DE102018208119A1 - Trennvorrichtung zur Gleichstromunterbrechung eines Strompfades sowie Schutzschalter - Google Patents

Trennvorrichtung zur Gleichstromunterbrechung eines Strompfades sowie Schutzschalter Download PDF

Info

Publication number
DE102018208119A1
DE102018208119A1 DE102018208119.0A DE102018208119A DE102018208119A1 DE 102018208119 A1 DE102018208119 A1 DE 102018208119A1 DE 102018208119 A DE102018208119 A DE 102018208119A DE 102018208119 A1 DE102018208119 A1 DE 102018208119A1
Authority
DE
Germany
Prior art keywords
contact
magnetic
contact bridge
bridge
magnetic element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
DE102018208119.0A
Other languages
English (en)
Inventor
Manuel Engewald
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ellenberger and Poensgen GmbH
Original Assignee
Ellenberger and Poensgen GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ellenberger and Poensgen GmbH filed Critical Ellenberger and Poensgen GmbH
Priority to DE102018208119.0A priority Critical patent/DE102018208119A1/de
Priority to EP19726366.8A priority patent/EP3797438B1/de
Priority to CN201980033466.2A priority patent/CN112219254A/zh
Priority to JP2020565454A priority patent/JP7169373B2/ja
Priority to CA3101002A priority patent/CA3101002A1/en
Priority to PCT/EP2019/063095 priority patent/WO2019224198A1/de
Publication of DE102018208119A1 publication Critical patent/DE102018208119A1/de
Priority to US17/101,154 priority patent/US11410825B2/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H50/00Details of electromagnetic relays
    • H01H50/16Magnetic circuit arrangements
    • H01H50/36Stationary parts of magnetic circuit, e.g. yoke
    • H01H50/42Auxiliary magnetic circuits, e.g. for maintaining armature in, or returning armature to, position of rest, for damping or accelerating movement
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H33/00High-tension or heavy-current switches with arc-extinguishing or arc-preventing means
    • H01H33/02Details
    • H01H33/59Circuit arrangements not adapted to a particular application of the switch and not otherwise provided for, e.g. for ensuring operation of the switch at a predetermined point in the ac cycle
    • H01H33/596Circuit arrangements not adapted to a particular application of the switch and not otherwise provided for, e.g. for ensuring operation of the switch at a predetermined point in the ac cycle for interrupting dc
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H50/00Details of electromagnetic relays
    • H01H50/02Bases; Casings; Covers
    • H01H50/021Bases; Casings; Covers structurally combining a relay and an electronic component, e.g. varistor, RC circuit
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H50/00Details of electromagnetic relays
    • H01H50/54Contact arrangements
    • H01H50/546Contact arrangements for contactors having bridging contacts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H51/00Electromagnetic relays
    • H01H51/02Non-polarised relays
    • H01H51/04Non-polarised relays with single armature; with single set of ganged armatures
    • H01H51/06Armature is movable between two limit positions of rest and is moved in one direction due to energisation of an electromagnet and after the electromagnet is de-energised is returned by energy stored during the movement in the first direction, e.g. by using a spring, by using a permanent magnet, by gravity
    • H01H51/065Relays having a pair of normally open contacts rigidly fixed to a magnetic core movable along the axis of a solenoid, e.g. relays for starting automobiles

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Arc-Extinguishing Devices That Are Switches (AREA)
  • Breakers (AREA)
  • Driving Mechanisms And Operating Circuits Of Arc-Extinguishing High-Tension Switches (AREA)

Abstract

Die Erfindung betrifft eine Trennvorrichtung (14) zur Gleichstromunterbrechung eines Strompfads (2), insbesondere für einen Schutzschalter (8), aufweisend einen Hybridschalter (16), welcher ein stromführendes mechanisches Kontaktsystem (18, 18') und ein hierzu parallel geschaltetes Halbleiterschaltsystem (20) aufweist, wobei das Kontaktsystem (18, 18') mindestens einen stationären Festkontakt (22a, 22b) und mindestens einen Bewegkontakt (24a, 24b) aufweist, wobei der Bewegkontakt (24a, 24b) an einer mit einem Antriebssystem (28, 28') gekoppelten stromführenden Kontaktbrücke (26, 26') angeordnet ist, welche den Bewegkontakt (24a, 24b) bei einer Schaltbewegung von einer Offenstellung in eine am Festkontakt (22a, 22b) mit einer Kontaktkraft (Fk) anliegende Schließstellung bewegt, und wobei an der Kontaktbrücke (26, 26') mindestens ein erstes Magnetelement (38, 38') angeordnet ist, welches mittels eines Luftspaltes (42) zu einem stationären zweiten Magnetelement (40, 40') derart beabstandet ist, dass bei einem Stromfluss durch die Kontaktbrücke (26, 26') ein Magnetfeld (B) in dem ersten Magnetelement (38, 38') bewirkt wird und eine magnetische Anziehung des ersten und zweiten Magnetelements (38, 38', 40, 40') erfolgt, wobei Anziehung eine zu der Kontaktkraft (Fk) gleichgerichtete Magnetkraft (Fm) bewirkt.

Description

  • Die Erfindung betrifft eine Trennvorrichtung zur Gleichstromunterbrechung eines Strompfads, insbesondere für einen Schutzschalter, aufweisend einen Hybridschalter, welcher ein stromführendes mechanisches Kontaktsystem und ein hierzu parallel geschaltetes Halbleiterschaltsystem aufweist. Die Erfindung betrifft weiterhin einen Schutzschalter mit einer solchen Trennvorrichtung.
  • Eine zuverlässige Trennung von elektrischen Komponenten oder Einrichtungen von einem Schalt- oder Stromkreis ist beispielsweise zu Installations-, Montage- oder Servicezwecken sowie insbesondere auch zum allgemeinen Personenschutz wünschenswert. Eine entsprechende Schalteinheit oder Trennvorrichtung muss daher in der Lage sein, eine Unterbrechung unter Last, also ohne ein vorheriges Abschalten einer den Stromkreis speisenden Spannungsquelle, vorzunehmen.
  • Zur Lasttrennung können leistungsfähige Halbleiterschalter eingesetzt werden. Diese haben jedoch den Nachteil, dass auch im Normalbetrieb unvermeidbare Leistungsverluste an den Halbleiterschaltern auftreten. Des Weiteren ist es mit derartigen Leistungshalbleitern typischerweise nicht möglich, eine galvanische Trennung und somit einen zuverlässigen Personenschutz sicherzustellen. Werden demgegenüber zur Lasttrennung mechanische Schalter (Schaltkontakt) eingesetzt, so ist bei einer erfolgten Kontaktöffnung ebenso eine galvanische Trennung der elektrischen Einrichtung von der Spannungsquelle hergestellt.
  • Die elektrischen Kontakte eines solchen mechanischen Schalters oder Kontaktsystems sind häufig als ein stationärer Festkontakt und als ein gegenüber diesem bewegbaren Bewegkontakt ausgeführt. Der Bewegkontakt ist hierbei relativ zum Festkontakt bewegbar und aus einer Schließstellung in eine Offenstellung überführbar. Dies bedeutet, dass zum Schalten des Kontaktsystems bzw. der Schalteinheit der Bewegkontakt zwischen der Offenstellung und der Schließstellung mittels einer Schaltbewegung bewegt wird.
  • Die Kontakte des Kontaktsystems bilden in der Schließstellung typischerweise eine sehr kleine Berührungsstelle aus, an welcher sich der Stromfluss durch das Kontaktsystem konzentriert. Im Betrieb treten hierbei magnetische Effekte, insbesondere die sogenannte „holmsche Engekraft“, auf, welche eine Kraft auf die Kontakte ausüben, welche den Berührungskontakt zwischen den Beweg- und Festkontakten löst. Um dies zu vermeiden, weist ein solches Kontaktsystem in der Regel ein Federelement auf, welches den Bewegkontakt mit einer Federkraft gegen den Festkontakt presst, also mit einer zusätzlichen entlang der Schließstellung gerichteten Kontaktkraft oder Kontaktdruck beaufschlagt.
  • Bei einem Fehler- oder Überlaststrom kann es jedoch vorkommen, dass die holmsche Engekraft die Kontaktkraft überschreitet, wodurch ein ungewünschtes Abheben der Kontakte bewirkt wird. Insbesondere bei zu schaltenden Gleichspannungen oberhalb von 24 Volt (DC) treten bei einem Trennen der stromdurchflossenen elektrischen Kontakte häufig Schaltlichtbögen auf, indem der elektrische Strom nach Öffnen der Kontakte entlang einer Lichtbogenstrecke in Form einer Bogenentladung weiter fließt. Da bei Gleichspannungen ab etwa 50 Volt und Gleichströmen ab etwa 1 Ampere derartige Schaltlichtbögen unter Umständen nicht selbsttätig verlöschen, kann das Kontaktsystem hierbei beschädigt oder vollständig zerstört werden.
  • Es sind sogenannte hybride Trennvorrichtungen denkbar, welche einen Hybridschalter aufweisen. Ein solcher Hybridschalter weist in der Regel ein mechanisches Kontaktsystem sowie ein hierzu parallel geschaltetes Halbleiterschaltsystem auf. Das Halbleiterschaltsystem weist hierbei mindestens einen Leistungshalbleiterschalter auf, welcher bei einem geschlossenen Kontaktsystem geöffnet, also elektrisch nicht leitend ist, und welcher bei einem Öffnen des Kontaktsystems zumindest zeitweise stromleitend geschaltet ist.
  • Insbesondere wird bei einem Einschalten zuerst das Halbleiterschaltsystem aktiviert und nach kurzer Verzögerung, wenn sich der Stromfluss stabilisiert hat, das Kontaktsystem geschlossen. Anschließend wird das Halbleiterschaltsystem deaktiviert und das mechanische Kontaktsystem übernimmt den gesamten Strom. Das Abschalten geschieht entsprechend in umgekehrter Reihenfolge. Dadurch wird der elektrische Strom des Lichtbogens von den Kontakten des Kontaktsystems auf das Halbleiterschaltsystem geleitet oder kommutiert, wodurch der Lichtbogen zwischen den Schaltkontakten des Kontaktsystems verlöscht wird, oder von Anfang an nicht entsteht.
  • Bei einer solchen hybriden Trennvorrichtung ist es somit möglich, bei einem Schaltvorgang, bei welchen der Bewegkontakt in die Offenstellung bewegt wird, also das mechanische Kontaktsystem geöffnet wird, den Schaltlichtbogen zwischen den Kontakten zumindest in einem begrenzten Strombereich zuverlässig zu verhindern. Geeigneterweise weist die Trennvorrichtung eine Schmelzsicherung auf, welche in Reihenschaltung zum Hybridschalter angeordnet ist. Die Schmelzsicherung gewährleistet hierbei bei Strömen oberhalb dieses Strombereichs einen zuverlässigen Schutz des Systems.
  • Bei einem Einsatz einer solchen Trennvorrichtung in einem Schutzschalter muss sichergestellt sein, dass der Hybridschalter den Fehler- oder Überstrom sicher trägt, da ansonsten ein zuverlässiges Ansprechen der (Schmelz-)Sicherung innerhalb einer vorgegeben Kennlinie nicht gewährleistet ist. Um das Ansprechen der Sicherung innerhalb der Kennlinie, auch unter Berücksichtigung von Alterungseffekten hinweg, zu gewährleisten, muss ein Überstrom von bis zu einigen Kiloampere (kA) zuverlässig von dem mechanischen Kontaktsystem getragen werden. Somit ist eine Erhöhung des Kontaktdrucks auf ein Vielfaches dessen erforderlich, was für eine niederohmige Kontaktierung des Kontaktsystems in einem Nennstrombereich nötig wäre.
  • Um ein sicheres Ansprechen der Sicherung zu gewährleisten ist es beispielsweise möglich, dass ein oder mehrere Federelemente zur Erzeugung des Kontaktdrucks entsprechend überdimensioniert ausgeführt werden, so dass die Kontaktkraft bzw. der Kontaktdruck bei der auftretenden Engekraft eine hinreichende Reserve, beispielsweise auch hinsichtlich mechanischer Vibrationen, aufweist. Dadurch werden jedoch sowohl die Herstellungskosten als auch der benötigte Bauraumbedarf für die Trennvorrichtung nachteilig erhöht. Des Weiteren werden zum Schalten und Halten des Kontaktsystems vergleichsweise hohe Leistungen benötigt.
  • Insbesondere bei Kontaktsystemen mit lediglich einem Festkontakt und einem Bewegkontant ist es denkbar, dass der Bewegkontakt als eine (Leiter-)Schleife ausgeführt ist. Im Betrieb erzeugt der durch die Schleife fließende Strom ein Magnetfeld, welches eine Magnetkraft zur Unterstützung der Kontaktkraft bewirkt. Dadurch ist eine Kompensation der Engekraft ermöglicht. Die Wirkung ist hierbei unabhängig von der Stromflussrichtung.
  • Ebenso denkbar ist es beispielsweise, ein Magnetfeld eines Permanentmagneten direkt oder mittels Leitblechen derart im Bereich des Kontaktsystems auszurichten, dass sich in Zusammenwirkung mit einem im Zuge des Stromflusses den Bewegkontakt umgebenden Magnetfeld eine vorteilhaften Wirkung auf den Kontaktdruck ergibt. Hierbei ist die Richtung der bewirkten Magnetkraft abhängig von der Stromflussrichtung.
  • Der Erfindung liegt die Aufgabe zugrunde, eine besonders geeignete Trennvorrichtung zur Gleichstromunterbrechung eines Strompfads anzugeben. Der Erfindung liegt weiterhin die Aufgabe zugrunde, einen Schutzschalter mit einer entsprechenden Trennvorrichtung anzugeben.
  • Die erfindungsgemäße Trennvorrichtung ist zur Gleichstromunterbrechung eines Strompfades, insbesondere für einen in den Strompfad geschalteten Schutzschalter, geeignet und eingerichtet. Die insbesondere hybride Trennvorrichtung weist einen Hybridschalter zur Gleichstromunterbrechung des Strompfades auf.
  • Der Hybridschalter weist ein schaltbares mechanisches Kontaktsystem auf. Unter einem „mechanischen Kontaktsystem“ ist nachfolgend sowohl ein rein mechanisches als auch ein elektromechanisches Kontaktsystem zu verstehen.
  • Unter „Schalten“ wird hier und im Folgenden insbesondere eine mechanische oder galvanische Kontakttrennung („Öffnen“) und/oder eine Kontaktschließung („Schließen“) des Kontaktsystems verstanden. Der Kontaktstecke des Kontaktsystems ist ein Halbleiterschaltsystem des Hybridschalters parallel geschaltet. Mit anderen Worten weist der Hybridschalter eine Parallelschaltung des Kontaktsystems und des Halbleiterschaltsystems auf. Das Halbleiterschaltsystem weist zweckmäßigerweise mindestens einen steuerbaren Leistungshalbleiterschalter auf.
  • Das Kontaktsystem weist mindestens einen stationären Festkontakt und mindestens einen gegenüber diesem relativ bewegbaren Bewegkontakt auf. Der Bewegkontakt ist von einer stromführenden Kontaktbrücke (Schaltarm) getragen. Die Kontaktbrücke ist hierbei beispielsweise aus einem Kupfermaterial hergestellt. Die Kontaktbrücke ist mit einem Antriebssystem gekoppelt, welches die Kontaktbrücke - und somit den Bewegkontakt - von einer Offenstellung in eine am Festkontakt mit einer Kontaktkraft anliegende Schließstellung bewegt. Mit anderen Worten wird der Bewegkontakt mittels des Antriebssystems mit einem Anpress- oder Kontaktdruck beaufschlagt, welche eine sichere Anlage der Kontakte gewährleistet. Das Antriebssystem ist vorzugsweise mit einem Federelement ausgeführt, wobei die Kontaktkraft (Schließkraft) als Vorspannung oder als Rückstellkraft des Federelements bewirkt wird.
  • Erfindungsgemäß ist an der Kontaktbrücke mindestens ein erstes Magnetelement angeordnet, welches mittels eines Luftspaltes zu einem stationären zweiten Magnetelement derart beabstandet angeordnet ist, dass bei einem Stromfluss durch die Kontaktbrücke ein Magnetfeld in dem ersten Magnetelement bewirkt wird und eine magnetische Anziehung des ersten und zweiten Magnetelements erfolgt. Mit anderen Worten führt das erste Magnetelement das von der stromdurchflossenen Kontaktbrücke erzeugte Magnetfeld, wobei der magnetische Kreis über den Luftspalt durch das zweite Magnetelement geschlossen wird. Im Zuge dieser Anziehung oder magnetischen Wechselwirkung wird eine zu der Kontaktkraft gleichgerichtete Magnetkraft (Zugkraft) bewirkt, wodurch die effektiv wirksame Kontaktkraft des Bewegkontakts auf den Festkontakt erhöht wird.
  • Durch den Stromfluss wird zusätzlich zu der Kontaktkraft des Antriebssystems eine Kraftwirkung zwischen den beiden Magnetelementen bewirkt, welche den Kontaktdruck erhöht und somit einer auftretenden holmschen Engekraft entgegenwirkt. Mit anderen Worten sind die Kontaktkraft und die Magnetkraft entgegen der Engekraft gerichtet. Die Kraftwirkung ist hierbei unabhängig von der Stromflussrichtung und erfolgt somit stets verstärkend zur Kontaktkraft.
  • Sowohl die Engekraft als auch die bewirkte Magnetkraft nehmen proportional zum Quadrat der über das Kontaktsystem fließenden Stromstärke zu. Dies bedeutet, dass im Falle eines Überstroms oder Fehlerstroms sowohl die Engekraft als auch die Magnetkraft in gleicher Weise zunehmen, sodass die Magnetkraft durch die Magnetelemente stets ausreichend dimensioniert ist, um die Engekraft zu kompensieren. Somit ist stets eine zuverlässige und betriebssichere Anlage der Kontakte sichergestellt. Insbesondere wird einem ungewünschten Abheben der Kontakte auch im Falle eines Fehler- oder Überstroms vorteilhaft und einfach entgegengewirkt. Dadurch ist eine besonders geeignete Trennvorrichtung zur Gleichstromunterbrechung eines Strompfades realisiert.
  • Insbesondere wird die zusätzliche Magnetkraft für den Kontaktdruck erst dann erzeugt, wenn sie benötigt wird, um den Bewegkontakt zuverlässig auf den Festkontakt zu pressen. Im Gegensatz zum Stand der Technik ist es somit nicht notwendig eine höher dimensionierte Kontaktdruckfeder des Antriebssystems vorzusehen, wodurch die Herstellungskosten sowie der Bauraumbedarf der Trennvorrichtung reduziert werden. Des Weiteren sind somit vergleichsweise geringe Anzugs- und Halteenergien oder Leistungen beim Schalten des Kontaktsystems bzw. des Hybridschalters notwendig. Aufgrund der reduzierten Halteenergie wird die Wärmeentwicklung des Antriebssystems reduziert, wodurch ein besonders bauraumkompaktes Antriebssystem einsetzbar ist. Ferner sind somit höhere Nennströme realisierbar. Im Falle einer Ausführung als bistabiles Kontaktsystem ist es somit beispielsweise möglich, vergleichsweise schwache Permanentmagneten einzusetzen.
  • Da das mechanische Kontaktsystem Teil eines Hybridschalters ist, tritt bei einem Schalten, insbesondere bei einem Öffnen der Kontakte, kein (Schalt-)Lichtbogen auf. Dadurch können Effekte aufgrund von Kontaktabbränden im Wesentlichen vernachlässigt werden, wodurch die Abstimmung der Magnetelemente durch den Luftspalt besonders effektiv einstellbar oder vorgebbar ist. Insbesondere weist die Trennvorrichtung somit zumindest hinsichtlich der Kraftwirkung der Magnetelemente über ihre Lebensdauer hinweg im Wesentlichen keine Veränderung auf.
  • Das stationäre zweite Magnetelement ist vorzugsweise nicht Teil des Hybridschalters, insbesondere nicht Teil des beweglichen Kontaktsystems. Das zweite Magnetelement ist beispielsweise an einem Gehäuse der Trennvorrichtung oder des Schutzschalters angeordnet, so dass der Angriffspunkt der bewirkten Magnetkraft außerhalb oder beabstandet zum Antriebssystem des Kontaktsystems angeordnet ist. Dadurch ist die Funktion der Magnetelemente stets gewährleistet.
  • Der Luftspalt weist beispielsweise eine lichte Weite von etwa 0,3 mm (Millimeter) bis 1 mm auf. Vorzugsweise weist der Luftspalt insbesondere eine lichte Weite von etwa 0,5 mm auf.
  • Erfindungsgemäß wird somit die stromdurchflossene Kontaktbrücke selbst zur Erzeugung eines das Antriebssystem unterstützenden Magnetfeldes genutzt. Die Magnetelemente wirken somit als ein zusätzlicher elektromagnetischer Aktor oder Hubmagnet, dessen bewirkte Magnetkraft direkt auf die Kontaktbrücke wirkt, so dass die auftretende Abstoßung der Kontakte bei höheren Stromstärken, insbesondere im Kiloamperebereich (kA), zuverlässig und betriebssicher kompensiert wird. Insbesondere benötigt das Kontaktsystem der erfindungsgemäßen Trennvorrichtung keine zusätzlichen Permanentmagnete zur Erzeugung der unterstützenden Zug- oder Schließkraft (Magnetkraft), wodurch die Trennvorrichtung besonders kostengünstig ist. Des Weiteren ist die Funktion unabhängig von der Stromflussrichtung, so dass das Kontaktsystem und somit die Trennvorrichtung im Wesentlichen bidirektional einsetzbar ist.
  • Im Gegensatz zum Stand der Technik ermöglicht die erfindungsgemäße Zugwirkung der Magnetelemente eine optimierte Stromführung mittels der Kontaktbrücke im Vergleich zu der Abstoßung einer schleifenförmig geführten Kontaktbrücke (Leiterschleife). Dadurch ist eine sehr bauraumkompakte Ausführung der Trennvorrichtung ermöglicht. Ferner ist eine maximale Wirkung bei geschlossenen Kontakten realisiert. Dementgegen müsste im Falle größerer Hübe des Kontakts (erhöhte Trennstrecke, höhere Spannungen) eine Leiterschleife entsprechend weit und somit ineffektiv ausgeführt werden. Somit ist die Kontaktbrücke selbst besonders bauraumkompakt und materialsparend ausführbar, wodurch weiterhin Verlustleistungen des Kontaktsystems reduziert werden.
  • In einer geeigneten Weiterbildung weist das mechanische Kontaktsystem zwei Festkontakte und zwei Bewegkontakte auf. Geeigneterweise werden die Bewegkontakte hierbei im Wesentlichen gleichzeitig, also synchron, bewegt, so dass das Schalten an beiden Schalt- oder Kontaktstellen im Wesentlichen zeitgleich erfolgt. Mit anderen Worten weist das Kontaktsystem - und somit der Hybridschalter - zwei vorzugsweise zueinander beabstandete Kontaktpaare oder Trennstellen auf. Dadurch ist ein besonders betriebssicheres Schalten des Kontaktsystems möglich, wodurch das Schaltverhalten der Trennvorrichtung verbessert wird.
  • In einer vorteilhaften Ausführung sind das erste Magnetelement und das zweite Magnetelement jeweils aus einem weichmagnetischen Material, insbesondere aus einem weichmagnetischen Eisenmaterial, hergestellt. Unter einem weichmagnetischen Material oder Werkstoff ist hierbei insbesondere ein ferromagnetisches Material zu verstehen, welches in der Gegenwart eines Magnetfelds leicht magnetisiert wird. Diese magnetische Polarisation wird insbesondere durch den elektrischen Strom in der stromdurchflossenen Kontaktbrücke erzeugt. Durch die Polarisation wird die magnetische Flussdichte in dem jeweiligen Magnetelement um ein Vielfaches erhöht. Dies bedeutet, dass ein weichmagnetisches Material ein äußeres Magnetfeld um dessen jeweilige Werkstoffpermeabilität „verstärkt“. Dadurch ist sichergestellt, dass eine möglichst hohe Magnetkraft zwischen den Magnetelementen erzeugt wird, so dass die Engekraft stets zuverlässig kompensiert wird.
  • Weichmagnetische Werkstoffe besitzen eine Koerzitivfeldstärke von weniger als 1000 A/m (Ampere pro Meter). Als weichmagnetisches Material wird beispielsweise ein Magnetweicheisen (RFe80 - Rfe120) mit einer Koerzitivfeldstärke von 80 bis 120 A/m verwendet. Ebenso denkbar ist beispielsweise der Einsatz eines Kaltbandes, wie beispielsweise EN10139-DC01+LC-MA („Trafoblech“), wodurch eine besonders kostengünstige Ausführung realisiert ist.
  • In einer denkbaren Ausführungsform sind das erste Magnetelement und das zweite Magnetelement als paarweises Joch-Anker-Paar ausgeführt. Eines der Magnetelemente ist hierbei als ein etwa U-förmiges oder hufeisenförmiges Magnetjoch ausgeführt, wobei das jeweils andere Magnetelement geeigneterweise als eine flache Ankerplatte ausgestaltet ist.
  • In einer vorteilhaften Ausgestaltung ist die Kontaktbrücke etwa rechteckig ausgeführt, wobei zwei Bewegkontakte vorgesehen sind, welche an den gegenüberliegenden Stirnseiten der Kontaktbrücke angeordnet sind. Dadurch ist ein besonders einfacher Aufbau der bewegbaren Teile des Kontaktsystems realisiert. Vorzugsweise sind die Bewegkontakte an einer gemeinsamen Planfläche der Kontaktbrücke angeordnet, wobei die Kopplung an das Antriebssystem geeigneterweise an der den Bewegkontakten gegenüberliegenden Planfläche der Kontaktbrücke erfolgt.
  • In einer zweckmäßigen Ausbildung ist das erste Magnetelement als U-förmiges Magnetjoch ausgeführt, welches im Bereich des horizontalen U-Schenkels an der Kontaktbrücke anliegt. Das erste Magnetelement oder Magnetjoch liegt hierbei mit dem horizontalen U-Schenkel insbesondere im Bereich der mechanischen Kopplung an das Antriebssystem an, wobei das Magnetjoch die Kontaktbrücke mittels der vertikalen U-Schenkel zumindest abschnittsweise umgreift.
  • Geeigneterweise umgreifen die vertikalen U-Schenkel die Kontaktbrücke derart, dass die vertikalen U-Schenkel des ersten Magnetelements der Kontaktbrücke in Richtung der Festkontakte überstehen und mittels jeweils eines freiendseitigen Luftspaltes beabstandet zu einem als eine Ankerplatte ausgeführten zweiten Magnetelement angeordnet sind. Das zweite Magnetelement oder die Ankerplatte ist hierbei im Wesentlichen quer zu der Kontaktbrücke, also etwa parallel zu dem horizontalen U-Schenkel des ersten Magnetelements oder Magnetjochs orientiert.
  • In einer zweckmäßigen Weiterbildung ist die Schaltbewegung der Kontaktbrücke, also die mittels des Antriebssystems und/oder der Magnetelemente bewirkte Bewegung der Kontaktbrücke, linear. Die Konjunktion „und/oder“ ist hier und im Folgenden derart zu verstehen, dass die mittels dieser Konjunktion verknüpften Merkmale sowohl gemeinsam als auch als Alternativen zueinander ausgebildet sein können. Dadurch ist eine konstruktiv besonders einfache Ausführung und Anordnung des Antriebssystems und der Kontaktbrücke sowie der Magnetelemente ermöglicht.
  • In einer alternativen, ebenso vorteilhaften Ausgestaltung ist die Kontaktbrücke im Wesentlichen U-förmig ausgeführt, wobei zwei Bewegkontakte an jeweils einem Freiende eines jeweiligen vertikalen U-Schenkels angeordnet sind. Die alternative Ausgestaltung der Kontaktbrücke ist kostengünstig herstellbar und ermöglicht besonders große Trennstrecken zwischen den Kontakten, also große lichte Weiten zwischen den Kontakten in der Offenstellung. In dieser Ausgestaltung ist das Antriebssystem vorzugsweise als ein Klappanker-Magnetsystem ausgeführt, wodurch eine besonders kostengünstige, bauraumkompakte und langlebige Trennvorrichtung realisiert ist.
  • In zusätzlicher oder weiterer Aspekt dieser Ausgestaltungsform sieht vor, dass entlang der vertikalen U-Schenkel der Kontaktbrücke jeweils ein als Ankerplatte ausgeführtes erstes Magnetelement angeordnet ist. Des Weiteren sind zwei als U-förmige oder hufeisenförmige Magnetjoch ausgeführte zweite Magnetelemente vorgesehen, welche im Bereich der Festkontakte angeordnet sind, und welche jeweils zwei vertikale U-Schenkel aufweisen, welche den jeweils gegenüberliegend angeordneten vertikalen U-Schenkel der Kontaktbrücke zumindest abschnittsweise umgreifen. Dadurch ist eine besonders gleichmäßige und Erzeugung oder Bewirkung der unterstützenden Magnetkraft im Bereich der Bewegkontakte gewährleistet.
  • In einer besonders geeigneten Weiterbildung erfolgt die Schaltbewegung der Kontaktbrücke mittels einer Schwenk- oder Drehbewegung. Die Schwenk- oder Drehachse ist hierbei insbesondere entlang oder parallel zu dem horizontalen U-Schenkel der Kontaktbrücke orientiert. Vorzugsweise ist die Kontaktbrücke hierbei an einem etwa U-förmigen Federelement des Antriebssystems befestigt oder gehalten, welches beispielsweise als Stanzteil aus einem Federstahl hergestellt ist. Die Schwenk- oder Drehbewegung wird hierbei insbesondere durch ein Klappanker-Magnetsystem realisiert, wobei der Kontaktdruck durch die Biegeelastizität des Federelements bewirkt wird. Durch die Schwenk- oder Drehbewegung sind in einfacher Art und Weise besonders große Trennstrecken zwischen den Kontakten erzeugbar oder umsetzbar, wodurch eine besonders sichere und zuverlässige galvanische Trennung der Trennvorrichtung realisiert ist.
  • Des Weiteren ist insbesondere die Ausbildung mit einem U-förmig angeordneten Federelement, dessen vertikale U-Schenkel im Wesentlichen fluchtend mit denen der Kontaktbrücke angeordnet sind, dahingehend vorteilhaft, dass das Kontaktsystem auch bei äußeren Vibrationen oder Erschütterungen zuverlässig in der Schließstellung gehalten wird. Insbesondere ist es bei derartigen rotatorischen Kontaktsystemen möglich, den Masseschwerpunkt der bewegten Kontaktbrücke nahe dem Drehpunkt oder der Drehachse zu positionieren.
  • In einer bevorzugten Anwendung ist die vorstehend beschriebene Trennvorrichtung Teil eines Schutzschalters. Der Schutzschalter ist hierbei zweckmäßigerweise in einen Stromkreis zwischen einer Gleichstromquelle und einem Verbraucher oder einer Last verschaltet, so dass bei einer Betätigung des Schutzschalters die Trennvorrichtung den Verbraucher oder die Last galvanisch von der Gleichstromquelle trennt.
  • Der Schutzschalter ist insbesondere als ein hybrider Schutzschalter oder als ein hybrides (Leistungs-)Relais oder auch als ein Schutzschaltergerät mit einer nachgeschalteten Schmelzsicherung ausgeführt, und weist einen Einspeisungsanschluss, über den eine netzseitige und somit stromführende Stromleitung angeschlossen wird, sowie einen Lastanschluss auf, über den die lastseitig abgehende Stromleitung anschließbar ist.
  • Vorzugsweise ist der Schutzschalter zum Schalten von hohen Spannungen und Gleichströmen, beispielsweise im Bereich von 6 kA, geeignet und eingerichtet. Hierzu ist die Trennvorrichtung zweckmäßigerweise entsprechend dimensioniert um derartig hohe Stromstärken zu führen und sicher zu schalten. Durch die erfindungsgemäße Trennvorrichtung ist somit ein sicheres und zuverlässiges Schalten des Schutzschalters, auch bei hohen Überströmen oder Fehlerströmen, gewährleistet.
  • Nachfolgend sind Ausführungsbeispiele der Erfindung anhand einer Zeichnung näher erläutert. Darin zeigen:
    • 1 in schematischer Darstellung einen Stromkreis mit einer Gleichstromquelle und mit einem Verbraucher sowie mit einem dazwischen geschalteten Schutzschalter,
    • 2 in perspektivischer Darstellung ein mechanisches Kontaktsystem des Schutzschalters,
    • 3 in Schnittdarstellung das Kontaktsystem,
    • 4 in perspektivischer Darstellung das Kontaktsystem,
    • 5 in Seitendarstellung das Kontaktsystem,
    • 6 in Draufsicht mit Blick auf eine Unterseite das Kontaktsystem,
    • 7 in perspektivischer Darstellung eine alternative Ausführungsform des Kontaktsystems in einer Schließstellung,
    • 8 in perspektivischer Darstellung die alternative Ausführungsform des Kontaktsystems in einer Offenstellung,
    • 9 in Seitendarstellung ausschnittsweise das Kontaktsystem in der alternativen Ausführungsform,
    • 10 in Schnittdarstellung einen Längsschnitt des Kontaktsystems, und
    • 11 in Schnittdarstellung einen Querschnitt des Kontaktsystems.
  • Einander entsprechende Teile und Größen sind in allen Figuren stets mit den gleichen Bezugszeichen versehen.
  • Die 1 zeigt in schematischer und vereinfachter Darstellung einen Stromkreis 2 zur Führung eines (Gleich-)Stroms I. der Stromkreis 2 weist eine Gleichstromquelle 4 mit einem Pluspol 4a und mit einem Minuspol 4b auf, zwischen denen eine Betriebsspannung U anliegt. In den Stromkreis 2 ist eine Last oder ein Verbraucher 6 geschaltet. Zwischen dem Pluspol 4a und der Last 6 ist ein Schutzschalter 8, beispielsweise in Form eines hybriden Leistungsrelais, verschaltet.
  • Der Schutzschalter 8 ist einerseits mittels eines Einspeisungsanschlusses 10 an eine quellenseitige und somit stromführende Stromleitung angeschlossen, und andererseits mittels eines Lastanschluss 12 an die lastseitig abgehende Stromleitung angeschlossen.
  • Der Schutzschalter 8 weist eine Reihenschaltung einer hybriden Trennvorrichtung 14 und einer Sicherung 15 auf. Die Trennvorrichtung 14 ist hierbei mit einem Hybridschalter 16 ausgeführt, welcher ein mechanisches Kontaktsystem 18 und eine hierzu parallel geschaltete Reihenschaltung eines Halbleiterschaltsystems 20 und eines (Hilfs-)Relais 21 aufweist. Das Halbleiterschaltsystem 20 ist in der 1 beispielhaft mittels eines gesteuerten Leistungshalbleiterschalters, insbesondere mittels eines IGBT (Insulated Gate Bipolar Transistor), dargestellt.
  • Das zusätzliche Relais oder Trennelement 21 gewährleistet hierbei eine galvanische Trennung des Strompfads 2 bei einem Auslösen der Trennvorrichtung 14. Die Trennvorrichtung 14 ist geeignet und eingerichtet, um im Falle eines Fehler- oder Überstroms den Strom I ausreichend lang sicher zu tragen, bis die Sicherung 15 auslöst. Unter einem sicheren Tragen des Stromes I wird hierbei insbesondere verstanden, dass die Kontakte des mechanischen Kontaktsystems 18 nicht unterbrochen oder abgehoben werden.
  • Nachfolgend ist anhand der 2 bis 6 eine erste Ausführungsform des Kontaktsystems 18 näher erläutert.
  • Das in der 2 dargestellte Kontaktsystem 18 weist zwei stationäre Festkontakte 22a, 22b auf, welche einerseits an den Einspeisungsanschluss 10 und andererseits an den Lastanschluss 12 elektrisch leitfähig angeschlossen sind. Die Festkontakte 22a, 22b sind jeweils an einen zugehörigen elektrischen Anschluss 23a, 23b geführt, mittels welchen das Kontaktsystem 18 an den Stromkreis 2 anschließbar ist.
  • Das Kontaktsystem 18 weist weiterhin zwei Bewegkontakte 24a, 24b auf, welche von einer gemeinsamen, stromführenden Kontaktbrücke 26 getragen sind. Die Kontaktbrücke 26 ist mit einem Antriebssystem 28 gekoppelt, mittels welcher die Kontaktbrücke 26 auf die Festkontakte 22a, 22b hinzu oder hinweg bewegbar ist.
  • Zum Schalten des Kontaktsystems 18 ist die Kontaktbrücke 26 mittels des Antriebssystems 28 im Zuge einer Schaltbewegung von einer Offenstellung in eine Schließstellung bewegbar. In den 2 bis 6 ist das Kontaktsystem 18 in der Schließstellung gezeigt, bei welcher die Bewegkontakte 24a, 24b an den jeweiligen Kontaktstellen in einem elektrisch leitenden Berührungskontakt zu dem jeweils gegenüberliegenden Festkontakt 22a, 22b sind.
  • In dem Ausführungsbeispiel der 2 bis 6 erfolgt die durch das Antriebssystem 28 bewirkte Schaltbewegung beim Öffnen und Schließen des Kontaktsystems 18 linear entlang einer zu den Kontakten 22a, 22b, 24a, 24b senkrecht orientierten (Stell-)Richtung des Antriebsystems 28.
  • Die längliche, gerade, etwa plattenförmige Kontaktbrücke 26 ist beispielsweise als ein Stanzteil aus Kupfer hergestellt. Die Bewegkontakte 24a und 24b sind hierbei an den gegenüberliegenden Stirnseiten der etwa rechteckförmigen Kontaktbrücke 26 angeordnet. Die Bewegkontakte 24a und 24b sind an der den Festkontakten 22a und 22b zugewandten Planfläche oder Unterseite 30 der Kontaktbrücke 26 angeordnet. An der gegenüberliegend angeordneten Planseite oder Oberfläche 32 der Kontaktbrücke 26 ist das Antriebssystem 28 angeordnet.
  • Die 3 zeigt in einer Schnittdarstellung ausschnittsweise einen Längsschnitt des Kontaktsystems 18 entlang der Linie III-III gemäß 2. Wie in der Schnittdarstellung der 3 vergleichsweise deutlich ersichtlich ist, weist das Antriebssystem 28 einen federbelasteten Stempel 34 zur Betätigung oder Bewegung der Kontaktbrücke 26 auf.
  • Der Stempel 34 ist zumindest abschnittsweise von einer beispielsweise als Schraubenfeder ausgeführten Federelement 36 umgeben, welches nachfolgend auch als Kontaktdruckfeder bezeichnet ist. Die Kontaktdruckfeder 36 ist hierbei derart angeordnet, dass in der Schließstellung zumindest eine gewisse Federspannung vorliegt, deren Rückstellkraft als Kontaktkraft Fk oder Kontaktdruck auf die Kontaktbrücke 26, und somit auf die Bewegkontakte 24a und 24b, einwirkt (4). Mit anderen Worten werden die Bewegkontakte 24a und 24b mittels des Antriebssystems 28 mit einem Anpress- oder Kontaktdruck beaufschlagt, welcher eine sichere Anlage der Kontakte 22a, 22b, 24a, 24b gewährleistet. Die Kontaktkraft Fk ist hierbei entlang der Stell- oder Betätigungsrichtung des Antriebssystems orientiert, also entlang derjenigen Richtung entlang welcher die lineare Schaltbewegung des Kontaktsystems 18 erfolgt.
  • An der Kontaktbrücke 26 ist ein Magnetelement 38 angeordnet. Das Magnetelement 38 ist als ein etwa hufeisen- oder U-förmiges Magnetjoch ausgeführt, dessen horizontaler U-Schenkel 38a an der Oberseite 32 der Kontaktbrücke 26 angeordnet ist. Der U-Schenkel 38a weist eine zentrale, nicht näher bezeichnete, kreisrunde Aussparung auf, durch welche der Stempel 34 zumindest abschnittsweise hindurch geführt ist. Der U-Schenkel 38a ist quer, also im Wesentlichen senkrecht, zur Kontaktbrücke 26 angeordnet.
  • An den gegenüberliegenden Stirnseiten des U-Schenkels 38a ist jeweils ein vertikaler U-Schenkel 38b angeformt. Die U-Schenkel 38b sind senkrecht zum U-Schenkel 38a und zur Kontaktbrücke 26, also im Wesentlichen parallel zum Stempel 34, orientiert. Die U-Schenkel 38b umgreifen hierbei die Kontaktbrücke 26, so dass die U-Schenkel 38b an ihren jeweiligen Freienden der Unterseite 30 der Kontaktbrücke 26 zumindest teilweise axial emporstehen, also die Unterseite 30 überragen. Beabstandet zu den Freienden der U-Schenkel 38b ist ein zweites Magnetelement 40 angeordnet. Das als eine flache, etwa rechteckige Ankerplatte ausgeführte Magnetelement 40 ist parallel zum U-Schenkel 38a, also quer zur Kontaktbrücke 26 angeordnet.
  • In der in den Figuren gezeigten Schließstellung sind die Freienden der U-Schenkel 38b jeweils mittels eines Luftspalts 42 von der Ankerplatte 40 beabstandet gehalten. Die Ankerplatte 40 ist stationär, also hinsichtlich eines Gehäuses der Trennvorrichtung 14 oder des Schutzschalters 8 gehäusefest, angeordnet. Das Magnetjoch 38 und die Ankerplatte 40 sind jeweils aus einem weichmagnetischen Material, insbesondere aus einem weichmagnetischen Eisenmaterial, hergestellt.
  • Die U-Schenkel 38b weisen - wie insbesondere in der 4 und 5 ersichtlich - eine etwa trichterförmige Querschnittsform in der durch die Längsrichtungen der U-Schenkel 38b und der Kontaktbrücke 26 aufgespannten Ebene auf. Der U-Schenkel 38b weist hierbei einen kegelstumpf- oder trapezförmigen Bereich auf, welcher an der Basis an dem U-Schenkel 38a angeformt ist, und einen etwa rechteckförmigen Bereich, welcher an der der Basis gegenüberliegenden Grundseite des trapezförmigen Bereichs angeformt ist. Der rechteckförmige Bereich bildet hierbei das Freiende des U-Schenkels 38b. In den U-Schenkel 38b kann, wie beispielsweise in 4 dargestellt, eine kreisrunde Aussparung 44 eingebracht sein.
  • Wie insbesondere in der in 6 gezeigten Draufsicht mit Blick auf die Unterseite 30 ersichtlich ist, weist die Ankerplatte 40 in der durch die Längsrichtungen der Kontaktbrücke 26 und des U-Schenkels 38a aufgespannten Ebene eine etwa sanduhrförmige, also taillierte, Querschnittsform auf. Die Taillierung oder Verjüngung ist hierbei mittig entlang der jeweiligen Längsseite sowie im Bereich der Festkontakte 22a und 22b angeordnet.
  • Wie in der 4 schematisch mittels Pfeilen angedeutet ist, wird der elektrische Strom I über den Festkontakt 22a und den Bewegkontakt 24a in die Kontaktbrücke 26 eingespeist und über den Bewegkontakt 24b und den Festkontakt 22b aus dem Kontaktsystem 18 abgeführt. Aufgrund magnetischer Effekte tritt an den durch die Kontaktpaare 22a, 24a und 22b, 24b gebildeten Kontaktstellen jeweils eine Engekraft Fe auf, welche gegensinnig zur Kontaktkraft Fk orientiert ist.
  • Die Kontaktkraft Fk, also die Federstärke der Kontaktdruckfeder 36, ist insbesondere derart dimensioniert, dass bei einem Normalstrom, also bei einem elektrischen Strom I der eine Stromstärke kleiner oder gleich einem Normal- oder Nennwert aufweist, die Engekraft Fe zuverlässig kompensiert wird. Dies bedeutet, dass die Kontaktkraft Fk bei einem Normalstrom stets größer als die Engekraft Fe ist, so dass ein ungewünschtes Abheben der Bewegkontakte 24a, 24b von den Festkontakten 22a, 22b zuverlässig und einfach verhindert ist.
  • Die Magnetelemente 38 und 40 verhindern hierbei bei einem Fehler- oder Überstrom, bei welchem die Stromstärke des Stroms I den Nennwert überschreitet, dass die Engekraft Fe die Kontakte 22a, 22b, 24a, 24b voneinander trennt. Im Falle eines solchen Überstroms ist die Kontaktkraft Fk der Kontaktdruckfeder 36 nicht ausreichend um die zunehmend größer werdende Engekraft Fe zuverlässig zu kompensieren.
  • Bei einem Stromfluss durch die Kontaktbrücke 26 wird durch den Strom I ein Magnetfeld um die Kontaktbrücke 26 erzeugt. Das Magnetfeld polarisiert das weichmagnetische Magnetjoch 38 und die weichmagnetische Ankerplatte 40, wodurch die magnetische Flussdichte im Bereich der Magnetelemente 38, 40 im Vergleich zur Umgebung wesentlich erhöht wird. Somit wird ein magnetischer Kreis zwischen dem Magnetjoch 38, den Luftspalt 42 und die Ankerplatte 40 gebildet.
  • Durch die Beabstandung mittels des Luftspalts 42 wird somit eine anziehende Magnetkraft Fm zwischen dem Magnetjoch 38 und der Ankerplatte 40 bewirkt. Da die Ankerplatte 40 stationär oder gehäusefest im Schutzschalter 8 angeordnet ist, wird somit das Magnetjoch 38 auf die Ankerplatte 40 hin gezogen. Die resultierende Magnetkraft Fm ist also gleichgerichtet zu der Kontaktkraft Fk der Kontaktdruckfeder 36, so dass sich die Magnetkraft Fm und die Kontaktkraft Fk zu einer resultierenden Gesamtkraft addieren, welche der Engekraft Fe entgegenwirkt. Somit wird der Kontaktdruck zwischen den Kontakten 22a, 22b, 24a, 24b erhöht, wodurch einem Abheben der Kontakte 22a, 22b, 24a, 24b, auch im Falle eines Fehler- oder Überstroms, zuverlässig und betriebssicher entgegengewirkt ist.
  • Durch die stromdurchflossene Kontaktbrücke 26 wird somit ein das Antriebssystem 28 unterstützendes Magnetfeld erzeugt, welches zur Verstärkung des Kontaktdrucks genutzt wird. Die Magnetelemente 38, 40 wirken somit bei einem Stromfluss durch die Kontaktbrücke 26 als ein zusätzlicher elektromagnetischer Aktor oder Hubmagnet, dessen bewirkte Magnetkraft Fm über den U-Schenkel 38a direkt auf die Kontaktbrücke 26 und somit auf die Bewegkontakte 24a, 24b wirkt.
  • Nachfolgend ist anhand der 7 bis 11 eine alternative, zweite Ausführungsform des Kontaktsystems 18' näher erläutert.
  • In dieser Ausführungsform ist die Kontaktbrücke 26' als ein im Wesentlichen U-förmiges Kupferteil ausgeführt, wobei die zwei Bewegkontakte 24a, 24b an jeweils einem Freiende eines vertikalen U-Schenkels 26'a angeordnet sind.
  • Entlang der vertikalen U-Schenkel 26a' der Kontaktbrücke 26' ist jeweils ein als Ankerplatte ausgeführtes Magnetelement 38' angeordnet. Das Antriebssystem 28' der Kontakteinrichtung 18' ist in diesem Ausführungsbeispiel als ein Klappanker-Magnetsystem ausgeführt, wobei lediglich ein an den Klappanker gekoppeltes, etwa U-förmiges Federelement 46 gezeigt ist. Die U-Schenkel 26'a und die Ankerplatten 38' sowie die U-Schenkel 46a sind hierbei im Wesentlichen jeweils gestapelt aneinandergereiht angeordnet.
  • Die vertikalen U-Schenkel 46a des Federelements 46 sind im Wesentlichen fluchtend zu den U-Schenkeln 26a' der Kontaktbrücke 26' angeordnet, wobei der horizontale U-Schenkel 46b des Federelements 46 beabstandet zu dem horizontalen U-Schenkel 26'b der Kontaktbrücke 26' angeordnet ist. Mit anderen Worten weisen die U-Schenkel 46a entlang der Schenkellängsrichtung eine größere Länge als die U-Schenkel 26'a auf, so dass der U-Schenkel 46b entlang der Schenkellängsrichtung oberhalb des U-Schenkels 26'b angeordnet ist.
  • Das Federelement 46 ist aus einem biegeelastischen Material, beispielsweise Federstahl, gefertigt, so dass durch den im Wesentlichen freistehend angeordneten U-Schenkel 46b eine Schwenk- oder Drehbeweglichkeit des Antriebssystems 28' realisiert ist. Insbesondere sind die U-Schenkel 46a des Federelements 46 somit gegenüber einer parallel zum U-Schenkel 46b verlaufenden Schwenk- oder Drehachse S schwenkbar oder drehbar gehalten.
  • Die Schaltbewegung erfolgt in diesem Ausführungsbeispiel somit insbesondere durch ein Schwenken der Kontaktbrücke 26' um die Schwenkachse S. Diese Schwenkbewegung ist in der 7, welche das Kontaktsystem 18' in einer Schließstellung zeigt, und in der 8, welche das Kontaktsystem 18' in einer Offenstellung zeigt, angedeutet. Durch die Schwenk- oder Drehbewegung sind vergleichsweise große Trennstrecken zwischen den Kontakten 22a, 22b, 24a, 24b realisiert.
  • In diesem Ausführungsbeispiel sind zwei stationäre Magnetelemente 40' vorgesehen, welche gehäusefest an einem isolierenden, also elektrisch nicht leitenden, Gehäuse 48 des Schutzschalters 8 angeordnet sind. Die Magnetelemente 40' sind im Querschnitt als hufeisen- oder U-förmige Magnetjoche ausgebildet, welche sich zumindest abschnittsweise entlang der Schenkellängsrichtung der U-Schenkel 26'a, 46' erstrecken. Die Magnetjoche 40' sind somit im Wesentlichen als zylindrische Formteile mit einer hufeisen- oder U-förmige Grund- oder Querschnittsfläche ausgeführt.
  • Die Magnetelemente 40' weisen jeweils einen in der Schließstellung parallel zu den U-Schenkel 26'a, 46' orientierten horizontalen U-Schenkel 40a' auf. An den rückenartigen U-Schenkel 40a' des Magnetjochs 40' sind zwei vertikale U-Schenkel 40'b angeformt. Die U-Schenkel 40'b des Magnetjochs 40' umgreifen - wie beispielsweise in der 9 ersichtlich - in der Schließstellung zumindest abschnittsweise den jeweils gegenüberliegend angeordneten vertikalen U-Schenkel 26'a der Kontaktbrücke 26', so dass zwischen den Freienden der U-Schenkel 26'a und der jeweiligen Ankerplatte 38' der Luftspalt 42 ausgebildet ist.
  • Wie anhand der Schnittdarstellungen der 10 und der 11 ersichtlich erzeugt der Strom I beim durchströmen der Schenkel 26'a, 26'b der Kontaktbrücke 26' ein Magnetfeld B, welches unabhängig von der Stromrichtung die die Magnetelemente 38', 40' aufeinander anziehende Magnetkraft Fm bewirkt, wodurch die Kontaktkraft Fk aufgrund der Federspannung des Federelements 46 verstärkt wird.
  • Die Erfindung ist nicht auf die vorstehend beschriebenen Ausführungsbeispiele beschränkt. Vielmehr können auch andere Varianten der Erfindung von dem Fachmann hieraus abgeleitet werden, ohne den Gegenstand der Erfindung zu verlassen. Insbesondere sind ferner alle im Zusammenhang mit den Ausführungsbeispielen beschriebenen Einzelmerkmale auch auf andere Weise miteinander kombinierbar, ohne den Gegenstand der Erfindung zu verlassen.
  • Bezugszeichenliste
  • 2
    Stromkreis
    4
    Gleichstromquelle
    4a
    Pluspol
    4b
    Minuspol
    6
    Last/Verbraucher
    8
    Schutzschalter
    10
    Einspeisungsanschluss
    12
    Lastanschluss
    14
    Trennvorrichtung
    15
    Sicherung
    16
    Hybridschalter
    18, 18'
    Kontaktsystem
    20
    Halbleiterschaltersystem
    22a, 22b
    Festkontakt
    23a, 23b
    Anschluss
    24a, 24b
    Bewegkontakt
    26
    Kontaktbrücke
    26'
    Kontaktbrücke
    26'a, 26'b
    U-Schenkel
    28, 28'
    Antriebssystem
    30
    Planfläche/Unterseite
    32
    Planfläche/Oberseite
    34
    Stempel
    36
    Federelement/Kontaktdruckfeder
    38
    Magnetelement/Magnetjoch
    38a, 38b
    U-Schenkel
    38'
    Magnetelement/Ankerplatte
    40
    Magnetelement/Ankerplatte
    40'
    Magnetelement/Magnetjoch
    40'a, 40'b
    U-Schenkel
    42
    Luftspalt
    44
    Aussparung
    46
    Federelement
    46a, 46b
    U-Schenkel
    48
    Gehäuse
    U
    Betriebsspannung
    I
    Strom
    Fk
    Kontaktkraft
    Fm
    Magnetkraft
    Fe
    Engekraft
    S
    Schwenkachse/Drehachse
    B
    Magnetfeld

Claims (10)

  1. Trennvorrichtung (14) zur Gleichstromunterbrechung eines Strompfads (2), insbesondere für einen Schutzschalter (8), aufweisend einen Hybridschalter (16), welcher ein stromführendes mechanisches Kontaktsystem (18, 18') und ein hierzu parallel geschaltetes Halbleiterschaltsystem (20) aufweist, - wobei das Kontaktsystem (18, 18') mindestens einen stationären Festkontakt (22a, 22b) und mindestens einen Bewegkontakt (24a, 24b) aufweist, - wobei der Bewegkontakt (24a, 24b) an einer mit einem Antriebssystem (28, 28') gekoppelten stromführenden Kontaktbrücke (26, 26') angeordnet ist, welche den Bewegkontakt (24a, 24b) bei einer Schaltbewegung von einer Offenstellung in eine am Festkontakt (22a, 22b) mit einer Kontaktkraft (Fk) anliegende Schließstellung bewegt, und - wobei an der Kontaktbrücke (26, 26') mindestens ein erstes Magnetelement (38, 38') angeordnet ist, welches mittels eines Luftspaltes (42) zu einem stationären zweiten Magnetelement (40, 40') derart beabstandet ist, dass bei einem Stromfluss durch die Kontaktbrücke (26, 26') ein Magnetfeld (B) in dem ersten Magnetelement (38, 38') bewirkt wird und eine magnetische Anziehung des ersten und zweiten Magnetelements (38, 38', 40, 40') erfolgt, wobei Anziehung eine zu der Kontaktkraft (Fk) gleichgerichtete Magnetkraft (Fm) bewirkt.
  2. Trennvorrichtung (14) nach Anspruch 1, dadurch gekennzeichnet, dass das mechanische Kontaktsystem (18, 18') zwei Festkontakte (22a, 22b) und zwei Bewegkontakte (24a, 24b) aufweist.
  3. Trennvorrichtung (14) nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass das erste Magnetelement (38, 38') und das zweite Magnetelement (40, 40') jeweils aus einem weichmagnetischen Material, insbesondere aus einem weichmagnetischen Eisenmaterial, hergestellt sind.
  4. Trennvorrichtung (14) nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass die Kontaktbrücke (26) etwa rechteckig ausgeführt ist, wobei zwei Bewegkontakte (24a, 24b) vorgesehen sind, welche an den gegenüberliegenden Stirnseiten der Kontaktbrücke (26) angeordnet sind.
  5. Trennvorrichtung (14) nach Anspruch 4, dadurch gekennzeichnet, - dass das erste Magnetelement (38) als U-förmiges Magnetjoch ausgeführt ist, welches im Bereich des horizontalen U-Schenkels (38a) an der Kontaktbrücke (26) anliegt, und welches die Kontaktbrücke (26) mittels der vertikalen U-Schenkel (38b) zumindest abschnittsweise umgreift, und - dass die vertikalen U-Schenkel (38b) des ersten Magnetelements (38) der Kontaktbrücke (26) in Richtung der Festkontakte (22a, 22b) überstehen und mittels jeweils eines Luftspaltes (42) beabstandet zu einem als eine Ankerplatte ausgeführten zweiten Magnetelement (40) angeordnet sind.
  6. Trennvorrichtung (14) nach einem der Ansprüche 4 oder 5, dadurch gekennzeichnet, dass die Schaltbewegung der Kontaktbrücke (26) linear ist.
  7. Trennvorrichtung (14) nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass die Kontaktbrücke (26') im Wesentlichen U-förmig ist, wobei zwei Bewegkontakte (24a, 24b) an jeweils einem Freiende eines vertikalen U-Schenkels (26'a) angeordnet sind.
  8. Trennvorrichtung (14) nach Anspruch 7, dadurch gekennzeichnet, - dass entlang der vertikalen U-Schenkel (26'a) jeweils ein als Ankerplatte ausgeführtes erstes Magnetelement (38') angeordnet ist, und - dass zwei als Magnetjoch ausgeführte zweite Magnetelemente (40') vorgesehen sind, welche im Bereich der Festkontakte (22a, 22b) angeordnet sind, und welche jeweils zwei vertikale U-Schenkel (40'b) aufweisen, welche den jeweils gegenüberliegend angeordneten vertikalen U-Schenkel (26'a) der Kontaktbrücke (26') zumindest abschnittsweise umgreifen.
  9. Trennvorrichtung (14) nach Anspruch 7 oder 8, dadurch gekennzeichnet, dass die Schaltbewegung der Kontaktbrücke (26') eine Schwenk- oder Drehbewegung ist.
  10. Schutzschalter (8) mit einer Trennvorrichtung (14) nach einem der Ansprüche 1 bis 9.
DE102018208119.0A 2018-05-23 2018-05-23 Trennvorrichtung zur Gleichstromunterbrechung eines Strompfades sowie Schutzschalter Pending DE102018208119A1 (de)

Priority Applications (7)

Application Number Priority Date Filing Date Title
DE102018208119.0A DE102018208119A1 (de) 2018-05-23 2018-05-23 Trennvorrichtung zur Gleichstromunterbrechung eines Strompfades sowie Schutzschalter
EP19726366.8A EP3797438B1 (de) 2018-05-23 2019-05-21 Trennvorrichtung zur gleichstromunterbrechung eines strompfades sowie schutzschalter
CN201980033466.2A CN112219254A (zh) 2018-05-23 2019-05-21 用于对电流路径进行直流电流中断的分离设备以及保护开关
JP2020565454A JP7169373B2 (ja) 2018-05-23 2019-05-21 電流経路の直流電流を遮断するための断路装置及び回路遮断器
CA3101002A CA3101002A1 (en) 2018-05-23 2019-05-21 Disconnecting device for interrupting a direct current of a current path as well as a circuit breaker
PCT/EP2019/063095 WO2019224198A1 (de) 2018-05-23 2019-05-21 Trennvorrichtung zur gleichstromunterbrechung eines strompfades sowie schutzschalter
US17/101,154 US11410825B2 (en) 2018-05-23 2020-11-23 Disconnecting device for interrupting a direct current of a current path as well as a circuit breaker

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102018208119.0A DE102018208119A1 (de) 2018-05-23 2018-05-23 Trennvorrichtung zur Gleichstromunterbrechung eines Strompfades sowie Schutzschalter

Publications (1)

Publication Number Publication Date
DE102018208119A1 true DE102018208119A1 (de) 2019-11-28

Family

ID=66647397

Family Applications (1)

Application Number Title Priority Date Filing Date
DE102018208119.0A Pending DE102018208119A1 (de) 2018-05-23 2018-05-23 Trennvorrichtung zur Gleichstromunterbrechung eines Strompfades sowie Schutzschalter

Country Status (7)

Country Link
US (1) US11410825B2 (de)
EP (1) EP3797438B1 (de)
JP (1) JP7169373B2 (de)
CN (1) CN112219254A (de)
CA (1) CA3101002A1 (de)
DE (1) DE102018208119A1 (de)
WO (1) WO2019224198A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220013316A1 (en) * 2018-11-09 2022-01-13 Xiamen Hongfa Electric Power Controls Co., Ltd. Direct-current relay resistant to short-circuit current

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2585835B (en) * 2019-07-16 2023-07-19 Eaton Intelligent Power Ltd Relay
EP4016574B1 (de) * 2020-12-15 2023-06-28 ABB Schweiz AG Hybridumschaltungsvorrichtung für elektrische netze
GB2610864A (en) * 2021-09-20 2023-03-22 Eaton Intelligent Power Ltd Electrical switching arrangement

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3503431A1 (de) * 1984-02-03 1985-08-08 La Télémécanique Electrique, Nanterre, Hauts-de-Seine Kontakt, der mit einem magnetischen ausgleicher mit einstellbarer freigabeschwelle ausgeruestet ist, und schuetz mit einem derartigen kontakt
FR2570869A1 (fr) * 1984-09-25 1986-03-28 Hager Electro Perfectionnement aux ensembles de contact des interrupteurs a coupure
DE3418859C2 (de) * 1983-05-23 1992-01-23 Mitsubishi Denki K.K., Tokio/Tokyo, Jp
US20140002215A1 (en) * 2012-06-29 2014-01-02 Siemens Industry, Inc. Electrical contact apparatus, assemblies, and methods of operation

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2121657A (en) * 1936-02-01 1938-06-21 James B Fisher Electromagnetic control means
DE2813699C2 (de) * 1978-03-30 1986-08-28 Robert Bosch Gmbh, 7000 Stuttgart Elektromagnetischer Schalter, insbesondere für Andrehvorrichtungen von Brennkraftmaschinen
JPH03196421A (ja) * 1989-12-01 1991-08-27 Matsushita Electric Works Ltd 接点装置
JP3196421B2 (ja) 1993-05-27 2001-08-06 石川島播磨重工業株式会社 液体運搬船用自立角型タンクの支持装置
ES2442872T3 (es) * 2008-12-12 2014-02-14 Tyco Electronics Amp Gmbh Puente de contactos con imanes de soplado
JP2012104364A (ja) 2010-11-10 2012-05-31 Panasonic Corp 接点装置
JP5710984B2 (ja) * 2011-01-12 2015-04-30 富士電機株式会社 電磁接触器
US8514040B2 (en) * 2011-02-11 2013-08-20 Clodi, L.L.C. Bi-stable electromagnetic relay with x-drive motor
JP2012243590A (ja) * 2011-05-19 2012-12-10 Fuji Electric Fa Components & Systems Co Ltd 電磁接触器
JP5838920B2 (ja) * 2011-07-18 2016-01-06 アンデン株式会社 継電器
DE102011120584A1 (de) * 2011-12-08 2013-06-13 Abb Ag Magnetsystem und Installationsschaltgerät mit einem Magnetsystem
DE102011122439A1 (de) * 2011-12-24 2013-06-27 Daimler Ag Vorrichtung und Verfahren zum Schalten elektrischer Lastkreise
JP5965218B2 (ja) * 2012-06-08 2016-08-03 富士電機機器制御株式会社 電磁接触器
JP6064577B2 (ja) * 2012-12-19 2017-01-25 株式会社デンソー スタータ用電磁スイッチ
JP2014241187A (ja) 2013-06-11 2014-12-25 富士電機株式会社 直流開閉器
DE102013222198A1 (de) * 2013-10-31 2015-04-30 Siemens Aktiengesellschaft Auslösevorrichtung
JP6558571B2 (ja) * 2015-07-01 2019-08-14 パナソニックIpマネジメント株式会社 電磁継電器
DE102015212802A1 (de) 2015-07-08 2017-01-12 Ellenberger & Poensgen Gmbh Trennvorrichtung zur Gleichstromunterbrechung

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3418859C2 (de) * 1983-05-23 1992-01-23 Mitsubishi Denki K.K., Tokio/Tokyo, Jp
DE3503431A1 (de) * 1984-02-03 1985-08-08 La Télémécanique Electrique, Nanterre, Hauts-de-Seine Kontakt, der mit einem magnetischen ausgleicher mit einstellbarer freigabeschwelle ausgeruestet ist, und schuetz mit einem derartigen kontakt
FR2570869A1 (fr) * 1984-09-25 1986-03-28 Hager Electro Perfectionnement aux ensembles de contact des interrupteurs a coupure
US20140002215A1 (en) * 2012-06-29 2014-01-02 Siemens Industry, Inc. Electrical contact apparatus, assemblies, and methods of operation

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220013316A1 (en) * 2018-11-09 2022-01-13 Xiamen Hongfa Electric Power Controls Co., Ltd. Direct-current relay resistant to short-circuit current
US11670472B2 (en) * 2018-11-09 2023-06-06 Xiamen Hongfa Electric Power Controls Co., Ltd. Direct-current relay resistant to short-circuit current

Also Published As

Publication number Publication date
EP3797438B1 (de) 2023-11-22
JP2021535539A (ja) 2021-12-16
US11410825B2 (en) 2022-08-09
EP3797438A1 (de) 2021-03-31
WO2019224198A1 (de) 2019-11-28
US20210074499A1 (en) 2021-03-11
CA3101002A1 (en) 2019-11-28
EP3797438C0 (de) 2023-11-22
JP7169373B2 (ja) 2022-11-10
CN112219254A (zh) 2021-01-12

Similar Documents

Publication Publication Date Title
EP3797438B1 (de) Trennvorrichtung zur gleichstromunterbrechung eines strompfades sowie schutzschalter
EP3048626B1 (de) Schaltgerät mit permanentmagnetischer lichtbogenlöschung
DE102012000285A1 (de) Magnetische Schaltvorrichtung
DE202018006167U1 (de) Trennvorrichtung zur Gleichstromunterbrechung eines Strompfades sowie Schutzschalter
DE102018204104A1 (de) Schalteinheit zur Trennung eines Stromkreises und Schutzschalter
DE102020202970B4 (de) Hochvoltschütz
DE102015102329A1 (de) Elektromagnetisch verstärkte Kontakttrennung in einem Schutzschalter
EP3101678B1 (de) Stromunterbrecher
EP1860675B1 (de) Leitungsschutzschalter
WO2012028383A1 (de) Elektrischer leistungsschalter
DE102014205915A1 (de) Übertragungskinematik
DE10126852B4 (de) Schaltgerät mit einer elektromagnetischen Auslöseeinrichtung
DE102012005031A1 (de) Installationsschaltgerät
DE60003204T2 (de) Elektrischer pol für einen niederspannungsschutzschalter
EP3602593B1 (de) Schaltgerät mit verbesserter permanentmagnetischer lichtbogenlöschung
DE102009035299B4 (de) Kontaktsystem und Schaltgerät
DE102013222198A1 (de) Auslösevorrichtung
DE102019117804B4 (de) Schalteinrichtung mit einem elektrischen Kontaktsystem
DE10343338B4 (de) Schaltvorrichtung mit Kurzschlussstromauslösung und entsprechendes Verfahren
AT230990B (de) Schaltgerät, insbesondere Schütz
DE102016217434B4 (de) Schütz oder Kompaktmotorabzweig mit einer elektromagnetischen Kontaktlastunterstützung
AT218600B (de) Elektrischer Überstromselbstschalter
DE1127452B (de) Elektrischer UEberstromselbstschalter
DE10011985A1 (de) Kontaktsystem für ein Niederspannungsschaltgerät
DE102014111849B4 (de) Schaltvorrichtung, insbesondere zum Schalten von Gleichströmen

Legal Events

Date Code Title Description
R012 Request for examination validly filed
R138 Derivation of utility model

Ref document number: 202018006167

Country of ref document: DE

R083 Amendment of/additions to inventor(s)