JP6921961B2 - メモリスティブ・デバイスおよびその形成方法 - Google Patents
メモリスティブ・デバイスおよびその形成方法 Download PDFInfo
- Publication number
- JP6921961B2 JP6921961B2 JP2019534947A JP2019534947A JP6921961B2 JP 6921961 B2 JP6921961 B2 JP 6921961B2 JP 2019534947 A JP2019534947 A JP 2019534947A JP 2019534947 A JP2019534947 A JP 2019534947A JP 6921961 B2 JP6921961 B2 JP 6921961B2
- Authority
- JP
- Japan
- Prior art keywords
- material layer
- conductive material
- oxide
- oxide material
- layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N70/00—Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
- H10N70/20—Multistable switching devices, e.g. memristors
- H10N70/24—Multistable switching devices, e.g. memristors based on migration or redistribution of ionic species, e.g. anions, vacancies
- H10N70/245—Multistable switching devices, e.g. memristors based on migration or redistribution of ionic species, e.g. anions, vacancies the species being metal cations, e.g. programmable metallization cells
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/06—Physical realisation, i.e. hardware implementation of neural networks, neurons or parts of neurons
- G06N3/063—Physical realisation, i.e. hardware implementation of neural networks, neurons or parts of neurons using electronic means
- G06N3/065—Analogue means
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/08—Learning methods
- G06N3/084—Backpropagation, e.g. using gradient descent
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N70/00—Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
- H10N70/011—Manufacture or treatment of multistable switching devices
- H10N70/021—Formation of switching materials, e.g. deposition of layers
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N70/00—Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
- H10N70/011—Manufacture or treatment of multistable switching devices
- H10N70/041—Modification of switching materials after formation, e.g. doping
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N70/00—Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
- H10N70/20—Multistable switching devices, e.g. memristors
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N70/00—Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
- H10N70/801—Constructional details of multistable switching devices
- H10N70/821—Device geometry
- H10N70/826—Device geometry adapted for essentially vertical current flow, e.g. sandwich or pillar type devices
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N70/00—Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
- H10N70/801—Constructional details of multistable switching devices
- H10N70/821—Device geometry
- H10N70/828—Current flow limiting means within the switching material region, e.g. constrictions
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N70/00—Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
- H10N70/801—Constructional details of multistable switching devices
- H10N70/841—Electrodes
- H10N70/8416—Electrodes adapted for supplying ionic species
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N70/00—Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
- H10N70/801—Constructional details of multistable switching devices
- H10N70/881—Switching materials
- H10N70/883—Oxides or nitrides
- H10N70/8833—Binary metal oxides, e.g. TaOx
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Biomedical Technology (AREA)
- Biophysics (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Evolutionary Computation (AREA)
- Computational Linguistics (AREA)
- Molecular Biology (AREA)
- Computing Systems (AREA)
- General Engineering & Computer Science (AREA)
- Data Mining & Analysis (AREA)
- Mathematical Physics (AREA)
- Software Systems (AREA)
- Artificial Intelligence (AREA)
- Manufacturing & Machinery (AREA)
- Neurology (AREA)
- Semiconductor Memories (AREA)
- Thyristors (AREA)
Description
を求め、次にこの結果を特性op=g(ip)を有する飽和増幅器に入力して
を求めることによって、出力Ojが得られる。
を最小化することによって行われ、ここでζjは、wjiに対する所望の出力(例えば猫)である。結果は、ヘブ更新則Δwji=ηIiδjであり、ここで
である。
と書くことができ、ここで
および
は、バイナリ・パルスであり、1の確率がそれぞれIiおよびδjである、長さMの0と1とのランダム・ビット・ストリームの要素である。
Claims (15)
- 第1の導電材料層と、
前記第1の導電材料層上に配置された酸化物材料層と、
前記酸化物材料層上に直接配置され、金属−アルカリ合金を含む第2の導電材料層とを含み、
前記第2の導電材料層と前記酸化物材料層とが、前記第2の導電材料層に印加された正電圧パルスに応答して前記金属−アルカリ合金から前記酸化物材料層へのアルカリ金属のインターカレーションを生じ、
前記第2の導電材料層に印加された負電圧パルスに応答して前記酸化物材料層からのアルカリ金属の除去を生じるように構成される、
メモリスティブ・デバイス。 - 前記酸化物材料層が遷移金属酸化物を含む、請求項1に記載のメモリスティブ・デバイス。
- メモリスティブ・デバイスを形成する方法であって、
第1の導電材料層の一部の上に酸化物材料層を堆積することと、
前記酸化物材料層の一部の上に、金属−アルカリ合金を含む第2の導電材料層を直接堆積することと、
前記第2の導電材料層に印加された正電圧パルスに応答して前記酸化物材料層へのアルカリ金属のインターカレーションを生じるように、前記第2の導電材料層と前記酸化物材料層とを構成することとを含む方法。 - 前記酸化物材料層が遷移金属酸化物を含む、請求項3に記載の方法。
- メモリスティブ・デバイスであって、
第1の導電材料層と、
前記第1の導電材料層上に配置された酸化物材料層と、
前記酸化物材料層上に直接配置された拡散バリア層と、
前記拡散バリア層上に直接配置された第2の導電材料層とを含み、
前記第2の導電材料層が金属−アルカリ合金を含み、前記第2の導電材料層と前記酸化物材料層とが、前記第2の導電材料層に印加された正電圧パルスに応答して前記酸化物材料層へのアルカリ金属のインターカレーションを生じ、
前記第2の導電材料層に印加された負電圧パルスに応答して前記酸化物材料層からのアルカリ金属の除去を生じるように構成される、
メモリスティブ・デバイス。 - 前記酸化物材料層がアルカリ金属にインターカレートされる、請求項5に記載のメモリスティブ・デバイス。
- 前記酸化物材料層が遷移金属酸化物を含む、請求項5に記載のメモリスティブ・デバイス。
- 前記遷移金属酸化物が酸化チタンを含む、請求項7に記載のメモリスティブ・デバイス。
- メモリスティブ・デバイスを形成する方法であって、
第1の導電材料層の一部の上に酸化物材料層を堆積することと、
前記酸化物材料層の一部の上に拡散バリア層を直接堆積することと、
前記拡散バリア層の一部の上に、金属−アルカリ合金を含む第2の導電材料層を直接堆積することと、
前記第2の導電材料層に印加された正電圧パルスに応答して前記酸化物材料層へのアルカリ金属のインターカレーションを生じるように、前記第2の導電材料層と前記酸化物材料層とを構成することとを含む方法。 - 前記酸化物材料層が遷移金属酸化物を含む、請求項9に記載の方法。
- 前記第1の導電材料層がフッ素ドープ酸化スズを含む、請求項9に記載の方法。
- メモリスティブ・デバイスであって、
第1の導電材料層と、
前記第1の導電材料層上に直接配置され、アルカリ金属に一定時間暴露されて、第1の密度のアルカリ金属を含む酸化物材料を生じる酸化物材料層と、
前記酸化物材料層上に直接配置された第2の導電材料層とを含み、
前記第2の導電材料層と前記酸化物材料層とが、前記第2の導電材料層に印加された正電圧パルスに応答して前記酸化物材料層へのアルカリ金属のインターカレーションを生じて、前記酸化物材料層内に第2の密度のアルカリ金属をもたらし、
前記第2の導電材料層に印加された負電圧パルスに応答して前記酸化物材料層からの前記アルカリ金属の除去を生じて、前記酸化物材料層内に第3の密度のアルカリ金属をもたらすように構成され、
前記第2の密度は前記第1の密度より高く、
前記第3の密度は前記第2の密度より低い、
メモリスティブ・デバイス。 - 前記酸化物材料層が遷移金属酸化物を含む、請求項12に記載のメモリスティブ・デバイス。
- 前記アルカリ金属がn−ブチル・リチウムを含む、請求項13に記載のメモリスティブ・デバイス。
- 前記第2の導電材料層が金属−アルカリ合金を含む、請求項12に記載のメモリスティブ・デバイス。
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US15/405,555 US10164179B2 (en) | 2017-01-13 | 2017-01-13 | Memristive device based on alkali-doping of transitional metal oxides |
US15/405,555 | 2017-01-13 | ||
PCT/IB2018/050033 WO2018130914A1 (en) | 2017-01-13 | 2018-01-03 | Memristive device based on alkali-doping of transitional metal oxides |
Publications (3)
Publication Number | Publication Date |
---|---|
JP2020509574A JP2020509574A (ja) | 2020-03-26 |
JP2020509574A5 JP2020509574A5 (ja) | 2021-02-12 |
JP6921961B2 true JP6921961B2 (ja) | 2021-08-18 |
Family
ID=62839301
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2019534947A Active JP6921961B2 (ja) | 2017-01-13 | 2018-01-03 | メモリスティブ・デバイスおよびその形成方法 |
Country Status (6)
Country | Link |
---|---|
US (1) | US10164179B2 (ja) |
JP (1) | JP6921961B2 (ja) |
CN (1) | CN110168761A (ja) |
DE (1) | DE112018000134T5 (ja) |
GB (1) | GB2573693A (ja) |
WO (1) | WO2018130914A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20220029665A1 (en) * | 2020-07-27 | 2022-01-27 | Electronics And Telecommunications Research Institute | Deep learning based beamforming method and apparatus |
Families Citing this family (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20190020056A (ko) | 2016-06-20 | 2019-02-27 | 메사추세츠 인스티튜트 오브 테크놀로지 | 전기 스위칭을 위한 장치 및 방법들 |
US10127494B1 (en) * | 2017-08-02 | 2018-11-13 | Google Llc | Neural network crossbar stack |
US11455521B2 (en) | 2019-03-01 | 2022-09-27 | International Business Machines Corporation | Neuromorphic device driven by copper ion intercalation |
US11079958B2 (en) * | 2019-04-12 | 2021-08-03 | Intel Corporation | Apparatus, system and method for offloading data transfer operations between source and destination storage devices to a hardware accelerator |
US11250315B2 (en) | 2019-10-29 | 2022-02-15 | International Business Machines Corporation | Electrochemical device of variable electrical conductance |
US11552246B2 (en) | 2020-01-21 | 2023-01-10 | Massachusetts Institute Of Technology | Memristors and related systems and methods |
US11361821B2 (en) * | 2020-11-10 | 2022-06-14 | International Business Machines Corporation | Drift and noise corrected memristive device |
US11397544B2 (en) | 2020-11-10 | 2022-07-26 | International Business Machines Corporation | Multi-terminal neuromorphic device |
US11615842B2 (en) | 2020-12-14 | 2023-03-28 | International Business Machines Corporation | Mixed conducting volatile memory element for accelerated writing of nonvolatile memristive device |
CN113035953B (zh) * | 2021-02-08 | 2023-07-14 | 清华大学 | 一种无机耐高温突触晶体管及其制备方法 |
JP2022125660A (ja) | 2021-02-17 | 2022-08-29 | キオクシア株式会社 | 記憶装置及び記憶方法 |
Family Cites Families (29)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3010685B2 (ja) * | 1990-05-28 | 2000-02-21 | ソニー株式会社 | 有機電解質電池 |
US5908715A (en) * | 1997-05-30 | 1999-06-01 | Hughes Electronics Corporation | Composite carbon materials for lithium ion batteries, and method of producing same |
DE60130586T2 (de) * | 2001-08-13 | 2008-06-19 | Advanced Micro Devices, Inc., Sunnyvale | Speicherzelle |
KR100593448B1 (ko) * | 2004-09-10 | 2006-06-28 | 삼성전자주식회사 | 전이금속 산화막을 데이터 저장 물질막으로 채택하는비휘발성 기억 셀들 및 그 제조방법들 |
US20100104942A1 (en) * | 2007-03-26 | 2010-04-29 | Nv Bekaert Sa | Substrate for lithium thin film battery |
US20080314738A1 (en) * | 2007-06-19 | 2008-12-25 | International Business Machines Corporation | Electrolytic Device Based on a Solution-Processed Electrolyte |
CN101315969A (zh) | 2008-06-26 | 2008-12-03 | 复旦大学 | 一种具有掺杂控制层的电阻存储器 |
US20110121359A1 (en) * | 2008-07-31 | 2011-05-26 | Jianhua Yang | Multi-Layer Reconfigurable Switches |
KR101502898B1 (ko) * | 2008-11-10 | 2015-03-25 | 삼성에스디아이 주식회사 | 리튬 이차 전지용 복합 음극 활물질, 이의 제조 방법 및 이를 구비한 리튬 이차 전지 |
US8614432B2 (en) | 2009-01-15 | 2013-12-24 | Hewlett-Packard Development Company, L.P. | Crystalline silicon-based memristive device with multiple mobile dopant species |
KR101105981B1 (ko) * | 2009-04-28 | 2012-01-18 | 한양대학교 산학협력단 | 저항변화 메모리 소자 및 이의 제조방법 |
EP2443657A4 (en) | 2009-09-04 | 2013-07-31 | Hewlett Packard Development Co | MEMRISTORS BASED ON MIXED METAL VALVE COMPOUNDS |
US8120071B2 (en) | 2010-01-11 | 2012-02-21 | Hewlett-Packard Development Company, L.P. | Memfet ram |
WO2011133158A1 (en) | 2010-04-22 | 2011-10-27 | Hewlett-Packard Development Company, L.P. | Switchable two-terminal devices with diffusion/drift species |
CN102244193A (zh) | 2010-05-13 | 2011-11-16 | 复旦大学 | 包含钌掺杂的氧化钽基电阻型存储器及其制备方法 |
CN103229419B (zh) * | 2010-11-19 | 2016-08-03 | 惠普发展公司,有限责任合伙企业 | 用于切换忆阻器件的方法和电路 |
US20140184380A1 (en) * | 2010-11-26 | 2014-07-03 | Varun Aggarwal | Multi-state memory resistor device and methods for making thereof |
FR2969382B1 (fr) * | 2010-12-17 | 2022-11-18 | Centre Nat Rech Scient | Élément memristif et mémoire électronique basée sur de tels éléments |
CN102610746A (zh) * | 2011-01-20 | 2012-07-25 | 中国科学院微电子研究所 | 非挥发性电阻转变存储器 |
WO2013003978A1 (zh) | 2011-07-06 | 2013-01-10 | 复旦大学 | 包含钌掺杂的氧化钽基电阻型存储器及其制备方法 |
JP6180700B2 (ja) * | 2011-09-09 | 2017-08-16 | ルネサスエレクトロニクス株式会社 | 不揮発性半導体記憶装置及びその製造方法 |
US20150053908A1 (en) * | 2012-03-09 | 2015-02-26 | Privatran | Memristive device and method of manufacture |
US9224461B2 (en) * | 2012-11-27 | 2015-12-29 | Intel Corporation | Low voltage embedded memory having cationic-based conductive oxide element |
US20140175371A1 (en) * | 2012-12-21 | 2014-06-26 | Elijah V. Karpov | Vertical cross-point embedded memory architecture for metal-conductive oxide-metal (mcom) memory elements |
GB2516841A (en) | 2013-07-31 | 2015-02-11 | Ibm | Resistive memory element based on oxygen-doped amorphous carbon |
CN104752608A (zh) | 2013-12-26 | 2015-07-01 | 北京有色金属研究总院 | 一种忆阻器及其制备方法 |
DE102014113030A1 (de) * | 2014-09-10 | 2016-03-10 | Infineon Technologies Ag | Speicherschaltungen und ein Verfahren zum Bilden einer Speicherschaltung |
TWI560918B (en) * | 2014-10-15 | 2016-12-01 | Univ Nat Sun Yat Sen | Resistance random access memory |
CN104916777B (zh) | 2015-05-08 | 2017-11-03 | 浙江大学 | 一种锂离子掺杂石墨烯忆阻器及其制备方法 |
-
2017
- 2017-01-13 US US15/405,555 patent/US10164179B2/en active Active
-
2018
- 2018-01-03 JP JP2019534947A patent/JP6921961B2/ja active Active
- 2018-01-03 DE DE112018000134.2T patent/DE112018000134T5/de active Pending
- 2018-01-03 WO PCT/IB2018/050033 patent/WO2018130914A1/en active Application Filing
- 2018-01-03 GB GB1910618.6A patent/GB2573693A/en not_active Withdrawn
- 2018-01-03 CN CN201880006821.2A patent/CN110168761A/zh active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20220029665A1 (en) * | 2020-07-27 | 2022-01-27 | Electronics And Telecommunications Research Institute | Deep learning based beamforming method and apparatus |
US11742901B2 (en) * | 2020-07-27 | 2023-08-29 | Electronics And Telecommunications Research Institute | Deep learning based beamforming method and apparatus |
Also Published As
Publication number | Publication date |
---|---|
GB201910618D0 (en) | 2019-09-11 |
WO2018130914A1 (en) | 2018-07-19 |
GB2573693A (en) | 2019-11-13 |
US20180205011A1 (en) | 2018-07-19 |
US10164179B2 (en) | 2018-12-25 |
CN110168761A (zh) | 2019-08-23 |
JP2020509574A (ja) | 2020-03-26 |
DE112018000134T5 (de) | 2019-07-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6921961B2 (ja) | メモリスティブ・デバイスおよびその形成方法 | |
US10970624B2 (en) | Pre-programmed resistive cross-point array for neural network | |
Boybat et al. | Neuromorphic computing with multi-memristive synapses | |
CN107924227B (zh) | 电阻处理单元 | |
US9646243B1 (en) | Convolutional neural networks using resistive processing unit array | |
Indiveri et al. | Integration of nanoscale memristor synapses in neuromorphic computing architectures | |
US10956815B2 (en) | Killing asymmetric resistive processing units for neural network training | |
JP2021507349A (ja) | 抵抗処理ユニット・アレイのクロスポイント・デバイスに重みを記憶するための方法、そのクロスポイント・デバイス、ニューラル・ネットワークを実施するためのクロスポイント・アレイ、そのシステム、およびニューラル・ネットワークを実施するための方法 | |
Likharev | CrossNets: Neuromorphic hybrid CMOS/nanoelectronic networks | |
Pedretti et al. | Stochastic learning in neuromorphic hardware via spike timing dependent plasticity with RRAM synapses | |
WO2018158680A1 (en) | Resistive processing unit with hysteretic updates for neural network training | |
US20200250516A1 (en) | Neuromorphic devices using layers of ion reservoirs and ion conductivity electrolyte | |
CN114429199A (zh) | 可扩展的仿神经电路 | |
US11121259B2 (en) | Metal-oxide-based neuromorphic device | |
US11586899B2 (en) | Neuromorphic device with oxygen scavenging gate | |
AU2021296187B2 (en) | Suppressing undesired programming at half-selected devices in a crosspoint array of 3-terminal resistive memory | |
Babu et al. | Stochastic deep learning in memristive networks | |
Wu et al. | Enabling bio-plausible multi-level stdp using cmos neurons with dendrites and bistable rrams | |
Abunahla et al. | Tunable non-volatile analog resistive memory and its application in AI | |
Dias et al. | Memristive-based neuromorphic applications and associative memories | |
Ernoult | Rethinking biologically inspired learning algorithmstowards better credit assignment for on-chip learning | |
Soures et al. | Enabling on-device learning with deep spiking neural networks for speech recognition | |
Zhu et al. | Back-Propagation Neural Network based on Analog Memristive Synapse | |
Merrikh-Bayat et al. | Efficient neuro-fuzzy system and its Memristor Crossbar-based Hardware Implementation | |
Hasan | Memristor Crossbar Scaling Limits and the Implementation of Large Neural Networks |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20190920 |
|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A711 Effective date: 20200306 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20201228 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20201228 |
|
A871 | Explanation of circumstances concerning accelerated examination |
Free format text: JAPANESE INTERMEDIATE CODE: A871 Effective date: 20201228 |
|
A975 | Report on accelerated examination |
Free format text: JAPANESE INTERMEDIATE CODE: A971005 Effective date: 20210126 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20210201 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20210430 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20210628 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20210728 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6921961 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |