-
Die Erfindung bezieht sich auf eine Brausestrahlaustrittsvorrichtung mit einer Strahlscheibe, die wenigstens eine Strahlscheibenöffnung aufweist, und mit einem in der Strahlscheibenöffnung angeordneten Strahlaustrittselement sowie auf eine Brause mit einer solchen Brausestrahlaustrittsvorrichtung. Hierbei kann es sich z.B. um eine sanitäre Duschbrause, wie eine Kopf-, Hand- oder Seitenbrause, oder um eine Brause am Austritt einer sanitären Wasserabgabe- bzw. Mischerarmatur für eine Badewanne oder ein Waschbecken oder Spülbecken, wie eine Küchenbrause für eine Küchenspüle, handeln.
-
Brausestrahlaustrittsvorrichtungen dieser Art sind insbesondere für Sanitärbrausen verschiedentlich bekannt. So ist in der Offenlegungsschrift
EP 2 684 610 A1 eine Brause mit einer solchen Brausestrahlaustrittsvorrichtung offenbart, bei der die Strahlscheibe eine Vielzahl von Strahlscheibenöffnungen aufweist und die Strahlaustrittselemente hohlzylindrisch aus elastomerem Material mit einem durchgehenden Hohlkanal als Strahlaustrittsöffnung gebildet und an einer gemeinsamen, an der Innenseite der Strahlscheibe anliegenden Strahlaustrittsplatte angeformt sind. Solche zylindrischen Strahlaustrittselemente aus einem Elastomermaterial werden auch als Strahlaustrittsnippel oder kurz als Nippel bezeichnet.
-
Bei einer weiteren, in der Offenlegungsschrift
DE 10 2014 200 741 A1 offenbarten Brause dieser Art sind für die Brausestrahlaustrittsvorrichtung mehrkanalige Strahlaustrittseinheiten mit jeweils mindestens zwei fluidgetrennten Austrittskanälen vorgesehen. Die verschiedenen Austrittskanäle der jeweiligen Strahlaustrittseinheit münden eintrittsseitig in getrennte Fluidaustrittskammern, so dass das Fluid wahlweise und selektiv jeweils einem der Austrittskanäle zugeführt werden kann, um beispielsweise unterschiedliche Brausestrahlarten bereitzustellen. Als Strahlaustrittseinheiten fungieren hohlzylindrische Strahlaustrittselemente bzw. Nippel aus Elastomermaterial, wobei die Austrittskanäle durchgehend von der einen zur anderen Zylinderstirnseite verlaufen, z.B. parallel nebeneinander oder in einer koaxialen Anordnung. Auch hier sind die Nippel vorzugsweise integral mit und an einer Strahlaustrittsplatte aus dem Elastomermaterial gebildet, die an der Innenseite der Strahlscheibe angeordnet ist.
-
Die Patentschrift
US 5.246.301 offenbart einen bürstenartigen Brausekopf mit Bürstenzapfen, die als einkanalig oder zweikanalig ausgeführte Strahlaustrittselemente fungieren. Die Strahlaustrittszapfen sind von zylindrischer, sich konisch verjüngender Form und besitzen in einkanaliger Ausführung einen sich längs durch den Zapfen hindurch erstreckenden Austrittskanal oder einen an der Zylinderseitenwandung ausmündenden Austrittskanal. In zweikanaliger Ausführung weist der jeweilige Zapfen einen längs und mittig hindurchführenden Austrittskanal und einen eintrittsseitig seitlich dieses mittigen Austrittskanals verlaufenden und an der Zapfenseitenwandung ausmündenden Austrittskanal auf.
-
Brausestrahlaustrittsvorrichtungen werden speziell bei sanitären Anwendungen typischerweise zur Bereitstellung einer oder mehrerer, selektiv anwählbarer Brausestrahlarten ausgelegt, z.B. zur Bereitstellung eines Massagestrahls, eines Normalstrahls, eines Schwallstrahls oder eines Nadelstrahls bzw. Feinstrahls. Für einen solchen sogenannten Fein-/Nadelstrahl ist es bekannt, eine Strahlscheibe mit vergleichsweise kleinen Strahlscheibenöffnungen vorzusehen, die als Strahlaustrittsöffnungen der und dementsprechend als Feinstrahlöffnungen fungieren. Herkömmlicherweise dient dazu eine dünne Metallscheibe, in welche die Feinstrahlöffnungen fertigungstechnisch relativ einfach eingebracht werden können, als Strahlscheibe. Aufgrund ihres relativ geringen Durchtrittsquerschnitts sind diese Feinstrahlöffnungen sehr empfindlich gegenüber Verstopfung durch Schmutzpartikel und Verkalkung, weshalb bereits Brausestrahlaustrittsvorrichtungen dieser Art mit wechselbarer metallischer Strahlscheibe vorgeschlagen wurden.
-
Der Erfindung liegt als technisches Problem die Bereitstellung einer Brausestrahlaustrittsvorrichtung der eingangs genannten Art zugrunde, die mit relativ geringem Aufwand herstellbar und betreibbar ist und einen funktionssicheren Feinstrahl-Brausebetrieb mit bei Bedarf vergleichsweise feinen Einzelstrahlen ermöglicht, der relativ unempfindlich gegenüber Verstopfung durch Schmutzpartikel und Verkalkung ist.
-
Die Erfindung löst dieses Problem durch die Bereitstellung einer Brausestrahlaustrittsvorrichtung mit den Merkmalen des Anspruchs 1. Bei dieser Brausestrahlaustrittsvorrichtung ist das Strahlaustrittselement topfförmig mit einem austrittsseitigen Boden, einer Seitenwandung und einer vom Boden und der Seitenwandung begrenzten Hohlkammer ausgebildet. Das Strahlaustrittselement ist mit seinem Boden in Strahlaustrittsrichtung weisend in der zugehörigen Strahlscheibenöffnung angeordnet und dabei vorzugsweise an der Strahlscheibe gehalten und weist in seinem Boden eine Mehrzahl voneinander beabstandeter, sich durch den Boden hindurch erstreckender Feinstrahlöffnungen auf. Dies schafft die Voraussetzung, bei Bedarf einen sehr feinen Brausestrahl bereitstellen zu können, bei dem es sich insbesondere um einen nebelartig feinen Brausestrahl handeln kann.
-
Es zeigt sich, dass sich diese erfindungsgemäße Brausestrahlaustrittsvorrichtung mit relativ geringem Aufwand herstellen und funktionssicher betreiben lässt. Die Feinstrahlöffnungen können mit relativ geringem Durchlass- bzw. Austrittsquerschnitt in den Boden des Strahlaustrittselements eingebracht werden. Zugeführtes Brausefluid gelangt in die Hohlkammer des topfförmigen Strahlaustrittselements und kann von dort durch die Feinstrahlöffnungen hindurch als Fein-/Nadelstrahl aus der Brausestrahlaustrittsvorrichtung austreten. Die topfförmige Gestaltung des Strahlaustrittselements kann die Anfälligkeit der Brausestrahlaustrittsvorrichtung für Verstopfungen der Feinstrahlöffnungen aufgrund anlagernder Schmutz-/Kalkpartikel gering halten und das Entfernen von eventuell anhaftenden Schmutz-/Kalkpartikeln erleichtern. Dazu trägt bei, dass aufgrund dieser topfförmigen Gestaltung des Strahlaustrittselements die zu durchströmende Länge der Feinstrahlöffnungen auf die Wanddicke des Bodens begrenzt ist, die deutlich kleiner gehalten werden kann als die gesamte axiale Länge des Strahlaustrittselements, in entsprechenden Ausführungen kleiner als ein Fünftel oder auch kleiner als ein Zehntel derselben.
-
Die erfindungsgemäße Brausestrahlaustrittsvorrichtung kann eine beliebige Anzahl solcher Strahlaustrittselemente entsprechend der Anzahl zugehöriger Strahlscheibenöffnungen aufweisen, vorzugsweise eine Mehrzahl von über die Ausdehnung einer zugehörigen Strahlscheibenfläche hinweg gleichmäßig verteilt angeordneten Strahlaustrittselementen.
-
Je nach Bedarf kann das eine oder können die mehreren Strahlaustrittselemente mit seinem/ihrem Boden außenbündig mit der Strahlscheibe abschließen oder gegenüber deren Außenseite etwas zurückgesetzt sein oder vorzugsweise über die Strahlscheibe nach außen vorstehen. In letzterem Fall kann es weiter bevorzugt sein, wenn das Strahlaustrittselement auch noch mit einem an den Boden anschließenden Bereich seiner Seitenwandung über die Strahlscheibe nach außen vorsteht. In entsprechenden Realisierungen steht das Strahlaustrittselement mit mehr als der halben axialen Länge seiner Seitenwandung über die Strahlscheibe nach außen vor. Dies begünstigt das vom Fluiddruck abhängige Verformen des Strahlaustrittselements und insbesondere seiner Seitenwandung ungehindert von der Strahlscheibe.
-
In Weiterbildung der Erfindung sind die Feinstrahlöffnungen mit einem Durchtrittsquerschnitt von jeweils höchstens 0,2mm2, insbesondere von jeweils höchstens 0,1 mm2, gefertigt. Diese Dimensionierungsmaßnahme ermöglicht die Bereitstellung eines entsprechend feinen Brausestrahls.
-
In Weiterbildung der Erfindung beträgt ein Außendurchmesser des Bodens und der Seitenwandung des Strahlaustrittselements höchstens 10mm, insbesondere höchstens 6mm, in entsprechenden Anwendungen auch nur höchstens 5mm oder höchstens 4mm. Auch diese Dimensionierungsmaßnahme kann zur Erzielung eines sehr feinen Brausestrahls nutzbringend sein.
-
In Weiterbildung der Erfindung weist der Boden des Strahlaustrittselements mindestens drei und höchstens zehn Feinstrahlöffnungen auf. Auch diese Dimensionierungsmaßnahme kann herstellungstechnisch günstig und hinsichtlich der erzielbaren Brausestrahlcharakteristik vorteilhaft sein.
-
In vorteilhafter Weiterbildung der Erfindung bestehen der Boden und die Seitenwandung des Strahlaustrittselements aus einem elastischen Material, vorzugsweise einteilig aus dem gleichen elastischen Material. Optional kann das gesamte Strahlaustrittselement einteilig aus dem elastischen Material gefertigt sein. Das elastische Material kann insbesondere ein elastomeres Material sein, wie z.B. ein herkömmliches silikonbasiertes Elastomermaterial. Das Strahlaustrittselement ist so ausgelegt, dass es sich mit seinem Boden und/oder seiner Seitenwandung abhängig von einem in der Hohlkammer anstehenden Fluidbetriebsdruck wölbend verformt. Unter Fluidbetriebsdruck ist dabei ein im bestimmungsgemäßen Gebrauch der Brause auftretender Druck des der Brause zugeführten Fluids zu verstehen. Dieses Verformen des Strahlaustrittselements durch den im Betrieb der Brausestrahlaustrittsvorrichtung auftretenden Fluidbetriebsdruck beugt besonders vorteilhaft Funktionsausfällen bzw. Funktionseinschränkungen aufgrund von Schmutzpartikeln und Verkalkung vor. Durch die Verformung wird das Anhaften von Schmutz und Kalkpartikeln erschwert, und eventuell bereits anhaftende Verschmutzungen bzw. Kalkpartikel können leicht und einfach gelöst bzw. entfernt werden. Das kann den erforderlichen Reinigungsaufwand für die Brausestrahlaustrittsvorrichtung signifikant verringern. Das mit höherem Fluidbetriebsdruck zunehmende Verformen des Strahlaustrittselements begünstigt hierbei eine Selbstreinigungsfunktion der Brausestrahlaustrittsvorrichtung im Betrieb, indem eine beginnende Verstopfung der Feinstrahlöffnungen z.B. durch beginnende Kalkablagerungen zu einem erhöhten Fluidbetriebsdruck in der Hohlkammer des Strahlaustrittselements führt, wodurch die Verformung verstärkt wird, durch welche die beginnende Verstopfung der Brause selbsttätig wieder abgelöst bzw. zum Abplatzen gebracht werden kann.
-
In vorteilhafter Ausgestaltung ist das Strahlaustrittselement derart ausgeführt, dass bezogen auf einen drucklosen Zustand der Durchmesser seiner Seitenwandung und/oder ein Durchtrittsquerschnitt seiner Feinstrahlöffnungen durch das Wölben des Bodens und/oder der Seitenwandung bei einem Fluidbetriebsdruck von 0,5bar um mindestens 3% erhöht ist/sind und/oder bei einem Fluidbetriebsdruck von 1 bar um mindestens 8% erhöht ist/sind und/oder bei einem Fluidbetriebsdruck von 1,5bar um mindestens 12% erhöht ist/sind. Es zeigt sich, dass diese Systemauslegung für das Strahlaustrittselement in einem ausreichend guten Schutz vor raschem Verstopfen durch Schmutzpartikel und/oder Kalkablagerungen gerade auch beim Einsatz in sanitären Brausen resultiert, bei denen der Wasserbetriebsdruck typisch in diesem Bereich liegt.
-
In anderweitiger Ausgestaltung dieser Maßnahme bestehen der Boden und die Seitenwandung des Strahlaustrittselements aus einem Elastomermaterial mit einer Shore-A-Härte von höchstens 75, insbesondere von höchstens 40. Es zeigt sich, dass mit dieser Systemauslegung des Strahlaustrittselements ebenfalls das wölbende Verformen des Strahlaustrittselements in Abhängigkeit vom Fluidbetriebsdruck in günstiger Weise unterstützt wird.
-
In Weiterbildung der Erfindung weist das Strahlaustrittselement eine radial von der Seitenwandung abkragende Halteschulter auf. Dies kann dazu genutzt werden, das Strahlaustrittselement an der Strahlscheibe oder einem benachbarten Bauelement sicher zu halten.
-
In Weiterbildung der Erfindung weist das Strahlaustrittselement an seinem eintrittsseitigen Stirnende axial abstehende Abstandshalter auf. Dies kann dazu genutzt werden, das Strahlaustrittselement zwischen der Strahlscheibe und einer mit Abstand zur Innenseite der Strahlscheibe angeordneten, z.B. platten- oder scheibenförmigen Gehäuse- oder Zwischenwand der Brause zu halten, gegen die das Strahlaustrittselement mit seinem axial abstehenden Abstandshalter zur Anlage kommt. Dabei kann zwischen der Strahlscheibe und der Gehäuse- oder Zwischenwand eine Fluidaustrittskammer gebildet sein, der das Brausefluid zugeführt wird und aus der das Brausefluid in die Hohlkammer des Strahlaustrittselements gelangen kann.
-
In Weiterbildung der Erfindung weist die Strahlscheibe mehrere Strahlscheibenöffnungen auf, in denen eine entsprechende Anzahl von Strahlaustrittselementen angeordnet ist, wobei die Strahlaustrittselemente einteilig an einer innenseitig an der Strahlscheibe anliegenden Strahlaustrittsplatte aus elastischem Material angeformt sind. Auch in diesem Fall kann es sich wiederum insbesondere um ein an sich herkömmliches Elastomermaterial handeln. Das einteilige Anformen der Strahlaustrittselemente an der Strahlaustrittsplatte kann die Fertigung der Strahlaustrittselemente und ihre Platzierung in den Strahlscheibenöffnungen vereinfachen.
-
Die erfindungsgemäße Brause ist mit einer erfindungsgemäßen Brausestrahlaustrittsvorrichtung ausgerüstet. Bei der Brause kann es sich insbesondere um eine Sanitärbrause handeln, z.B. eine Duschbrause in einer Ausführung als Kopfbrause, Handbrause oder Seitenbrause.
-
Vorteilhafte Ausführungsformen der Erfindung sind in den Zeichnungen dargestellt und werden nachfolgend beschrieben. Hierbei zeigen:
- 1 eine hälftige Längsschnittansicht einer Brause mit einteilig an einer Strahlaustrittsplatte angeformten Strahlaustrittselementen,
- 2 eine teilweise Draufsicht von unten auf einen Viertelkreis der Brause von 1,
- 3 eine Detailansicht eines Bereichs III von 1,
- 4 die Detailansicht von 3 für eine Brausevariante mit einzeln angeordneten Strahlaustrittselementen,
- 5 eine Perspektivansicht eines der Strahlaustrittselemente in 4,
- 6 eine Draufsicht auf einen Boden des Strahlaustrittselements von 5,
- 7 eine Schnittansicht des Strahlaustrittselements von 5 längs einer Linie VII-VII in 6,
- 8 eine Perspektivansicht entsprechend 5 für eine Ausführungsvariante des Strahlaustrittselements,
- 9 eine Perspektivansicht entsprechend 5 für eine weitere Ausführungsvariante des Strahlaustrittselements,
- 10 eine Bodenansicht des Strahlaustrittselements entsprechend 6 bei einem anstehenden Fluidbetriebsdruck von 0,5bar,
- 11 eine Seitenansicht des Strahlaustrittselements im Druckzustand von 10,
- 12 die Bodenansicht von 10 bei einem Fluidbetriebsdruck von 1,0bar,
- 13 die Seitenansicht von 11 im Druckzustand von 12,
- 14 die Bodenansicht von 10 bei einem Fluidbetriebsdruck von 1,5 bar,
- 15 die Seitenansicht von 11 im Druckzustand von 14,
- 16 eine vergleichende Bodenansicht für die Betriebszustände im drucklosen Zustand gemäß 10 und im Druckzustand gemäß 14,
- 17 eine vergleichende Seitenansicht für den drucklosen Zustand gemäß 11 und den Druckzustand gemäß 15,
- 18 die Bodenansicht von 6 im drucklosen Zustand für eine Ausführungsvariante des Strahlaustrittselements,
- 19 die Bodenansicht von 18 bei einem Fluidbetriebsdruck von 0,5bar,
- 20 die Bodenansicht von 18 bei einem Fluidbetriebsdruck von 1,0bar und
- 21 die Bodenansicht von 18 bei einem Fluidbetriebsdruck von 1,5bar.
-
Die in den 1 bis 3 exemplarisch als ein mögliches Ausführungsbeispiel der Erfindung gezeigte Brause ist von einer an sich bekannten Flachbauweise, wie sie beispielsweise für sanitäre Kopfbrausen Verwendung findet. Die Brause weist ein flaches, kreiszylindrisches Brausegehäuse 1 auf, das über ein Kugelgelenk 2 entsprechend allseits schwenkbeweglich an einem eintrittsseitigen, brauselängsmittigen Eintrittsstutzen 3 gehalten ist. Austrittsseitig schließt das Brausegehäuse 1 mit einer ab, die eine Strahlscheibe 4 beinhaltet, die mit wenigstens einer Strahlscheibenöffnung 5 versehen ist, im gezeigten Beispiel mit einer Mehrzahl, zum Beispiel ca. 150 bis 200, von gleichmäßig über die Strahlscheibe 4 hinweg verteilten Strahlscheibenöffnungen.
-
Als weiterer Bestandteil der Brausestrahlaustrittsvorrichtung ist in jeder Strahlscheibenöffnung 5 jeweils ein Strahlaustrittselement 6 angeordnet. Das Strahlaustrittselement 6 ist topfförmig mit einem austrittsseitigen Boden 6a, einer Seitenwandung 6b und einer vom Boden und der Seitenwandung begrenzten Hohlkammer 6c ausgebildet, wobei es mit seinem Boden 6a in Strahlaustrittsrichtung weisend angeordnet ist, d.h. der Boden 6a bildet die austrittsseitige Endfläche des jeweiligen Strahlaustrittselements 6. In 1 weist die Strahlaustrittsrichtung im Bereich der Strahlscheibe 4 von oben nach unten, und der Boden 6a bildet die untere Endfläche der Strahlaustrittselemente 6. Der Boden 6a jedes Strahlaustrittselements 6 weist eine Mehrzahl von Feinstrahlöffnungen 7 auf, im gezeigten Beispiel der 1 bis 3 jeweils fünf Feinstrahlöffnungen 7.
-
Im Ausführungsbeispiel der 1 bis 3 sind die Strahlaustrittselemente 7 einteilig an einer Strahlaustrittsplatte 9 angeformt, die einer Innenseite der Strahlscheibe 4 zugewandt angeordnet ist, z.B. innenseitig an der Strahlscheibe 4 anliegt. Die Strahlaustrittsplatte 9 ist aus einem elastischen Material gefertigt, bei dem es sich insbesondere um ein herkömmliches silikonbasiertes Elastomermaterial handeln kann. Eine Gehäuse- bzw. Zwischenplatte 8' der Brause ist an der Innenseite der Strahlaustrittsplatte 9 angeordnet, die aufgrund ihrer elastischen Natur auch als Austrittsmatte bezeichnet wird, wobei die Gehäuse-/Zwischenplatte 8' mit Abstandszapfen 10 oder Abstandsstegen versehen ist, so dass zwischen ihr und der Strahlaustrittsplatte 9 ein als Fluidaustrittskammer fungierender Zwischenraum 11 verbleibt, in den die Strahlaustrittselemente 6 eintrittsseitig, d.h. mit ihrer offenen Topfseite, münden. Auf diese Weise wird der Brause zugeführtes Fluid über diese Fluidaustrittskammer in die Hohlkammer 6c der einzelnen Strahlaustrittselemente 6 verteilt bzw. geleitet und kann von dort als Fein-/Nadelstrahl durch die Feinstrahlöffnungen 7 hindurch aus der Brause austreten.
-
4 zeigt in einer der 3 entsprechenden Detailansicht eine Ausführungsvariante der Brause der 1 bis 3, bei der die Strahlaustrittselemente 6 als einzelne Teile gefertigt und in der Brause gehalten sind. Dazu sind sie von innen in die jeweils zugehörige Strahlscheibenöffnung 5 der Strahlscheibe 4 eingefügt und in dieser Lage durch eine brauseinnenseitig dagegen angelegte Gehäuse- oder Zwischenplatte 8 der Brause gehalten. Zu diesem Zweck weist, wie detaillierter aus den 5 und 7 zu erkennen, das Strahlaustrittselement 6 eine radial von der Seitenwandung 6b abkragende Halteschulter 6d und einen an seinem eintrittsseitigen Stirnende axial abstehenden Abstandshalter 6e auf. Der Abstandshalter 6e beinhaltet im gezeigten Beispiel mehrere Abstandsstege, die in Umfangsrichtung des kreisringförmigen oberen, eintrittsseitigen Randes des Strahlaustrittselements 6 beabstandet angeordnet sind und von diesem Rand axial abstehen. Zwischen den Abstandsstegen des Abstandshalters 6e bleibt auf diese Weise ein Freiraum, durch den hindurch Brausefluid, das der Brause zugeführt wird, über die obere, eintrittsseitige Topföffnung des topfförmigen Strahlaustrittselements 6 in dessen Hohlkammer 6c strömen kann. Hierbei bildet ein axialer Abstand der Gehäuse- bzw. Zwischenplatte 8 von der Strahlscheibe 4 eine Fluidaustrittskammer 11', aus der die Strahlaustrittselemente 6 ausmünden und über die das der Brause zugeführte Fluid auf die mehreren Strahlaustrittselemente 6 verteilt werden kann.
-
In den beiden Ausführungsbeispielen der 1 bis 4 stehen die Strahlaustrittselemente 6 mit ihrem Boden 6a und einem angrenzenden Bereich ihrer Seitenwandung 6b jeweils über die Strahlscheibe 4 in Strahlaustrittsrichtung nach außen vor, z.B. um etwa ein Fünftel bis ein Drittel ihrer gesamten axialen Länge. Dies kann z.B. für periodische manuelle Reinigungsvorgänge von Vorteil sein. Auch im Übrigen entspricht die Ausführung von 4 mit den einzelnen Strahlaustrittselementen 6 hinsichtlich Funktion und Eigenschaften der Brausestrahlaustrittsvorrichtung der Ausführung der 1 bis 3, so dass im Folgenden der Einfachheit halber hinsichtlich der weiteren 8 bis 21 auf die Ausführungsvariante mit den einzelnen, getrennt gefertigten Strahlaustrittselementen Bezug genommen wird.
-
Da die Wanddicke des Bodens 6a signifikant geringer ist als die axiale Länge des Strahlaustrittselements 6, z.B. nur etwa ein Fünftel bis ein Zwanzigstel der axialen Länge des Strahlaustrittselements 6 beträgt, können die Feinstrahlöffnungen 7 fertigungstechnisch vergleichsweise einfach und mit vergleichsweise geringem Durchtrittsquerschnitt in das elastische Material des Bodens 6a eingebracht werden.
-
Die 5 bis 7 zeigen das betreffende Strahlaustrittselement 6 im drucklosen Zustand in einer Ausführung mit fünf im Querschnitt kreisrunden Feinstrahlöffnungen 7, die auf einem gleichen Radius R und in Umfangsrichtung äquidistant verteilt in den Boden 6a als axiale Durchtrittskanäle eingebracht sind. 8 zeigt eine Ausführungsvariante, die derjenigen der 5 bis 7 mit dem einzigen Unterschied entspricht, dass in den Boden 6a des Strahlaustrittselements 6 statt der fünf nur drei Feinstrahlöffnungen 7 im 120°-Winkelabstand voneinander angeordnet sind. 9 zeigt eine weitere Ausführungsvariante, bei der als einzigem Unterschied zur Ausführung gemäß den 5 bis 7 das Strahlaustrittselement 6 in seinem Boden 6a sechs statt fünf Feinstrahlöffnungen 7 aufweist, im Vergleich zur Ausführungsvariante der 5 bis 7 speziell eine zusätzliche, mittige, sechste Feinstrahlöffnung.
-
In weiteren alternativen Ausführungen verlaufen die Feinstrahlöffnungen 7 nicht wie z.B. aus 7 ersichtlich alle parallel zueinander und zu einer Längsachse des Strahlaustrittselements 6, sondern zumindest ein Teil davon schräg zur Längsachse des Strahlaustrittselements 6 und/oder schräg zu anderen der Feinstrahlöffnungen 7. Beispielsweise können die Feinstrahlöffnungen 7 in einem Schrägwinkel von 15° oder weniger zur Längsachse des Strahlaustrittselements 6 divergierend schräg nach außen oder konvergierend schräg nach innen oder synchron zueinander schräg zu einer Seite hin verlaufen. Der Schrägwinkel kann für alle Feinstrahlöffnungen 7 gleich groß oder alternativ für mindestens zwei Feinstrahlöffnungen 7 unterschiedlich sein. In weiteren alternativen Ausführungen können zusätzlich zu den Feinstrahlöffnungen 7 im Boden 6a eine oder mehrere Feinstrahlöffnungen in einem über die Strahlscheibe 4 vorstehenden Bereich der Seitenwandung 6b des Strahlaustrittselements 6 vorgesehen sein.
-
Wie zur Ausführungsform der 1 bis 3 bereits erwähnt, sind auch die einzelnen Strahlaustrittselemente 6 in den Ausführungsvarianten der 4 bis 9 aus einem elastischen Material gefertigt, zum Beispiel einem silikonbasierten Elastomermaterial. Vorzugsweise sind hierbei mindestens der Boden 6a und die Seitenwandung 6b einteilig aus dem elastischen Material gefertigt, in den gezeigten Beispielen ist das Strahlaustrittselement 6 insgesamt einteilig als Bauteil aus einem elastischen Material gefertigt. Dabei ist das Strahlaustrittselement 6 dafür eingerichtet, sich mit seinem Boden 6a und/oder seiner Seitenwandung 6b abhängig von einem in der Hohlkammer 6c anstehenden Druck des der Brause zugeführten Fluids im Betrieb wölbend zu verformen. Dies wird nachstehend unter Bezugnahme auf das Ausführungsbeispiel der 5 bis 7 und die weiteren 10 bis 17 näher erläutert.
-
Wie erwähnt, zeigen die 5 bis 7 das Strahlaustrittselement im drucklosen Zustand, d.h. im Zustand, wenn kein Fluiddruck in der Hohlkammer 6c anliegt. Es besitzt in den gezeigten Beispielen einen kreisrunden Querschnitt, in alternativen Ausführungen besitzt es einen anderen Querschnitt, z.B. einen ovalen oder polygonalen Querschnitt. Das Strahlaustrittselement 6 ist vorzugsweise so gefertigt, dass in diesem drucklosen Zustand seine Feinstrahlöffnungen 7 einen Durchtrittsquerschnitt von jeweils höchstens ca. 0,2mm2, insbesondere höchstens ca. 0,1 mm2, aufweisen. Zusätzlich oder alternativ zu dieser Dimensionierung der Feinstrahlöffnungen 7 ist das Strahlaustrittselement 6 vorzugsweise so ausgelegt, dass im drucklosen Zustand sein Außendurchmesser im Bereich des Bodens 6a und der Seitenwandung 6b höchstens ca. 10mm, insbesondere höchstens ca. 6mm, beträgt, z.B. nur ca. 4mm.
-
Die 10 und 11 veranschaulichen das Strahlaustrittselement 6 in einem Betriebszustand, bei dem in der Hohlkammer 6c bzw. in einer zugehörigen Fluidzuführung ein Betriebsdruck des zugeführten Fluids, wie Wasser, von ca. 0,5bar herrscht. Es ist zu erkennen, dass sich der Boden 6a und die Seitenwandung 6b des Strahlaustrittselements 6 durch den anstehenden Fluiddruck verglichen mit dem drucklosen Zustand bereits leicht zu wölben beginnen, wobei durch die Wölbung ein Durchmesser D der Seitenwandung 6b und/oder ein Durchtrittsquerschnitt A der Feinstrahlöffnungen 7 typischerweise bereits um mindestens ca. 3% gegenüber dem drucklosen Zustand erhöht ist/sind. Durch die Verformung des Bodens 6a beginnt sich hierbei der Durchtrittsquerschnitt A der Feinstrahlöffnungen 7 von seiner im drucklosen Zustand kreisrunden Form in eine sich in Umfangsrichtung des Strahlaustrittselements 6 verbreiternde Ovalform zu verändern. In einer experimentellen Untersuchung an einem Praxismuster ergab sich beispielsweise eine Vergrößerung des Durchmessers D von im drucklosen Zustand etwa 4mm um ca. 5% und des Durchtrittsquerschnitts A von im drucklosen Zustand etwa 0,1 mm2 um ca. 6,5%.
-
Diese Verformungstendenzen verstärken sich mit zunehmendem Fluidbetriebsdruck. Die 12 und 13 zeigen die Verhältnisse entsprechend den 10 und 11 für einen Fluidbetriebsdruck von ca. 1 bar. Aus 12 ist ersichtlich, dass nun die Querschnitte der Feinstrahlöffnungen 7 bereits merklich oval sind, und aus 13 ist zu erkennen, dass sich die Seitenwandung 6c in ihrem Durchmesser D weiter aufgewölbt hat und sich auch der Boden 6a verstärkt nach außen, d.h. in 13 nach unten, wölbt. An besagtem Praxismuster wurde für diesen Fluiddruck von ca. 1bar eine prozentuale Erhöhung des Durchmessers D und des Durchtrittsquerschnitts A der Feinstrahlöffnungen 7 um jeweils ca. 11% bis 13% beobachtet. Allgemein wird das Strahlaustrittselement 6 vorzugsweise so ausgelegt, dass die besagte prozentuale Erhöhung für diese beiden Parameter bei 1 bar mindestens ca. 8% beträgt.
-
Die 14 und 15 zeigen die Verhältnisse entsprechend den 12 und 13 bei weiter auf einen Wert von ca. 1,5bar erhöhtem Fluidbetriebsdruck. Wie aus 14 zu erkennen, haben sich die Feinstrahlöffnungen 7 nun merklich oval aufgeweitet. Bei besagtem Praxismuster wurde eine Erhöhung des Durchtrittsquerschnitts A bei diesem Druck von ca. 1,5bar um etwas über 80% gegenüber dem drucklosen Zustand festgestellt. Aus 15 ist ersichtlich, dass sich die Seitenwandung 6b mit ihrem Durchmesser D weiter aufgewölbt, d.h. vergrößert, hat und sich auch der Boden 6a weiter nach außen, d.h. in 15 nach unten, vorgewölbt hat. Letzteres hat die erwähnte ovale Aufweitung der Feinstrahlöffnungen 7 zur Folge.
-
Die 16 und 17 veranschaulichen die Verhältnisse für den Zustand beim Fluiddruck von ca. 1,5 bar gemäß den 14 und 15 vergleichend mit dem drucklosen Zustand gemäß den 5 bis 7 in einer gemeinsamen Bodenansicht bzw. Seitenansicht. Aus 16 wird deutlich, dass und wie sich ein druckloser, kreisförmiger Durchtrittsquerschnitt A0 der Feinstrahlöffnungen 7 in einen in Umfangsrichtung des Strahlaustrittselements 6 oval verbreiterten Durchtrittsquerschnitt A15 aufweitet. In 17 ist dargestellt, wie sich ein druckloser Durchmesserwert D0 der Seitenwandung 6b in einen aufgewölbten Durchmesserwert D15 beim Fluiddruckwert von 1,5 bar erhöht.
-
Wie sich für den Fachmann versteht, bestimmt sich die Systemauslegung für das Wölbungsverhalten des Strahlaustrittselements 6 vor allem durch entsprechende Wahl der Wanddicke für den Boden 6a und die Seitenwandung 6b sowie des Verhältnisses von axialer Länge zu Durchmesser und der Elastizität des verwendeten Materials, wie der Shore-Härte eines verwendeten Elastomermaterials. Weiter kann von Bedeutung sein, ob und mit welchem Anteil ihrer axialen Länge die Strahlaustrittselemente 6 über die Strahlscheibe 4 hinaus vorstehen.
-
Durch das oben erläuterte, vom anstehenden Fluiddruck abhängige Wölben, das auch als Atmen bezeichnet werden kann, des Strahlaustrittselements 6 bleibt seine Oberfläche durch den Betrieb der Brause in Bewegung, da sich im Betrieb der Fluiddruck ändert, insbesondere zwischen dem drucklosen Zustand bei abgestellter Brause und dem jeweils gegebenen normalen Betriebsdruck des Fluids im aktiven Brausebetrieb. Dieses ständige bzw. wiederkehrende Bewegen der Oberfläche des Strahlaustrittselements 6 erschwert oder verhindert bleibende Ablagerungen von Schmutz- und Kalkpartikeln. Dies gilt insbesondere auch für den Bereich der Feinstrahlöffnungen 7, die somit über vergleichsweise lange Betriebsdauern hinweg frei von anhaftenden Schmutz-/Kalkpartikeln gehalten werden und durchgängig bleiben. Zudem können durch dieses Atmen des Strahlaustrittselements 6 evtl. angelagerte Schmutz-/Kalkablagerungen durch den Betrieb der Brause meistens selbsttätig abgelöst bzw. abgesprengt werden.
-
Wie oben erläutert, verändern sich beim Ausführungsbeispiel der 5 bis 17 die im drucklosen Zustand im Querschnitt kreisrunden Feinstrahlöffnungen 7 bei ansteigendem Fluiddruck zu im Querschnitt in Umfangsrichtung des Strahlaustrittselements 6 oval verbreiterten Feinstrahlöffnungen 7. In einer in den 18 bis 21 dargestellten Ausführungsvariante wird dieser Effekt in einem umgekehrten Sinn genutzt.
-
Bei diesem Ausführungsbeispiel weisen die Feinstrahlöffnungen 7 im in 18 gezeigten drucklosen Zustand einen in radialer Richtung des Strahlaustrittselements 6 oval verbreiterten Querschnitt auf. Die 19 zeigt diese Feinstrahlöffnungen 7 bei einem Fluidbetriebsdruck von ca. 0,5bar. Wie daraus ersichtlich, beginnt sich die Ovalform der Feinstrahlöffnungen 7 in diesem Fall bereits etwas in Richtung einer kreisrunden Querschnittsform abzuschwächen, indem die bereits oben erwähnte Verbreiterung der Feinstrahlöffnungen 7 in Umfangsrichtung des Strahlaustrittselements 6 einsetzt. 20 zeigt das Strahlaustrittselement 6 im Zustand bei einem Fluidbetriebsdruck von ca. 1,0bar. Wie zu erkennen, haben sich die im drucklosen Zustand ovalen Feinstrahlöffnungen 7 in Umfangsrichtung des Strahlaustrittselements 6 weiter verbreitert und weisen nun einen nur noch schwach ovalen, schon eher kreisrunden Querschnitt auf. 21 zeigt den Zustand bei einem Fluidbetriebsdruck von ca. 1,5 bar. Wie zu erkennen, haben sich nun die Feinstrahlöffnungen 7 dergestalt in Umfangsrichtung des Strahlaustrittselements 6 verbreitert, dass sie einen annähernd kreisrunden Querschnitt besitzen.
-
Für das Ausführungsbeispiel der 18 bis 21 mit den im drucklosen Zustand ovalen Feinstrahlöffnungen 7 wird festgestellt, dass sich der Durchmesser D des Strahlaustrittselements 6 und der Durchtrittsquerschnitt A der Feinstrahlöffnungen 7 mit steigendem Fluidbetriebsdruck prozentual im gleichen Maß erhöhen, wie es oben zum Ausführungsbeispiel der 5 bis 17 für die Ausführungsvariante mit den im drucklosen Zustand kreisrunden Feinstrahlöffnungen 7 angegeben.
-
Je nach Bedarf kann somit bei einem typischen Fluidbetriebsdruck im Bereich von 0,5bar bis 1,5bar durch Verwendung der Ausführungsvariante der 5 bis 17 oder der Ausführungsvariante der 18 bis 21 ein Brausestrahl bereitgestellt werden, der durch die Feinstrahlöffnungen 7 mit einem eher ovalen oder einem eher kreisrunden Querschnitt erzeugt wird.
-
Wie die gezeigten und oben erwähnten Ausführungsbeispiele deutlich machen, stellt die Erfindung eine Brausestrahlaustrittsvorrichtung bereit, die vergleichsweise unempfindlich gegen Verstopfungserscheinungen durch Schmutzpartikel und Kalkablagerungen ist und bei Bedarf dergestalt realisierbar ist, dass sie einen besonders feinen, auf Wunsch quasi nebelartig feinen Brausestrahl erzeugen kann. Dazu können die Feinstrahlöffnungen mit einem sehr geringen Durchtrittsquerschnitt vorzugsweise in ein elastisches Bodenmaterial des jeweiligen Strahlaustrittselements eingebracht werden. Das fluiddruckabhängige Atmen des Strahlaustrittselements beugt Verstopfungen der kleinen Feinstrahlöffnungen vor. Indem sich der Querschnitt der Feinstrahlöffnungen 7 in seiner Fläche und in seiner Form, z.B. wie in den gezeigten Ausführungen zwischen oval und kreisrund, signifikant verändert, können evtl. angelagerte Schmutz-/Kalkpartikel selbststätig zum Ablösen bzw. Abplatzen gebracht werden, und dem Entstehen von die Feinstrahlöffnungen 7 in ihrem freien Durchflussquerschnitt merklich verengenden Schmutz-/Kalkablagerungen wird effektiv entgegengewirkt.
-
Es versteht sich, dass die Erfindung neben den gezeigten und den oben erläuterten Ausführungsvarianten weitere Realisierungen der Brausestrahlaustrittsvorrichtung umfasst, wobei lediglich zwingend ist, dass das in der zugehörigen Strahlscheibenöffnung angeordnete Strahlaustrittselement topfförmig gestaltet und mit seinem Boden in Strahlaustrittsrichtung weisend angeordnet ist und im Boden eine Mehrzahl von Feinstrahlöffnungen vorgesehen ist. Die Brausestrahlaustrittsvorrichtung kann für jedwede herkömmliche Art von Sanitärbrausen, wie Duschbrausen, Küchenbrausen und Brausen für Mischerarmaturen, und nicht-sanitären Brausen Verwendung finden.
-
ZITATE ENTHALTEN IN DER BESCHREIBUNG
-
Diese Liste der vom Anmelder aufgeführten Dokumente wurde automatisiert erzeugt und ist ausschließlich zur besseren Information des Lesers aufgenommen. Die Liste ist nicht Bestandteil der deutschen Patent- bzw. Gebrauchsmusteranmeldung. Das DPMA übernimmt keinerlei Haftung für etwaige Fehler oder Auslassungen.
-
Zitierte Patentliteratur
-
- EP 2684610 A1 [0002]
- DE 102014200741 A1 [0003]
- US 5246301 [0004]