DE2317455B2 - Chromatographisches Füllmaterial - Google Patents
Chromatographisches FüllmaterialInfo
- Publication number
- DE2317455B2 DE2317455B2 DE2317455A DE2317455A DE2317455B2 DE 2317455 B2 DE2317455 B2 DE 2317455B2 DE 2317455 A DE2317455 A DE 2317455A DE 2317455 A DE2317455 A DE 2317455A DE 2317455 B2 DE2317455 B2 DE 2317455B2
- Authority
- DE
- Germany
- Prior art keywords
- particles
- microspheres
- porous
- particle
- chromatographic
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000000463 material Substances 0.000 title claims description 14
- 238000012856 packing Methods 0.000 title description 2
- 239000002245 particle Substances 0.000 claims description 103
- 239000004005 microsphere Substances 0.000 claims description 53
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 36
- 239000011148 porous material Substances 0.000 claims description 33
- 238000011049 filling Methods 0.000 claims description 22
- 239000000843 powder Substances 0.000 claims description 16
- 238000000034 method Methods 0.000 claims description 13
- 239000000203 mixture Substances 0.000 claims description 12
- 239000000377 silicon dioxide Substances 0.000 claims description 9
- 239000000945 filler Substances 0.000 claims description 8
- 235000012239 silicon dioxide Nutrition 0.000 claims description 6
- 239000000126 substance Substances 0.000 claims description 6
- 230000015572 biosynthetic process Effects 0.000 claims description 5
- 239000000084 colloidal system Substances 0.000 claims description 5
- 229910044991 metal oxide Inorganic materials 0.000 claims description 5
- 150000004706 metal oxides Chemical class 0.000 claims description 5
- 230000008569 process Effects 0.000 claims description 5
- 239000003870 refractory metal Substances 0.000 claims description 4
- 239000007787 solid Substances 0.000 claims description 4
- -1 Na + Chemical class 0.000 claims description 3
- 150000002500 ions Chemical class 0.000 claims description 2
- 239000011247 coating layer Substances 0.000 claims 3
- 238000009825 accumulation Methods 0.000 claims 2
- 230000035508 accumulation Effects 0.000 claims 2
- 239000013078 crystal Substances 0.000 claims 2
- 239000012535 impurity Substances 0.000 claims 2
- 239000002808 molecular sieve Substances 0.000 claims 2
- 241000283153 Cetacea Species 0.000 claims 1
- 239000003513 alkali Substances 0.000 claims 1
- 230000001112 coagulating effect Effects 0.000 claims 1
- 230000001427 coherent effect Effects 0.000 claims 1
- 238000001035 drying Methods 0.000 claims 1
- 230000008014 freezing Effects 0.000 claims 1
- 238000007710 freezing Methods 0.000 claims 1
- 239000004615 ingredient Substances 0.000 claims 1
- 239000010410 layer Substances 0.000 claims 1
- RMAQACBXLXPBSY-UHFFFAOYSA-N silicic acid Chemical compound O[Si](O)(O)O RMAQACBXLXPBSY-UHFFFAOYSA-N 0.000 claims 1
- URGAHOPLAPQHLN-UHFFFAOYSA-N sodium aluminosilicate Chemical compound [Na+].[Al+3].[O-][Si]([O-])=O.[O-][Si]([O-])=O URGAHOPLAPQHLN-UHFFFAOYSA-N 0.000 claims 1
- 238000001694 spray drying Methods 0.000 claims 1
- 230000004304 visual acuity Effects 0.000 claims 1
- WSFSSNUMVMOOMR-UHFFFAOYSA-N Formaldehyde Chemical compound O=C WSFSSNUMVMOOMR-UHFFFAOYSA-N 0.000 description 16
- 238000000926 separation method Methods 0.000 description 12
- 239000011859 microparticle Substances 0.000 description 10
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 8
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 8
- 229920000642 polymer Polymers 0.000 description 7
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 6
- 150000001875 compounds Chemical class 0.000 description 6
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Chemical compound NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 description 5
- 239000004202 carbamide Substances 0.000 description 5
- 238000002270 exclusion chromatography Methods 0.000 description 4
- 239000007788 liquid Substances 0.000 description 4
- 238000004460 liquid liquid chromatography Methods 0.000 description 4
- 238000000506 liquid--solid chromatography Methods 0.000 description 4
- 229910052757 nitrogen Inorganic materials 0.000 description 4
- 239000011368 organic material Substances 0.000 description 4
- 239000000047 product Substances 0.000 description 4
- 238000005245 sintering Methods 0.000 description 4
- 239000010802 sludge Substances 0.000 description 4
- 230000005526 G1 to G0 transition Effects 0.000 description 3
- 239000005909 Kieselgur Substances 0.000 description 3
- 229920000877 Melamine resin Polymers 0.000 description 3
- 230000008901 benefit Effects 0.000 description 3
- 238000000354 decomposition reaction Methods 0.000 description 3
- 230000007717 exclusion Effects 0.000 description 3
- 229910010272 inorganic material Inorganic materials 0.000 description 3
- 239000011147 inorganic material Substances 0.000 description 3
- JDSHMPZPIAZGSV-UHFFFAOYSA-N melamine Chemical compound NC1=NC(N)=NC(N)=N1 JDSHMPZPIAZGSV-UHFFFAOYSA-N 0.000 description 3
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical group CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 3
- 230000035699 permeability Effects 0.000 description 3
- 229910002027 silica gel Inorganic materials 0.000 description 3
- 239000000741 silica gel Substances 0.000 description 3
- 238000001179 sorption measurement Methods 0.000 description 3
- 239000012798 spherical particle Substances 0.000 description 3
- 238000003756 stirring Methods 0.000 description 3
- 241000251468 Actinopterygii Species 0.000 description 2
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- 239000004793 Polystyrene Substances 0.000 description 2
- 229910004298 SiO 2 Inorganic materials 0.000 description 2
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 2
- 229920001807 Urea-formaldehyde Polymers 0.000 description 2
- 125000003118 aryl group Chemical group 0.000 description 2
- 238000013375 chromatographic separation Methods 0.000 description 2
- 238000004587 chromatography analysis Methods 0.000 description 2
- 238000002523 gelfiltration Methods 0.000 description 2
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 2
- 239000010954 inorganic particle Substances 0.000 description 2
- 238000004811 liquid chromatography Methods 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 2
- ODGAOXROABLFNM-UHFFFAOYSA-N polynoxylin Chemical compound O=C.NC(N)=O ODGAOXROABLFNM-UHFFFAOYSA-N 0.000 description 2
- 229920002223 polystyrene Polymers 0.000 description 2
- 229920006395 saturated elastomer Polymers 0.000 description 2
- 239000002002 slurry Substances 0.000 description 2
- 239000002689 soil Substances 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- 239000006228 supernatant Substances 0.000 description 2
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 2
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 1
- 238000004438 BET method Methods 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 229910052684 Cerium Inorganic materials 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 230000032683 aging Effects 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- 239000000908 ammonium hydroxide Substances 0.000 description 1
- 229910021486 amorphous silicon dioxide Inorganic materials 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 229910000410 antimony oxide Inorganic materials 0.000 description 1
- 239000007900 aqueous suspension Substances 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000003575 carbonaceous material Substances 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- ZMIGMASIKSOYAM-UHFFFAOYSA-N cerium Chemical compound [Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce] ZMIGMASIKSOYAM-UHFFFAOYSA-N 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 238000005354 coacervation Methods 0.000 description 1
- 238000004440 column chromatography Methods 0.000 description 1
- 230000001143 conditioned effect Effects 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- QILSFLSDHQAZET-UHFFFAOYSA-N diphenylmethanol Chemical compound C=1C=CC=CC=1C(O)C1=CC=CC=C1 QILSFLSDHQAZET-UHFFFAOYSA-N 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 239000004744 fabric Substances 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 239000008098 formaldehyde solution Substances 0.000 description 1
- CNUDBTRUORMMPA-UHFFFAOYSA-N formylthiophene Chemical compound O=CC1=CC=CS1 CNUDBTRUORMMPA-UHFFFAOYSA-N 0.000 description 1
- 238000004817 gas chromatography Methods 0.000 description 1
- 239000000499 gel Substances 0.000 description 1
- 238000012817 gel-diffusion technique Methods 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 125000004435 hydrogen atom Chemical class [H]* 0.000 description 1
- 238000011065 in-situ storage Methods 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 238000005342 ion exchange Methods 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- LIKBJVNGSGBSGK-UHFFFAOYSA-N iron(3+);oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[Fe+3].[Fe+3] LIKBJVNGSGBSGK-UHFFFAOYSA-N 0.000 description 1
- JEIPFZHSYJVQDO-UHFFFAOYSA-N iron(III) oxide Inorganic materials O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- 230000005012 migration Effects 0.000 description 1
- 238000013508 migration Methods 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- 239000011146 organic particle Substances 0.000 description 1
- 229920000620 organic polymer Polymers 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- VTRUBDSFZJNXHI-UHFFFAOYSA-N oxoantimony Chemical compound [Sb]=O VTRUBDSFZJNXHI-UHFFFAOYSA-N 0.000 description 1
- RVTZCBVAJQQJTK-UHFFFAOYSA-N oxygen(2-);zirconium(4+) Chemical compound [O-2].[O-2].[Zr+4] RVTZCBVAJQQJTK-UHFFFAOYSA-N 0.000 description 1
- 239000012071 phase Substances 0.000 description 1
- 239000005373 porous glass Substances 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 150000003384 small molecules Chemical class 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 238000005979 thermal decomposition reaction Methods 0.000 description 1
- 238000004809 thin layer chromatography Methods 0.000 description 1
- XOLBLPGZBRYERU-UHFFFAOYSA-N tin dioxide Chemical compound O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 description 1
- 229910001887 tin oxide Inorganic materials 0.000 description 1
- 229910001928 zirconium oxide Inorganic materials 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/281—Sorbents specially adapted for preparative, analytical or investigative chromatography
- B01J20/282—Porous sorbents
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J13/00—Colloid chemistry, e.g. the production of colloidal materials or their solutions, not otherwise provided for; Making microcapsules or microballoons
- B01J13/02—Making microcapsules or microballoons
- B01J13/06—Making microcapsules or microballoons by phase separation
- B01J13/14—Polymerisation; cross-linking
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2/00—Processes or devices for granulating materials, e.g. fertilisers in general; Rendering particulate materials free flowing in general, e.g. making them hydrophobic
- B01J2/02—Processes or devices for granulating materials, e.g. fertilisers in general; Rendering particulate materials free flowing in general, e.g. making them hydrophobic by dividing the liquid material into drops, e.g. by spraying, and solidifying the drops
- B01J2/06—Processes or devices for granulating materials, e.g. fertilisers in general; Rendering particulate materials free flowing in general, e.g. making them hydrophobic by dividing the liquid material into drops, e.g. by spraying, and solidifying the drops in a liquid medium
- B01J2/08—Gelation of a colloidal solution
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/02—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
- B01J20/06—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising oxides or hydroxides of metals not provided for in group B01J20/04
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/281—Sorbents specially adapted for preparative, analytical or investigative chromatography
- B01J20/282—Porous sorbents
- B01J20/283—Porous sorbents based on silica
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/281—Sorbents specially adapted for preparative, analytical or investigative chromatography
- B01J20/282—Porous sorbents
- B01J20/284—Porous sorbents based on alumina
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N30/00—Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
- G01N30/02—Column chromatography
- G01N30/50—Conditioning of the sorbent material or stationary liquid
- G01N30/52—Physical parameters
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2220/00—Aspects relating to sorbent materials
- B01J2220/50—Aspects relating to the use of sorbent or filter aid materials
- B01J2220/54—Sorbents specially adapted for analytical or investigative chromatography
Landscapes
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Dispersion Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Inorganic Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Solid-Sorbent Or Filter-Aiding Compositions (AREA)
- Treatment Of Liquids With Adsorbents In General (AREA)
- Silicon Compounds (AREA)
Description
kollosdelcn Teilchen zusammengesetzt sind, die ein Mikrokugeln haben einen mittleren Durchmesser
WsammenMngendeii dre dimensionnles Aggregat bil- von etwa 0,1 bis 20 μ, vorzugsweise von etwa 1,0 bis
de«tUHH(«)iUkvlloidii1raTeilen6n weniger als 50% 10 μ. Ferner haben sie gleichmäßig Größen, was
des VoHimcns der Mikrokugeln einnehmen, während bedeutet, daß weniger als 5% der Teilchen in dem
der Rest des VolumeiM aus untereinander verbundenen 5 Pulver Durchmesser von weniger als dem etwa 0,5-
Poren von gleichmäßiger Porengrößenverteilung be- fachen des mittleren Durchmessers der Mikrokugeln
8 /iL,sn λ*, k-,,«.»,.^ α Γ1ί, in dem Pulver aufweisen und daß weniger als 5%
Gemäß der bevorzugten Ausführungsform haben einen Durchmesser von mehr als dem etwa l,5fachen
die MiKroKugein einen Durchmesser von etwa dem dss mittleren Durchmessers aufweisen. Vorzugsweise '
0,8- bis Miacnen cles mittleren Durchmessers der io reicht dieser Bereich von dem etwa 0,8fachen bis zu
Mikrokugeln α dem Pulver. Nach einer noch weiter dem etwa l,2fachen des mittleren Durchmessers,
bevorzugten Ausführungsform sind die kolloidalen Schließlich haben die Mikrokugeln gesteuerte Poren-
Teilchen aus^Siliciumdioxid, Aluminiumoxid, Zir- abmessungen sowie eine verhältnismäßig große spezi-
koniumoHd, Titanoxid, Eisen(III).oxid, Antimonoxid fische Oberfläche und ein großes Porenvolumen. Durch
und/oder Zinnoud zusammengesetzt. Nach einer noch 15 Steuerung des Sinterverfahrens, das angewandt wird,
stärker bevorzugten Ausführungsform haben die um den Teilchen Festigkeit zu verleihen, kann man zu
Mikrokugeln einen mittleren Durchmesser von etwa Mikrokugeln mit spezifischen Oberflächen gelangen,
, . , ^J1ObM 10 μ. Gemäß einer noch starte? bevorzugten die bis etwa 90% der spezifischen Oberfläche der
(;, ii; Ausfübrungsfprm haben die Mikrokugeln Jne spezi- kolloidalen Teilchen betragen, aus denen die Mikro-
•f - fische Oberfläche_von mehr als 75% der spezifischen *>
^kugeln bestehen, und trotzdem weisen solche Mikro-
t:i· ^Oberfläche, d« d« kolloidalen Teilchen, aus denen sie kugeln immer noch eine so hohe Festigkeit auf,
-',. »bestehen, aufweisen. daß sie verwendet werden können, ohne zu zer-
Vy Die Erfindung stellt ferner ein chromatographisches brechen. Die Größe der in den Mikroteilchen ent-
Jj;.", -Trennverfahren zur Verfügung, bei dem das zu haltenen Poren hängt in erster Linie von der Größe
%_ zerlegende Material zusammen mit einer Trägerphase 25 der zur Herstellung ier Mikrokugeln verwendeten
mit einer Auflosezone in Berührung gebracht wird, kolloidalen Teilchen ab.
die ein Pulver aus porösen Mikrokugeln enthält, die Der mittlere Durchmesser der Poren in den Mikro-
eine hitzebeständige Metalloxidoberfläche aufweisen, kugeln gemäß der Erfindung beträgt bei einem Poren-
:.? welches dadurch gekennzeichnet ist, daß (a) praktisch durchmesser von 1000 Ä etwa die Hälfte des berech-
^ ü\e Mikrokugeln einen Durchmesser im Bereich v.;n 3<>
neten Durchmessers der Grundteilchen, aus denen die
;: etwa dem 0,5- bis l,5fachen des mittleren Durch- Mikrokugel besteht. Dieser Durchmesser wird nach
messere der Mikrokugeln in dem Pulver aufweisen, der Gleichung
(b) die Mikrokugeln aus vielen gleichmäßig großen ^n00
kolloidalen Teilchen zusammengesetzt sind, die in D — -^^
Form eines dreidimensionalen Gerüsts miteinander 35 dA
verbunden sind, und (c) die kolloidalen Teilchen
verbunden sind, und (c) die kolloidalen Teilchen
weniger ab 50% des Volumens der Mikrokugeln berechnet, in der D den berechneten Durchmesser
einnehmen, während der Rest des Volumens aus unter- des Grundteilchens, d die Dichte des massiven anorga-
einander verbundenen Poren von gleichmäßiger Poren- nischen Materials (z. B. 2,2 g/cm3 für amorphes SiO2)
';, größenverteilung besteht. 40 und A die spezifische Oberfläche der Mikrokugel,
Zur weiteren Erläuterung der Erfindung wird auf bestimmt durch Stickstoffadsorption gemäß F. M.
die Zeichnungen Bezug genommen. Nelson und F.T. Eggerstein, »Analytical
ί , F i g. 1 zeigt ein einzelnes poröses Pulverteilchen, Chemistry«, 30, 1387 (1958), bedeutet. Bei 100 Ä ist
das Mch als Bestandteil der chromatographischen der Porendurchmesser etwa gleich dem Durchmesst*
g Füllung gemäß der Erfindung eignet. Das Mikroteil- 45 des kolloidalen Teilchens, und bei etwa 50 Ä beträgt
« chen ist durch das Bezugszeichen 10 angedeutet, die er das etwa 1 72fache des Durchmessers des kolloidalen
kolloidalen Grundteilchen sind mit 11 und die Poren Teilchens.
in den Mikrokugeln mit 12 bezeichnet. Bei Verwendung von kolloidalen Teilchen gemäß
·■ F i g. 2 ist eine schematische Ansicht eines Schnittes der nachstehenden Definition haben die Mikroieilchen
ί durch ein Mikroteilchen undzeigt die leicht zusammen- 5<>
gemäß der Erfindung Durchmesser im Bereich von
gewachsenen kolloidalen Teilchen 11, die durch Poren etwa 50 bis 2500 Ä oder vorzugsweise von etwa
j 12 von gleichmäßiger Größe voneinander getrennt 75 bis 1000 A.
wenden. Die ais Füllmaterial für die chromatographische
F i g. 3 erläutert eine hochgradig wirksame Zerie- Säule oder die Auilösezone erfinduiigsgeuiäß verwend-
gung eines Gemisches aus aromatischen Hydroxy- 55 baren Mikroteilchen können nacli einem Verfahren
verbindungen durch Flüssig-flüssig-Chromatographie hergestellt werden, bei dem zunächst ein wäßriges Sol
el unter Verwendung eines chromatographischen Füll- von hitzebetändigen Oxidteilchen hergestellt und
materials gemäß der Erfindung. dieses mit einem copolymerisierbaren Gemisch aus
F i g. 4 erläutert eine hochgradig wirksame Zer- Harnstoff 1 nd Formaldehyd oder aus Melamin und
legung eines Gemisches aus aromatischen Hydroxy- 60 Formaldehyd gemischt wird. Dann wird die Polymeri-
verbindungen durch Flüssig-fest-Chromatographie un- sation eingeleitet, und es erfolgt eine Koazervation des
ter Verwendung eines chromatographischen Füll- organischen Materials zu Mikrokugeln, die die kollo-
materials gemäii der Erfindung. idalen Teilchen enthalten. Die Mikrokugeln werden
F i g. 5 erläutert eine hochgradig wirksame Tren- dann verfestigt, gesammelt, gewasclen und getrocknet.
nung dreier Polystyrolfraktionen durch Exklusions- 65 In diesem Stadium des Verfahrens bestehen die Mikro-
chroinatographie unter Verwendung der chromato- kugein aus vielen kolloidalen Teilchen, die in eine
graphischen Füfisioffe gemäß der Erfindung. Polymerisaikugel eingebettet sind. Dann wird das
Die erfindungsgemäß als Füllmaterial verwendeten organische Material bei einer Temperatur abgebrannt,
5 6
die so hoch ist, daß die organischen Bestandteile merisation eines Gemisches aus Harnstoff und
oxydiert werden, das anorganische Material jedoch Formaldehyd oder eines Gemisches aus Melamin und
nicht schmilzt. Im allgemeinen erfolgt dies bei etwa Formaldehyd. Im Falle von Harnstoff und Form-
55O°C. Die porösen Mikrokugeln werden dann bei aldehyd eignen sich Molverhältnisse von etwaIbis 1,2
einer erhöhten Teperatur von etwa 1000° C so lange 5 oder 1,5 bei einem pH-Wert von etwa 1$ bis 4,5,
gesintert, bis die Mikroteilchen fest genug geworden und im Falle von Melamin und Formaldehyd eignen
sind, damit sie bei der Anwendung nicht zerbrechen. sich Molverhältnisse von etwa 1 bis 3 bei einem
Ein gutes Anzeichen dafür, ob eine Sinterung statt- pH-Wert von etwa 4 bis 6.
gefunden hat, ist die Verminderung der spezifischen Das Verhältnis von organischem zu anorganischem
Oberfläche der Mikrokugel auf einen Wert, der um 10 Mateiial wird so bemessen, daß der volumprozentuale
mindestens 10% geringer ist als die spezifische Ober- Anteil des anorganischen Materials in den ausgefallefläche
der kolloidalen Teilchen selbst. nen Teilchen nach der Polymerisation etwa 10 bis 50 %
Die Bildung der Mikrokugeln erfolgt durch Zu- beträgt. Um nach dem Ausbrennen des organischen
sammentreten der anorganischen kolloidalen Teilchen Materials zusammenhängende poröse Kugeln zu
mit dem organischen Koazervat. Es wird angenommen, 15 erhalten, soll die Konzentration der anorganischen
daß die außerordentliche Gleichmäßigkeit sowohl in Teilchen in der Einbettungsmasse so hoch sein, daß
der Größe der Mikrokugeln als auch in der Verteilung sie sich unter Bildung eines dreidimensionalen Gerüsts
der kolloidalen Teilchen in den Mikrokugeln auf aneinander binden. Dieses Gerüst kann, wenn es bei
eine Wechselwirkung zwischen Hydroxylgruppen an 55O0C hergestellt wird, sehr zerbrechlich sein; wenn
der Oberfläche der kolloidalen Teilchen und Teilen 20 es aber ungestört auf höhere Temperaturen erhitzt
der Polymerisatkette zurückzuführen ist. Daher weisen wird, um das Sintern herbeizuführen, nehmen die
die zur Herstellung des Füllmaterials gemäß der porösen Kugeln Festigkeit an. Um zu gewährleisten,
Erfindung verwendeten kolloidalen Teilchen an ihren daß eine für die gewünschte Festigkeit ausreichende
Oberflächen Hydroxylgruppen auf, die denjenigen Sinterung stattgefunden hat, werden die Teilchen im
einer hydratisierten Oxidoberfläche äquivalent sind. 25 allgemeinen bei einer erhöhten Temperatur, gewöhn-Das
Innere der Teilchen kann aus einem anderen Stoff Hch oberhalb 900° C, gesintert, die so hoch ist, daß die
bestehen, die Oberfläche muß sich aber hydroxylieren spezifische Oberfläche des Teilchens um mindestens
lassen. Für die Zwecke der Erfindung wird als anorga- 10 % unter den Wert herabgesetzt wird, den die
nisches Kolloid ein solches bezeichnet, das einen festen spezifische Oberfläche der kolloidalen Teilchen aufweist,
Rückstand hinterläßt, nachdem das Polymerisat ent- 30 aus denen sich die kugelförmigen Teilchen büden.
fernt worden ist. Die bevorzugten Kolloide &ind daher Die Mikrokugeln gemäß der Erfindung haben gleichhitzebeständige
Metalloxide, die bei etwa 5000C mäßige Poren, deren Durchmesser von der Größe der
nicht schmelzen und sich nicht anderweitig zersetzen. zu ihrer Herstellung verwendeten kolloidalen Teilchen
Dieses ist etwa die niedrigste Temperatur, die zum und dem Volumenverhältnis von organischem PoIy-Ausbrennen
des organischen Materials angewandt 35 merisat zu anorganischem Material abhängt. Je
werden kann. Im allgemeinen haben die hitzebeständi- größer die Teilchen sind, desto größer sind auch die
gen Teilchen jedoch Schmelzpunkte von mehr als Poren zwischen den Teilchen, und je größer das
1000'C; man kann aber auch niedriger schmelzende relative Volumen des organischen Polymerisats in
Oxide verwenden, wenn das Polymerisat durch lang- den Mikrokugeln bei deren Entstehen ist, desto
same Oxydation bei niedrigeren Temperaturen ent- 40 offener wird das Gerüst der anorganischen Teilchen,
fernt wird. Beispiele für hitzebeständige Metalloxide, und desto weiter werden die Poren,
die erfindungsgemäß verwendet werden können, sind Bei den günstigsten Abmessungen weisen diese Aluminiumoxid, Zirkoniumoxid, Titanoxid, Eisen- Mikrokugeln ein hervorragendes Verhalten bei ver-(Ill)-oxid, Antominoxid, Zinnoxid und Kombina- schiedenen Formen der Flüssigkeitschromatographie, tionen derartiger Oxide, wobei Siliciumdioxid bevor- 45 nämlich bei der Flüssig-flüssig-Chromatographie, bei zugt wird. der Flüssig-fest-Chromatographie und bei der Exklu-Die erfindungsgemäß verwendeten Grundteilchen sionschromatographie, auf. Eine hochgradig wirksame sind kolloidale Teilchen. Dies bedeutet für die Zwecke Flüssig-fest-Chromatographie (Dünnschichtchromatoder Erfindung, daß die Teilchen in mindestens zwei graphie und Säulenchromatographie) kann z. B. mit Dimensionen Größen im Bereich von 3 bis 500 πιμ 50 Mikrokugeln mit Durchmessern im Bereich von 1,0 und in der dritten Dimension eine Größe im Bereich bis 10,0 μ durchgeführt werden, die aus kolloidalen von 3 bis 1000 ηιμ haben. Teilchen, die in einer Teilchen mit Größen von 3 bis 100 πιμ hergestellt Dimension größer als 1 μ sind oder die in irgendeiner werden. Sehr schnelle flüssig-flüssig-chromatographi-Dimension größer als das etwa O.lfache des Durch- sehe Trennungen können durchgeführt werden, indem messers der Mikrokugel sind, lassen sich nur schwierig 55 man Mikrokugeln mit einem Durchmesser im Bereich in kugelförmige Mikroteilchen einlagern, da die große von 1,0 bis 10,0 μ, die aus kolloidalen Teilchen mit Abmessung die Bildung kugelförmiger Einzelteilchen Größen von 20 bis 80 ηιμ hergestellt sind, mit entstört, sprechenden stationären flüssigen Phasen überzieht. Die erfindungsgemäß verwendeten organischen Diese Teilchen können auch mit Ionenaustauschern Stoffe sind anfänglich in Wasser löslich und mit dem 60 umgesetzt werden, um Träger für die Ionenaustauschanorganischen Kolloid mischbar, ohne es bei dem Chromatographie zu erhalten. Sie können mit ReagenpH-Wert. bei dem die Reaktion vor sich geht, auszu- zien zu chromatographischen Füllungen mit chemisch flocken oder zu lösen. Das sich bildende Polymerisat gebundenen stationären Phasen umgesetzt werden, ist unlöslich in Wasser. Es gibt zwar eine Reihe ver- Hochgradig wirksame gas-flüssig- und gas-fest-ch rose !1 icdcner organischer Stoffe, die sich für die Zwecke 65 matographische Trennungen können mit Mikro- ύϋΐ f rfindung eignen; den höchsten Grad von Gleich- kugeln mit Durchmessern im Bereich von 50 bis 150 μ niflßipStcit in der Teilchengröße und in der Poren- durchgeführt werden, die aus kolloidalen Teilchen £f. (irnvrrrciliinp cr/ielt man jedoch durch Copoly- mit Größen von 50 bis 200 πιμ hergestellt werden.
die erfindungsgemäß verwendet werden können, sind Bei den günstigsten Abmessungen weisen diese Aluminiumoxid, Zirkoniumoxid, Titanoxid, Eisen- Mikrokugeln ein hervorragendes Verhalten bei ver-(Ill)-oxid, Antominoxid, Zinnoxid und Kombina- schiedenen Formen der Flüssigkeitschromatographie, tionen derartiger Oxide, wobei Siliciumdioxid bevor- 45 nämlich bei der Flüssig-flüssig-Chromatographie, bei zugt wird. der Flüssig-fest-Chromatographie und bei der Exklu-Die erfindungsgemäß verwendeten Grundteilchen sionschromatographie, auf. Eine hochgradig wirksame sind kolloidale Teilchen. Dies bedeutet für die Zwecke Flüssig-fest-Chromatographie (Dünnschichtchromatoder Erfindung, daß die Teilchen in mindestens zwei graphie und Säulenchromatographie) kann z. B. mit Dimensionen Größen im Bereich von 3 bis 500 πιμ 50 Mikrokugeln mit Durchmessern im Bereich von 1,0 und in der dritten Dimension eine Größe im Bereich bis 10,0 μ durchgeführt werden, die aus kolloidalen von 3 bis 1000 ηιμ haben. Teilchen, die in einer Teilchen mit Größen von 3 bis 100 πιμ hergestellt Dimension größer als 1 μ sind oder die in irgendeiner werden. Sehr schnelle flüssig-flüssig-chromatographi-Dimension größer als das etwa O.lfache des Durch- sehe Trennungen können durchgeführt werden, indem messers der Mikrokugel sind, lassen sich nur schwierig 55 man Mikrokugeln mit einem Durchmesser im Bereich in kugelförmige Mikroteilchen einlagern, da die große von 1,0 bis 10,0 μ, die aus kolloidalen Teilchen mit Abmessung die Bildung kugelförmiger Einzelteilchen Größen von 20 bis 80 ηιμ hergestellt sind, mit entstört, sprechenden stationären flüssigen Phasen überzieht. Die erfindungsgemäß verwendeten organischen Diese Teilchen können auch mit Ionenaustauschern Stoffe sind anfänglich in Wasser löslich und mit dem 60 umgesetzt werden, um Träger für die Ionenaustauschanorganischen Kolloid mischbar, ohne es bei dem Chromatographie zu erhalten. Sie können mit ReagenpH-Wert. bei dem die Reaktion vor sich geht, auszu- zien zu chromatographischen Füllungen mit chemisch flocken oder zu lösen. Das sich bildende Polymerisat gebundenen stationären Phasen umgesetzt werden, ist unlöslich in Wasser. Es gibt zwar eine Reihe ver- Hochgradig wirksame gas-flüssig- und gas-fest-ch rose !1 icdcner organischer Stoffe, die sich für die Zwecke 65 matographische Trennungen können mit Mikro- ύϋΐ f rfindung eignen; den höchsten Grad von Gleich- kugeln mit Durchmessern im Bereich von 50 bis 150 μ niflßipStcit in der Teilchengröße und in der Poren- durchgeführt werden, die aus kolloidalen Teilchen £f. (irnvrrrciliinp cr/ielt man jedoch durch Copoly- mit Größen von 50 bis 200 πιμ hergestellt werden.
23 1W55
Der Bereich wertvoller Mikroteilchendurchmesser
erstreckt sich daher von etwa 0,5 bis "500 μ.
s Da die aus einer jeden Größe von kolloidalen Teil-
, chen hergestellten .Mikrokugeln,. eine vollständig
poröse ,Struktur mit enger _ Poren'größenverteilung
haben, "kann, man durch Variieren der Große der
kolloidalen Teilchen Mikrokugeln mit einem bestimm-
' ten Bereich von verhältnismäßig homogenen Pore'n- -.' größen herstellen. Mikrokugeln aus Siliciumdioxid mit
- iPoren von bekannter Abmessung können für
- '"Schnelltrennungen durch Exklusionschromatographie
':.. (Geldiffusion und Gelfiltration) durchgeführt werden,
7j die auf der unterschiedlichen Wanderung der
' Moleküle auf Grund der Molekülgröße und des Molekulargewich·s beruhen. Die kleine Teil-'„'
chcngröße begünstigt einen schnellen Massenübergang, so daß man mit viel höheren als normalen
Trägerschwindigkeiten arbeiten und trotzdem noch ein Gleichgewicht in der diffusionsgesteuerten Wechsel-Wirkung
aufrechterhalten kann, die zwischen den Poren in der vollständig porösen Struktur stattfindet. Die
Festigkeit und Starrheit der Mikrokugeln ermöglicht die Anwendung sehr hoher Drücke (mindestens bis
420 kg/cm2) ohne Zerfall oder Verformung der Teilchen. Die kugelförmige Natur der Teilchen ermöglicht
das Füllen von Säulen mit einer größeren Anzahl von theoretischen Boden, was von besonderer Bedeutung
füf die Trennung kleiner Moleküle ist. Von vorrangiger Bedeutung bei der Exklusionschromatographie
ist das innere Volumen der für die Trennung verwendeten Teilchen. Das Porenvolumen in den
Mikrokugeln ist verhältnismäßig hoch, gewöhnlich 50 bis 65% (bestimmt durch Stickstoff adsorption nach
der B. E. T.-Methode,, und hängt von der Porengröße ab, die derjenigen Porengröße vergleichbar ist,
wie sie bei den in großem Umfange für die Exklusionschromatographie verwendeten porösen Gläsern und
porösen organischen Gelen vorkommt.
Es läßt sich voraussagen, daß die Mikrokugeln aus Siliciumdioxid sich für Gelfiltrationstrennungen in
wäßrigen Systemen eignen und besonders wertvoll für die Trennung kleiner polarer Moleküle sein werden.
Mikrokugeln mit Poren im Bereich von 50 bis 2500 Ä sollten die exklusionschromatographische Trennung
vieler verschiedener Verbindungen sowohl in wäßrigen als auch in nichtwäßrigen Systemen mit hoher Geschwindigkeit
ermöglichen.
Einer der Faktoren, die den Wirkungsgrad der Säule beeinflussen, ist die Füllung der Säule oder die Struktur,
die die Auflösezone darstellt. Die Mikroteilchen gemäß der Erfindung haben in dieser Beziehung einen eindeutigen
Vorteil, weil ihre Kugelform und gleichmäßige
feröße zu der Leichtigkeit beiträgt, mit der sie sich unter Bildung eines dichten Bettes einfüllen lassen.
Das üblichste Füllverfahren ist das Trockenfüllen. Die Leistung der Säule kann aber bedeutend verbessert
werden, wenn die Säule beim Trockenfüilen in senkrechter
Richtung mit gesteuerter Frequenz bewegt wird, während das Trockenfüllmaterial der Säule
mit konstanter Geschwindigkeit zugeführt wird.
Das Trockenfüllen wird schwierig, wenn die Teilchen Durchmesser von weniger als 20 μ. haben. Bei
solchen Teilchen ist eine andere Methode, nämlich das Hochdruckschlammfüllcn, mit Erfolg angewandt worden.
Die gleichmäßigen porösen Siliciumdioxid-Mikrokugeln
gemäß der Erfindung lassen sich leicht durch Hochdruckschlammfüllen in Säulen einbringen,
nachdem man eine stabile wäßrige Suspension hergestellt hat. Diese Suspension erhält man durch Ultras'chaHmischen'der
Füllung in entgaster, 0,001rnolarer Animoniürhhydroxiälösung. Durch' das adsorbierte
NH4 + erhält jedes Teilchen eine^positive Ladung, so
daß sich die Teilchen gegenseitig abstoßen und die Aufschlämmung unter minimaler Äggregatbildung
stabilisiert wird. Diese Methode arbeitet besonders gut bei Verwendung,der:yöljständig.pprösen Siliciumdioxid-Mikrokugeln
gemäß der Erfindung, weil sie
ίο eine gleichmäßige Teilchengröße haben. Der mit
Ammoniak stabilisierte Schlamm wird schnell in der üblichen Weise unter einem Druck von 420 kg/cm2
in leere Säulen gepumpt. Das Wasser wird aus der Füllung entfernt, indem man absolutes Methanol
lsühindurchpumpt. Dann wird die Füllung mit dem für
die chromatographische Trennung zu verwendenden Lösungsmittel oder System aus Lösungsmittel und
stationärer Phase ins Gleichgewicht gebracht. Für die Flüssig-fest-Chromatographie werden die mit Methanol
behandelten Mikrokugeln z. B. mit zur Hälfte mit Wasser gesättigtem Äther konditioniert, um den
Wassergehalt in der Struktur einzuregeln. Chromatographische Säulen, die mit diesem durch Ammoniak
stabilisierten Schlamm gefüllt sind, haben sich als reproduzierbar nicht nur hinsichtlich ihres Wirkungsgrades,
sondern auch hinsichtlich der Beibehaltung ihrer Selektivität erwiesen. Solche Säulen sind stabil
und können offenbar bei Drücken von mindestens 420 kg/cm2 eingesetzt werden.
Infolge der Kugelform und des engen Teiichengrößenbereichs
haben mit Mikrokugeln beschickte Säulen eine verhältnismäßig hohe spezifische Permeabilität
K°, wie die nachstehende Vergleichstabelle I zeigt.
| Teilchen | cm1*· 10» | |
| Art der Füllung | größe μ |
|
| Teilchen mit poröser Ober | ||
| fläche (»Zipax« der E. I. | ||
| du Pont de Nemours and | 2,2 | |
| Comp.) | <37 | 0,20 |
| 45 Diatomeenerde, Kieselgur | 5 bis 15 | 0,092 |
| Siliciumdioxidgel | 5 bis 10 | |
| Poröse Siliciumdioxid- | 0,16 | |
| Mikrokugeln | 8 bis 9 | |
| Poröse Siliciumdioxid- | 0,077 | |
| 50 Mikrokugeln | 5 bis 6 | |
Die porösen Siliciumdioxid-Mikrokugeln von engem Teilchengrößenbereich haben eine höhere Permeabilität
(einen geringeren Strömungswiderstand) als unregelmäßig geformte Teilchen aus Siliciumdioxidgel und
aus Diatomeenerde von der gleichen Größe, aber mit weiterem Teilchengrößenbereich. Der Druckbedarf
von mit Mikrokugeln gefüllten Säulen ist so niedrig, daß die meisten, in der neuzeitlichen Flüssigkeitschromatographie üblicherweise verwendeten Pumpen
eingesetzt werden können. Mit Mikrokugeln mit Teilchengrößen von 5 bis 6 μ gefüllte Säulen von 1 m
Länge können bei Drücken von nur 168 kg/cm2 mit Trägergeschwindigkeiten von 0,5 cm/sec betrieben
werden. Eine solche Säule würde mehr als 20 000 effektive Böden aufweisen, was sehr schwierige Trennungen
ermöglichen sollte.
509 514/330
Ein bedeutungsvolleres Maß für die Sachleistung
ist der von L. R. S η y d e r in »Gas Chromatography 1970«, herausgegeben von The Institute of
Petrolum, S. 81, vorgeschlagene Leistungsfaktor. Dieser Leistungsfaktor ist gleich
(K/0,5)'■* /D,
worin K die Permeabilität der Säule, η die Viskosität
ädes Trägers bedeutet und D aus der Gleichung
ξΗ = Dvn berechnet wird, worin ν die Trägergeichwindigkeit,
// die Bodenhöhe, D eine Säulenkonstante und n ein Exponent ist. In Tabelle 11 werden
die effektiven Böden je Sekunde mit den Leistungsfaktoren
für verschiedene Säulenfüllungen verglichen.
Art der Füllung
4»Zipax« (siehe oben) ..
Siliciumdioxidgel
Diatomeenerde, Kieselgur
,Poröse Siliciumdioxid-Mikrokugeln
Poröse Siiiciumdioxid-Mikrokugeln
Teilchengröße
<37
5 bis 10
5 bis 10
5 bis 15
8 bis 9
5 bis 6
8 bis 9
5 bis 6
Effektive
Baden je
Sekunde
Baden je
Sekunde
10
15
14
23
23
Leistungsfaktor
Je höher der Leistungsfaktor ist, desto besser ist das
Trennvermögen der Säule. Aus der obigen Tabelle ist ersichtlich, daß die porösen Siliciumdioxid-Mikrokugeln
gemäß der Erfindung beim Vergleich mit den bisher bekannten Füllungen recht günstig abschneiden.
Die Durchführung der Erfindung und die dadurch erzielten Vorteile werden durch die folgenden Beispiele
erläutert.
Flüssig-flüssig-ChromatograpJiie wird mit hoher
Geschwindigkeit mit einem Füllmaterial aus Mikroteilchen mit Durchmessern von 5 bis 6 μ und einem
mittleren Porendurchmesser von 350 A durchgeführt.
Diese Teilchen werden folgendermaßen hergestellt: Ein im wesentlichen von Natrium freies Sol von
•50 πιμ großen Siüciumdioxidteilchen wird nach der
USA.-Patentschrift 26 80 721 durch Entmineralisieren eines technischen Kieselsäuresole (»Ludox-HS«), das
Teilchen von etwa 14 ηιμ Durchmesser enthält und auf 21 Gewichtsprozent SiO2 verdünnt worden ist,
und anschließendes Erhitzen des Sols im Autoklaven auf 325°C unter autogenem Druck für einen Zeitraum
von 4 Stunden, um die Teilchen bis auf Durchmesser von 50 ηιμ wachsen zu lassen, hergestellt.
25 ml dieses Sols mit Teilchen von 50 ΐημ Größe,
die 16,7 g SiO2 enthalten, werden mit Wasser auf ;i00 ml verdünnt, und der pH-Wert wird unter schnellem
/Rühren mit konzentrierter Salzsäure auf 2 eingestellt. iDann setzt man 15 g Harnstoff zu und rührt, bis der
jHarnstoff in Lösung gegangen ist. Schließlich versetzt (tnan die Lösung mit 25 g 37%iger wäßriger Formaldehydlösung
und stellt den pH-Wert durch Zusatz von weiterer konzentierter Salzsäure wieder auf 2 ein,
rwobei man das Gemisch schnell rührt. Dann wird das
Rühren unterbrochen, und man läßt die Lösung 2 Stunden bei Raumtemperatur stehen. Innerhalb'
weniger Minuten wird das Gemisch infolge der Bildung von kugelförmigen Teilchen aus einer Κοπί-plexvcrbindung
von Siliciumdioxid und Harnstoff-Formaldehydpolymerisat weiß und undurchsichtig.
Nach 2stundiger Alterung wird das Gemisch 1,5 Minuten mit hoher Geschwindigkeit in einem Mischer
gerührt, um die kugelförmigen Teilchen zu disp'er-,,gieren,
und dann läßt man 16 Stunden absitzen, iworauf sich am Boden des Gefäßes ein weißer Fesi-
|stoffkuchen angesammelt hat. Die klare wäßrige
^überstehende Flüssigkeit wird verworfen. Der weiße
Kuchen wird in 250 ml Wasser aufgeschlämrnt, wieder absitzen gelassen, die überstehende Flüssigkeit abgegossen
und der Kuchen wiederum in Wasser aufgeschlämmt. Dies wird viermal wiederholt. Das gewaschene
Produkt in Form eines nassen, abgesetzten Kuchens wird 16 Stunden im Vakuum bei 600C
!getrocknet. Dieses Produkt ist ein Pulver aus Mikroteilchen, die aus 50 ΐημ großen Siüciumdioxidteilchen
jin einem Harnstoff-Formaldehydpolymerisat bestehen.
Die Teilchen haben einen mittleren Durchmesser von 5 μ Die chemische Analyse des im Vakuum getrockneten
Produkt» erg:bt 3,8% Wasserstoff, 17,2% Kohlenstoff, 19,1% Stickstoff und 49% Asche, die
aus Siliciumdioxid besteht.
Das im Vakuum getrocknete Material wird dann im Luftofen auf 55OCC erhitzt, wobei man die Tempsraiur
langsam erhöht, um das organische Material abzubrennen. Dabei färbt sich das Pulver durch die
Wärmezersetzung schwarz; später, wenn das kohlenstoffhaltige Material oxydiert wird, wird es aber
wieder weiß, und es hinterbleiben 15,4 g Produkt.
Diese besonderen Mikrokugeln werden wegen ihrer verhaitnibmußig großen Poren ausgewählt, weil gelöste
Moleküle leichten Zugang zu der stationären Phase in
der gesamten porösen Struktur haben. Nach der oben beschriebenen Hochdruckschlammfüllmethode
wird eine Säule aus rostfreiem Stahl von 250 mm Länge
und j,2 mm lichter Weite gefüllt. Die porösen Teilchen in der Säule werden dann nach einem »in situ«-Verfahren
mit /^'-Oxydipropionitril gefüllt. Nach dieser
Behandlung enthält die Säule 30 Gewichtsprozent stationäre Flüssigkeit.
F i g^3 zeigt eine hochgradig wirksame Zerlegung
eines Gemisches aus aromatischen Hydroxyverbindungen mn Hilfe einer mit Mikrokugeln gefüllten
rf?i ι 0 Trä?er iSt HeXan' der Druck beträSl
42 kg/cm2 und die Strömungsgeschwindigkeit 1,0 ml/
™n· D<e.Zerlegung erfoIgt bei einer Temperatur von
/o „L mit 4μΙ Lösung· Der letzte Kurvengipfel
{^knyläthanol; K = 12) zeigt 6600 theoretische
Boden (N) oder eine Bodenhöhe (H) von 0,038 mm bei einer Trägergeschwindigkeit von 0,44cm/sec.
Zum Betrieb der Kolonne bei dieser Strömungsgeschwindigkeit ist nur ein verhältnismäßig niedriger
Druck erforderlich. Bei einer Trägergeschwindigkeit von 3,3cm/sec (350 kg/cm«, Strömung 7,7cm3/min)
So wird dieser letzte Kurvengipfel in 73 Sekunden mit
einerßodenhöhe von O5Il mm und 23 %/f (effektiven
Boden/sec) eluiert.
Flüssig-fest-chromatographische Trennungen von x?-f Γ, chwindiglceit werden mit Siliciumdioxid-Mikrokugeln
von 8 bis 9 μ durchgeführt, die nach dem Verfahren des Beispiels 1 aus Teilchen mit einem
mittleren Durchmesser von 5 πιμ hergestellt worden
sind. Diese Teilchen haben Poren von etwa 75 A und eine durch Stickstoffadsorption bestimmte spezifische
Oberfläche von 350 mVg. F ί g. 4 zeigt eine
hochgradig wirksame Zerlegung eines Gemisches von aromatischen Hydroxyverbindungen mit einer Säule
und unter Bedingungen ähnlich denjenigen des Beispiels 1, mit dem Unterschied, daß der Druck 140 kg/
cm2, die Temperatur 2^?C,.die Strömungsgeschwin- ,..
,digkeit 10,5 ml/min beträgt2 und als Trageffiüssigkeit ιό
rDichlormethän (zur/ Hälfte mit''fässer gesättigt)
verwendet "wird.
Bei diesem Arbeitsgang jverden ,sieben Hauptver- ,
bindungen *in etwa 65 Sekunden aufgelöst, und der
letzte Kürvengipfel für S-Phenylri-athanoiiKapazitatsfaktor
lc' g^ 10) zeigt den A\tert von 825 effektiven ■,
Böden oder 15 effektiven Böden je Sekunde (Ntffjt) bei
einer Trägergeschwindigkeit von 4,7 cm/sec. Bei einer ' 'Trägergeschwindigkeit von 9,5cm/sec (280 kg/cm2)
weist diese Säule 18 bzw. 24 effektive Böden/sec für
3-Phenyläthanol bzw. Benzhydrol (A;' a; 4) auf.
Eine Exklusionstrennung wird mit hoher Geschwindigkeit mit Hilfe von 5 bis 6 μ. großen Teilen mit Poren
von etwa 350 A durchgeführt. Diese Teilchen werden aus kleinen Teilchen mit einem mittleren Durchmesser
yon 50 πιμ nach_dem Verfahren des Beispiels 1 hergestellti^F
i g, 5 zeigt drei* Polystyrolfräktiönen (Mole-" kulargewicht 2030, 5Ϊ000 bzw. 411000), die In
etwa 38 S.ekunden im wesentlichen bis zur Grundlinie
mit einer 250 mm langen und 2,1mm weiten Säule getrennt worden sind, die
<O,5 g Füllung (Mithält. Als Trägeriiüssigke!' -^'»pM man Tetrahydrofuran
bei einer Temperatur von £>l» ~, . —■ Druck
von 114 kg/cm2 und einer Strömungsgeschwindigkeit
von 1,0 ml/min. Eine solche Trennung von Polystyrolfraktionen ist außergewöhnlich.
Hierzu 3 Blatt Zeichnungen
Claims (1)
1. Methoden weitgehend von einer Erhöhung im Wir- (b) die Mikrokugeln aus vielen gleichmäßig großen,
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US24203872A | 1972-04-07 | 1972-04-07 |
Publications (3)
| Publication Number | Publication Date |
|---|---|
| DE2317455A1 DE2317455A1 (de) | 1973-10-18 |
| DE2317455B2 true DE2317455B2 (de) | 1975-04-03 |
| DE2317455C3 DE2317455C3 (de) | 1975-11-13 |
Family
ID=22913221
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| DE2317455A Expired DE2317455C3 (de) | 1972-04-07 | 1973-04-06 | Chromatographisches Füllmaterial |
Country Status (9)
| Country | Link |
|---|---|
| US (1) | US3782075A (de) |
| JP (1) | JPS6035173B2 (de) |
| CH (1) | CH590681A5 (de) |
| DE (1) | DE2317455C3 (de) |
| FR (1) | FR2179219B1 (de) |
| GB (1) | GB1430951A (de) |
| IT (1) | IT981900B (de) |
| NL (1) | NL7304833A (de) |
| SE (1) | SE400383B (de) |
Families Citing this family (60)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US3904422A (en) * | 1972-03-27 | 1975-09-09 | Corning Glass Works | Porous glass support material |
| DE2225973C2 (de) * | 1972-05-27 | 1974-07-04 | Merck Patent Gmbh, 6100 Darmstadt | Verfahren zum Beschichten von nicht porösem Material mit einer porösen Siliciumdioxidschicht |
| DE2446375C2 (de) * | 1973-10-02 | 1982-03-25 | The Dow Chemical Co., 48640 Midland, Mich. | Ionenaustauschzusammensetzung und deren Verwendung |
| DE2524065C2 (de) * | 1975-05-30 | 1988-03-03 | Merck Patent Gmbh, 6100 Darmstadt | Trennmaterial für die Dünnschichtchromatographie |
| FR2328508A1 (fr) * | 1975-10-22 | 1977-05-20 | Atomic Energy Authority Uk | Gels poreux, leur procede d'obtention et applications |
| US4070286A (en) * | 1976-06-15 | 1978-01-24 | E. I. Du Pont De Nemours And Company | Macroporous microspheroids and a process for their manufacture |
| US4217240A (en) * | 1976-09-02 | 1980-08-12 | E. I. Du Pont De Nemours And Company | Stable aluminosilicate aquasols having uniform size particles and their preparation |
| CA1123813A (en) * | 1976-09-02 | 1982-05-18 | Horacio E. Bergna | Aluminosilicate powders |
| US4160728A (en) * | 1976-12-08 | 1979-07-10 | E. I. Du Pont De Nemours And Company | Bimodal chromatographic resolving zone |
| US4070283A (en) * | 1976-12-08 | 1978-01-24 | E. I. Du Pont De Nemours And Company | Controlled surface porosity particles and a method for their production |
| US4131542A (en) * | 1977-07-19 | 1978-12-26 | E. I. Dupont De Nemours And Company | Spray dried silica for chromatography |
| US4257874A (en) * | 1977-08-31 | 1981-03-24 | E. I. Du Pont De Nemours And Company | Petroleum refinery processes using catalyst of aluminosilicate sols and powders |
| US4138336A (en) * | 1977-12-02 | 1979-02-06 | Minnesota Mining And Manufacturing Company | Thin layer chromatographic plates |
| US4352745A (en) * | 1980-06-16 | 1982-10-05 | Standard Oil Company (Indiana) | Liquid mobile phase |
| GB8333794D0 (en) * | 1983-12-19 | 1984-01-25 | Atomic Energy Authority Uk | Materials |
| CA1275398C (en) * | 1985-11-01 | 1990-10-23 | Joseph Jack Kirkland | Porous silica microspheres having silanol-enriched and silanized surfaces |
| US4874518A (en) * | 1985-11-01 | 1989-10-17 | E. I. Du Pont De Nemours And Company | Porous silica microspheres having a silanol enriched surface |
| US5032266A (en) * | 1985-11-01 | 1991-07-16 | E. I. Du Pont De Nemours And Company | Porous silica microspheres having silanol-enriched and silanized surfaces |
| US5108595A (en) * | 1985-11-01 | 1992-04-28 | E. I. Du Pont De Nemours And Company | Porous silica microspheres having silanol-enriched and silanized surfaces |
| US4837195A (en) * | 1986-12-23 | 1989-06-06 | E. I. Du Pont De Nemours And Company | Process for porosity control and rehydroxylations of silica bodies |
| US5145578A (en) * | 1987-07-03 | 1992-09-08 | Shiseido Company Ltd. | Packing material for liquid chromatography |
| US5141634A (en) * | 1988-02-03 | 1992-08-25 | Regents Of The University Of Minnesota | High stability porous zirconium oxide spherules |
| US5205929A (en) * | 1988-02-03 | 1993-04-27 | Regents Of The University Of Minnesota | High stability porous zirconium oxide spherules |
| US5015373A (en) * | 1988-02-03 | 1991-05-14 | Regents Of The University Of Minnesota | High stability porous zirconium oxide spherules |
| AU630427B2 (en) † | 1989-07-06 | 1992-10-29 | Perseptive Biosystems, Inc. | Perfusive chromatography |
| US5228989A (en) * | 1989-07-06 | 1993-07-20 | Perseptive Biosystems, Inc. | Perfusive chromatography |
| US5254262A (en) * | 1990-03-22 | 1993-10-19 | Regents Of The University Of Minnesota | Carbon-clad zirconium oxide particles |
| US5182016A (en) * | 1990-03-22 | 1993-01-26 | Regents Of The University Of Minnesota | Polymer-coated carbon-clad inorganic oxide particles |
| US5108597A (en) * | 1990-03-22 | 1992-04-28 | Regents Of The University Of Minnesota | Carbon-clad zirconium oxide particles |
| US5271833A (en) * | 1990-03-22 | 1993-12-21 | Regents Of The University Of Minnesota | Polymer-coated carbon-clad inorganic oxide particles |
| US5128291A (en) * | 1990-12-11 | 1992-07-07 | Wax Michael J | Porous titania or zirconia spheres |
| US5540834A (en) * | 1994-08-23 | 1996-07-30 | Regents Of The University Of Minnesota | Synthesis of porous inorganic particles by polymerization-induced colloid aggregation (PICA) |
| US5837826A (en) * | 1995-02-27 | 1998-11-17 | Regents Of The University Of Minnesota | Protein adsorption by very dense porous zirconium oxide particles in expanded beds |
| US5948531A (en) * | 1997-06-20 | 1999-09-07 | Hewlett-Packard Company | Propylene-bridged bidentate silanes |
| US5869724A (en) * | 1997-06-20 | 1999-02-09 | Hewlett-Packard Company | Asymmetric bidentate silanes |
| JPH11287791A (ja) * | 1998-04-01 | 1999-10-19 | Naohiro Soga | キャピラリーカラム |
| US6254852B1 (en) | 1999-07-16 | 2001-07-03 | Dupont Pharmaceuticals Company | Porous inorganic targeted ultrasound contrast agents |
| US6846410B2 (en) * | 2002-05-03 | 2005-01-25 | Zirchrom Separations, Inc. | High stability porous metal oxide spherules used for one-step antibody purifications |
| SE0300726D0 (sv) * | 2003-03-14 | 2003-03-14 | Amersham Biosciences Ab | Method for preparing a separation medium |
| US7491263B2 (en) * | 2004-04-05 | 2009-02-17 | Technology Innovation, Llc | Storage assembly |
| US7309426B2 (en) * | 2004-04-23 | 2007-12-18 | Agilent Technologies, Inc. | Composition and method for high efficiency chromatography |
| EP1999294A2 (de) * | 2006-02-13 | 2008-12-10 | Advanced Materials Technology, Inc. | Verfahren zur herstellung von substraten mit poröser oberfläche |
| US20090221773A1 (en) * | 2008-02-28 | 2009-09-03 | Brigham Young University | Methods for direct attachment of polymers to diamond surfaces and diamond articles |
| US20090218276A1 (en) * | 2008-02-29 | 2009-09-03 | Brigham Young University | Functionalized diamond particles and methods for preparing the same |
| US20090258230A1 (en) * | 2008-04-11 | 2009-10-15 | Kobo Products, Inc. | Porous and/or hollow material containing uv attenuating nanoparticles, method of production and use |
| WO2009140207A1 (en) * | 2008-05-10 | 2009-11-19 | Brigham Young University | Porous composite particulate materials, methods of making and using same, and related apparatuses |
| US9192915B2 (en) * | 2008-05-10 | 2015-11-24 | Brigham Young University | Porous composite particulate materials, methods of making and using same, and related apparatuses |
| WO2010033903A1 (en) * | 2008-09-22 | 2010-03-25 | Brigham Young University | Functionalized graphitic stationary phase and methods for making and using same |
| US20110210056A1 (en) * | 2010-02-26 | 2011-09-01 | Brigham Young University | Gas phase approach to in-situ/ex-situ functionalization of porous graphitic carbon via radical-generated molecules |
| CA2818490A1 (en) | 2010-11-17 | 2012-05-24 | Brigham Young University | Sonication for improved particle size distribution of core-shell particles |
| US20150027953A1 (en) * | 2012-01-11 | 2015-01-29 | Indiana University Research And Technology Corporation | Application of macroporous silica synthesized by a salt-templated aerosol method for chromatography |
| CN104968403A (zh) | 2012-09-17 | 2015-10-07 | 格雷斯公司 | 色谱介质和装置 |
| ES2929099T3 (es) | 2014-05-02 | 2022-11-24 | Grace W R & Co | Material de soporte funcionalizado y métodos de fabricación y uso de material de soporte funcionalizado |
| PL3302784T3 (pl) | 2015-06-05 | 2022-01-17 | W.R. Grace & Co.-Conn. | Adsorbentowe środki klarujące do bioprzetwarzania oraz sposoby ich wytwarzania i stosowania |
| CN105548433B (zh) * | 2015-12-17 | 2017-06-06 | 浙江出入境检验检疫局检验检疫技术中心 | 液相色谱串联质谱法同时检测牛奶中多种非蛋白含氮化合物含量的方法 |
| CN105954399A (zh) * | 2016-04-25 | 2016-09-21 | 广西壮族自治区梧州食品药品检验所 | 一种快速测定奶粉中三聚氰胺含量的方法 |
| EP3721221B1 (de) * | 2017-12-07 | 2025-06-18 | EMP Biotech GmbH | System und verfahren der angewandten radialtechnologie-chromatografie |
| CN109433170B (zh) * | 2018-12-24 | 2021-06-01 | 中国科学院兰州化学物理研究所 | 一种纳米金杂化硅胶及十八烷基硫醇修饰纳米金杂化硅胶的制备和应用 |
| WO2024178406A2 (en) * | 2023-02-25 | 2024-08-29 | Chrom6 Technologies, LLC | Carbon microsphere chromatographic material |
| CN116282051B (zh) * | 2023-03-16 | 2023-10-13 | 山东安特纳米材料有限公司 | 一种宽分布孔隙结构二氧化硅微球的制备方法 |
Family Cites Families (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| DE1442446C3 (de) * | 1965-06-18 | 1974-03-14 | Merck Patent Gmbh, 6100 Darmstadt | Sorptionsmittel für die Schichtchromatographie: |
| US3505785A (en) * | 1967-06-20 | 1970-04-14 | Du Pont | Superficially porous supports for chromatography |
-
1972
- 1972-04-07 US US00242038A patent/US3782075A/en not_active Expired - Lifetime
-
1973
- 1973-04-05 JP JP48038334A patent/JPS6035173B2/ja not_active Expired
- 1973-04-05 SE SE7304827A patent/SE400383B/xx unknown
- 1973-04-06 GB GB1670573A patent/GB1430951A/en not_active Expired
- 1973-04-06 IT IT22716/73A patent/IT981900B/it active
- 1973-04-06 CH CH494573A patent/CH590681A5/xx not_active IP Right Cessation
- 1973-04-06 NL NL7304833A patent/NL7304833A/xx not_active Application Discontinuation
- 1973-04-06 DE DE2317455A patent/DE2317455C3/de not_active Expired
- 1973-04-06 FR FR7312461A patent/FR2179219B1/fr not_active Expired
Also Published As
| Publication number | Publication date |
|---|---|
| IT981900B (it) | 1974-10-10 |
| GB1430951A (en) | 1976-04-07 |
| JPS6035173B2 (ja) | 1985-08-13 |
| US3782075A (en) | 1974-01-01 |
| JPS4917796A (de) | 1974-02-16 |
| NL7304833A (de) | 1973-10-09 |
| FR2179219B1 (de) | 1976-09-10 |
| DE2317455A1 (de) | 1973-10-18 |
| CH590681A5 (de) | 1977-08-15 |
| FR2179219A1 (de) | 1973-11-16 |
| SE400383B (sv) | 1978-03-20 |
| DE2317455C3 (de) | 1975-11-13 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| DE2317455B2 (de) | Chromatographisches Füllmaterial | |
| DE2029394C3 (de) | Hydrierungskatalysator | |
| DE2317454B2 (de) | ||
| DE2641548C2 (de) | Pulver aus diskreten Mikrosphäroiden | |
| DE19544107C1 (de) | Metallpulver-Granulat, Verfahren zu seiner Herstellung sowie dessen Verwendung | |
| DE1592098C3 (de) | Verfahren zur Herstellung von kugelförmigen Aluminiumoxidteilchen | |
| DE19619961A1 (de) | Preßlinge auf Basis von pyrogen hergestelltem Siliciumdioxid | |
| DE1218415B (de) | Verfahren zur Herstellung gebundener kristalliner Metallaluminosilicat-Zeolithe | |
| DE4322566A1 (de) | Verfahren zum Herstellen einer Sinterelektrode für ein galvanisches Element | |
| CH442802A (de) | Füllkörper, der insbesondere für Chromatographiekolonnen geeignet ist | |
| DE2652535B2 (de) | Verfahren zur Herstellung von Kieselsäure-Körpern | |
| DE69908078T2 (de) | Feines Nickelpulver und Verfahren seiner Herstellung | |
| EP1629887B1 (de) | Monolithische Formkörper zur Aufreinigung und Trennung von Biopolymeren | |
| DE2153658A1 (de) | Verfahren zur Herstellung von Form körpern aus Aluminiumoxid | |
| DE1949590C2 (de) | Reinigungs- und/oder Raffinierungsmittel für ölige Substanzen | |
| DE19824511B4 (de) | Verfahren zum Herstellen kugeliger Keramikteilchen | |
| DE4041890C2 (de) | ||
| WO2001002295A2 (de) | Verfahren zur gesteuerten herstellung von kugelaktivkohle | |
| DE2925314C2 (de) | Verfahren zur Herstellung von für die Schichtchromatographie geeignetem Aluminiumoxyd und dessen Verwendung | |
| DE1767754C3 (de) | Verfahren zur Herstellung von periförmigen Katalysatorträgern für hohe mechanische Beanspruchung | |
| DE2423466B2 (de) | Eingekapseltes bleichmittel auf der basis einer organischen persaeure | |
| DE4000608A1 (de) | Arbeitsverfahren zur herstellung von lithiumzirkonat, das damit hergestellte lithiumzirkonat und zwischenprodukt | |
| EP0136397A2 (de) | Verfahren zur Herstellung von aufblähbaren, kugelförmigen Hohlkörpern aus verfestigten Alkalimetallsilikatlösungen | |
| DE2364159A1 (de) | Verfahren zur herstellung von teilchenfoermigen, fuer die chromatographie geeigneten materialien | |
| DE2061093C3 (de) | Verfahren zur Herstellung poröser, geformter, feuerfester Körper sowie deren Verwendung als Katalysatorträger |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| C3 | Grant after two publication steps (3rd publication) | ||
| E77 | Valid patent as to the heymanns-index 1977 |