DE19828536A1 - Flammwidrige Polycarbonat/ABS-Formmassen - Google Patents

Flammwidrige Polycarbonat/ABS-Formmassen

Info

Publication number
DE19828536A1
DE19828536A1 DE19828536A DE19828536A DE19828536A1 DE 19828536 A1 DE19828536 A1 DE 19828536A1 DE 19828536 A DE19828536 A DE 19828536A DE 19828536 A DE19828536 A DE 19828536A DE 19828536 A1 DE19828536 A1 DE 19828536A1
Authority
DE
Germany
Prior art keywords
weight
molding compositions
compositions according
parts
component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
DE19828536A
Other languages
English (en)
Inventor
Thomas Eckel
Michael Zobel
Dieter Wittmann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bayer AG
Original Assignee
Bayer AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bayer AG filed Critical Bayer AG
Priority to DE19828536A priority Critical patent/DE19828536A1/de
Priority to KR1020007014752A priority patent/KR100541310B1/ko
Priority to CA002335948A priority patent/CA2335948A1/en
Priority to PCT/EP1999/004059 priority patent/WO2000000541A1/de
Priority to JP2000557299A priority patent/JP4263360B2/ja
Priority to DK99931060T priority patent/DK1095100T3/da
Priority to ES99931060T priority patent/ES2203154T3/es
Priority to CNB998079316A priority patent/CN1146630C/zh
Priority to AU47717/99A priority patent/AU4771799A/en
Priority to EP99931060A priority patent/EP1095100B1/de
Priority to DE59906882T priority patent/DE59906882D1/de
Priority to BR9911576-0A priority patent/BR9911576A/pt
Priority to ARP990103069A priority patent/AR016994A1/es
Publication of DE19828536A1 publication Critical patent/DE19828536A1/de
Priority to HK02100707.2A priority patent/HK1038937A1/zh
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K21/00Fireproofing materials
    • C09K21/14Macromolecular materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/08Metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/49Phosphorus-containing compounds
    • C08K5/5399Phosphorus bound to nitrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L51/00Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L51/04Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers grafted on to rubbers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L55/00Compositions of homopolymers or copolymers, obtained by polymerisation reactions only involving carbon-to-carbon unsaturated bonds, not provided for in groups C08L23/00 - C08L53/00
    • C08L55/02ABS [Acrylonitrile-Butadiene-Styrene] polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L69/00Compositions of polycarbonates; Compositions of derivatives of polycarbonates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L9/00Compositions of homopolymers or copolymers of conjugated diene hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/011Nanostructured additives

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Nanotechnology (AREA)
  • Physics & Mathematics (AREA)
  • Composite Materials (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

Die vorliegende Erfindung betrifft Polycarbonat/ABS-Formmassen, enthaltend Phosphazene und anorganische Nanopartikel, die einen ausgezeichneten Flammschutz und sehr gute mechanische Eigenschaften aufweisen.

Description

Die vorliegende Erfindung betrifft Polycarbonat/ABS-Formmassen, enthaltend Phosphazene und anorganische Nanopartikel, die einen ausgezeichneten Flammschutz und sehr gute mechanische Eigenschaften aufweisen.
In DE-A 196 16 968 werden polymerisierbare Phosphazenderivate, Verfahren zu deren Herstellung und deren Verwendung als aushärtbare Bindemittel für Lacke, Beschichtungen, Füllmittel, Spachtelmassen, Klebstoffe, Formteile oder Folien be­ schrieben.
In WO 97/40092 werden flammgeschützte Formmassen aus thermoplastischen Poly­ meren und unsubstituierten Phosphazenen vom Typ PNn-xH1-y beschrieben.
EP-A 728 811 beschreibt eine thermoplastische Mischung bestehend aus aromati­ schem Polycarbonat, Pfropfcopolymer, Copolymer und Phosphazenen, welche gute Flammschutzeigenschaften, Schlagzähigkeit und Wärmeformbeständigkeit aufweisen.
Eine Kombination aus Phosphazenen und anorganischen Nanopartikeln wird weder in WO 9700 92 noch in EP-A 728 811 beschrieben.
Aufgabe der vorliegenden Erfindung ist die Bereitstellung von Polycarbonat/ABS- Formmassen mit einer ausgezeichneten Flammfestigkeit, hoher Wärmeformbe­ ständigkeit und ausgezeichneten mechanischen Eigenschaften wie Kerbschlagzähig­ keit, Bindenahtfestigkeit und Spannungsrißbeständigkeit. Diese Eigenschaftskombi­ nation wird besonders bei Anwendungen im Bereich Datentechnik wie etwa für Gehäuse von, Monitoren, Druckern oder Kopierer gefordert.
Es wurde nun gefunden, daß PC/ABS-Formmassen, die Phosphazene in Kombination mit anorganischen Nanopartikeln enthalten, die gewünschten Eigenschaften auf­ weisen.
Gegenstand der Erfindung sind daher thermoplastische Formmassen enthaltend Poly­ carbonat und/oder Polyestercarbonat, Pfropfpolymerisat, Phosphazene und anorganisches Pulver mit einem durchschnittlichen Teilchendurchmesser kleiner gleich 200 nm, welche weitere Polymere, beispielsweise thermoplastische Vinyl(co)poly­ merisate und/oder Polyalkylenterephthalate und gegebenenfalls andere Zusatzstoffe enthalten können.
Gegenstand der Erfindung sind vorzugsweise thermoplastische Formmassen enthaltend
  • A) 40 bis 99, vorzugsweise 60 bis 98,5 Gew.-Teile aromatisches Polycarbonat und/oder Polyestercarbonat
  • B) 0,5 bis 60, vorzugsweise 1 bis 40, insbesondere 2 bis 25 Gew.-Teile Pfropf­ polymerisat von
    • 1. B.1) 5 bis 95, vorzugsweise 30 bis 80 Gew.-% eines oder mehrerer Vinylmono­ meren auf
    • 2. B.2) 95 bis 5, vorzugsweise 20 bis 70 Gew.-% einer oder mehrerer Pfropfgrundla­ gen mit einer Glasumwandlungstemperatur <10°C, vorzugsweise <0°C, beson­ ders bevorzugt <-20°C,
  • C) 0 bis 45, vorzugsweise 0 bis 30, besonders bevorzugt 2 bis 25 Gew.-Teile mindestens eines thermoplastischen Polymers, ausgewählt aus der Gruppe der Vinyl(co)polymerisate und Polyalkylenterephthalate,
  • D) 0,1 bis 50, vorzugsweise 2 bis 35, insbesondere 5 bis 25 Gew.-Teile minde­ stens einer Komponente, ausgewählt aus der Gruppe der Phosphazene der Formeln
    worin
    R jeweils gleich oder verschieden ist und für Amino, jeweils gegebenen­ falls halogeniertes, vorzugsweise mit Fluor halogeniertes C1- bis C8- Alkyl, oder C1-C8-Alkoxy, jeweils gegebenenfalls durch Alkyl, vor­ zugsweise C1-C4-Alkyl, und/oder Halogen, vorzugsweise Chlor und/oder Brom, substituiertes C5- bis C6-Cycloalkyl, C6- bis C20-Aryl, vorzugsweise Phenoxy, Naphthyloxy, oder C7- bis C12-Aralkyl vor­ zugsweise Phenyl-C1-C4-alkyl, steht,
    k für 0 oder eine Zahl von 1 bis 15, vorzugsweise für eine Zahl von 1 bis 10 steht,
  • E) 0,5 bis 40, vorzugsweise 1 bis 25, besonders bevorzugt 2 bis 15 Gew.-Teile feinteiliges anorganisches Pulver mit einem durchschnittlichen Teilchendurch­ messer von kleiner gleich 200 nm, und
  • F) 0 bis 5 Gew.-Teile, vorzugsweise 0,15 bis 1 Gew.-Teil, besonders bevorzugt 0,1 bis 0,5 Gew-Teile eines fluorierten Polyolefins.
Komponente A
Erfindungsgemäß geeignete aromatische Polycarbonate und/oder aromatische Poly­ estercarbonate gemäß Komponente A sind literaturbekannt oder nach literaturbekann­ ten Verfahren herstellbar (zur Herstellung aromatischer Polycarobonate siehe bei­ spielsweise Schnell, "Chemistry and Physics of Polycarbonates", Interscience Publishers, 1964 sowie die DE-AS 14 95 626, DE-OS 22 32 877, DE-OS 27 03 376, DE-OS 27 14 544, DE-OS 30 00 610, DE-OS 38 32 396; zur Herstellung aromati­ scher Polyestercarbonate z. B. DE-OS 30 77 934).
Die Herstellung aromatischer Polycarbonate erfolgt z. B. durch Umsetzung von Diphenolen mit Kohlensäurehalogeniden, vorzugsweise Phosgen und/oder mit aro­ matischen Dicarbonsäuredihalogeniden, vorzugsweise Benzoldicarbonsäuredihalo­ geniden, nach dem Phasengrenzflächenverfahren, gegebenenfalls unter Verwendung von Kettenabbrechern, beispielseise Monophenolen und gegebenenfalls unter Ver­ wendung von trifunktionellen oder mehr als trifunktionellen Verzweigern, beispiels­ weise Triphenolen oder Tetraphenolen.
Diphenole zur Herstellung der aromatischen Polycarbonate und/oder aromatischen Polyestercarbonate sind vorzugsweise solche der Formel (I)
wobei
A eine Einfachbindung, C1-C5-Alkylen, C2-C5-Alkyliden, C5-C6-Cycloalkyliden, -O-, -SO-, -CO-, -S-, -SO2-, C6-C12-Arylen, an das weitere aromatische gege­ benenfalls Heteroatome enthaltende Ringe kondensiert sein können,
oder ein Rest der Formel (II) oder (III)
B jeweils C1-C12-Alkyl, vorzugsweise Methyl, Halogen, vorzugsweise Chlor und/oder Brom,
x jeweils unabhängig voneinander 0, 1 oder 2,
p 1 oder 0 sind, und
R5 und R6 für jedes X1 individuell wählbar, unabhängig voneinander Wasserstoff oder C1-C6-Alkyl, vorzugsweise Wasserstoff Methyl oder Ethyl,
X1 Kohlenstoff und
m eine ganze Zahl von 4 bis 7, bevorzugt 4 oder 5 bedeuten, mit der Maßgabe, daß an mindestes einen Atom X1, R5 und R6 gleichzeitig Alkyl sind.
Bevorzugte Diphenole sind Hydrochinon, Resocin, Dihydroxydiphenole, Bis- (hydroxyphenyl)-C1-C5-alkane, Bis-(hydroxyphenyl)-C5-C6-cycloalkane, Bis- (hydroxyphenyl)-ether, Bis-(hydroxylphenyl)-sulfoxide, Bis-(hydroxyphenyl)-ketone, Bis-(hydroxyphenyl)-sulfone und α,α-Bis-(hydroxyphenyl)-diisopropyl-benzole sowie deren kernbromierte und/oder kernchlorierte Derivate.
Besonders bevorzugte Diphenole sind 4,4'-Dihydroxydiphenyl, Bisphenol-A, 2,4- Bis(4-hydroxyphenyl)-2-methylbutan, 1,1-Bis-(4-hydroxyphenyl)-cyclohexan, 1,1- Bis-(4-hydroxyphenyl)-3.3.5-trimethylcyclohexan, 4,4'-Dihydroxydiphenylsulfid, 4,4'- Dihydroxydiphenyl-sulfon sowie deren di- und tetrabromierten oder chlorierten Deri­ vate wie beispielsweise 2,2-Bis(3-Chlor-4-hydroxyphenyl)-propan, 2,2-Bis-(3,5- dichlor-4-hydroxyphenyl)-propan oder 2,2-Bis-(3,5-dibrom-4-hydroxyphenyl)-pro­ pan.
Insbesondere bevorzugt ist 2,2-Bis-(4-hydroxyphenyl)-propan (Bisphenol-A).
Es können die Diphenole einzeln oder als beliebige Mischungen eingesetzt werden.
Die Diphenole sind literaturbekannt oder nach literaturbekannten Verfahren erhältlich.
Für die Herstellung der thermoplastischen, aromatischen Polycarbonate sind geeignete Kettenabbrecher beispielsweise Phenol, p-Chlorphenol, p-tert.-Butylphenol oder 2,4,6-Tribromphenol, aber auch langkettige Alkylphenole, wie 4-(1,3-Tetramethyl­ butyl)-phenol gemäß DE-OS 28 42 005 oder Monoalkylphenol bzw. Dialkylphenole mit insgesamt 8 bis 20 C-Atomen in den Alkylsubstituenten, wie 3,5-di-tert.-Butyl­ phenol, p-iso-Octylphenol, p-tert.-Octylphenol, p-Dodecylphenol und 2-(3,5-Dime­ thylheptyl)-phenol und 4-(3,5-Dimethylheptyl)-phenol. Die Menge an einzusetzenden Kettenabbrechern beträgt im allgemeinen zwischen 0,5 Mol%, und 10 Mol-%, bezo­ gen auf die Molsumme der jeweils eingesetzten Diphenole.
Die thermoplastischen, aromatischen Polycarbonate haben mittlere Gewichtsmittel­ molekulargewichte (Mw, gemessen z. B. durch Ultrazentrifuge oder Streulichtmes­ sung) von 10 000 bis 200 000, vorzugsweise 20 000 bis 80 000.
Die thermoplastischen, aromatischen Polycarbonate können in bekannter Weise ver­ zweigt sein, und zwar vorzugsweise durch den Einbau von 0,05 bis 2,0 Mol%, bezo­ gen auf die Summe der eingesetzten Diphenole, an dreifunktionellen oder mehr als dreifunktionellen Verbindungen, beispielsweise solchen mit drei und mehr phenoli­ schen Gruppen.
Geeignet sind sowohl Homopolycarbonate als auch Copolycarbonate. Zur Herstellung erfindungsgemäßer Copolycarbonate gemäß Komponente A können auch 1 bis 25 Gew.-%, vorzugsweise 2,5 bis 25 Gew.-% (bezogen auf die Gesamtmenge an ein­ zusetzenden Diphenolen) Polydiorganosiloxane mit Hydroxy-aryloxy-Endgruppen eingesetzt werden. Diese sind bekannt (s. beispielseise US-Patent 3 419 634) bzw. nach literaturbekannten Verfahren herstellbar. Die Herstellung Polydiorganosiloxan­ haltiger Copolycarbonate wird z. B. in DE-OS 33 34 782 beschrieben.
Bevorzugte Polycarbonate sind neben den Bisphenol-A-Homopolycarbonaten die Copolycarbonate von Bisphenol-A mit bis zu 15 Mol-%, bezogen auf die Molsummen an Diphenolen, anderen als bevorzugt bzw. besonders bevorzugt genannten Diphe­ nole, insbesondere 2,2-Bis(3,5-dibrom-4-hydroxyphenyl)-propan.
Aromatische Dicarbonsäuredihalogenide zur Herstellung von aromatischen Polyester­ carbonate sind vorzugsweise die Disäuredichloride der Isophthalsäure, Terephthal­ säure, Diphenylether-4,4'-dicarbonsäure und der Naphthalin-2,6-dicarbonsäure.
Besonders bevorzugt sind Gemische der Disäuredichloride der Isophthalsäure und der Terephthalsäure im Verhältnis zwischen 1 : 20 und 20 : 1.
Bei der Herstellung von Polyestercarbonaten wird zusätzlich ein Kohlensäurehaloge­ nid, vorzugsweise Phosgen als bifunktionelles Säurederivat mitverwendet.
Als Kettenabbrecher für die Herstellung der aromatischen Polyestercarbonate kom­ men außer den bereits genannten Monophenolen noch deren Chlorkohlensäureester sowie die Säurechloride von aromatischen Monocarbonsäuren, die gegebenenfalls durch C1-C22-Alkylgruppen oder durch Halogenatome substituiert sein können, sowie aliphatische C2-C22-Monocarbonsäurechloride in Betracht.
Die Menge an Kettenabbrechern beträgt jeweils 0,1 bis 10 Mol-%, bezogen im Falle der phenolischen Kettenabbrecher auf Mole Diphenole und Falle von Monocarbon­ säurechlorid-Kettenabbrecher auf Mole Dicarbonsäuredichloride.
Die aromatischen Polyestercarbonate können auch aromatische Hydroxycarbonsäuren eingebaut enthalten.
Die aromatischen Polyestercarbonate können sowohl linear als auch in bekannter Weise verzweigt sein (siehe dazu ebenfalls DE-OS 29 40 024 und DE-OS 30 07 934).
Als Verzweigungsmittel können beispielsweise 3- oder mehrfunktionelle Carbonsäu­ rechloride, wie Trimesinsäuretrichlorid, Cyanursäuretrichlorid, 3,3'-,4,4'-Benzophe­ non-tetracarbonsäuretetrachlorid, 1,4,5,8-Napthalintetracarbonsäuretetrachlorid oder Pyromellithsäuretetrachlorid, in Mengen von 0,01 bis 1,0 Mol% (bezogen auf einge­ setzte Dicarbonsäuredichloride) oder 3- oder mehrfunktionelle Phenole, wie Phloro­ glucin, 4,6-Dimethyl-2,4,6-tri-(4-hydroxyphenyl)-hepten-2,4,4-Dimethyl-2,4-6-tri-(4- hydroxyphenyl)-heptan, 1,3,5-Tri-(4-hydroxyphenyl)-benzol, 1,1,1-Tri-(4-hydroxy­ phenyl)-ethan, Tri-(4-hydroxyphenyl)-phenylmethan, 2,2-Bis[4,4-bis(4-hydroxy­ phenyl)-cyclohexyl]-propan, 2,4-Bis(4-hydroxyphenyl-isopropyl)-phenol, Tetra-(4- hydroxyphenyl)-methan, 2,6-Bis(2-hydroxy-5-methyl-benzyl)-4-methyl-phenol, 2-(4- Hydroxyphenyl)-2-(2,4-dihydroxyphenyl)-propan, Tetra-(4-[4-hydroxyphenyl-isopro­ pyl]-phenoxy)-methan, 1,4-Bis[4,4'-dihydroxytri-phenyl)-methyl]-benzol, in Mengen von 0,01 bis 1,0 Mol-% bezogen auf eingesetzte Diphenole verwendet werden. Phe­ nolische Verzweigungsmittel können mit den Diphenolen vorgelegt, Säurechlorid- Verzweigungsmittel können zusammen mit den Säuredichloriden eingetragen werden.
In den thermoplastischen, aromatischen Polyestercarbonaten kann der Anteil an Car­ bonatstruktureinheiten beliebig variieren. Vorzugsweise beträgt der Anteil an Carbo­ natgruppen bis zu 100 Mol-%, insbesondere bis zu 80 Mol%, besonders bevorzugt bis zu 50 Mol%, bezogen auf die Summe an Estergruppen und Carbonatgruppen. Sowohl der Ester- als auch der Carbonatanteil der aromatischen Polyestercarbonate kann in Form von Blöcken oder statistisch verteilt im Polykondensat vorliegen.
Die relative Lösungsviskosität (ηrel) der aromatischen Polycarbonate und Polyester­ carbonate liegt im Bereich 1,18 bis 1,4, vorzugsweise 1,22 bis 1,3 (gemessen an Lösungen von 0,5 g Polyestercarbonat in 100 ml Methylenchlorid-Lösung bei 25°C).
Die thermoplastischen, aromatischen Polycarbonate und Polyestercarbonate können allein oder im beliebigen Gemisch untereinander eingesetzt werden.
Komponente B
Die Komponente B umfaßt ein oder mehrere Pfropfpolymerisate von
  • 1. B.1 5 bis 95, vorzugsweise 30 bis 80 Gew.-%, wenigstens eines Vinylmonomeren auf
  • 2. B.2 95 bis 5, vorzugsweise 70 bis 20 Gew.-% einer oder mehrerer Pfropfgrund­ lagen mit Glasübergangstemperaturen <10°C, vorzugsweise <0°C, besonders bevorzugt <-20°C.
    Die Pfropfgrundlage B.2 hat im allgemeinen eine mittlere Teilchengröße (d50- Wert) von 0,05 bis 5 µm, vorzugsweise 0,10 bis 0,5 µm, besonders bevorzugt 0,20 bis 0,40 µm.
Monomere B.1 sind vorzugsweise Gemische aus
  • 1. B.1.1 50 bis 99 Gew.-Teilen Vinylaromaten und/oder kernsubstituierten Vinylaro­ maten (wie beispielsweise Styrol, α-Methylstyrol, p-Methylstyrol, p-Chlorsty­ rol) und/oder Methacrylsäure-(C1-C8)-Alkylester (wie z. B. Methylmethacrylat, Ethylmethacrylat) und
  • 2. B.1.2 1 bis 50 Gew.-Teilen Vinylcyanide (ungesättigte Nitrile wie Acrylnitril und Methacrylnitril) und/oder (Meth)Acrylsäure-(C1-C8)-Alkylester (wie z. B. Methylmethacrylat, n-Butylacrylat, t-Butylacrylat) und/oder Derivate (wie Anhydride und Imide) ungesättigter Carbonsäuren (beispielsweise Maleinsäu­ reanhydrid und N-Phenyl-Maleinimid).
Bevorzugte Monomere B.1.1 sind ausgewählt aus mindestens einem der Monomere Styrol, α-Methylstyrol und Methylmethacrylat, bevorzugte Monomere B.1.2 sind ausgewählt aus mindestens einem der Monomere Acrylnitril, Maleinsäureanhydrid und Methylmethacrylat.
Besonders bevorzugte Monomere sind B.1.1 Styrol und B.1.2 Acrylnitril.
Für die Pfropfpolymerisate B geeignete Pfropfgrundlagen B.2 sind beispielsweise Dienkautschuke, EP(D)M-Kautschuke, also solche auf Basis Ethylen/Propylen und gegebenenfalls Dien, Acrylat-, Polyurethan-, Silikon-, Chloropren und Ethylen/Vi­ nylacetat-Kautschuke.
Bevorzugte Pfropfgrundlagen B.2 sind Dienkautschuke (z. B. auf Basis Butadien, Iso­ pren etc.) oder Gemische von Dienkautschuken oder Copolymerisate von Dienkau­ tschuken oder deren Gemischen mit weiteren copolymerisierbaren Monomeren (z. B. gemäß B.1.1 und B.1.2), mit der Maßgabe, daß die Glasübergangstemperatur der Komponente B.2 unterhalb <10°C, vorzugsweise <0°C, besonders bevorzugt <-10°C liegt.
Besonders bevorzugt ist reiner Polybutadienkautschuk.
Besonders bevorzugte Polymerisate B sind z. B. ABS-Polymerisate (Emulsions-, Masse- und Suspensions-ABS), wie sie z. B. in der DE-OS 20 35 390 (= US-PS 3 644 574) oder in der DE-OS 22 48 242 (= GB-PS 1 409 275) bzw. in Ullmann, Enzyklo­ pädie der Technischen Chemie, Bd. 19 (1980), S. 280 ff. beschrieben sind. Der Gelan­ teil der Pfropfgrundlage B.2 beträgt mindestens 30 Gew.-%, vorzugsweise mindestens 40 Gew.-% (in Toluol gemessen).
Die Pfropfcopolymerisate B werden durch radikalische Polymerisation, z. B. durch Emulsions-, Suspensions-, Lösungs- oder Massepolymerisation, vorzugsweise durch Emulsionspolymerisation hergestellt.
Besonders geeignete Pfropfkautschuke sind auch ABS-Polymerisate, die durch Redox-Initiierung mit einem Initiatorsystem aus organischem Hydroperoxid und Ascorbinsäure gemäß US-P 4 937 285 hergestellt werden.
Da bei der Pfropfreaktion die Pfropfmonomeren bekanntlich nicht unbedingt vollstän­ dig auf die Pfropfgrundlage aufgepfropft werden, werden erfindungsgemäß unter Pfropfpolymerisaten B auch solche Produkte verstanden, die durch (Co)Polymeri­ sation der Pfropfmonomere in Gegenwart der Pfropfgrundlage gewonnen werden und bei der Aufarbeitung mit anfallen.
Geeignete Acrylatkautschuke gemäß B.2 der Polymerisate B sind vorzugsweise Poly­ merisate aus Acrylsäurealkylestern, gegebenenfalls mit bis zu 40 Gew.-%, bezogen auf B.2 anderen polymerisierbaren, ethylenisch ungesättigten Monomeren. Zu den bevorzugten polymerisierbaren Acrylsäureestern gehören C1-C8-Alkylester, beispiels­ weise Methyl-, Ethyl-, Butyl-, n-Octyl- und 2-Ethylhexylester; Halogenalkylester, vorzugsweise Halogen-C1-C8-alkyl-ester, wie Chlorethylacrylat sowie Mischungen dieser Monomeren.
Zur Vernetzung können Monomere mit mehr als einer polymerisierbaren Doppelbin­ dung copolymerisiert werden. Bevorzugte Beispiele für vernetzende Monomere sind Ester ungesättigter Monocarbonsäuren mit 3 bis 8 C-Atomen und ungesättigter ein­ wertiger Alkohole mit 3 bis 12 C-Atomen, oder gesättigter Polyole mit 2 bis 4 OH- Gruppen und 2 bis 20 C-Atomen, wie z. B. Ethylenglykoldimethacrylat, Allylmeth­ acrylat; mehrfach ungesättigte heterocyclische Verbindungen, wie z. B. Trivinyl- und Triallylcyanurat; polyfunktionelle Vinylverbindungen, wie Di- und Trivinylbenzole; aber auch Triallylphosphat und Diallylphthalat.
Bevorzugte vernetzende Monomere sind Allylmethacrylat, Ethylenglykoldimethacry­ lat, Diallylphthalat und heterocyclische Verbindungen, die mindestens 3 ethylenisch ungesättigte Gruppen aufweisen.
Besonders bevorzugte vernetzende Monomere sind die cyclischen Monomere Triallyl­ cyanurat, Triallylisocyanurat, Triacryloylhexahydro-s-triazin, Triallylbenzole. Die Menge der vernetzten Monomere beträgt vorzugsweise 0,02 bis 5, insbesondere 0,05 bis 2 Gew.-%, bezogen auf die Pfropfgrundlage B.2.
Bei cyclischen vernetzenden Monomeren mit mindestens 3 ethylenisch ungesättigten Gruppen ist es vorteilhaft, die Menge auf unter 1 Gew.-% der Pfropfgrundlage B.2 zu beschränken.
Bevorzugte "andere" polymerisierbare, ethylenisch ungesättigte Monomere, die neben den Acrylsäureestern gegebenenfalls zur Herstellung der Pfropfgrundlage B.2 dienen können, sind z. B. Acrylnitril, Styrol, α-Methylstyrol, Acrylamide, Vinyl-C1-C6-alkyl­ ether, Methylmethacrylat, Butadien. Bevorzugte Acrylatkautschuke als Pfropfgrund­ lage B.2 sind Emulsionspolymerisate, die einen Gelgehalt von mindestens 60 Gew.-% aufweisen.
Weitere geeignete Pfropfgrundlagen gemäß B.2 sind Silikonkautschuke mit pfropfak­ tiven Stellen, wie sie in den DE-OS 37 04 657, DE-OS 37 04 655, DE-OS 36 31 540 und DE-OS 36 31 539 beschrieben werden.
Der Gelgehalt der Pfropfgrundlage B.2 wird bei 25°C in einem geeigneten Lösungs­ mittel bestimmt (M. Hoffmann, H. Krömer, R. Kuhn, Polymeranalytik I und II, Georg Thieme-Verlag, Stuttgart 1977).
Die mittlere Teilchengröße d50 ist der Durchmesser, oberhalb und unterhalb dessen jeweils 50 Gew.-% der Teilchen liegen. Er kann mittels Ultrazentrifugenmessung (W. Scholtan, H. Lange, Kolloid, Z. und Z. Polymere 250 (1972), 782-1796) bestimmt werden.
Komponente C
Die Komponente C umfaßt ein oder mehrere thermoplastische Vinyl (co)polymerisate C.1 und/oder Polyalkylenterephthalate C.2.
Geeignet sind als Vinyl(co)Polymerisate C.1 Polymerisate von mindestens einem Mo­ nomeren aus der Gruppe der Vinylaromaten, Vinylcyanide (ungesättigte Nitrile), (Meth)Acrylsäure-(C1-C8)-Alkylester, ungesättigte Carbonsäuren sowie Derivate (wie Anhydride und Imide) ungesättigter Carbonsäuren. Insbesondere geeignet sind (Co)Polymerisate aus
  • 1. C.1.1 50 bis 99, vorzugsweise 60 bis 80 Gew.-Teilen Vinylaromaten und/oder kern­ substituierten Vinylaromaten wie beispielsweise Styrol, α-Methylstyrol, p- Methylstyrol, p-Chlorstyrol) und/oder Methacrylsäure-(C1-C8)-Alkylester wie z. B. Methylmethacrylat, Ethylmethacrylat), und
  • 2. C.1.2 1 bis 50, vorzugsweise 20 bis 40 Gew.-Teilen Vinylcyanide (ungesättigte Nitrile) wie Acrylnitril und Methacrylnitril und/oder (Meth)Acrylsäure-(C1-C8)- Alkylester (wie z. B. Methylmethacrylat, n-Butylacrylat, t-Butylacrylat) und/oder ungesättigte Carbonsäuren (wie Maleinsäure) und/oder Derivate (wie Anhydride und Imide) ungesättigter Carbonsäuren (beispielsweise Maleinsäu­ reanhydrid und N-Phenyl-Maleinimid).
Die (Co)Polymerisate C.1 sind harzartig, thermoplastisch und kautschukfrei.
Besonders bevorzugt ist das Copolymerisat aus C.1.1 Styrol und C.1.2 Acrylnitril.
Die (Co)Polymerisate gemäß C.1 sind bekannt und lassen sich durch radikalische Polymerisation, insbesondere durch Emulsions-, Suspensions-, Lösungs- oder Mas­ sepolymerisation herstellen. Die (Co)Polymerisate gemäß Komponente C.1 besitzen vorzugsweise Molekulargewichte Mw (Gewichtsmittel, ermittelt durch Lichtstreuung oder Sedimentation) zwischen 15 000 und 200 000.
Die Polyalkylenterephthalate der Komponente C.2) sind Reaktionsprodukte aus aro­ matischen Dicarbonsäuren oder ihren reaktionsfähigen Derivaten, wie Dimethylestern oder Anhydriden, und aliphatischen, cycloaliphatischen oder araliphatischen Diolen sowie Mischungen dieser Reaktionsprodukte.
Bevorzugte Polyalkylenterephthalate enthalten mindestens 80 Gew.-%, vorzugsweise mindestens 90 Gew.-%, bezogen auf die Dicarbonsäurekomponente Terephthalsäure­ reste und mindestens 80 Gew.-%, vorzugsweise mindestens 90 Mol-%, bezogen auf die Diolkomponente Ethylenglykol- und/oder Butandiol-1,4-Reste.
Die bevorzugten Polyalkylenterephthalate können neben Terephthalsäureresten bis zu 20 Mol-%, vorzugsweise bis zu 10 Mol-%, Reste anderer aromatischer oder cycloali­ phatischer Dicarbonsäuren mit 8 bis 14 C-Atomen oder aliphatischer Dicarbonsäuren mit 4 bis 12 C-Atomen enthalten, wie z. B. Reste von Phthalsäure, Isophthalsäure, Naphthalin-2,6-dicarbonsäure, 4,4'-Diphenyldicarbonsäure, Bernsteinsäure, Adipin­ säure, Sebacinsäure, Azelainsäure, Cyclohexan-diessigsäure.
Die bevorzugten Polyalkylenterephthalate können neben Ethylenglykol- bzw. Butan­ diol-1,4-Resten bis zu 20 Mol-%, vorzugsweise bis zu 10 Mol%, andere aliphatische Diole mit 3 bis 12 C-Atomen oder cycloalipahtische Diole mit 6 bis 21 C-Atomen enthalten, z. B. Reste von Propandiol-1,3, 2-Ethylpropandiol-1,3, Neopentylglykol, Pentandiol-1,5, Hexandiol-1,6, Cyclohexan-dimethanol-1,4, 3-Ethylpentandiol-2,4, 2- Methylpentandiol-2,4, 2,2,4-Trimethylpentandiol-1,3, 2-Ethylhexandiol-1,3, 2,2- Diethylpropandiol-1,3, Hexandiol-2,5, 1,4-Di-(β-hydroxyethoxy)-benzol, 2,2-Bis-(4- hydroxycyclohexyl)-propan, 2,4-Dihydroxy-1,1,3,3-tetramethyl-cyclobutan, 2,2-Bis- (4-β-hydroxyethoxy-phenyl)-propan und 2,2-Bis-(4-hydroxypropoxyphenyl)-propan (DE-OS 24 07 674, 2 407 776, 2 715 932).
Die Polyalkylenterephthalate können durch Einbau relativ kleiner Mengen 3- oder 4- wertiger Alkohole oder 3- oder 4-basischer Carbonsäuren, z. B. gemäß DE-OS 19 00 270 und US-PS 3 692 744, verzweigt werden. Beispiele bevorzugter Verzwei­ gungsmittel sind Trimesinsäure, Trimellithsäure, Trimethylolethan und -propan und Pentaerythrit.
Besonders bevorzugt sind Polyalkylenterephthalate, die allein aus Terephthalsäure und deren reaktionsfähigen Derivaten (z. B. deren Dialkylestern) und Ethylenglykol und/oder Butandiol-1,4 hergestellt worden sind, und Mischungen dieser Polyalkylen­ terephthalate.
Mischungen von Polyalkylenterephthalaten enthalten 1 bis 50 Gew.-%, vorzugsweise 1 bis 30 Gew.-%, Polyethylenterephthalat und 50 bis 99 Gew.-%, vorzugsweise 70 bis 99 Gew.-%, Polybutylenterephthalat.
Die vorzugsweise verwendeten Polyalkylenterephthalate besitzen im allgemeinen eine Grenzviskosität von 0,4 bis 1,5 dl/g, vorzugsweise 0,5 bis 1,2 dl/g, gemessen in Phenol/o-Dichlorbenzol (1 : 1 Gewichtsteile) bei 25°C im Ubbelohde-Viskosimeter.
Die Polyalkylenterephthalate lassen sich nach bekannten Methoden herstellen (s. z. B. Kunststoff-Handbuch, Band VIII, S. 695 ff., Carl-Hanser-Verlag, München 1973).
Komponente D
Phosphazene gemäß Komponente D), welche gemäß der vorliegenden Erfindung ein­ gesetzt werden, sind lineare Phosphazene gemäß Formel (Ia) und cyclische Phos­ phazene gemäß Formel (Ib)
wobei R und k die oben angegebene Bedeutung haben.
Beispielhaft seien genannt:
Propoxyphosphazen, Phenoxyphosphazen, Methylphenoxyphosphazen, Aminophos­ phazen und Fluoralkylphosphazene.
Bevorzugt ist Phenoxyphosphazen.
Die Phosphazene können allein oder als Mischung eingesetzt werden. Der Rest R kann immer gleich sein oder 2 oder mehr Reste in den Formeln (Ia) und (Ib) können verschieden sein.
Die Phosphazene und deren Herstellung sind beispielsweise in EP-A 728 811, DE-A 19 61 668 und WO 97/40092 beschrieben.
Komponente E
Die Komponente E) umfaßt feinstteilige anorganische Pulver.
Die erfindungsgemäß zum Einsatz kommenden feinstteiligen anorganischen Pulver E) bestehen vorzugsweise aus wenigstens einer polaren Verbindung von einem oder mehreren Metallen der 1. bis 5. Hauptgruppe oder 1. bis 8. Nebengruppe des Periodensystems, bevorzugt der 2. bis 5. Hauptgruppe oder 4. bis 8. Nebengruppe, besonders bevorzugt der 3. bis 5. Hauptgruppe oder 4. bis 8. Nebengruppe, oder aus Verbindungen dieser Metalle mit wenigstens einem Element ausgewählt aus Sauerstoff, Wasserstoff Schwefel, Phosphor, Bor, Kohlenstoff, Stickstoff oder Silicium.
Bevorzugte Verbindungen sind beispielsweise Oxide, Hydroxide, wasserhaltige Oxide, Sulfate, Sulfite, Sulfide, Carbonate, Carbide, Nitrate, Nitrite, Nitride, Borate, Silikate, Phosphate, Hydride, Phosphite oder Phosphonate.
Bevorzugt bestehen die feinstteiligen anorganischen Pulver aus Oxiden, Phosphaten, Hydroxiden, vorzugsweise aus TiO2, SiO2, SnO2, ZnO, ZnS, Böhmit, ZrO2, Al2O3, Aluminiumphosphate, Eisenoxide, ferner TiN, WC, AlO(OH), Sb2O3, Eisenoxide, NaSO4, Vanadianoxide, Zinkborat, Silicate wie Al-Silikate, Mg-Silikate, ein-, zwei-, dreidimensionale Silikate. Mischungen und dotierte Verbindungen sind ebenfalls verwendbar.
Desweiteren können diese nanoskaligen Partikel mit organischen Molekülen ober­ flächenmodifiziert sein, um eine bessere Verträglichkeit mit den Polymeren zu er­ zielen. Auf diese Weise lassen sich hydrophobe oder hydrophile Oberflächen er­ zeugen.
Besonders bevorzugt sind hydrathaltige Aluminiumoxide, z. B. Böhmit oder TiO2.
Die durchschnittlichen Teilchendurchmesser der Nanopartikel sind kleiner gleich 200 nm, bevorzugt kleiner gleich 150 nm, insbesondere 1 bis 100 nm.
Teilchengröße und Teilchendurchmesser bedeutet immer den mittleren Teilchen­ durchmesser d50, ermittelt durch Ultrazentrifugenmessungen nach W. Scholtan et al., Kolloid-Z. und Z. Polymere 250 (1972), S. 782-796.
Das anorganische Pulver wird in Mengen von 0,5 bis 40, vorzugsweise 1 bis 25, besonders bevorzugt von 2 bis 15 Gew.-%, bezogen auf das thermoplastische Material in die thermoplastische Formmasse eingearbeitet.
Die anorganischen Verbindungen können als Pulver, Pasten, Sole Dispersionen oder Suspensionen vorliegen. Durch Ausfällen können aus Dispersionen, Sole oder Sus­ pensionen Pulver erhalten werden.
Die Pulver können nach üblichen Verfahren in die thermoplastischen Formmassen ein­ gearbeitet werden, beispielsweise durch direktes Kneten oder Extrudieren von Form­ massen und den feinstteiligen anorganischen Pulvern. Bevorzugte Verfahren stellen die Herstellung eines Masterbatch, z. B. in Flammschutzadditiven und wenigstens einer Komponente der erfindungsgemäßen Formmassen in Monomeren oder Lösungsmit­ teln, oder die Cofällung von einer thermoplastischen Komponente und den feinstteili­ gen anorganischen Pulvern, z. B. durch Cofällung einer wäßrigen Emulsion und den feinstteiligen anorganischen Pulvern dar, gegebenenfalls in Form von Dispersionen, Suspensionen, Pasten oder Solen der feinstteiligen anorganischen Materialien.
Komponente F
Die fluorierten Polyolefine F sind hochmolekular und besitzen Glasübergangstempe­ raturen von über -30°C, in der Regel von über 100°C, Fluorgehalte, vorzugsweise von 65 bis 76, insbesondere von 70 bis 76 Gew.-%, mittlere Teilchendurchmesser d50 von 0,05 bis 1000, vorzugsweise 0,08 bis 20 µm. Im allgemeinen haben die fluorierten Polyolefine F eine Dichte von 1,2 bis 2,3 g/cm3. Bevorzugte fluorierte Polyolefine F sind Polytetrafluorethylen, Polyvinylidenfluorid, Tetrafluorethylen/Hexafluorpropylen- und Ethylen/Tetrafluorethylen-Copolymerisate. Die fluorierten Polyolefine sind be­ kannt (vgl. "Vinyl and Related Polymers" von Schildknecht, John Wiley & Sons, Inc., New York, 1962, Seite 484-494; "Fluorpolymers" von Wall, Wiley-Interscience, John Wiley & Sons, Inc., New York, Band 13, 1970, Seite 623-654; "Modern Plastics Encyclopedia", 1970-1971, Band 47, Nr. 10A, Oktober 1970, Mc Graw-Hill, Inc., New York, Seite 134 und 774; "Modern Plastica Encyclopedia", 1975-1976, Oktober 1975, Band 52, Nr. 10A, Mc Graw-Hill, Inc., New York, Seite 27, 28 und 472 und US-PS 3 671 487, 3 723 373 und 3 838 092).
Sie können nach bekannten Verfahren hergestellt werden, so beispielsweise durch Polymerisation von Tetrafluorethylen in wäßrigem Medium mit einem freie Radikale bildenden Katalysator, beispielsweise Natrium-, Kalium- oder Ammoniumperoxidisulfat bei Drucken von 7 bis 71 kg/cm2 und bei Temperaturen von 0 bis 200°C, vorzugs­ weise bei Temperaturen von 20 bis 100°C. (Nähere Einzelheiten s. z. B. US-Patent 2 393 967). Je nach Einsatzform kann die Dichte dieser Materialien zwischen 1,2 und 2,3 g/cm3, die mittlere Teilchengröße zwischen 0,5 und 1000 µm liegen.
Erfindungsgemäß bevorzugte fluorierte Polyolefine F sind Tetrafluorethylenpolyme­ risate mit mittleren Teilchendurchmesser von 0,05 bis 20 µm, vorzugsweise 0,08 bis 10 µm, und eine Dichte von 1,2 bis 1,9 g/cm3 und werden vorzugsweise in Form einer koagulierten Mischung von Emulsionen der Tetrafluorethylenpolymerisate F mit Emulsionen der Pfropfpolymerisate B eingesetzt.
Geeignete, in Pulverform einsetzbare fluorierte Polyolefine F sind Tetrafluorethy­ lenpolymerisate mit mittleren Teilchendurchmesser von 100 bis 1000 µm und Dichten von 2,0 g/cm3 bis 2,3 g/cm3.
Zur Herstellung einer koagulierten Mischung aus B und F wird zuerst eine wäßrige Emulsion (Latex) eines Pfropfpolymerisates B mit einer feinteiligen Emulsion eines Tetrafluorethylenpolymerisates F vermischt; geeignete Tetrafluorethylenpolymerisat- Emulsionen besitzen üblicherweise Feststoffgehalte von 30 bis 70 Gew-.%, insbeson­ dere von 50 bis 60 Gew.-%, vorzugsweise von 30 bis 35 Gew.-%.
Die Mengenangabe bei der Beschreibung der Komponente B kann den Anteil des Pfropfpolymerisats für die koagulierte Mischung aus Pfropfpolymerisat und fluorier­ tem Polyolefinen einschließen.
In der Emulsionsmischung liegt das Gleichgewichtsverhältnis Pfropfpolymerisat B zum Tetrafluorethylenpolymerisat F bei 95 : 5 bis 60 : 40. Anschließend wird die Emul­ sionsmischung in bekannter Weise koaguliert, beispielsweise durch Sprühtrocknen, Gefriertrocknung oder Koagulation mittels Zusatz von anorganischen oder organi­ schen Salzen, Säuren, Basen oder organischen, mit Wasser mischbaren Lösemitteln, wie Alkoholen, Ketonen, vorzugsweise bei Temperaturen von 20 bis 150°C, insbe­ sondere von 50 bis 100°C. Falls erforderlich, kann bei 50 bis 200°C, bevorzugt 70 bis 100°C, getrocknet werden.
Geeignete Tetrafluorethylenpolymerisat-Emulsionen sind handelsübliche Produkte und werden beispielsweise von der Firma DuPont als Teflon® 30 N angeboten.
Die erfindungsgemäßen Formmassen können wenigstens eines der üblichen Additive, wie Gleit- und Entformungsmittel, Nukleiermittel, Anmtistatika, Stabilisatoren sowie Farbstoffe und Pigmente enthalten.
Die erfindungsgemäßen Formmassen können bis zu 35 Gew.-%, bezogen auf die Gesamt-Formmasse, eines weiteren, gegebenenfalls synergistisch wirkenden Flamm­ schutzmittels enthalten. Beispielhaft werden als weitere Flammschutzmittel organische Phosphorverbindungen wie beispielsweise beschrieben in EP-A 363 608, EP-A 345 522 und EP-A 640 655, organische Halogenverbindungen wie Decabrombisphenyl­ ether, Tetrabrombisphenol, anorganische Halogenverbindungen wie Ammonium­ bromid, Stickstoffverbindungen, wie Melamin, Melaminformaldehyd-Harze, anorga­ nische Hydroxidverbindungen wie Mg-, Al-Hydroxid, anorganische Verbindungen wie Antimonoxide, Bariummetaborat, Hydroxoantimonat, Zirkonoxid, Zirkonhydroxid, Molybdenoxid, Ammoniummolybdat, Zinkborat, Ammoniumborat, Bariummetaborat und Zinnoxid sowie Siloxanverbindungen genannt.
Die erfindungsgemäßen Formmassen enthaltend die Komponenten A bis F und gegebenenfalls weitere bekannte Zusätze wie Stabilisatoren, Farbstoffen, Pigmenten, Gleit- und Entformungsmitteln, Nukleiermittel sowie Antistatika, werden hergestellt, indem man die jeweiligen Bestandteile in bekannter Weise vermischt und bei Temperaturen von 200°C bis 300°C in üblichen Aggregaten wie Innenknetern, Extru­ dern und Doppelwellenschnecken schmelzcompoundiert und schmelzextrudiert, wobei die Komponente F vorzugsweise in Form der bereits erwähnten koagulierten Mischung eingesetzt wird.
Die Vermischung der einzelnen Bestandteile kann in bekannter Weise sowohl suk­ zessive als auch simultan erfolgen, und zwar sowohl bei etwa 20°C (Raumtemperatur) als auch bei höherer Temperatur.
Die erfindungsgemäßen thermoplastischen Formmassen eignen sich aufgrund ihrer ausgezeichneten Flammfestigkeit und Wärmeformbeständigkeit sowie ihren guten Eigenschaften wie Bindenahtfestigkeit und ESC-Verhalten (Spannungsrißbeständig­ keit) zur Herstellung von Formkörpern jeglicher Art, insbesondere solchen mit erhöhten Anforderungen an Bruchbeständigkeit.
Die Formmassen der vorliegenden Erfindung können zur Herstellung von Formkör­ pern jeder Art verwendet werden. Insbesondere können Formkörper durch Spritzguß hergestellt werden. Beispiele für herstellbare Formkörper sind: Gehäuseteile jeder Art, z. B. für Haushaltsgeräte wie Saftpressen, Kaffeemaschinen, Mixer, für Büromaschi­ nen, wie Monitore, Drucker, Kopierer oder Abdeckplatten für den Bausektor und Teile für den Kfz-Sektor. Sie sind außerdem auf dem Gebiet der Elektrotechnik einsetzbar, weil sie sehr gute elektrische Eigenschaften haben.
Weiterhin können die erfindungsgemäßen Formmassen beispielsweise zur Herstellung von folgenden Formkörpern bzw. Formteilen verwendet werden:
Innenausbauteile für Schinenfahrzeuge, Radkappen, Gehäuse von Kleintransforma­ toren enthaltenden Elektrogeräten, Gehäuse für Geräte zur Informationsverbreitung und -Übermittlung, Gehäuse und Verkleidung für medizinische Zwecke, Massage­ geräte und Gehäuse dafür, Spielfahrzeuge für Kinder, Flächige Wandelemente, Gehäuse für Sicherheitseinrichtungen, Heckspoiler, Wärmeisolierte Transportbehält­ nisse, Vorrichtung zur Haltung oder Versorgung von Kleintieren, Formteile für Sanitär- und Badeausrüstungen, Abdeckgitter für Lüfteröffnungen, Formteile für Garten- und Gerätehäuser, Gehäuse für Gartengeräte.
Eine weitere Form der Verarbeitung ist die Herstellung von Formkörpern durch Tiefziehen aus vorher hergestellten Platten oder Folien.
Ein weiterer Gegenstand der vorliegenden Erfindung ist daher auch die Verwendung der erfindungsgemäßen Formmassen zur Herstellung von Formkörpern jeglicher Art, vorzugsweise der oben genannten, sowie die Formkörper aus den erfindungsgemäßen Formmassen.
Beispiele Komponente A
Lineares Polycarbonat auf Basis Bisphenol A mit einer relativen Lösungsviskosität von 1,252, gemessen in CH2Cl2 als Lösungsmittel bei 25°C und einer Konzentration von 0,5 g/ 100 ml.
Komponente B
Pfropfpolymerisat von 40 Gew.-Teilen eines Copolymerisats aus Styrol und Acrylnitril im Verhältnis von 73 : 27 auf 60 Gew.-Teile teilchenförmigen vernetzten Polybutadien­ kautschuk (mittlerer Teilchendurchmesser d50 = 0,28 µm), hergestellt durch Emulsions­ polymerisation.
Komponente C
Styrol/Acrylnitril-Copolymerisat mit einem Styrol/Acrylnitril-Gewichtsverhältnis von 72 : 28 und einer Grenzviskosität von 0,55 dl/g (Messung in Dimethylformamid bei 20°C).
Komponente D
Phenoxyphosphazen der Formel
Handelsprodukt: P-3800 der Firma Nippon Soda Co Ltd., Japan
Komponente E
Pural® 200, ein Aluminiumhydroxid (Fa. Condea, Hamburg, Deutschland), mittlere Teilchengröße ca. 50 nm.
Komponente F
Tetrafluorethylenpolymerisat als koagulierte Mischung aus einer SAN-Pfropfpolyme­ risat-Emulsion gemäß o. g. Komponente B in Wasser und einer Tetrafluorethylenpoly­ merisat-Emulsion in Wasser. Das Gewichtsverhältnis Pfropfpolymerisat B zum Tetra­ fluorethylenpolymerisat E in der Mischung ist 90 Gew.-% zu 10 Gew.-%. Die Tetra­ fluorethylenpolyermisat-Emulsion besitzt einen Feststoffgehalt von 60 Gew.-%, der mittlere Teilchendurchmesser liegt zwischen 0,05 und 0,5 µm. Die SAN-Pfropfpoly­ merisat-Emulsion besitzt einen Feststoffgehalt von 34 Gew.-% und einen mittleren Latexteilchendurchmesser von d50 = 0,28 µm.
Herstellung von F
Die Emulsion des Tetrafluorethylenpolymerisats (Teflon 30 N der Fa. DuPont) wird mit der Emulsion des SAN-Pfropfpolymerisats B vermischt und mit 1,8 Gew.-%, be­ zogen auf Polymerfeststoff, phenolischer Antioxidantien stabilisiert: Bei 85 bis 95°C wird die Mischung mit einer wäßrigen Lösung von MgSO4 (Bittersalz) und Essig­ säure bei pH 4 bis 5 koaguliert, filtriert und bis zur praktischen Elektrolytfreiheit ge­ waschen, anschließend durch Zentrifugation von der Hauptmenge Wasser befreit und danach bei 100°C zu einem Pulver getrocknet. Dieses Pulver kann dann mit den wei­ teren Komponenten in den beschriebenen Aggregaten compoundiert werden.
Herstellung und Prüfung der erfindungsgemäßen Formmassen
Das Mischen der Komponenten erfolgt auf einem 3-l-Innenkneter. Die Formkörper werden auf einer Spritzgießmaschine Typ Arburg 270 E bei 260°C hergestellt.
Die Bestimmung der Wärmeformbeständigkeit nach Vicat B erfolgt gemäß DIN 53 460 (ISO 306) an Stäben der Abmessung 80 × 10 × 4 mm3.
Die Bestimmung der Kerbschlagzähigkeit ak wird gemäß ISO 180/1 A durchgeführt.
Zur Ermittlung der Bindenahtfestigkeit wird die Schlagzähigkeit nach DIN 53 453 an der Bindenaht von beidseitig ausgespritzten Prüfkörpern (Verarbeitungstemperatur: 260°C) der Dimension 170 × 10 × 4 mm gemessen.
Das Brandverhalten der Proben wurde nach UL-Subj. 94 V an Stäben der Abmessung 127 × 12,7 × 1,6 mm gemessen, hergestellt auf einer Spritzgußmaschine bei 260°C.
Der UL 94 V-Test wird wie folgt duchgeführt:
Substanzproben werden zu Stäben der Abmessungen 127 × 12,7 × 1,6 mm geformt. Die Stäbe werden vertikal so montiert, daß die Unterseite des Probekörpers sich 305 mm über einen Streifen Verbandstoff befindet. Jeder Probestab wird einzeln mittels zweier aufeinanderfolgender Zündvorgänge von 10 s Dauer entzündet, die Brenneigenschaften nach jedem Zündvorgang werden beobachtet und danach die Probe bewertet. Zum Entzünden der Probe wird ein Bunsenbrenner mit einer 10 mm (3,8 inch) hohen blauen Flamme von Erdgas mit einer Wärmeeinheit von 3,73 × 104 kJ/m3 (1000 BUT per cubic foot) benutzt.
Die UL 94 V-O-Klassifizierung umfaßt die nachstehend beschriebenen Eigenschaften von Materialien, die gemäß der UL 94 V-Vorschrift geprüft werden. Die Formmassen in dieser Klasse enthalten keine Proben, die länger als 10 s nach jeder Einwirkung der Testflamme brennen; sie zeigen keine Gesamtflammzeit von mehr als 50 s bei der zweimaligen Flammeinwirkung auf jeden Probesatz; sie enthalten keine Proben, die vollständig bis hinauf zu der am oberen Ende der Probe befestigten Halteklammer ab­ brennen; sie weisen keine Proben auf, die die unterhalb der Probe angeordnete Watte durch brennende Tropfen oder Teilchen entzünden; sie enthalten auch keine Proben, die länger als 30 s nach Entfernen der Testflamme glimmen.
Andere UL 94-Klassifizierungen bezeichnen Proben, die weniger flammwidrig oder weniger selbstverlöschend sind, weil sie flammende Tropfen oder Teilchen abgeben. Diese Klassifizierungen werden mit UL 94 V-1 und V-2 bezeichnet. N. B. heißt "nicht bestanden" und ist die Klassifizierung von Proben, die eine Nachbrennzeit von ≧ 30 s aufweisen.
Das Spannungsrißverhalten (ESC-Verhalten) wurde an Stäben der Abmessung 80 × 10 × 4 mm, Preßtemperatur 220°C, untersucht. Als Testmedium wurde eine Mischung aus 60 Vol.% Toluol und 40 Vol.% Isopropanol verwendet. Die Probekörper wur­ den mittels einer Kreisbogenschablone vorgedehnt (Vordehnung in Prozent) und bei Raumtemperatur im Testmedium gelagert. Das Spannungsrißverhalten wurde über die Rißbildung bzw. den Bruch in Abhängigkeit von der Vordehnung im Testmedium beurteilt.
Eine Zusammenstellung der Eigenschaften der erfindungsgemäßen Formmassen ist in der nachfolgenden Tabelle 1 gegeben:
Durch Verwendung der Kombination aus Phosphazen und feinstteiligem anorga­ nischen Pulver werden Formmassen mit erhöhter Wärmeformbeständigkeit erhalten, die sich durch sehr gute mechanische Eigenschaften wie Kerbschlagzähigkeit, Spannungsrißbeständigkeit und Bindenahtfestigkeit auszeichnen. Überraschender­ weise wird der gute Flammschutz der erfindungsgemäßen Formmassen bei deutlich reduzierten Mengen an Phosphazen erreicht.
Tabelle
Formmassen und ihre Eigenschaften

Claims (21)

1. Thermoplastische Formmassen enthaltend Polycarbonat und/oder Polyester­ carbonat, Pfropfpolymerisat, Phosphazene und anorganisches Pulver mit einem durchschnittlichen Teilchendurchmesser kleiner gleich 200 nm.
2. Thermoplastische Formmassen gemäß Anspruch 1 enthaltend
  • A) 40 bis 99 Gew.-Teile aromatisches Polycarbonat und/oder Polyester­ carbonat,
  • B) 0,5 bis 60 Gew.-Teile Pfropfpolymerisat von
    • 1. B.1) 5 bis 95 Gew.-% eines oder mehrerer Vinylmonomeren auf
    • 2. B.2) 95 bis 5 Gew.-% einer oder mehrerer Pfropfgrundlagen mit einer Glasumwandlungstemperatur <10°C,
  • C) 0 bis 45 Gew.-Teile mindestens eines thermoplastischen Polymers, ausgewählt aus der Gruppe der Vinyl(co)polymerisate und Polyalkylen­ terephthalate,
  • D) 0,1 bis 50 Gew.-Teile mindestens einer Komponente, ausgewählt aus der Gruppe der Phosphazene der Formeln
    worin
    R jeweils gleich oder verschieden ist und für Amino, jeweils gegebenenfalls halogeniertes C1- bis C8-Alkyl, oder C1-C8- Alkoxy, jeweils gegebenenfalls durch Alkyl und/oder Halogen substituiertes C5- bis C6-Cycloalkyl, C6- bis C20-Aryl, C6 bis C20-Aryloxy, oder C7- bis C12-Aralkyl steht und
    k für 0 oder eine Zahl von 1 bis 15 steht,
  • E) 0,5 bis 40 Gew.-Teile feinteiliges anorganisches Pulver mit einem durchschnittlichen Teilchendurchmesser von kleiner gleich 200 nm, und
  • F) 0 bis 5 Gew.-Teile eines fluorierten Polyolefins.
3. Formmassen gemäß Anspruch 1 und 2, enthaltend
60 bis 98,5 Gew.-Teile A),
1 bis 40 Gew.-Teile B),
0 bis 30 Gew.-Teile C),
1 bis 18 Gew.-Teile D),
1 bis 25 Gew.-Teile E),
0,15 bis 1 Gew.-Teile F).
4. Formmassen gemäß Anspruch 1 bis 3, enthaltend 2 bis 25 Gew.-Teile C).
5. Formmassen gemäß der Ansprüche 1 bis 4, enthaltend 5 bis 25 Gew.-Teile D).
6. Formmassen gemäß der vorhergehenden Ansprüche, wobei Vinylmonomere B.1 Gemische sind aus
  • 1. B.1.1 50 bis 99 Gew.-Teilen Vinylaromaten und/oder kernsubstituierten Vinylaromaten und/oder Methacrylsäure-(C1-C8)-Alkylester und
  • 2. B.1.2 1 bis 50 Gew.-Teilen Vinylcyanide und/oder (Meth)Acrylsäure-(C1-C8)- Alkylester und/oder Derivate ungesättigter Carbonsäuren.
7. Formmassen gemäß der vorhergehender Ansprüche, wobei die Pfropf­ grundlage ausgewählt ist aus mindestens einem Kautschuk aus der Gruppe der Dienkautschuke, EP(D)M-Kautschuke, Acrylat-, Polyurethan-, Silikon-, Chloropren- und Ethylen/Vinylacetat-Kautschuk.
8. Formmassen gemäß der vorhergehenden Ansprüche, wobei Komponente D) ausgewählt ist aus der Gruppe bestehend aus Propoxyphosphazen, Phenoxy­ phosphazen, Methylphenoxyphosphazen, Aminophosphazen und Fluoralkyl­ phosphazene.
9. Formmassen gemäß der vorhergehenden Ansprüche, wobei Komponente E) aus wenigstens einer polaren Verbindung von einem oder mehreren Metallen der 1. bis 5. Hauptgruppe oder 1 bis 8. Nebengruppe des Periodensystems oder aus Verbindungen dieser Metalle mit wenigstens einem Element ausgewählt aus Sauerstoff, Wasserstoff, Schwefel, Phosphor, Bor, Kohlenstoff, Stickstoff oder Silicium ausgewählt ist.
10. Formmassen gemäß Anspruch 9, wobei Komponente E) aus wenigstens einer polaren Verbindung von einem oder mehreren Metallen der 2. bis 5. Haupt­ gruppe oder 4. bis 8. Nebengruppe oder aus Verbindungen dieser Metalle mit wenigstens einem Element ausgewählt aus Sauerstoff Wasserstoff Schwefel, Phosphor, Bor, Kohlenstoff, Stickstoff oder Silicium ausgewählt ist.
11. Formmassen gemäß Anspruch 10, wobei Komponente E) aus wenigstens einer polaren Verbindung von einem oder mehreren Metallen der 3. bis 5 Haupt­ gruppe oder 4. bis 8 Nebengruppe des Periodensystems oder aus Verbin­ dungen dieser Metalle mit wenigstens einem Element ausgewählt aus Sauerstoff, Wasserstoff Schwefel, Phosphor, Bor, Kohlenstoff, Stickstoff oder Silicium ausgewählt ist.
12. Formmassen gemäß der vorhergehenden Ansprüche, wobei Komponente E) ausgewählt ist aus mindestens einem Oxid, Hydroxid, wasserhaltigem Oxid, Sulfat, Sulfit, Sulfid, Carbonat, Carbid, Nitrat, Nitrit, Nitrid, Borat, Silikat, Phosphat, Hydrid, Phosphit und Phosphonat.
13. Formmassen gemäß der vorhergehenden Ansprüche, wobei Komponente E) ausgewählt ist aus Oxiden, Phosphaten und Hydroxiden.
14. Formmassen gemäß der vorhergehenden Ansprüche, wobei Komponente E) ausgewählt ist aus TiO2, SiO2, SnO2, ZnO, ZnS, Böhmit, ZrO2, Al2O3, Aluminiumphosphate, Eisenoxide, TiN, WC, AlO(OH), Sb2O3, Eisenoxide, Na2SO4, Vanadiunoxide, Zinkborat, Silicate wie Al-Silikate, Mg-Silikate, ein-, zwei-, dreidimensionale Silikate, deren Mischungen und dotierte Verbin­ dungen.
15. Formmassen gemäß der vorhergehenden Ansprüche, wobei Komponente E) ausgewählt ist aus hydrathaltigen Aluminiumoxiden, TiO2 und Mischungen davon.
16. Formmassen gemäß der vorhergehenden Ansprüche, enthaltend wenigstens ein Additiv ausgewählt aus der Gruppe der Gleit- und Entformungsmittel, Nukleiermittel, Antistatika, Stabilisatoren, Farbstoffe und Pigmente.
17. Formmassen gemäß der vorhergehenden Ansprüche, enthaltend weitere Flammschutzmittel, welche verschieden sind von Komponente D).
18. Verfahren zur Herstellung von Formmassen gemäß Anspruch 1, wobei die Komponenten A) bis E) und gegebenenfalls weiteren Zusätzen vermischt und schmelzcompoundiert werden.
19. Verwendung der Formmassen gemäß Anspruch 1 zur Herstellung von Formkörpern.
20. Formkörper, hergestellt aus Formmassen gemäß der Ansprüche 1 bis 17.
21. Gehäuseteile gemäß Anspruch 20.
DE19828536A 1998-06-26 1998-06-26 Flammwidrige Polycarbonat/ABS-Formmassen Withdrawn DE19828536A1 (de)

Priority Applications (14)

Application Number Priority Date Filing Date Title
DE19828536A DE19828536A1 (de) 1998-06-26 1998-06-26 Flammwidrige Polycarbonat/ABS-Formmassen
CNB998079316A CN1146630C (zh) 1998-06-26 1999-06-12 防燃聚碳酸酯/abs模塑组合物
AU47717/99A AU4771799A (en) 1998-06-26 1999-06-12 Flame resistant polycarbonate/abs plastic molding materials
PCT/EP1999/004059 WO2000000541A1 (de) 1998-06-26 1999-06-12 Flammwidrige polycarbonat/abs-formmassen
JP2000557299A JP4263360B2 (ja) 1998-06-26 1999-06-12 難燃性ポリカーボネート/abs成形用組成物
DK99931060T DK1095100T3 (da) 1998-06-26 1999-06-12 Flammebestandige polycarbonat/ABS-formmasser
ES99931060T ES2203154T3 (es) 1998-06-26 1999-06-12 Masas de moldeo de policarbonato/abs ignifugas.
KR1020007014752A KR100541310B1 (ko) 1998-06-26 1999-06-12 내화성 폴리카르보네이트/abs 가소성 성형 재료
CA002335948A CA2335948A1 (en) 1998-06-26 1999-06-12 Flame resistant polycarbonate/abs plastic molding materials
EP99931060A EP1095100B1 (de) 1998-06-26 1999-06-12 Flammwidrige polycarbonat/abs-formmassen
DE59906882T DE59906882D1 (de) 1998-06-26 1999-06-12 Flammwidrige polycarbonat/abs-formmassen
BR9911576-0A BR9911576A (pt) 1998-06-26 1999-06-12 Massas de moldagem de policarbonato/abs antichamas
ARP990103069A AR016994A1 (es) 1998-06-26 1999-06-25 Composiciones de moldeo de policarbonato/abs ignifugas, procedimiento para su obtencion y empleo de las mismas en cuerpos moldeados y piezas para carcasas
HK02100707.2A HK1038937A1 (zh) 1998-06-26 2002-01-29 防燃聚碳酸酯/abs模塑組合物

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE19828536A DE19828536A1 (de) 1998-06-26 1998-06-26 Flammwidrige Polycarbonat/ABS-Formmassen

Publications (1)

Publication Number Publication Date
DE19828536A1 true DE19828536A1 (de) 1999-12-30

Family

ID=7872125

Family Applications (2)

Application Number Title Priority Date Filing Date
DE19828536A Withdrawn DE19828536A1 (de) 1998-06-26 1998-06-26 Flammwidrige Polycarbonat/ABS-Formmassen
DE59906882T Expired - Lifetime DE59906882D1 (de) 1998-06-26 1999-06-12 Flammwidrige polycarbonat/abs-formmassen

Family Applications After (1)

Application Number Title Priority Date Filing Date
DE59906882T Expired - Lifetime DE59906882D1 (de) 1998-06-26 1999-06-12 Flammwidrige polycarbonat/abs-formmassen

Country Status (13)

Country Link
EP (1) EP1095100B1 (de)
JP (1) JP4263360B2 (de)
KR (1) KR100541310B1 (de)
CN (1) CN1146630C (de)
AR (1) AR016994A1 (de)
AU (1) AU4771799A (de)
BR (1) BR9911576A (de)
CA (1) CA2335948A1 (de)
DE (2) DE19828536A1 (de)
DK (1) DK1095100T3 (de)
ES (1) ES2203154T3 (de)
HK (1) HK1038937A1 (de)
WO (1) WO2000000541A1 (de)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002046287A1 (de) * 2000-12-08 2002-06-13 Bayer Aktiengesellschaft Flammwidrige polycarbonat-blends
DE10324892A1 (de) * 2003-06-02 2005-01-05 Merck Patent Gmbh Polymerbasierter Werkstoff
WO2005103153A1 (de) * 2004-04-21 2005-11-03 Basf Aktiengesellschaft Extrudierte folie oder platte mit verbesserter zähigkeit
EP1705213A1 (de) * 2005-03-24 2006-09-27 Fuji Xerox Co., Ltd. Flammhemmende Harzzusammensetzung und die damit hergestellten flammhemmenden Formkörper
CN100355831C (zh) * 2005-10-28 2007-12-19 四川大学 含磷阻燃共聚酯/硫酸钡纳米复合材料及其制备方法
DE112004002030B4 (de) * 2003-11-07 2010-12-02 Asahi Kasei Chemicals Corporation Flammhemmende Zusammensetzung, flammhemmende Harzzusammensetzung und Formgegenstand
US8044130B2 (en) 2005-02-24 2011-10-25 Fuji Xerox Co., Ltd. Surface-coated flame-retardant particle and method of producing the same, and flame-retardant resin composition and method of producing the same
EP2468820A1 (de) * 2010-12-23 2012-06-27 Bayer MaterialScience AG Polycarbonatzusammensetzungen mit verbesserter Flammenresistenz
WO2013175455A1 (en) * 2012-05-24 2013-11-28 Sabic Innovative Plastics Ip B.V. Flame retardant polycarbonate compositions, methods of manufacture thereof and articles comprising the same
WO2014086769A1 (de) * 2012-12-07 2014-06-12 Bayer Materialscience Ag Flammgeschützte polycarbonatformmassen iv
EP2746316A1 (de) * 2012-12-18 2014-06-25 Mitsubishi Chemical Europe GmbH Thermoplastische Zusammensetzung
US9637634B2 (en) 2012-12-07 2017-05-02 Covestro Deutschland Ag Flame-retardant polycarbonate molding materials V

Families Citing this family (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19904392A1 (de) * 1999-02-04 2000-08-10 Bayer Ag Polycarbonat-Formmassen mit verbesserten antistatischen Eigenschaften
JP4935082B2 (ja) 2006-01-23 2012-05-23 富士ゼロックス株式会社 難燃性樹脂組成物及び難燃性樹脂成形品
DE102008015124A1 (de) 2007-05-16 2008-11-20 Bayer Materialscience Ag Schlagzähmodifizierte Polycarbonat-Zusammensetzungen
DE102007052783A1 (de) 2007-11-02 2009-05-07 Bayer Materialscience Ag Flammwidrige Polycarbonate mit Polyolen
CN101977978B (zh) 2008-03-22 2014-03-19 拜尔材料科学股份公司 具有原始色调、水解稳定性和熔体稳定性的优良组合的冲击改性的聚碳酸酯组合物
DE102008048204A1 (de) 2008-09-20 2010-04-01 Bayer Materialscience Ag Spannungsrissbeständige und verzugsarme Zweikomponenten-Formteile enthaltend Talk
DE102008048201A1 (de) 2008-09-20 2010-04-01 Bayer Materialscience Ag Spannungsrissbeständige und verzugsarme Zweikomponenten-Formteile enthaltend isotropen Füllstoff
DE102008048202A1 (de) 2008-09-20 2010-04-01 Bayer Materialscience Ag Spannungsrissbeständige und verzugsarme Zweikomponenten-Formteile enthaltend plättchen- oder schuppförmigen anorganischen Füllstoff ausgenommen Talk
DE102008060536A1 (de) 2008-12-04 2010-06-10 Bayer Materialscience Ag Saure Phosphorverbindungen enthaltende schlagzähmodifizierte Polycarbonat-Zusammensetzungen mit basisch gefälltem Emulsionspfropfpolymersiat
CN101418118B (zh) * 2008-12-05 2011-04-27 北京化工大学 一种无卤阻燃pc/abs合金及其制备方法
DE102008062903A1 (de) 2008-12-23 2010-06-24 Bayer Materialscience Ag Flammgeschützte schlagzähmodifizierte Polycarbonat-Zusammensetzungen
DE102008062945A1 (de) 2008-12-23 2010-06-24 Bayer Materialscience Ag Flammgeschützte schlagzähmodifizierte Polycarbonat-Zusammensetzungen
DE102009009680A1 (de) 2009-02-19 2010-08-26 Bayer Materialscience Ag Compoundierungsverfahren zur Herstellung von Polymer-Zusammensetzungen mit reduziertem Gehalt an flüchtigen organischen Verbindungen
EP2308679A1 (de) * 2009-10-06 2011-04-13 Bayer MaterialScience AG Solarmodule mit Polycarbonatblend-Folie als Rückseitenfolie
DE102009059075A1 (de) 2009-12-18 2011-06-22 Bayer MaterialScience AG, 51373 Flammgeschützte, schlagzähmodifizierte, kratzfeste Polycarbonat-Formmassen mit guten mechanischen Eigenschaften
DE102009059074A1 (de) 2009-12-18 2011-06-22 Bayer MaterialScience AG, 51373 Kratzfeste, schlagzähe Polycarbonat-Formmassen mit guten mechanischen Eigenschaften II
DE102009059076A1 (de) 2009-12-18 2011-06-22 Bayer MaterialScience AG, 51373 Kratzfeste, schlagzähe Polycarbonat-Formmassen mit guten mechanischen Eigenschaften I
DE102010018234A1 (de) 2010-04-23 2012-03-29 Bayer Materialscience Aktiengesellschaft Leichtfließende Polycarbonat/ABS-Formmassen mit guten mechanischen Eigenschaften und guter Oberfläche
TWI577530B (zh) 2010-07-14 2017-04-11 科思創德意志股份有限公司 製造複合色料之方法與設備
DE102010039712A1 (de) 2010-08-24 2012-03-01 Bayer Materialscience Aktiengesellschaft Schlagzähmodifizierte Polyester/Polycarbonat-Zusammensetzungen mit verbesserter Reißdehnung
DE102010041388A1 (de) 2010-09-24 2012-03-29 Bayer Materialscience Aktiengesellschaft Flammgeschützte schlagzähmodifizierte Batteriegehäuse auf Polycarbonatbasis II
DE102010041387A1 (de) 2010-09-24 2012-03-29 Bayer Materialscience Aktiengesellschaft Flammgeschützte schlagzähmodifizierte Batteriegehäuse auf Polycarbonatbasis I
ES2440785T3 (es) 2011-09-28 2014-01-30 Bayer Intellectual Property Gmbh Composiciones de PC/ABS ignífugas con buena resistencia al choque, fluencia y resistencia a productos químicos
CA2853222A1 (en) 2011-10-26 2013-05-02 Bayer Intellectual Property Gmbh Method for the production and stabilization of impact-modified polycarbonate compositions using diluted solutions of acidic compounds
ES2628394T3 (es) 2011-10-26 2017-08-02 Covestro Deutschland Ag Composiciones de policarbonato estabilizadas con mezclas de ácido silícico y un ácido inorgánico
EP2657298A1 (de) 2012-04-27 2013-10-30 Bayer MaterialScience AG PC/ABS-Zusammensetzungen mit guter thermischer und chemischer Beständigkeit
US9023922B2 (en) 2012-05-24 2015-05-05 Sabic Global Technologies B.V. Flame retardant compositions, articles comprising the same and methods of manufacture thereof
KR102136909B1 (ko) 2012-12-07 2020-07-22 코베스트로 도이칠란드 아게 난연성 폴리카르보네이트 성형 물질 vi
JP2016501304A (ja) 2012-12-07 2016-01-18 バイエル・マテリアルサイエンス・アクチェンゲゼルシャフトBayer MaterialScience AG 防炎性ポリカーボネート成形配合物ii
CA2893886A1 (en) * 2012-12-07 2014-06-12 Bayer Materialscience Ag Flame-retardant polycarbonate molding materials i
MX2015006829A (es) * 2012-12-07 2015-09-07 Bayer Materialscience Ag Compuestos de moldeo de policarbonato ignifugos iii.
CN103224690A (zh) * 2012-12-29 2013-07-31 金发科技股份有限公司 一种低烟密度的塑料组合物及其制备方法和应用
US20210047512A1 (en) 2017-10-16 2021-02-18 Covestro Deutschland Ag Flame-resistant filling-material-reinforced polycarbonate composition having a reduced bisphenol-a content
WO2019076494A1 (de) 2017-10-16 2019-04-25 Covestro Deutschland Ag Flammwidrige polycarbonat-zusammensetzung mit geringem bisphenol-a gehalt
WO2019076493A1 (de) 2017-10-16 2019-04-25 Covestro Deutschland Ag Flammwidrige polycarbonat-acrylat-kautschuk-zusammensetzung mit geringem bisphenol-a-gehalt
KR102561747B1 (ko) 2018-04-09 2023-07-31 코베스트로 인텔렉쳐 프로퍼티 게엠베하 운트 콤파니 카게 폴리카르보네이트 조성물, 그로부터 제조된 성형 물품, 및 그의 용도
WO2021228636A1 (en) 2020-05-13 2021-11-18 Covestro Deutschland Ag Flame-retardant polycarbonate composition
EP4047073A1 (de) 2021-02-17 2022-08-24 Covestro Deutschland AG Pyrolyse von polycarbonat-haltigem material zur wiedergewinnung von rohstoffen
EP4201987A1 (de) 2021-12-22 2023-06-28 Covestro Deutschland AG Pyrolyse von polycarbonat-haltigem material in kombination mit phosphorhaltiger organischer verbindung zur wiedergewinnung von rohstoffen
CN115850941B (zh) * 2022-12-13 2024-10-18 金发科技股份有限公司 一种高cti聚碳酸酯组合物及其制备方法和应用

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4946885A (en) * 1989-09-11 1990-08-07 Stamicarbon B.V. Flame retardant thermoplastic containing phospham
DE19530200A1 (de) * 1995-08-17 1997-02-20 Bayer Ag Feinstteilige anorganische Pulver als Flammschutzmittel in thermoplastischen Formmassen
EP0791634B1 (de) * 1996-02-26 2002-11-06 Mitsubishi Engineering Plastics Corporation Flammhemmende Polyesterharzzusammensetzung und Verfahren zu ihrer Herstellung
DE19615230A1 (de) * 1996-04-18 1997-10-23 Basf Ag Flammgeschützte thermoplastische Formmassen
DE19734661A1 (de) * 1997-08-11 1999-02-18 Bayer Ag Flammwidrige, spannungsrißbeständige Polycarbonat ABS-Formmassen
DE19734666A1 (de) * 1997-08-11 1999-02-18 Bayer Ag Flammwidrige Polycarbonat-ABS-Formmassen

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100794448B1 (ko) * 2000-12-08 2008-01-16 바이엘 악티엔게젤샤프트 난연성 폴리카르보네이트 블렌드
WO2002046287A1 (de) * 2000-12-08 2002-06-13 Bayer Aktiengesellschaft Flammwidrige polycarbonat-blends
DE10324892A1 (de) * 2003-06-02 2005-01-05 Merck Patent Gmbh Polymerbasierter Werkstoff
US8562873B2 (en) 2003-11-07 2013-10-22 Asahi Kasei Chemicals Corporation Flame retarder composition
DE112004002030B4 (de) * 2003-11-07 2010-12-02 Asahi Kasei Chemicals Corporation Flammhemmende Zusammensetzung, flammhemmende Harzzusammensetzung und Formgegenstand
WO2005103153A1 (de) * 2004-04-21 2005-11-03 Basf Aktiengesellschaft Extrudierte folie oder platte mit verbesserter zähigkeit
US8044130B2 (en) 2005-02-24 2011-10-25 Fuji Xerox Co., Ltd. Surface-coated flame-retardant particle and method of producing the same, and flame-retardant resin composition and method of producing the same
EP1705213A1 (de) * 2005-03-24 2006-09-27 Fuji Xerox Co., Ltd. Flammhemmende Harzzusammensetzung und die damit hergestellten flammhemmenden Formkörper
CN100355831C (zh) * 2005-10-28 2007-12-19 四川大学 含磷阻燃共聚酯/硫酸钡纳米复合材料及其制备方法
EP2468820A1 (de) * 2010-12-23 2012-06-27 Bayer MaterialScience AG Polycarbonatzusammensetzungen mit verbesserter Flammenresistenz
WO2012085112A1 (en) * 2010-12-23 2012-06-28 Bayer Materialscience Ag Polycarbonate compositions with improved flame resistance
WO2013175455A1 (en) * 2012-05-24 2013-11-28 Sabic Innovative Plastics Ip B.V. Flame retardant polycarbonate compositions, methods of manufacture thereof and articles comprising the same
WO2014086769A1 (de) * 2012-12-07 2014-06-12 Bayer Materialscience Ag Flammgeschützte polycarbonatformmassen iv
US9637634B2 (en) 2012-12-07 2017-05-02 Covestro Deutschland Ag Flame-retardant polycarbonate molding materials V
EP2746316A1 (de) * 2012-12-18 2014-06-25 Mitsubishi Chemical Europe GmbH Thermoplastische Zusammensetzung
WO2014095648A1 (en) * 2012-12-18 2014-06-26 Mitsubishi Chemical Europe Gmbh Thermoplastic composition
US9550895B2 (en) 2012-12-18 2017-01-24 Mitsubishi Chemical Europe Gmbh Thermoplastic composition

Also Published As

Publication number Publication date
AR016994A1 (es) 2001-08-01
WO2000000541A1 (de) 2000-01-06
EP1095100B1 (de) 2003-09-03
BR9911576A (pt) 2001-03-20
HK1038937A1 (zh) 2002-04-04
KR100541310B1 (ko) 2006-01-16
DE59906882D1 (de) 2003-10-09
JP4263360B2 (ja) 2009-05-13
EP1095100A1 (de) 2001-05-02
CN1307611A (zh) 2001-08-08
DK1095100T3 (da) 2003-12-22
ES2203154T3 (es) 2004-04-01
CA2335948A1 (en) 2000-01-06
KR20010053175A (ko) 2001-06-25
AU4771799A (en) 2000-01-17
CN1146630C (zh) 2004-04-21
JP2002519461A (ja) 2002-07-02

Similar Documents

Publication Publication Date Title
EP1095100B1 (de) Flammwidrige polycarbonat/abs-formmassen
EP1095099B1 (de) Flammwidrige polycarbonat-abs-formmassen
EP1003809B1 (de) Flammwidrige polycarbonat-abs-formmassen
EP1047728A1 (de) Flammwidrige polycarbonat-abs-formmassen
EP1003808A1 (de) Flammwidrige wärmeformbeständige polycarbonat-abs-formmassen
WO2002059204A2 (de) Flammwidrige; mineralverstärkte polycarbonatzusammensetzungen mit hoher bindenahtfestigkeit
DE10061081A1 (de) Flammwidrige Polycarbonat-Blends
EP1268648A1 (de) Flammwidrige polycarbonat-formmassen
DE10100591A1 (de) Phosphorhaltiges Flammschutzmittel und Flammwidrige thermoplastische Formmassen
DE19828541A1 (de) Flammwidrige Polycarbonat-ABS-Formmassen
EP1341848A1 (de) Polycarbonat-zusammensetzungen
EP1214380B1 (de) Flammwidrige polycarbonat-blends
WO2003027165A1 (de) Schlagzähmodifizierte polycarbonat-zusammensetzung
EP1047724A1 (de) Polycarbonat-abs-formmassen
DE10235754A1 (de) Flammwidrige mit Pfropfpolymerisat modifizierte Polycarbonat-Formmassen
EP1265954A1 (de) Flammwidrige polycarbonat-formmassen für extrusionsanwendungen
EP1151035B1 (de) Flammwidrige wärmeformbeständige polycarbonat-abs-formmassen
DE10061078A1 (de) Flammwidrige wärmeformbeständige Polycarbonat-Zusammensetzungen
DE19828538A1 (de) Flammwidrige Polycarbonat/ABS-Formmassen
DE19941822A1 (de) Flammwidrige Polycarbonat-Blends
DE19941827A1 (de) Flammwidrige Polycarbonat-Blends
DE10224616A1 (de) Schlagzähmodidizierte Polycarbonat-Zusammensetzung

Legal Events

Date Code Title Description
8139 Disposal/non-payment of the annual fee