DE112018000134T5 - Memristive Einheit auf Grundlage einer Alkali-Dotierung von Übergangsmetalloxiden - Google Patents

Memristive Einheit auf Grundlage einer Alkali-Dotierung von Übergangsmetalloxiden Download PDF

Info

Publication number
DE112018000134T5
DE112018000134T5 DE112018000134.2T DE112018000134T DE112018000134T5 DE 112018000134 T5 DE112018000134 T5 DE 112018000134T5 DE 112018000134 T DE112018000134 T DE 112018000134T DE 112018000134 T5 DE112018000134 T5 DE 112018000134T5
Authority
DE
Germany
Prior art keywords
material layer
layer
oxide
conductive
conductive material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
DE112018000134.2T
Other languages
German (de)
English (en)
Inventor
Simcha Gershon Talia
Wayne Brew Kevin
Saurabh Singh
Dennis Newns
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Adeia Semiconductor Solutions LLC
Original Assignee
International Business Machines Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by International Business Machines Corp filed Critical International Business Machines Corp
Publication of DE112018000134T5 publication Critical patent/DE112018000134T5/de
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/20Multistable switching devices, e.g. memristors
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/20Multistable switching devices, e.g. memristors
    • H10N70/24Multistable switching devices, e.g. memristors based on migration or redistribution of ionic species, e.g. anions, vacancies
    • H10N70/245Multistable switching devices, e.g. memristors based on migration or redistribution of ionic species, e.g. anions, vacancies the species being metal cations, e.g. programmable metallization cells
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/04Architecture, e.g. interconnection topology
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/04Architecture, e.g. interconnection topology
    • G06N3/0499Feedforward networks
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/06Physical realisation, i.e. hardware implementation of neural networks, neurons or parts of neurons
    • G06N3/063Physical realisation, i.e. hardware implementation of neural networks, neurons or parts of neurons using electronic means
    • G06N3/065Analogue means
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/08Learning methods
    • G06N3/084Backpropagation, e.g. using gradient descent
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/011Manufacture or treatment of multistable switching devices
    • H10N70/021Formation of switching materials, e.g. deposition of layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/011Manufacture or treatment of multistable switching devices
    • H10N70/041Modification of switching materials after formation, e.g. doping
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/801Constructional details of multistable switching devices
    • H10N70/821Device geometry
    • H10N70/826Device geometry adapted for essentially vertical current flow, e.g. sandwich or pillar type devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/801Constructional details of multistable switching devices
    • H10N70/821Device geometry
    • H10N70/828Current flow limiting means within the switching material region, e.g. constrictions
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/801Constructional details of multistable switching devices
    • H10N70/841Electrodes
    • H10N70/8416Electrodes adapted for supplying ionic species
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/801Constructional details of multistable switching devices
    • H10N70/881Switching materials
    • H10N70/883Oxides or nitrides
    • H10N70/8833Binary metal oxides, e.g. TaOx

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biomedical Technology (AREA)
  • Biophysics (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Evolutionary Computation (AREA)
  • Computational Linguistics (AREA)
  • Molecular Biology (AREA)
  • Computing Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • Data Mining & Analysis (AREA)
  • Mathematical Physics (AREA)
  • Software Systems (AREA)
  • Artificial Intelligence (AREA)
  • Manufacturing & Machinery (AREA)
  • Neurology (AREA)
  • Semiconductor Memories (AREA)
  • Thyristors (AREA)
DE112018000134.2T 2017-01-13 2018-01-03 Memristive Einheit auf Grundlage einer Alkali-Dotierung von Übergangsmetalloxiden Pending DE112018000134T5 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US15/405,555 US10164179B2 (en) 2017-01-13 2017-01-13 Memristive device based on alkali-doping of transitional metal oxides
US15/405,555 2017-01-13
PCT/IB2018/050033 WO2018130914A1 (en) 2017-01-13 2018-01-03 Memristive device based on alkali-doping of transitional metal oxides

Publications (1)

Publication Number Publication Date
DE112018000134T5 true DE112018000134T5 (de) 2019-07-04

Family

ID=62839301

Family Applications (1)

Application Number Title Priority Date Filing Date
DE112018000134.2T Pending DE112018000134T5 (de) 2017-01-13 2018-01-03 Memristive Einheit auf Grundlage einer Alkali-Dotierung von Übergangsmetalloxiden

Country Status (6)

Country Link
US (1) US10164179B2 (enExample)
JP (1) JP6921961B2 (enExample)
CN (1) CN110168761A (enExample)
DE (1) DE112018000134T5 (enExample)
GB (1) GB2573693A (enExample)
WO (1) WO2018130914A1 (enExample)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017222592A1 (en) 2016-06-20 2017-12-28 Massachusetts Institute Of Technology Apparatus and methods for electrical switching
US10127494B1 (en) * 2017-08-02 2018-11-13 Google Llc Neural network crossbar stack
US11455521B2 (en) 2019-03-01 2022-09-27 International Business Machines Corporation Neuromorphic device driven by copper ion intercalation
US11079958B2 (en) 2019-04-12 2021-08-03 Intel Corporation Apparatus, system and method for offloading data transfer operations between source and destination storage devices to a hardware accelerator
US11250315B2 (en) 2019-10-29 2022-02-15 International Business Machines Corporation Electrochemical device of variable electrical conductance
US11552246B2 (en) 2020-01-21 2023-01-10 Massachusetts Institute Of Technology Memristors and related systems and methods
US11742901B2 (en) * 2020-07-27 2023-08-29 Electronics And Telecommunications Research Institute Deep learning based beamforming method and apparatus
US11397544B2 (en) 2020-11-10 2022-07-26 International Business Machines Corporation Multi-terminal neuromorphic device
US11361821B2 (en) * 2020-11-10 2022-06-14 International Business Machines Corporation Drift and noise corrected memristive device
US11615842B2 (en) 2020-12-14 2023-03-28 International Business Machines Corporation Mixed conducting volatile memory element for accelerated writing of nonvolatile memristive device
CN113035953B (zh) * 2021-02-08 2023-07-14 清华大学 一种无机耐高温突触晶体管及其制备方法
JP2022125660A (ja) 2021-02-17 2022-08-29 キオクシア株式会社 記憶装置及び記憶方法

Family Cites Families (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3010685B2 (ja) * 1990-05-28 2000-02-21 ソニー株式会社 有機電解質電池
US5908715A (en) * 1997-05-30 1999-06-01 Hughes Electronics Corporation Composite carbon materials for lithium ion batteries, and method of producing same
KR100860134B1 (ko) * 2001-08-13 2008-09-25 어드밴스드 마이크로 디바이시즈, 인코포레이티드 메모리 셀
KR100593448B1 (ko) * 2004-09-10 2006-06-28 삼성전자주식회사 전이금속 산화막을 데이터 저장 물질막으로 채택하는비휘발성 기억 셀들 및 그 제조방법들
KR20090125256A (ko) * 2007-03-26 2009-12-04 사임베트 코퍼레이션 리튬 막박 전지용 기재
US20080314738A1 (en) * 2007-06-19 2008-12-25 International Business Machines Corporation Electrolytic Device Based on a Solution-Processed Electrolyte
CN101315969A (zh) 2008-06-26 2008-12-03 复旦大学 一种具有掺杂控制层的电阻存储器
US20110121359A1 (en) * 2008-07-31 2011-05-26 Jianhua Yang Multi-Layer Reconfigurable Switches
KR101502898B1 (ko) * 2008-11-10 2015-03-25 삼성에스디아이 주식회사 리튬 이차 전지용 복합 음극 활물질, 이의 제조 방법 및 이를 구비한 리튬 이차 전지
US8614432B2 (en) 2009-01-15 2013-12-24 Hewlett-Packard Development Company, L.P. Crystalline silicon-based memristive device with multiple mobile dopant species
KR101105981B1 (ko) * 2009-04-28 2012-01-18 한양대학교 산학협력단 저항변화 메모리 소자 및 이의 제조방법
CN102484127B (zh) 2009-09-04 2015-07-15 惠普开发有限公司 基于混合金属价键化合物的记忆电阻
US8120071B2 (en) 2010-01-11 2012-02-21 Hewlett-Packard Development Company, L.P. Memfet ram
WO2011133158A1 (en) 2010-04-22 2011-10-27 Hewlett-Packard Development Company, L.P. Switchable two-terminal devices with diffusion/drift species
CN102244193A (zh) 2010-05-13 2011-11-16 复旦大学 包含钌掺杂的氧化钽基电阻型存储器及其制备方法
EP2641331B1 (en) * 2010-11-19 2020-06-03 Hewlett-Packard Enterprise Development LP Method and circuit for switching a memristive device
US20140184380A1 (en) * 2010-11-26 2014-07-03 Varun Aggarwal Multi-state memory resistor device and methods for making thereof
FR2969382B1 (fr) * 2010-12-17 2022-11-18 Centre Nat Rech Scient Élément memristif et mémoire électronique basée sur de tels éléments
CN102610746A (zh) * 2011-01-20 2012-07-25 中国科学院微电子研究所 非挥发性电阻转变存储器
WO2013003978A1 (zh) 2011-07-06 2013-01-10 复旦大学 包含钌掺杂的氧化钽基电阻型存储器及其制备方法
JP6180700B2 (ja) * 2011-09-09 2017-08-16 ルネサスエレクトロニクス株式会社 不揮発性半導体記憶装置及びその製造方法
WO2013134757A1 (en) * 2012-03-09 2013-09-12 Privatran, Inc. Memristive device and method of manufacture
US9224461B2 (en) * 2012-11-27 2015-12-29 Intel Corporation Low voltage embedded memory having cationic-based conductive oxide element
US20140175371A1 (en) * 2012-12-21 2014-06-26 Elijah V. Karpov Vertical cross-point embedded memory architecture for metal-conductive oxide-metal (mcom) memory elements
GB2516841A (en) 2013-07-31 2015-02-11 Ibm Resistive memory element based on oxygen-doped amorphous carbon
CN104752608A (zh) 2013-12-26 2015-07-01 北京有色金属研究总院 一种忆阻器及其制备方法
DE102014113030A1 (de) * 2014-09-10 2016-03-10 Infineon Technologies Ag Speicherschaltungen und ein Verfahren zum Bilden einer Speicherschaltung
TWI560918B (en) * 2014-10-15 2016-12-01 Univ Nat Sun Yat Sen Resistance random access memory
CN104916777B (zh) 2015-05-08 2017-11-03 浙江大学 一种锂离子掺杂石墨烯忆阻器及其制备方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
C. Lehmann et al. mit dem Titel „A Generic Systolic Array Building Block For Neural Networks with On-Chip Learning", IEEE Transactions On Neural Networks, Band 4, Nr. 3, Mai 1993
Chua, L. O. mit dem Titel „Resistance Switching Memories are Memristors", Applied Physics A (2011), 102 (4): 765 bis 783
D. Soudry et al. mit dem Titel „Memristor-Based Multilayer Neural Networks With Online Gradient Descent Training", IEEE Transactions On Neural Networks and Learning Systems (2015)

Also Published As

Publication number Publication date
JP6921961B2 (ja) 2021-08-18
US10164179B2 (en) 2018-12-25
JP2020509574A (ja) 2020-03-26
GB201910618D0 (en) 2019-09-11
US20180205011A1 (en) 2018-07-19
GB2573693A (en) 2019-11-13
WO2018130914A1 (en) 2018-07-19
CN110168761A (zh) 2019-08-23

Similar Documents

Publication Publication Date Title
DE112018000134T5 (de) Memristive Einheit auf Grundlage einer Alkali-Dotierung von Übergangsmetalloxiden
DE112016003245B4 (de) Resistive Verarbeitungseinheit
DE112018005726B4 (de) Resistive verarbeitungseinheit auf zählerbasis für programmierbare und rekonfigurierbare künstliche neuronale netzwerke
DE112018004223B4 (de) Trainieren künstlicher neuronaler Netze
DE112018000272T5 (de) Resistive Verarbeitungseinheit mit hysteretischen Aktualisierungen zum Trainieren neuronaler Netze
DE112019000437B4 (de) Architektur einer resistiven verarbeitungseinheit mit voneinander getrennter gewichtungsaktualisierungs- und inferenzschaltung
US10970624B2 (en) Pre-programmed resistive cross-point array for neural network
Garbin et al. Variability-tolerant convolutional neural network for pattern recognition applications based on OxRAM synapses
Pedretti et al. Stochastic learning in neuromorphic hardware via spike timing dependent plasticity with RRAM synapses
DE112018004992B4 (de) Übertragung synaptischer gewichte zwischen leitfähigkeitspaaren mitpolaritätsumkehr zum verringern fester einheitenasymmetrien
DE112018005614T5 (de) Feldeffekttransistor mit steuerbarem Widerstand
DE112016000699T5 (de) Neuromorphe Synapsen
DE112021005864T5 (de) Nichtflüchtige analoge widerstands-speicherzellen zum verwenden von ferroelektrischen auswahltransistoren
DE112008003510T5 (de) Im Mikro- und/oder Nanobereich liegende Neuromorphe integrierte Hybridschaltung
DE112011101370T5 (de) Neuronales Netz mit kanonischen gepulsten Neuronen für einen raumzeitlichen Assoziativspeicher
US11625579B2 (en) Spiking neural net work device and learning method of spiking neural network device
Merrikh-Bayat et al. Memristor crossbar-based hardware implementation of the IDS method
US11488001B2 (en) Neuromorphic devices using layers of ion reservoirs and ion conductivity electrolyte
DE112021002939T5 (de) Effiziente kachel-zuordnung für zeilenweise zuordnung in neuronalen faltungsnetzen zur analogen inferenz in künstliche-intelligenz-netzen
CN107122828B (zh) 电路结构及其驱动方法、神经网络
DE112020000929T5 (de) Programmieren eines phasenwechselspeichersin einer geschlossenen schleife
Nandakumar et al. Phase-change memory models for deep learning training and inference
DE112020002186T5 (de) Dnn-training mit asymmetrischen rpu-einheiten
Boybat et al. Stochastic weight updates in phase-change memory-based synapses and their influence on artificial neural networks
Strukov et al. Memory technologies for neural networks

Legal Events

Date Code Title Description
R012 Request for examination validly filed
R081 Change of applicant/patentee

Owner name: ADEIA SEMICONDUCTOR SOLUTIONS LLC, SAN JOSE, US

Free format text: FORMER OWNER: INTERNATIONAL BUSINESS MACHINES CORPORATION, ARMONK, NY, US

Owner name: TESSERA, INC., SAN JOSE, US

Free format text: FORMER OWNER: INTERNATIONAL BUSINESS MACHINES CORPORATION, ARMONK, N.Y., US

Owner name: TESSERA, INC., SAN JOSE, US

Free format text: FORMER OWNER: INTERNATIONAL BUSINESS MACHINES CORPORATION, ARMONK, NY, US

R082 Change of representative

Representative=s name: GRUENECKER PATENT- UND RECHTSANWAELTE PARTG MB, DE

R016 Response to examination communication
R079 Amendment of ipc main class

Free format text: PREVIOUS MAIN CLASS: H01L0045000000

Ipc: H10N0070000000

R081 Change of applicant/patentee

Owner name: ADEIA SEMICONDUCTOR SOLUTIONS LLC, SAN JOSE, US

Free format text: FORMER OWNER: TESSERA, INC., SAN JOSE, CALIF., US

R016 Response to examination communication