leichten Substanzen durch das Ablassen lediglich des oberen Distillierkolbens 17a mit seiner Abflußleitung 18a erfolgen. Dies rührt davon her, daß wenn der Druck in der Vordruckleitung einmal ein Minimum erreicht hat, die schwereren Substanzen hauptsächlich in den Destillierkolben 17a und 17b aufgefangen werden. Die meisten der leichteren Kondensate in den tiefer gelegenen Destillierkolben 17b werden von Zeit zu Zeit wieder verdampfen und weiter in der Vordruckleitung hinaufwandern, wo sie schließlich weiter oben längs den Wänden der Vordruckleitung 16 kondensieren, und zwar in der Umgebung der Leitung 19, wo die Temperatur etwas
- 18 -
609820/0386 original inspected
niedriger ist. Deshalb werden schließlich die meisten dieser Kondensate im oberen Destillierkolben 17a aufgefangen werden.
Die in den Figuren 1 und 2 dargestellte Pumpe wurde auch unter Verwendung von neuem Öl DC-705 untersucht. Nach dreitägigem Betrieb zeigte das Manometer 29 im Vakuumbehälter einen konstanten Druck von etwa 5 · 10 Torr an. Etwa über 10% der Zeit war eine im wesentlichen 100%ig arbeitende Verdampfungsoberfläche vorhanden. Nachdem 6 ml Flüssigkeit, die leichte Verunreinigungen enthielt, aus der Vordruckleitunq ausgeschieden waren und zwar 2 ml über jede der Abflußleitungen 18a, 18b und 18c, fiel der Druck in der Kammer um 0,6 Dekaden. Die Verdampfungsoberfläche arbeitete jetzt über etwa 25% der Zeit im wesentlichen 100%ig. Nachdem am fünften Tag etwa 7 ml der Boilerflüssigkeit, die schwerere Substanzen enthielt, mittels Abschöpfen der Verdampfungsoberfläche entfernt worden war, ergab sich über etwa 50% der Zeit eine im wesentlichen i00%ig arbeitende Verdampfungsoberfläche bei einem leichten Rückgang des Drucks im Vakuumbehälter. Nach einer weiteren Entfernung von 3 ml leichten Substanzen am sechsten Tag und zwar Kondensate aus den oberen Destillierkolben, ging der Behälterdruck zurück und erreichte eine Schlußhöhe von etwa 7 · 1O~7 bis 2 · 1O~6 Torr. Schließlich ergab sich eine ständig im wesentlichen 100%ig arbeitende Verdampfungsoberfläche nach einer weiteren Entfernung von 4 ml Flüssigkeit aus dem oberen Destilliergefäß in der Vordruckleitung. Aus dem Versuch ergab sich, daß auch ein noch nicht gebrauchtes DC-705-Siliconöl leichte und schwere Verunreinigungen enthielt, und daß die Pumpe 11 in der Lage ist, eine hochgradige Trennung und Reinigung durchzuführen. Durch die Entfernung von leichten und schweren Substanzen während des Pumpenbetriebes wurde der erreichbare Mindestdruck im Vakuumbehälter von ungefähr 5 . 10 Torr auf etwa 1 . 10 Torr reduziert.
Es wurden weitere Versuche unter Verwendung der Pumpe nach den
- 19-
809820/0388
Figuren 1 und 2 durchgeführt. Neues Öl DC-705, das wie vorstehend beschrieben, weiter gereinigt wurde, wurde vorsätzlich verunreinigt, um den Einfluß bestimmter Verunreinigungen auf das Pumpenverhalten und die Fähigkeit der Pumpe, diese Verunreinigungen auszusondern, zu untersuchen. Dieser Versuch war im Prinzip eine Fortsetzung des vorstehend beschriebenen Versuches, bei welchem neues Öl DC-705 verwendet wurde und er wurde am dreizehnten Tag des Betriebes begonnen. Die hinzugegebenen Verunreinigungen waren drei übliche Phthalat-Weichmacher, die wie festgestellt worden ist, von vielen bei Weltraumsimulationsversuchen vorhandenen Gegenständen ausgasen. Es handelte sich im einzelnen um Di-Isooctyl Phthalat (Molekulargewicht 390); Di-Isodecyl Phthalat (Molekulargewicht 446); und Di-Octyl Phthalat/ Di-2-Äthylhexyl Phthalat (Molekulargewicht 390). 2 ml jeder Verunreinigung wurden direkt durch die Zufuhreinrichtung 28 dem Boiler zugesetzt. Die Wirkung war ein plötzlicher starker Druck-
— 6 —3
anstieg im Rezipienten von ungefähr 10 Torr auf etwa 2 · 10 Torr, wobei sich der Druck bei etwa 7 . 10 Torr stabilisierte. Nach der Entfernung von 4 ml Flüssigkeit aus dem oberen Destillierkolben in der Vordruckleitung fiel der Druck im Vakuumbehälter innerhalb 1 Stunde auf 2,5 . 10 Torr ab. Die Zugabe von weiteren 2 ml einer Mischung von Verunreinigungen aus Phthalaten, worin die obigen drei Komponenten enthalten waren, in den Boiler, führte zu einer Verdoppelung der vorigen Druckschwankung. Um eine Erschöpfung der Boilerflüssigkeit während der laufenden Periode zu vermeiden, wurden 10 ml neues Öl DC-705 über die Einrichtung 28 hinzugegeben. Um die Flüssigkeit zu reinigen, wurden 2 ml Flüssigkeit, die Fraktionen aus leichten Substanzen enthielt, über den oberen Destillierkolben 17a in der Vordruckleitung abgezogen. Dies wurde innerhalb von 30 Minuten wiederholt. Innerhalb einer Stunde wurde der Druck im Rezipienten um 3 Dekaden reduziert, d.h. von etwa 3 . 10 . Torr auf etwa 2,5 . 10 Torr. 15 Stunden später wurde ein Druck von 8,5 . 10" Torr im Vakuumbehälter erreicht.
- 20 -
609620/0308
Hieraus ergibt sich, daß mit Hilfe der erfindungsgemäßen Pumpe ein hoher Reinigungsgrad des Arbeitsmittels erreicht wird und aufrechterhalten werden kann. Es zeigte sich ferner, daß wenn Anfangsverunreinigungen aus schwereren oder schweren Substanzen von der Verdampfungsoberfläche im Boiler abgeschöpft wurden, sowohl leichte wie auch schwere Verunreinigungen im wesentlichen durch das periodische Abführen von Kondensaten aus der Vordruckleitung gesteuert werden kann. Dies rührt davon her, daß nach einem anfänglichen Abschöpfen die meisten sich wieder im Boiler einstellenden schwereren Substanzen aus polymerisieren Molekülen bestehen, die aus leichteren oder leichten Molekülen in Verbindung mit dem vorhandenen Arbeitsmittel entstanden sind. Wie oben erwähnt, war die Pumpe einer Reihe von Einschränkungen unterworfen. Unter diesen Einschränkungen waren die große Zahl der Verbindungsstellen im Bereich der Pumpenkammer und der Vordruckleitung und die Größe der als Modell ausgebildeten Pumpe. Trotzdem zeigte sich ihre Fähigkeit zur Reinigung und zur Trennung sowie die Erreichung einer stark verbesserten Pumpenleistung. Ein noch höherer Grad an Reinigung und Trennung kann durch die nachfolgend beschriebene weitere Ausführungsform dfer Pumpe in Verbindung mit großen bereits vorhandenen Pumpen erreicht werden. Diese Modifikation betrifft Einrichtungen innerhalb der Pumpenkammer zum Entziehen von extrem kleinen Mengen von leichten oder leichteren Substanzen, die nur knapp unter dem Molekulargewicht und knapp über dem Dampfdruck des Arbeitsmittels selbst liegen.
In Fig. 3 ist eine große Diffusionspumpe 65 dargestellt. Die Pumpe 65 umfaßt einen Boiler 66 mit konzentrischen Kanälen, der auf dem Boden des mit Düsen versehenen Steigrohres 67 angeordnet ist. Der Boiler 65 umfaßt elektrische Widerstandsheizelemente 68, die zwischen den konzentrischen Boilerkanälen liegen, um eine große Heizfläche zu liefern, sowie einen metallischen Dom 69, der Wärme von den elektrischen Heizelementen 68 aufnimmt, um die Verdampfung des Arbeitsmittels, das darauf trifft, zu bewirken. Der Boiler hat
809820/0386
ferner eine mit einem Ventil versehene Leitung 71. Rund um das Steigrohr 67 ist der Behälter 72 angeordnet, der mit einem Kühlmantel 73 versehen ist, in welchem Kühlrohrleitungen 74 angeordnet sind. In der Vordruckleitung ist ferner ein Rohrkrümmer 75 vorgesehen, der über die nicht gezeigte Vordruckleitung zu einer mechanischen Vakuumpumpe (nicht gezeigt) führt.
In Fig. 4 ist der Boiler 66 der Pumpe nach Fig. 3 in größerem Maßstab dargestellt. Der Boiler 66 hat drei separate konzentrische kreisförmige Kanäle 78a, 78b und 78c. Die elektrischen Heizelemente 68 sind in Wärmeleitenden Metallringen 79a, 79b, 78b und 78c eingeschlossen. Die Verbindung zwischen den Kanälen 78 wird durch einen Durchbruch in den Heizringen 79a und 79b bewirkt. Wie links in Fig. 4 gezeigt ist, enden die Ringe 79a und 79b in der Nähe der Abflußleitung 71. Ein ringförmiger Flansch 81 erstreckt sich im Boiler über das Steigrohr 67, um das direkte Ausströmen von verdampftem Arbeitsmittel direkt in die Pumpenkammer 72 anstatt durch das Steigrohr 67 zu verhindern (Fig. 3). Der Flansch 81 reicht nicht bis zum Boden des Boilers. Der Boiler 66 ist so aufgebaut, daß die Kontaktfläche zwischen dem Arbeitsmittel und den erhitzten Flächen maximiert ist. Die Boiler können zusätzliche Wärmeübertragungsbleche aufweisen, die sich iri Zickzackanordnung über mehrere der Kanäle 78 erstrecken, um einen zusätzlichen Oberflächenkontakt zu erhalten.
Fig. 5 zeigt eine Diffusionspumpe 85, die der Pumpe 65 nach Fig. 3 und 4 ähnlich ist, jedoch erfindungsgemäß mit Einrichtungen für die Selbstreinigung und die Trennung ausgestattet ist. Die Pumpe 85 hat einen Boiler 86 mit elektrischen Widerstandsheizringen 87, einen Dom 88, ein Füll- und Ablaßrohr 89, eine Stei.gleitung mit Düse 90, eine Pumpenkammer 91, die mit Kühlmänteln 92 umgeben ist, sowie eine Vordruckleitung 93, die über eine öffnung 94 mit einer mechanischen Vakuumpumpe (nicht gezeigt) verbunden ist. Die Heizeinrichtung ist um die Vordruckleitung 93
- 22 -
609820/0336
angeordnet und sie kann aus einem elektrischen Heizband 95 bestehen, das um die Vordruckleitung gewickelt und von einem Isoliermantel 95a überdeckt ist.
Wie Fig. 5 zeigt, ist der Boiler 86 der Pumpe 85 mit Einrichtungen zum Abschöpfen der inneren und äußeren Bereiche versehen. An der Innenseite des Boilers 86 innerhalb des Doms 88 sind Abschöpfrohre 96a, 96b, 97a, 98a und 99a vorgesehen, die durch Öffnungen in den Wänden des Doms 88 mit dem Innenraum des Boilers auf vorzugsweise vier verschiedenen Höhenstufen verbunden sind. Die gegenüberliegenden Abschöpfrohre 97b, 98 b und 99b auf der jeweiligen Höhenstufe von 97a, 98a und 99a sind in Bild 6 dargestellt. Alle Abschöpfrohre sind durch die Ventile 100 mit einem Sammelkessel 101 für die schweren Substanzen verbunden. Der Behälter 101 ist durch eine mit Ventil versehene Rohrleitung 102 mit einer Quelle eines niedrigeren Druckes verbunden als dem Druck innerhalb des Boilers 86. Eine mit Ventil versehene Abflußleitung 103 und eine mit Ventil versehene Entlüftungsleitung 104 sind ebenfalls vorgesehen für das periodische Ablassen von Flüssigkeit aus dem Behälter 101. In Bild 5 sind ferner mehrere äußere Abschöpfleitungen 106a, 106b, 107a und 108a dargestellt. Diese äußeren Abschöpfleitungen sind mit einem separaten Sammelbehälter 109 für schwere Substanzen verbunden. Der Behälter 109 hat wiejder Behälter 101 mit Ventil versehene Leitungen 111,112 und 113, die jeweils mit einer Vakuumquelle, einer Ablaßwanne und der Atmosphäre verbunden sind. Der Grund für die Verwendung von separaten Behältern 101 und 109 für Abschöpfrückstände aus den inneren bzw. äußeren Bezirken des Boilers ist der, daß schwerere bzw. schwere Substanzen, die großteils polymerisierte leichte Substanzen enthalten, am Rand des Boilers zu einer höheren Konzentration neigen, wo die Temperatur etwas niedriger ist und zwar wegen des Vorhandenseins von Kondensaten, die von der Wand der Pumpenkammer zurückgewandert sind. Die leichteren unter den schweren oder schwereren Substanzen bleiben mehr im
- 23 -
609820/0388
Zentrum des Boilers. Falls gewünscht, kann die hier beschriebene Vorrichtung auf diese Weise zur Trennung der beiden Arten von schweren bzw. schwereren Substanzen verwendet werden.
Die Figuren 6 und 7 zeigen die verschiedenen Positionen der Boilerabschöpfleitungen an. Eine zusätzliche mit Ventil versehene äußere Leitung 114a ist mit der Rückseite des Boilers 86 verbunden, eine entsprechende vordere Leitung 114b liegt auf derselben Höhe. Die Leitungen 107b und 108b liegen in entsprechender Weise auf der Vorderseite des Boilers 86 in Höhe der Leitungen 107a und 108a. Wie Fig. 7 zeigt, liegen die inneren und äußeren Abschöpfleitungen fir die Boileroberfläche vorzugsweise auf vier verschiedenen Höhen. Die inneren Leitungen 96a und 9 6b und die äußeren Leitungen 106a und 106b liegen zweckmäßigerweise auf der Höhe des vollen Boilers. Eine Öffnung 105 ist im Steigrohrflansch 110 (ähnlich wie Flansch 81 nach Fig. 4) der Pumpe 84 ausgespart, um im Boiler 86 eine Verbindung der Flüssigkeitsoberflächen zu erhalten, wie in Fig. 6 zu sehen ist. Auf einer Höhe von etwa 5 mm unter der vollen Boilerkapazität liegen die inneren Abschöpfleitungen 97a und 97b,und die äußeren Abschöpfrohre 114a und 114b. Die Leitungen 98a. 98b, 107a und 107b liegen vorzugsweise in einer Höhe von etwa 10 mm unter dem Pegel des vollen Boilers und die Leitungen 99a und 99b, 108a und 108b etwa zweckmäßigerweise 15 mm unter dem Pegel des vollen Boilers. Die mehrfachen Abschöpfhöhen sorgen für die Abschöpfung der Oberfläche sowohl bei vollem Boilerfüllstand als auch dann, wenn das Arbeitsmittel in verschiedenen Höhen unterhalb des vollen Boilerpegels steht. Hier wird insbesondere Rücksicht genommen auf den Verlust von Teilmengen des Arbeitsmittels nach mehreren Phasen der Entfernung von Verunreinigungen. Es können Einrichtungen (nicht gezeigt) vorgesehen werden, um die geeigneten Abschöpfleitungen automatisch in Abhängigkeit vom Boilerflüssigkeitspegel zu öffnen, der mittels eines Sensors festgestellt werden kann. Es können ferner nicht gezeigte Einrichtungen vorgesehen werden, die feststellen,
- 24 -
609820/0386
wann eine Abschöpfung erforderlich ist, z.B. durch eine Messung der Verdampfungsoberfläche und/oder des Druckes des Rezipienten. Bild 5 zeigt den Vordruckanschluß 93 der modifizierten Diffusionspumpe 85 zusammen mit den Einrichtungen für die Reinigung und die Trennung. Die Innenseite der Vordruckleitung 9 3 ist mit einer Reihe von destillierkolben-ähnlichen Rinnen oder Durchgängen 116, 117, 118, 119 und 120 versehen. Zusätzlich dazu enthält ein Kniestück 122 der Vordruckleitung Abscheider 123, 124 und 125, um die Kondensate aufzufangen, wenn sie der Wand des Kniestückes entlang auf den Boiler zufließen. Die verschiedenen Höhen für die Kondensatentfernung von oben bis zum Grund der Vordruckleitung ermöglichen ein Abscheiden und separates Ansammeln von Flüssigkeiten mit unterschiedlicher Flüchtigkeit, wie bereits oben erläutert wurde. Zwei mit Ventilen versehene Leitungen 116a, 116b, 117a und 117b usw. erstrecken sich jeweils von einem oberen Niveau und vom Boden jeder Rinne und jedes Abscheiders. Der Grund für die Anordnung der Ausflußöffnungen auf zwei verschiedenen Höhen ist der, daß der Boden jedes Abscheiders oder jeder Rinne normalerweise nahezu reines Arbeitsmitttel enthält, insbesondere in den Abscheidern und den niedriger gelegenen Rinnen. Andererseits enthalten die oberen Niveaus der Rinnen und Abscheider hohe Konzentrationen von kondensierten leichten Substanzen. So werden also die Leitungen 116b, 117b, 118b usw., welche in einen !Sammelbehälter 127 führen, hauptsächlich dazu benutzt, das Arbeitsmittel in den Rinnen und Abscheidern rückzugewinnen. Der Behälter 127 enthält eine mit Ventil versehene Abflußleitung 128 sowie mit Ventilen versehene Leitungen 129 und 130, die mit einer Quelle eines niedrigeren Drucks verbunden sind als dem Druck in der Vordruckleitung und der Umgebungsluft. Die Leitungen 116a, 117a, 118a usw. von den höheren Niveaus der Rinnen und der Abscheider können mit verschiedenen Sammelbehältern verbunden werden (nicht gezeigt), wenn eine Trennung von Flüssigkeiten, die leichte Verunreinigungen mit verschiedenen Flüchtigkeiten enthalten, gewünscht wird. Jeder Sammelbehälter müßte dann eine Abflußleitung, eine
- 25 -
609820/0386
" 25 " 9550456
Leitung zum niedrigeren Druck und eine Entlüftungsleitung aufweisen, wie bei dem Behälter 127. Wenn keine Trennung erwünscht ist, können die Leitungen der Rinnen und Abscheider der oberen Niveaus zu einem gemeinsamen Sammelbehälter führen.
Um eine maximale Flüssigkeitstrennung in der Vordruckleitung 93, verbunden mit einem etwas niedrigerm Durchsatz und daraus resultierend einer reduzierten Vakuumerzeugung, zu erreichen, kann jede der Rinnen 116 bis 120 mit einem Kondensierprallblech oder Fangblech versehen werden, das hier nicht dargestellt ist. Ferner kann in jeder Auffangrinne eine Füllung (nicht gezeigt) vorgesehen werden, um die wirksame Kondensationsfläche zu vergrößern. Eine solche Füllung oder Packung kann z.B. rostfreien Stahl oder ein anderes reaktionsträges Material in Form eines Geflechtes oder in feingesponnener Form enthalten.
Um den gesamten Vordruckanschluß 93 ist ein Heizmantel 132 angeordnet, der in derselben VJeise arbeitet, wie oben in Verbindung mit der Pumpe 11 beschrieben wurde. Zusätzlich zu dieser Funktion, d.h. leichte Substanzen innerhalb der Vordruckleitung in genügend hohen Niveaus ζunKondensieren zu bringen und in den entsprechenden Rinnen aufzufangen, trägt der Heizmantel 132 auch zur Trennung von leichteren Substanzen vom Treibmittel innerhalb der Rinnen und Abscheider und zu ihrer Abfuhr über die Leitungen 116a, 117a, 118a usw. bei. Bei jeder Rinne ist die Wand der Vordruckleitung wärmer als die Rinne selbst und als andere Punkte im Innern der Vordruckleitung. Dies veranlaßt die Fluide, welche die Wand der Vordruckleitung berühren, aufwärts längs der Wand der Vordruckleitung zu wandern und so einen Kreislauf innerhalb der Rinne zu erzeugen. Die Zirkulation geht längs der Wand nach oben, dann nach innen längs der Oberfläche des Fluids und dann nach unten und außen längs des Bodens der Rinne auf die Wand zu. Dieser Kreislauf trägt dazu bei, die leichteren Flüssigkeiten an die Oberfläche des angesammelten Kondensates zu bringen.
- 26 -
609620/038Ö
Da die leichten Flüssigkeiten in jeder Rinne sehr nahe bei ihrem Flüssigkeits-Dampf-Gleichgewicht liegt, neigt das Kondensat der leichten Substanzen dazu, sich auf die Flüssigkeitsoberfläche zu zubewegen, um die Verdampfung einzuleiten und in einigem Umfang auch zu verdampfen. Eine Polymerisation dieser leichten Fraktionen an den Oberflächen der Rinnen kann ebenfalls eine wichtige Rolle hinsichtlich der Möglichkeit oder Einfachheit spielen, mit der eine spezielle Fraktion von der Oberfläche abgezogen und zu einem Behälter mit niedrigerem Druck geführt werden kann.
Wie in Verbindung mit der Pumpe 11 bereits erwähnt, werden am Anfang des Pumpenbetriebes die leichtesten Verunreinigungen in den unteren Abscheidern 123, 124 und 125 aufgefangen. Dies erfolgt deshalb, weil der Druck in der Vordruckleitung relativ hoch ist, da er jetzt noch nicht von der angestiegenen Pumpenleistung und dem fortschreitend höheren Vakuum im Rezipienten, der mit der Niederdruckseite der Pumpenkammer 91 verbunden ist, beeinflußt worden ist. Diese leichtesten Substanzen sollten gleich anfangs so vollständig wie möglich über die Leitungen 125a, 124a und 123a entfernt werden. Wie beim Betrieb der Pumpe 11 verursachen progressiv gesenkte Drücke in der Vordruckleitung 9 3 ebenfalls progressive Änderungen des durchschnittlichen Ortes der Kondensation bei einer Verunreinigung durch eine gegebene leichte Substanz. Die leichte Substanzen enthaltenden Flüssigkeiten, die durch die Leitungen 125a, 124a und 123a abgezogen werden, werden deshalb anfangs eine höhere Flüchtigkeit haben als die, die später hieraus abgezogen werden, und wenn jede Fraktion separat aufgefangen werden soll, müssen die Behälter für jede der Abzugsleitungen 125a, 124a und 123a in Intervallen abgelassen werden. Wie bei der Pumpe 11, kann der Abzug von fast allen leichten Substanzen durch eine oder mehrere der obersten Rinnen 116a, 117a und 118a erfolgen, wenn sich der Druck in der Vordruckleitung 9 3 bei minimalen Werten einmal stabilisiert hat.
- 27 -
609820/0386
Dies geschieht deshalb, weil nur die schwereren der leichten Substanzen in den Rinnen kondensieren werden, sobald das maximale Vakuum in der Vordruckleitung erreicht ist. Die leichteren der leichten Substanzen werden schon vorher entfernt worden sein, oder wenn noch welche übrig bleiben, werden sie direkt über die Öffnung 94 zu der mechanischen Pumpe abgeführt werden. Zu diesem Zeitpunkt neigen viele der Leichtsubstanzen in den unteren Rinnen 120, 119 und 118 dazu, von Zeit zu Zeit wieder zu verdampfen und weiter die Vordruckleitung hinaufzuwandern, schließlich in einer höheren Rinne wieder zu kondensieren und die Konzentration von Leicht-Verunreinigungen in dieser Rinne zu erhöhen. Auf diese V/eise können die zu diesem Zeitpunkt noch verbliebenen leichten Substanzen durch die obere oder die oberen Rinnen entfernt werden.
In den Anfangsstufen des Betriebes der Diffusionspumpe 85, die die vorstehend beschriebene Modifikation der Vordruckleitung besitzt, werden zum Entfernen der Leicht-Verunreinigungen vorzugsweise der Reihe nach die a-Abschöpfleitungen geöffnet, beginnend z.B. mit der Leitung 125a und endend mit der obersten Leitung 116a. Die aus jeder Rinne oder jeder Abschöpfleitung entzogenen Kondensate können dann analysiert werden, um die Verteilung der leichten Substanzen, die Verunreinigungen darstellen zu bestimmen und zwar bei einem gegebenen Arbeitsmittel und bei gegebenen Eigenschaften des Rezipienten sowie nach einer gegebenen Zeitspanne des Pumpenbetriebes. Dies kann nach verschiedenen Zeitspannen wiederholt werden und die Ergebnisse können verwendet werden, um die Entfernung der leichten Verunreinigungen in der Vordruckleitung zu automatisieren. Die Ventile der Leitungen 125a, 124a bis 116a können so programmiert werden, daß sie sich zu vorgegebenen Zeiten und für vorgegebene Zeitspannen öffnen, um möglichst viele Leichtsubstanz-Verunreinigungen zu entfernen und um möglichst wenig Arbeitsmittelsubstanz mitzunehmen. Nachdem sich die Bedingungen durch gesteigerte Pumpen-
- 28 -
609820/0386
leistung geändert haben und der Druck in der Vordruckleitung abgefallen ist, kann die Entfernung der Flüssigkeit in der oberen Rinne in periodischen Zeitabständen erfolgen, abhängig von der vorigen Leistung und der Analyse der abgezogenen Kondensate aus der Vordruckleitung, oder es kann diese Flüssigkeitsentfernung von Druckänderungen des Druckbehälters abhängig gemacht werden. Wenn sich der Behälterdruck erhöht und auf dem höheren Pegel verharrt, könnte z.B. Flüssigkeit aus der obersten Rinne 116a mehrere Sekunden lang abgezogen werden, da ein derart angestiegener Druck die Anwesenheit von flüchtigen Verunreinigungen anzeigen würde. Wenn ein Sensor ein Schwanken im Druck des Rezipienten oder Behälters feststellt und das augenscheinliche Auftreten von alternierenden Perioden einer arbeitenden und einer tragen Verdampfungsoberfläche anzeigt, so würde das das Vorhandensein von schweren Verunreinigungssubstanzen im Boiler bedeuten. Sollten sich nach dem Abschöpfen von schweren Substanzen erneut schwere Verunreinigungssubstanzen im Boiler einstellen, so ist dies in erster Linie auf eine Polymerisation von leichten Substanzen zurückzuführen. Werden derartige Druckschwankungen im Rezipienten angezeigt, so können die Abschöpfleitungen bzw. ihre Ventile in der Vordruckleitung wieder so programmiert werden, daß sie die Flüssigkeit aus der obersten Rinne 116a entfernen. Dauern die Druckschwankungen dann noch an, so könnte eine zweite Boilerabschöpfung von der entsprechenden Höhe aus durch die automatische Anlage veranlaßt werden.
Während der Zeiten, in denen die leichten Substanzen nicht aus der Vordruckleitung entfernt werden, verursacht die Gruppe von Rinnen und Abscheidern einen Wasserfalle^fekt innerhalb der Vordruckleitung. Jede Rinne füllt sich mit Kondensat und läuft in die nächste Rinne oder die nächsten Abscheider über, usw., bis die Flüssigkeit schließlich durch das Kniestück 122 der Vordruckleitung ausfließt und zum Boiler zurückströmt. Tat-
- 29 -
809820/0386
7550456
sächlich herrscht dieser Wasserfalleffekt vor und betrifft alle Rinnen außer denjenigen, die gerade geleert werden.
Es wird bemerkt, daß Fluide, die von den Abscheidern und Rinnen der Vordruckleitung 9 3 abgezogen wurden, nie 100%ig reine leichte Verunreinigungen sind. Es ist immer ein Anteil der Arbeitsmittelsubstanz in der so entzogenen Flüssigkeit enthalten. Die Vorrichtung ermöglicht eine Anreicherung einer bestimmten leichten Verunreinigung in einer bestimmten Rinne der Vordruckleitung und die Entfernung von nahezu der gesamten Menge dieser Verunreinigung. Wie vorstehend erwähnt, kann dabei eine minimale Menge an Arbeitsmittel mitabgeführt werden. Wenn das Arbeitsmittel in den abgezogenen Kondensaten wieder verwendet werden soll, oder wenn die Verunreinigung aus einer bestimmten Rinne oder einem bestimmten Abscheider in stärkerer Konzentration gewünscht wird, können die abgezogenen Kondensate durch andere Einrichtungen getrennt werden, beispielsweise mit Hilfe einer Zentrifuge.
Für eine weitere hochgradige Trennung und Reinigung können die in Fig. 5 gezeigten Ausführungsformen der Pumpenkammer mitherangezogen werden. Wie gezeigt, kann die Pumpenkammer 91 längs ihrer Innenseite mit Kondensatsammeirinnen 140, 150, 160 und 170 versehen sein. Zwischen den Rinnen sind auf der Außenseite der Pumpenkammer 91 Kühlmäntel 92 angeordnet, die die Kammer 91 kühlen, damit an ihr das Arbeitsmittel und die verschiedenen Verunreinigungen kondensieren können. Die Kühlmantel 92 sind auf der Höhe jeder Rinne unterbrochen, damit ein Heizband 134 angebracht werden kann, das um jede Rinne gelegt ist und nur an der Stelle der unten beschriebenen Abzugsleitungen unterbrochen ist. Die Heizbänder 134, die bei jeder Rinne um die Pumpenkammerwand gewickelt sind, können ein elektrisches Heizband 95 enthalten, wie es für die Heizung der Vordruckleitung 93 verwendet wird.
- 30
809820/0386
Die modifizierte Pumpenkammer 91 bildet wie die modifizierte Vordruckleitung 93 eine Destilliereinrichtung zur hochgradigen Reinigung und Trennung. Die Kammer 91 kann jedoch einen wesentlich höheren Reinheits- und Trennungsgrad als die Vordruckleitung 93 liefern, nachdem die entsprechende Trennung durch die Flüssigkeitsabfuhr aus den Rinnen der Vordruckleitung erfolgt ist. Nach dieser Trennung sind die einzig eventuell noch verbleibenden leichten Verunreinigungen die, die in ihrer Flüchtigkeit sehr nahe an die der Arbeitsmittelsubstanz herankommen. Diese Verunreinigungen können durch die oben beschriebene Ausführungsform der Vordruckleitung nur teilweise entfernt werden und lassen einen Rest zurück, der in die Pumpenkammer zurückströmt und das erreichbare Endvakuum in einem gewissen Maß reduziert. Da, wie oben beschrieben, die Menge der schwereren Substanzen, deren Flüchtikeit und Molekulargewicht sehr nahe bei den Werten des Arbeitsmittels liegen, sehr klein ist, sind die nachfolgend beschriebenen Ausführungsformen der Diffusionspumpe dazu bestimmt, sehr kleine Mengen von Verunreinigungen im Pumpenkörper herauszuziehen, z.B. einige Teile je Milliarde. Die Reinigung des Vordruckanschlusses wird zuerst durchgeführt, damit hauptsächlich nur schwerere Substanzen zusammen mit dem Arbeitsmittel in der Pumpenkammer verbleiben. Die Fähigkeit zur ultrastarken Trennung in der modifizierten Pumpenkammer 91 hängt teilweise von der Existenz von großen Druckunterschieden auf verschiedenen Höhen innerhalb der Pumpenkammer ab. Auf der ganzen Länge der Vordruckleitung 9 3 gibt es nur Druckunterschiede in der Größenordnung von einigen Mikro oder Zehntelmikro, wogegen in der Pumpenkammer 91 Druckdifferenzen von einigen Zehnerpotenzen herrschen. Beispielsweise kann in der Diffusionspumpe 85 nach Fig. 5 der Druck über der obersten Rinne 140 nach Reinigung der Vordruckleitung etwa 10 Torr betragen, dagegen rund 10 Torr in der Nähe der Rinne 150; im Bereich der nächstniedriger gelegenen Rinne 160 etwa 10 bis 10 -» Torr und etwa 10 Torr im Bereich der untersten Rinne 170.
- 31 -
609820/038 8
Die hochgradige Trennung kann durch Ausnutzung dieses starken Druckgradienten erreicht werden, indem man schwerere Substanzen abhängig von ihrer Flüchtigkeit auf verschiedenen Höhen kondensiert und diese Verunreinigungen vom Arbeitsmittel trennt. Der Vorgang ist demjenigen, wie er bei der modifizierten Vordruckleitung 93 durchgeführt wird, sehr ähnlich.
Wie in der Vordruckleitung 93 können die Rinnen 140, 150, 160 und 170 in der Pumpenkammer mit Füllungen (nicht gezeigt) ausgerüstet werden, um eine größere Kondensationsfläche zu erhalten. Eine solche Füllung kann das Trennungsvermögen in der Pumpenkammer 91 steigern. Eine ventilversehene Niederdruckleitung 135 führt von einer Stelle über der obersten Rinne 140 aus der Pumpenkammer 91 heraus, dort wo der Druck niedriger als an irgendeiner anderen Stelle weiter unten in der Pumpenkammer ist. Diese Niederdruckleitung 135 erstreckt sich nach unten und versorgt ein Flüssigkeits-Sairmelsystem für jede Rinne, wie nachfolgend beschrieben wird. Ferner erstreckt sich eine mit Ventil versehene Leitung 136 vom unteren Ende der Leitung 135 weiter zu einer nicht gezeigten mechanischen Vordruckpumpe, die dieselbe Pumpe sein kann, mit der die Vordruckleitung 93 verbunden ist. Diese Pumpe erzeugt zunächst den Niederdruck bzw. Unterdruck für das Sammelsystem und sie kann dann eine oder mehrere der unteren Rinnen versorgen, da diese Rinnen auf hohleren Druckbereichen liegen. Ein Ventil 137 in der Leitung 135, das in der dargestellten oder in einer höheren oder tieferen Lage angeordnet sein kann, was vom Druck in der Pumpenkammer 91 abhängt, ist an diesem Ende angebracht.
An einer höheren Stelle in der obersten Rinne 140 liegt eine mit Ventil versehene Abzugsleitung 141, die Flüssigkeit in einen Sammelbehälter 142 führen soll. Die Leitung 141 zieht, wenn sie geöffnet ist, Kondensate nur im Bereich der oberen Oberfläche der Rinne 140 ab und zwar aus denselben Gründen wie oben in Ver-
- 32 -
609820/0386
bindung rait der modifizierten Vordruckleitung erörtert wurde. Da der Sammelbehälter 142 unter niedrigerem Druck als die Pumpenkammer 91 im Bereich der Rinne 140 stehen muß, um Flüssigkeit aus der Rinne 140 abzuziehen, ist er über eine mit Ventil versehene Leitung 143 an die Leitung 135 angeschlossen. Der Behälter 142 ist ferner, wie alle früher beschriebenen Sammelbehälter, mit einer mit Ventil versehenen Ablaßleitung 144 und einer Entlüfttungsleitung 145 ausgestattet, die geöffnet werden, um den Behälter 142 zu entleeren. Von der Höhe des Bodens der Rinne 140 aus erstreckt sich eine mit Ventil versehene Abzugsleitung 146 heraus, die in eine Abzugsleitung 151 einer niedriger gelegenen Rinne mündet.
Um Oberflächenkondensate aus der Rinne 140 abzuführen, wird zuerst die Leitung 143 geöffnet, um den Druck im Behälter 142 zu erniedrigen. Dann wird die Leitung 141 geöffnet, um Flüssigkeit in den Behälter 142 zu ziehen. Um den Behälter 142 zu leeren, werden die Leitungen 141 und 143 geschlossen und die Leitungen 144 und 145 geöffnet.
Die Flüssigkeits-Sammelanlage für die nächstniedrigere Rinne 150 ist dem vorbeschriebenen ähnlich und mit 151 bis 156 für die entsprechenden Elemente bezeichnet:. Die Flüssigkeit, die vom unteren Teil der Rinne 140 durch die Leitung 146 abgelassen wurde, kann zusammen mit Flüssigkeit vom oberen Teil der Rinne 150 in den Sammelbehälter 152 geführt werden oder in die Rinne 150 abgelassen werden, um darin die Konzentration der Fraktion vom Boden der Rinne 140 anzureichern. Dies kann erreicht werden, indem man die Leitung 146 so bemißt, daß die Flüssigkeit darin heruntertropfen kann, auch wenn eine leichte Druckdifferenz zwischen den Rinnen 140 und 150 vorhanden ist. Nachdem das Oberflächenkondensat aus der Rinne 140 im wesentlichen abgezogen worden ist, kann man die Rinne 140 in die Rinne 150 überfließen lassen, wobei die Rinne 150 mit den Bodenkonden-
- 33 -
609820/038 6
säten der Rinne 140 angereichert wird.
Die Rinnen 160 und 170 in der Pumpenkammer haben ähnliche Flüssigkeits-Sammeleinrichtungen wie die Rinnen 140 und 150 und sie sind entsprechend nummeriert. Die mit Ventil versehene Abzugsleitung 176 führt von der untersten Rinne 170 heraus und sie ist mit einem Sammelbehälter 182 verbunden, der eine mit Ventil versehene Leitung 183, die zur Leitung 135 führt, sowie Ablaß- und Entlüftungsleitungen 184 und 185 aufweist. Am Boden der Pumpenkammer 91 ist eine mit Ventil versehene Hilfsleitung 187 für Boilerflüssigkeit vorgesehen, deren Zweck noch beschrieben wird.
Im Anfangsbetrieb der Pumpe 85, die mit den Modifikationen der Pumpenkammer versehen ist, sind normalerweise alle Ventile auf der rechten Seite der Pumpenkammer 91 in Fig. 5 geschlossen, von der Leitung 135 bis zu Leitung 185. Die Leitungen bleiben während der Kondensatentfernung aus der Vordruckleitung alle geschlossen. Vor irgendeiner Kondensatentfernung aus der Pumpenkammer 91 wird angenommen, daß das Arbeitsmittel eine Reinheit von etwa 98 bis 99,8% hat. Das maximale durch Boilerabschöpfung und Reinigung der Vordruckleitung erreichbare Vakuum im Rezipienten liegt abhängig von dem verwendeten Arbeitsmittel bei etwa 10 bis 10 Torr. Das aus dem Steigrohr 90 ausgetriebene Arbeitsmittel würde natürlich die unteren drei Rinnen 150, 160 und 170 kontinuierlich füllen. Deshalb ist die obere Rinne 140 die Hauptstelle zur Entfernung der rückströmenden schwereren Verunreinigungen. Die meisten dieser schwereren Verunreinigungen erreichen die Kammerwand über der oberen Rinne 140 infolge des Rückströmens nach oben von tiefer gelegenen Stellen unterhalb der Düsen aus. In viel geringerem Maße erreichen einige der schwereren Substanzen die Rinne 140 als Folge eines Ausgasens in der darüberliegenden Vakuumkammer (Rezipient).
- 34 -
609820/03Ö6
Natürlich kondensieren die schwereren Moleküle ebenfalls auch weiter unten in der Pumpenkammer 91 und sie werden in den Rinnen
150, 160 und 170 gesammelt. Einige dieser Kondensate können durch Oberflächenabschöpfung bzw. Abführung über die Leitungen
151, 161 und 171 rückgewonnen v/erden, wobei diese Abführung durch Erwärmung der Kammer 91 im Bereich der Rinnen mit Hilfe der Heizbänder 134 unterstützt wird. Die Entfernung der Oberflächenverunreinigungen wird hier somit ähnlich durchgeführt wie in der Vordruckleitung 93.
Wie oben erwähnt, findet man Kondensat des Arbeitsmittels in sehr hoher Konzentration im unteren Teil jeder Rinne, insbesondere in den Rinnen 150, 160 und 170 und das Vorhandensein dieser Kondensate ist mit ein Grund für die zusätzlichen Ventile 157, 167 und 177, die in den Oberflächen-Abzugsleitungen 151, 161 und 171 vorgesehen sind. Nachdem die Flüssigkeit, die leichte Verunreinigungen enthält, vom Oberflächenteil der Rinne 140 abgeführt wurde, kann die Abflußleitung 146 geöffnet werden, um den unteren Teil der Rinne 140 in den Sammelbehälter 152 abzulassen oder in die nächstniedriger gelegene Rinne 150, um, wie oben beschrieben, den Prozess der Anreicherung fortzusetzen. Dies wird nur durch Öffnen der Leitung 153 erreicht, um den Druck im Behälter 152 unter den im Bereich der Rinne 140 zu senken, worauf die Leitung 151, die durch das Ventil 157 gesperrt wird, und die Leitung 146 geöffnet werden. Wenn sich die Flüssigkeit im Behälter 152 angesammelt hat, kann dieser dann zur Analyse über die Leitung 154 entleert werden, wobei zunächst die Leitungen 151 und 153 geschlossen und dann die Entlüftungsleitung 155 und die Leitung 154 geöffnet werden. Wenn dieses Kondensat nahezu nur reines Arbeitsmittel enthält, kann es der Pumpenkammer und dem Boiler über die Leitung 187 wieder zugeführt werden. Kondensate aus den niedriger gelegenen Stellen in den Rinnen 150 und 160 können in ähnlicher Weise abgelassen werden. Die Abzugsleitung 176 für die Rinne 170 ist mit
- 35 -
ÖÜÜ82Ü/Q3 8Ö
einem eigenen Sammelbehälter 182 ausgerüstet. In den Perioden, in denen von den Rinnen nichts abgeführt wird, fliessen die verschiedenen Kondensate nacheinander wieder in die Rinnen über, wie bei einem Wasserfall.
Da der Druckgradient in der Pumpenkammer von oben nach unten vom niedrigsten zum höchsten Druck gerichtet ist, umgekehrt wie in der Vordruckleitung 93, kann man annehmen, daß die leichtesten der schwereren Substanzen sich in der Rinne 170 sammeln und die schwersten Substanzen in den Rinnen 140 und 150. Wegen der hohen Konzentration des Kondensates an Arbeitsmittel in den unteren Rinnen kann es jedoch vorteilhaft sein, nur die oberste Rinne 140 zur Sammlung von schwereren Substanzen zu verwenden. Tatsächlich enthalten auch die unteren drei Rinnen, insbesondere die Rinnen 160 und 170 sehr schwache Konzentrationen der leichtesten der schweren Substanzen des Fluid- Spektrums, die bei der Abschöpfung des Boilers austreten können. Schwere Substanzen mit einem Molekulargewicht und einer Flüchtigkeit, die nahe bei den Werten des Arbeitsmittels liegen, werden zusammen mit dem Arbeitsmittel durch das Steigrohr 90 in die Pumpenkammer gefördert und kondensieren an den Wänden der Pumpenkammer 91 sogar leichter als das Arbeitsmittel selbst. Schwache Konzentrationen dieser Substanzen kann man in den Flüssigkeiten finden, die vom Boden der Rinnen 160 und 170 abgelassen werden. Wenn die in den Behältern 172 und 182 angesammelte Flüssigkeit genügend stark mit schwereren Verunreinigungen angereichert ist, können diese Rinnen periodisch entleert werden, als Teilvorgang eines programmierten Verfahrens.
Die Reinigung des Arbeitsmittels und die Abtrennung von Verunreinigungen kann programmiert werden. Die Flüssigkeitsabführventile können dann in bestimmter Reihenfolge und in bestimmten Zeitspannen geöffnet und geschlossen werden, um die Verunreinigungen maximal abzutrennen bei minimalem Verlust an Arbeitsmittel.
-36-
609820/0386
Es ist somit möglich, hohe Konzentrationen dieser Verunreinigungen zu beseitigen, die Pumpenleistung zu steigern und das erreichbare Endvakuum im Rezipienten um eine oder mehrere Zehnerpotenzen zu senken.
Wie oben bereits erwähnt, kann die Diffusionspumpe 85 mit Boiler, Vordruckleitung und Pumpenkammer, als Hilfspumpe verwendet werden, für eine Gruppe von zusätzlichen Diffusionspumpen, die nur Boiler und Vordruckleitungen haben. Die Beziehungen zwischen Hilfspumpe und Hauptpumpen würden dann im Austausch der Boilerflüssigkeit bestehen. Die in Fig. 5 gezeigte Pumpe würde dann Teile ihres hochreinen Arbeitsmittels aus ihrer Boilerablaßleitung 89 in jeden Boiler der Hauptpumpen abgeben. Die Flüssigkeit aus den Boilern der Hauptpumpen wird dann abwechselnd aus den letzteren abgezogen und über eine Leitung, wie z.B. die Leitung 187, in die Hilfspumpe zurückgeführt. Eine solche Zirkulation zwischen den Pumpen kann kontinuierlich vorgenommen werden, sollte aber zweckmäßigerweise periodisch erfolgen, wobei die Hilfspumpe 85 zu einer gegebenen Zeit nur mit einer der anderen Hauptpumpen die Flüssigkeit austauscht.
Die erfindungsgemäße Anlage kann, wie bereits erwähnt, auch z.B. bei einer Fraktionierkolonne bei der Erdölraffinierung eingesetzt werden. Das hier beschriebene Oberflächen-Abschöpfen kann bei allen Verdampfungsoberflächen im Raffinerieprozess durchgeführt werden, wodurch der Durchsatz im Raffinerieprozess infolge der Entfernung der schweren Fraktionen von allen Oberflächen stark ansteigen wird. Zusätzlich können durch das Abschöpfen Fraktionen gewonnen werden, die ohnehin gewonnen werden sollten. Der Wirkungsgrad, die Leistungsfähigkeit und die Ausbeute einer Raffinerieanlage können auf diese Weise mit einem Minimum an Kapitalaufwand verbessert werden.
- 37 -
60 98 20/038 6
Das Verfahren und die Anlage nach der Erfindung können auch zur Trennung von Uranisotopen verwendet werden. Als Ausgangsmaterial kann beispielsweise unbearbeiteter Uranschlamm in einem Boiler ähnlich dem Boiler 86 der Pumpe 85 nach Fig. 5 erhitzt werden. In der Vordruckleitung und in der Pumpenkammer können Einrichtungen angebracht werden, die die Kondensationsfläche vergrößern, wie die genannten Prall-Bleche oder Prallplatten und die Füllungen aus rostfreiem Stahl in den Rinnen in der Vordruckleitung und in der Pumpenkammer.
Ferner können Metalle voneinander und von ihren Verunreinigungen getrennt werden. Das Verfahren und die Vorrichtung eignen sich besonders zum Trennen von Metallen mit niedrigen bis mittleren Schmelzpunkten, unter etwa 14OO°C.
Beschrieben wurde ein Verfahren und eine Diffusionspumpe zum Reinigen und Trennen von Fluiden, wobei insbesondere Unreinheiten aus dem Arbeitsmittel der Pumpe während des Betriebes abgesondert werden. Im Boilersystem der Pumpe sind Abflußrohre zur periodischen Abschöpfung der Verdampfungsoberfläche der Arbeitsflüssigkeit vorgesehen. Es werden praktisch alle Verunreinigungen ausgeschieden, die ein höheres Molekulargewicht als das Pumpen-Arbeitsmittel haben. In der Vordruckleitung der Pumpe sind eine Reihe von Abflußrinnen untergebracht, um die Kondensate aufzufangen, zu trennen und abzuleiten. Die Rinnen erleichtern das Entfernen von Verunreinigungen mit niedrigerem Molekulargewicht als dem des Pumpen-Arbeitsmittels. Für die weitere Beseitigung von Spuren der verbleibenden flüchtigen Verunreinigungen, die dazu neigen, in die Diffusionspumpenkammer zurückzuströmen, sind ebenfalls Vorkehrungen getroffen. Das stark gereinigte Arbeitsmittel ermöglicht eine bessere Verdampfung, wodurch der Durchsatz der Diffusionspumpe zunimmt. Zusammen mit der Abtrennung von flüchtigen Verunreinigungen aus der Pumpenkammer erleichtert dies das Erreichen eines wesentlich
- 38 -
609820/0386
höheren Endvakuums im Vakuumbehalter. Das Verfahren und die Anlage eignen sich auch für eine hochgradige Trennung zwischen Flüssigkeiten mit sehr nahe beieinanderliegenden Dampfdrücken.
609 820/038 6

Claims (1)

  1. Patentansprüche
    Verfahren zum Reinigen des Arbeitsmittels einer Diffusionspumpe, dadurch gekennzeichnet , daß in einem Boiler wenigstens ein wesentlicher Teil des Arbeitsmittels an seiner Oberfläche abgeführt wird, nachdem die Verdampfung des flüssigen Arbeitsmittels eingesetzt hat, daß ferner aus der Vordruckleitung der Pumpe wenigstens ein Teil der Flüssigkeit, die an den Innenflächen der Vordruckleitung hinabfließt, gesammelt und abgeführt wird, und daß aus dem Pumpenkörper wenigstens ein Teil der Flüssigkeit, die an seinen Innenwänden hinabfließt, gesammelt und abgeführt wird.
    Diffusionspumpe zur Durchführung des Verfahrens nach Anspruch 1, zur Erzeugung eines Hochvakuums, mit einem Boiler, einer Pumpenkammer, wenigstens einer Düse, die stromabwärts des Boilers angeordnet und mit diesem verbunden ist und die mit der Pumpenkammer zusammenwirkt, einer Vordruckleitung, die mit der Pumpenkammer stromabwärts der Düse verbunden ist, sowie einer Vakuumpumpe, die mit dem stromabwärtigen Ende der Vordruckleitung verbunden ist, gekennzeichnet durch eine Leitung, die das Innere der Pumpe auf der Höhe der Oberfläche der Flüssigkeit im Boiler mit einer Niederdruckquelle bzw. Unterdruckquelle außerhalb der Pumpe verbindet, einem Ventil in dieser Leitung, Einrichtungen in der Vordruckleitung zum Sammeln von Flüssigkeit, die an deren Wänden hinabläuft, ferner durch eine Leitung, die diese Sammeleinrichtung mit einer Niederdruckquelle bzw. Unterdruckquelle außerhalb der Pumpe verbindet und durch ein Ventil in dieser Leitung.
    Pumpe nach Anspruch 2, gekennzeichnet durch
    - 40 -
    609820/0386
    Einrichtungen in der Pumpenkammer zum Sammeln und Austragen von Flüssigkeit, die an den Wänden der Kammer hinabläuft.
    4. Pumpe nach Anspruch 2, gekennzeichnet durch Einrichtungen, die an der Innenseite der Pumpenkammer angeordnet sind, um an den Kammer-Innenwänden herabfließende Flüssigkeiten, die eine niedrigere Flüchtigkeit als das Arbeitsmittel der Pumpe haben, im wesentlichen abzutrennen, und durch Einrichtungen zum Austragen dieser Flüssigkeiten in einen Sammelbehälter außerhalb der Pumpe.
    5. Pumpe nach Anspruch 2, gekennzeichnet durch Einrichtungen an der Innenseite der Pumpenkammer, um Flüssigkeiten mit höherer Flüchtigkeit als die des Arbeitsmittels der Pumpe, die an den Innenwänden der Kammer hinabfließen, im wesentlichen abzutrennen und durch Einrichtungen zum Austragen dieser Flüssigkeiten in einen Sammelbehälter außerhalb der Pumpe.
    6. Pumpe nach Anspruch 5, dadurch gekennzeichnet , daß diese Trenneinrichtung wenigstens eine Rinne zum Auffangen von Flüssigkeit am Innenumfang der Pumpenkammer aufweist, daß ferner die Austrageinrichtung eine Leitung aufweist, die eine Verbindung zwischen der Rinne und dem äußeren Sammelbehälter bildet, daß diese Leitung mit einem Ventil versehen ist, und daß Einrichtungen vorgesehen sind, um den Druck in dem äußeren Sammelbehälter unter denjenigen zu senken, der in der Pumpenkammer auf der Höhe der Rinne herrscht.
    7. Pumpe nach Anspruch 6, gekennzeichnet durch eine zweite Leitung r die sich von der Pumpenkammer aus benachbart zu der Rinne erstreckt und eine Verbindung zwischen der Rinne und einem zweiten Behälter bildet, wobei die erst-
    - 41 -
    609820/0386
    genannte Leitung auf der Höhe der Oberfläche des Fluids in der Rinne und die zweite Leitung am Boden der Rinne angeordnet sind, und durch Einrichtungen zum Absenken des Druckes in dem zweiten äußeren Sammelbehälter unter denjenigen , der in der Pumpenkammer auf der Höhe der Rinne herrscht.
    8. Pumpe nach Anspruch 7, gekennzeichnet durch Einrichtungen zum Beheizen der Innenwand der Pumpenkammer im Bereich bzw. in der Nähe der Rinne.
    - 42 -
    609820/0386
    ΔΟ -
    7550456
    9. Verfahren zum Trennen von Fraktionen einer Flüssigkeit, wobei eine Flüssigkeitsmenge auf eine Temperatur erwärmt wird, die genügend hoch ist, um der Flüssigkeit einen Dampfdruck zu geben, der wenigstens im wesentlichen so hoch ist wie der Druck, dem die Flüssigkeitsmenge ausgesetzt ist, wobei ferner verschiedene Fraktionen der Flüssigkeit in unterschiedlichen Höhen über der Oberfläche der erwärmten Flüssigkeitsmenge kondensiert und die verschiedenen flüssigen Fraktionen in ihren entsprechenden Kondensationshöhen aufgefangen werden, dadurch gekennzeichnet , daß von der erwärmten Flüssigkeitsmenge ein Teil an ihrer Oberfläche abgezogen wird und daß von wenigstens einer der aufgefangenen flüssigen Fraktionen ein Teil an deren Oberfläche abgezogen wird.
    10. Verfahren nach Anspruch 9, dadurch gekennzeichnet, daß der abgezogene Teil der Flüssigkeit einem äußeren Sammelbehälter zugeführt wird.
    11. Verfahren nach Anspruch 9, dadurch gekennzeichnet , daß der abgezogene Teil einer jeden gesammelten flüssigen Fraktion einem separaten äußeren Sammelbehälter zugeführt wird.
    12. Vorrichtung zur Trennung von Fluiden, zur Durchführung des Verfahrens nach einem der Ansprüche 9 bis 11, gekennzeichnet durch einen Boiler, eine Kolonne, Einrichtungen, um den Abfluß bzwv die Abströnmng aus dem Boiler in die Kolonne zu führen, um darin nach oben zu strömen,
    609820/0386
    wenigstens eine Flüssigkeits-Saironelrinne, die am Innenumfang der Kolonne angeordnet ist, um Flüssigkeiten aufzufangen, die an den Wänden der Kolonne abwärtsfließen, sowie Einrichtungen zum Abführen und Sammeln der Flüssigkeiten von jeder der Rinnen, und mit Einrichtungen, die mit wenigstens einer Rinne verbunden sind, um separat Flüssigkeit von mehr als einer Höhe bzw. einem Pegel in der Rinne abzuführen und zu sammeln.
    13. Vorrichtung nach Anspruch 12, gekennzeichnet durch Einrichtungen zum Erwärmen der Innenfläche der Kolonne im Bereich bzw. in der Nähe der Rinne.
    14. Vorrichtung nach Anspruch 12, gekennzeichnet durch Einrichtungen zum Abziehen von Flüssigkeit aus dem Innern des Boilers in der Höhe der Oberfläche der Boilerflüssigkeit sowie durch Einrichtungen zum Auffangen und Sammeln dieser Flüssigkeit außerhalb des Boilers.
    15. Vorrichtung nach Anspruch 12, mit einem Boiler, einer Fraktionierkolonne, deren stromaufwärtiges Ende mit dem Boiler verbunden ist, und einer Anzahl von Destillierplatten in verschiedenen Höhen in der Fraktionierkolonne, gekennzeichnet durch eine Leitung, die das Innere des Boilers auf der Höhe der Oberfläche der Flüssigkeit bzw. des Fluids mit einer äußeren Quelle eines niedrigeren Druckes als dem Boilerdruck verbindet und durch ein Ventil in dieser Leitung.
    16. Vorrichtung nach Anspruch 15, gekennzeichnet durch Einrichtungen zum Abziehen von Flüssigkeiten an der Oberfläche des Fluids an wenigstens einer Destillierplatte in der Fraktionierkolonne.
    - 44 -
    609820/03Ö6
    17. Vorrichtung nach Anspruch 12, mit einer Anzahl von Verdampfungsbehältern, von denen jeder eine Flüssigkeitsmenge enthält, die eine Verdampfungsoberlfäche bildet, wobei ein erster dieser Verdampfungsbehälter einen Boiler aufweist, um am Anfang eine zugeführte Flüssigkeit zu erwärmen und die übrigen Verdampfungsbehälter eine Anzahl von Destillierplatten in einer Fraktionierkolonne aufweisen, die in Verbindung mit dem Ablaufende des Boilers steht, gekennzeichnet durch wenigstens eine Leitung, die eine Verbindung zwischen dem inneren von wenigstens einem der Verdampfungsbehälter auf der Höhe seiner Verdampfungsoberfläche und einer äußeren Quelle eines niedrigen Druckes als demjenigen in diesem Verdampfungsbehälter bildet, ferner durch ein Ventil in dieser Leitung, wodurch Teilbereiche der Verdampfungsoberfläche, die die Verdampfung der Flüssigkeit behindern, durch periodisches Öffnen dieses Ventiles von der Verdampfungsoberfläche entfernt werden können.
    18. Vorrichtung nach Anspruch17, dadurch ge.kennzeich net, daß wenigstens eine dieser Leitungen an der Verdampfungsoberfläche eines jeden Verdampfungsbehälters angeordnet ist.
    609820/0386
DE19752550456 1974-11-11 1975-11-10 Verfahren und vorrichtung zum reinigen des arbeitsmittels einer diffusionspumpe Ceased DE2550456A1 (de)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US522708A US3923424A (en) 1974-11-11 1974-11-11 Self-cleansing diffusion pump

Publications (1)

Publication Number Publication Date
DE2550456A1 true DE2550456A1 (de) 1976-05-13

Family

ID=24081997

Family Applications (1)

Application Number Title Priority Date Filing Date
DE19752550456 Ceased DE2550456A1 (de) 1974-11-11 1975-11-10 Verfahren und vorrichtung zum reinigen des arbeitsmittels einer diffusionspumpe

Country Status (4)

Country Link
US (1) US3923424A (de)
CA (1) CA1043286A (de)
DE (1) DE2550456A1 (de)
GB (1) GB1528957A (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5374164A (en) * 1990-11-23 1994-12-20 Mannesmann Aktiengesellschaft Fluid jet compressor nozzle arrangement

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2080421A (en) * 1935-06-21 1937-05-18 Eastman Kodak Co Vacuum pump
DE1250049B (de) * 1960-03-11 1967-09-14
US3536420A (en) * 1969-04-01 1970-10-27 Atomic Energy Commission Condensate purifier for diffusion pump

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5374164A (en) * 1990-11-23 1994-12-20 Mannesmann Aktiengesellschaft Fluid jet compressor nozzle arrangement

Also Published As

Publication number Publication date
US3923424A (en) 1975-12-02
GB1528957A (en) 1978-10-18
CA1043286A (en) 1978-11-28

Similar Documents

Publication Publication Date Title
EP1122213B1 (de) Destillative Reinigung von Ammoniak
DE60128548T2 (de) Verwendung eines flüssigkeitdampfabscheiders und verfahren
DE102006012866B4 (de) Verfahren zur Abtrennung leichtflüchtiger Komponenten aus einem Stoffgemisch sowie Vorrichtung zur Durchführung dieses Verfahrens
DE3334640C2 (de)
DE102013220199A1 (de) Membrandestillationsvorrichtung und Verfahren zur Membrandestillation
DE1767207A1 (de) Destillationsanlage
CH651003A5 (de) Verfahren zur kontinuierlichen reinigung von rohen, hochschmelzenden, hochsiedenden organischen verbindungen.
DE2550456A1 (de) Verfahren und vorrichtung zum reinigen des arbeitsmittels einer diffusionspumpe
EP1005888B1 (de) Spülvorrichtung zur Entfernung von Rückständen
DE1030373B (de) Verfahren und Vorrichtung zur Zerlegung von Gasgemischen bei niedriger Temperatur
DD156818A5 (de) Verfahren und einrichtung zur gewinnung aetherischen oeles
EP0571408B1 (de) Verfahren und vorrichtung zum reinigen von mit schadstoffen beladenen gasen
EP0812233B1 (de) Verfahren und vorrichtung zur wiederaufbereitung eines verunreinigten lösemittels
US4170522A (en) Fluid refining method
DE106498C (de)
EP2214797A1 (de) Vorrichtung und verfahren zur gewinnung hochreiner produkte aus einem kolonnenabzug
DE2713266A1 (de) Fluessigkeitsbehandlungssystem mit dampfkompression
DE3333558C2 (de)
US4201629A (en) Fluid refining apparatus
DE19507126A1 (de) Verfahren und Vorrichtung zur Wiederaufbereitung eines verunreinigten Lösemittels
DE508695C (de) Verfahren und Einrichtung zum Heben von Mineraloelen
DE19521622A1 (de) Verfahren zum Kondensieren von Dämpfen, insbesondere Brüden, und Vorrichtung zur Durchführung des Verfahrens
DE562886C (de) Sammel- und Reinigungsbehaelter fuer die Abdichtungsfluessigkeit von wasserlosen Gasbehaeltern
DE97719C (de)
DE579776C (de) Verfahren zur Entfernung von Kadmium aus Zink

Legal Events

Date Code Title Description
OD Request for examination
8125 Change of the main classification
8131 Rejection