DE102015115749A1 - Kapazitives Sensorsystem mit einem Sensorabschnitt aus einem synthetischen Baustoff, Verfahren zu seiner Herstellung und seine Verwendung - Google Patents

Kapazitives Sensorsystem mit einem Sensorabschnitt aus einem synthetischen Baustoff, Verfahren zu seiner Herstellung und seine Verwendung Download PDF

Info

Publication number
DE102015115749A1
DE102015115749A1 DE102015115749.7A DE102015115749A DE102015115749A1 DE 102015115749 A1 DE102015115749 A1 DE 102015115749A1 DE 102015115749 A DE102015115749 A DE 102015115749A DE 102015115749 A1 DE102015115749 A1 DE 102015115749A1
Authority
DE
Germany
Prior art keywords
sensor
electrode
building material
electrodes
sensor system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
DE102015115749.7A
Other languages
English (en)
Inventor
Thorsten Klooster
Jan Iwanowicz
Jan Juraschek
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kennwert Rd GmbH
Original Assignee
Kennwert Rd GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kennwert Rd GmbH filed Critical Kennwert Rd GmbH
Priority to DE102015115749.7A priority Critical patent/DE102015115749A1/de
Priority to US15/761,021 priority patent/US20180287605A1/en
Priority to PCT/EP2016/071943 priority patent/WO2017046311A1/de
Priority to CN201680054007.9A priority patent/CN108028647A/zh
Priority to EP16778692.0A priority patent/EP3350924A1/de
Publication of DE102015115749A1 publication Critical patent/DE102015115749A1/de
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/94Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the way in which the control signals are generated
    • H03K17/96Touch switches
    • H03K17/962Capacitive touch switches
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/94Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the way in which the control signals are generated
    • H03K17/945Proximity switches
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/94Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the way in which the control signals are generated
    • H03K17/945Proximity switches
    • H03K2017/9455Proximity switches constructional details
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K2217/00Indexing scheme related to electronic switching or gating, i.e. not by contact-making or -breaking covered by H03K17/00
    • H03K2217/94Indexing scheme related to electronic switching or gating, i.e. not by contact-making or -breaking covered by H03K17/00 characterised by the way in which the control signal is generated
    • H03K2217/96Touch switches
    • H03K2217/96015Constructional details for touch switches
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K2217/00Indexing scheme related to electronic switching or gating, i.e. not by contact-making or -breaking covered by H03K17/00
    • H03K2217/94Indexing scheme related to electronic switching or gating, i.e. not by contact-making or -breaking covered by H03K17/00 characterised by the way in which the control signal is generated
    • H03K2217/96Touch switches
    • H03K2217/96015Constructional details for touch switches
    • H03K2217/96023Details of electro-mechanic connections between different elements, e.g.: sensing plate and integrated circuit containing electronics
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K2217/00Indexing scheme related to electronic switching or gating, i.e. not by contact-making or -breaking covered by H03K17/00
    • H03K2217/94Indexing scheme related to electronic switching or gating, i.e. not by contact-making or -breaking covered by H03K17/00 characterised by the way in which the control signal is generated
    • H03K2217/96Touch switches
    • H03K2217/9607Capacitive touch switches
    • H03K2217/960755Constructional details of capacitive touch and proximity switches
    • H03K2217/960765Details of shielding arrangements

Landscapes

  • Geophysics And Detection Of Objects (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)

Abstract

Die Erfindung betrifft ein kapazitives Sensorsystem mit einer Sensorelektronik und mit einem Sensorabschnitt (1) aus einem synthetischen Baustoff, der eine Sensorelektrode (3; 22) umfasst, sowie ein Verfahren zu seiner Herstellung und seine Verwendung.

Description

  • Die Erfindung betrifft ein kapazitives Sensorsystem mit einer Sensorelektronik und einem Sensorabschnitt, das im Wesentlichen im Bauwesen eingesetzt werden kann, sowie ein Verfahren zu seiner Herstellung und seine Verwendung.
  • Die GB 2 368 126 beschreibt einen kapazitiven Sensor, der als Schalter in eine Wand eingesetzt und beispielsweise durch eine Fliese abgedeckt ist. Die WO 2015/104480 A1 offenbart einen Schalter, der hinter einer undurchsichtigen Wand anzubringen ist, so dass er von einer Außenseite aus nicht erkennbar ist, aber von der Außenseite aus bedient werden kann.
  • Aufgabe der Erfindung ist es, Bauteile und vor allem Wände, Stützen und dergleichen in oder an Gebäuden zu funktionalisieren, ohne dass dafür bewegbare und damit verschleißbehaftete Einrichtungen erforderlich sind.
  • Diese Aufgabe wird durch ein kapazitives Sensorsystem mit einer Sensorelektronik und mit einem Sensorabschnitt aus einem synthetischen Baustoff gelöst, der eine Sensorelektrode umfasst. Die an sich bekannte Sensorelektronik, die beispielsweise einen Sensorchip bzw. einen Signalwandler und eine Stromquelle beinhalten kann bzw. beinhaltet, hält einen Stromfluss zur Erzeugung eines elektrostatischen Streufelds an der Sensorelektrode konstant, detektiert eine Potenzialänderung des Streufelds und wandelt sie in ein Signal um. Erfindungsgemäß jedoch besteht der Sensorabschnitt aus einem synthetischen Baustoff. Darunter ist jeder Baustoff zu verstehen, der nicht natürlich hergestellt ist, sondern insofern künstlich, als er sich aus mehreren unterschiedlichen oder gleichartigen Komponenten zusammensetzt, so dass seine neue Zusammensetzung oder Struktur nicht mehr auf eine natürliche Entstehung zurückgeht. Der meistverwendete und in diesem Sinne synthetische Baustoff ist Beton, der zwar natürliche Ausgangsstoffe wie Wasser und Kies als Zuschlagsstoff umfasst, jedoch auch synthetische Stoffe wie Zement erfordert und schließlich in seiner ausgehärteten Form als künstlicher Baustoff zu erkennen ist. Unter den synthetischen Baustoffen sind zudem auch solche zu verstehen, die allein oder in Verbindung mit Beton beispielsweise als dessen Beschichtung wie alle Arten von Gipsen, Putzen, Estrichen oder Kunststoffen aufgebracht werden. Insofern muss es sich also nicht zwingend um einen homogenen Baustoff für den Sensorabschnitt handeln, sondern er kann auch aus einer Kombination von an sich unterschiedlichen Baustoffen zu einem kompakten Bauteil bestehen. Als synthetischer Werkstoff im Sinne der Erfindung ist auch der Baustoff Holz zu verstehen, insofern er nicht in der natürlichen Form eingesetzt wird, sondern sobald er in irgendeiner Weise verarbeitet bzw. modifiziert wird. Darunter fallen jedenfalls beispielsweise Brettschichtholzträger, Spanplatten, Holzwerkstoffplatten und Holzbauteile mit Furnieren. Auch Gipskartonplatten, mineralische Werkstoffe, Faserverbundwerkstoffe, Keramik und deren eventuelle Kombination sind möglich. Allen diesen Baustoffen ist darüber hinaus gemeinsam, dass sie weitgehend undurchsichtig sind und damit unsichtbar funktionalisiert sein können.
  • Das erfindungsgemäße kapazitive Sensorsystem arbeitet also auf der Basis der Veränderung der Kapazität eines einzelnen Kondensators oder eines Kondensatorsystems, dessen eine Elektrode, die vorliegend als Sensorelektrode bezeichnet wird, Bestandteil des Sensorsystems ist, wohingegen die andere Elektrode ein insofern nicht dazugehöriger bewegter Körper ist, beispielsweise die Hand eines Benutzers. Erfindungsgemäß ist nun die Sensorelektrode von dem synthetischen Baustoff umfasst. Darunter ist zu verstehen, dass die Sensorelektrode nicht etwa beispielsweise von einem Gehäuse umgeben ist, das mit dem Baustoff verbunden wird bzw. an einem Bauteil aus dem synthetischen Baustoff befestigt wird. Vielmehr stehen der synthetische Baustoff und die erfindungsgemäß gehäusefreie Sensorelektrode in unmittelbarem, regelmäßig unlösbarem Kontakt. Diese Konstruktion ermöglicht es, die Sensorelektrode äußerst oberflächennah und dennoch weitgehend unsichtbar oder auf der Oberfläche anzuordnen. Die Nähe zur Oberfläche begünstigt den Betrieb des kapazitiven Sensorsystems, weil damit die Präzision der Wirkung des Sensorsystems steigt und der erforderliche Energieaufwand für seinen Betrieb sinken kann.
  • Nach einer vorteilhaften Ausgestaltung der Erfindung kann die Sensorelektrode in den Baustoff vollständig eingebettet sein. Die eingebettete Sensorelektrode bietet den Vorteil der Unsichtbarkeit in dem undurchsichtigen Baustoff, so dass eine Funktionalisierung des daraus hergestellten Bauteils nicht zwingend erkennbar ist und so die für die Funktionalisierung erforderliche Technik einen ästhetischen Eindruck des Bauteils nicht beeinträchtigt.
  • Im Betrieb baut die Sensorelektrode ein elektrisches Feld um sich herum auf, das sich durch Annäherung an die oder Berührung der Sensorelektrode verändert. Je nach geometrischer Form der Sensorelektrode baut sie ein elektrisches Feld mit homogenen und inhomogenen Bereichen auf. Vor allem der homogene Bereich legt in der Regel die Detektionsrichtung des kapazitiven Sensorsystems fest. Nach einer weiteren vorteilhaften Ausgestaltung der Erfindung kann das Sensorsystem eine die Sensorelektrode zumindest in einer zur Detektionsrichtung orthogonalen Ebene umgebenden Schirmelektrode umfassen. Sie dient dazu, inhomogene Randbereiche des elektrischen Felds der Sensorelektrode abzuschirmen. So entwickelt sich zwischen der Sensorelektrode und dem zu detektierenden bewegten Körper ein annähernd paralleles elektrisches Feld mit einer an sich bekannten Charakteristik eines idealen Plattenkondensators. Damit lassen sich auch kleinere Veränderungen im elektrischen Feld besser detektieren, womit die Effizienz des kapazitiven Sensorsystems steigt.
  • Die Schirmelektrode kann die Sensorelektrode auch mehrseitig, insbesondere rückseitig umgeben, um deren Detektionsrichtung auf ihre „Vorderseite” zu begrenzen. Die Schirmelektrode dient also insgesamt dazu, das Streufeld bzw. den Detektionsbereich der Sensorelektrode zu definieren. Die konstruktive Gestaltung der Schirmelektrode orientiert sich daher weitgehend an der Gestalt der Sensorelektrode. Jene kann, auch ohne den Einsatz einer Schirmelektrode, weitgehend beliebige Raumformen annehmen und ist nicht auf eine zylindrische oder ebenflächige Form beschränkt. Für eine beispielsweise kalottenförmige Sensorelektrode, deren konvexe Oberfläche den Detektionsbereich bestimmt, kann eine kreis- oder scheibenförmige Schirmelektrode erforderlich werden, die eventuell einen kleinen aufgebördelten Rand aufweist.
  • Nach einer weiteren vorteilhaften Ausgestaltung der Erfindung können jedenfalls die Sensorelektrode und ggf. auch die Schirmelektrode, sofern vorhanden, und weitere leitfähige Sensorbestandteile elektrisch isoliert sein. Sie können dazu beispielsweise mit einer Kunststoff-, Lack- oder Pulverbeschichtung umgeben sein. Die elektrische Trennung der leitfähigen Sensorbestandteile von den umgebenden Baustoffen verhindert Störeinflüsse auf das Sensorsystem, sofern der Baustoff wasserhaltig ist oder während des Betriebs mit Feuchtigkeit beaufschlagt wird.
  • Nach einer weiteren vorteilhaften Ausgestaltung der Erfindung kann das Sensorsystem Positionierungsmittel umfassen, die mit der Sensorelektrode und ggf. mit der Schirmelektrode gekoppelt sind und deren Lage im Sensorabschnitt definieren. Die Positionierungsmittel dienen dazu, die Position jedenfalls der Sensorelektrode ggf. aber auch der Schirmelektrode im zukünftigen Bauteil hochgenau einzustellen, vor allem hinsichtlich ihres Abstands zur Oberfläche des Bauteils in Detektionsrichtung. Um die Wirkungsweise des Sensorsystems im Übrigen nicht zu beeinflussen, eignen sich insbesondere nicht leitfähige Materialien für die Positionierungsmittel. Dabei kann es sich beispielsweise um Befestigungsmittel handeln, mit denen die Elektroden an einer Bewehrung eines zu erstellenden Bauteils aus Beton befestigt werden. Alternativ kann ein Positionierungsrahmen die Sensorelektrode und ggf. die Schirmelektrode aufnehmen und in einer Schalungseinrichtung für ein Betonbauteil fixieren, um die Lage der Elektroden während des Einbringens des Betons, des Verdichtens und der anschließenden Aushärtung zu definieren. Wie eine verlorene Schalung können die Positionierungsmittel entweder im aushärtenden Bauteil verbleiben oder zu einem geeigneten Zeitpunkt entnommen und für einen weiteren Herstellungsvorgang verwendet werden.
  • Nach einer weiteren vorteilhaften Ausgestaltung der Erfindung können die Schirmelektroden zugleich als Positionierungsmittel ausgebildet sein. Diese Funktionenkombination erlaubt einen geringeren Material- und Montageeinsatz. Die Schirmelektroden können dazu neben einer Isolierung über Befestigungsmittel an der Schalungseinrichtung für ein Betonbauteil oder an der Gussform für ein Kunststoffbauteil ausgestattet sein, die ggf. später als Kontakte für ihre Erdung dienen können.
  • Nach einer weiteren vorteilhaften Ausgestaltung der Erfindung kann das Sensorsystem mehrere Sensorelektroden mit angrenzenden oder sich zumindest teilweise überlappenden Streufeldern bzw. Detektionsbereichen verfügen. Schirmelektroden können zur Reduktion oder zur Vermeidung von Überlappungen führen. Sie können außerdem Funktionsflächen auf der zukünftigen Oberfläche des Bauteils definieren, die voneinander abgegrenzt und ggf. voneinander beabstandet sind.
  • Nach einer weiteren vorteilhaften Ausgestaltung der Erfindung können mehrere Sensorelektroden und ggf. entsprechende Schirmelektroden in derselben Ebene nebeneinander angeordnet sein und ein Bedienfeld auf einer Bauteiloberfläche ausbilden. Die Anordnung nebeneinander schließt auch eine solche übereinander ein. Unter „derselben Ebene” ist die Konstruktionsebene der Sensorelektroden zu verstehen, wobei nicht nur ebene, sondern auch ggf. gekrümmte oder anderweitig profilierte Flächen möglich sind. Mit der Anordnung mehrerer Sensorelektroden nebeneinander lassen sich getrennte Funktionsflächen wie z. B. Schalterflächen ausbilden. Zusammenhängende Funktionsflächen dagegen lassen die Umsetzung von beispielsweise von Dimm- oder sequentiellen Schaltfunktionen mittels Gestensteuerung wie Wisch- oder Tippgesten oder vergleichbar zu.
  • Die eingangsgenannte Aufgabe wird außerdem durch ein Verfahren zum Herstellen eines kapazitiven Sensors mit einer in einem synthetischen Baustoff eingebetteten Sensorelektrode gelöst, das die folgenden Schritte umfasst:
    • a) Positionieren der Sensorelektrode und/oder eine Schirmelektrode samt elektrischen Anschlüssen in einer Schalungseinrichtung bzw. Gussform,
    • b) Einbringen des synthetischen Baustoffs in eine Schalungseinrichtung bzw. Gussform,
    • c) Aushärten lassen des Baustoffs und Ausschalen bzw. Entformen des aus dem synthetischen Baustoffs hergestellten Bauteils,
    • d) Anschließen der Elektroden an eine Steuerungselektronik.
  • Erfindungsgemäß wird das Verfahren zur Herstellung des kapazitiven Sensorsystems in das Herstellungsverfahren eines Bauteils aus einem synthetischen Baustoff eingebettet. Demzufolge unterscheidet sich das Verfahren danach, welcher Baustoff zum Einsatz kommt. Im Folgenden wird das Verfahren am Beispiel eines Bauteils aus dem synthetischen Baustoff Beton dargestellt, weshalb Fachbegriffe aus diesem Bereich verwendet werden, auch wenn das Verfahren auf vergleichbare Herstellungsverfahren beispielsweise für keramische Bauteile ähnlich anwendbar ist. Demzufolge wird in einem ersten Schritt die Sensorelektrode und ggf. die Schirmelektrode derart in einer Schalungseinrichtung positioniert, dass sie beim anschließenden Einbringen des Betons ihre Lage insbesondere gegen eine zukünftige Oberfläche des herzustellenden Bauteils nicht verändert. Dazu können die Elektroden an einer nicht leitenden Bewehrung z. B. an einer Glasfasermatte oder mit nicht leitenden Elementen an einer herkömmlichen Bewehrung befestigt werden. Alternativ dazu können eigene Positionierungsmittel eingesetzt werden, an denen die Elektroden befestigt werden und die ihrerseits in der Schalungseinrichtung festgelegt werden. Die Konfektion der Elektroden zum Beispiel auf einem Positionierungsrahmen oder auf Bewährungsmatten erlaubt die wirtschaftliche Herstellung auch von großen und geometrisch komplexen Bauteilen. Insbesondere bei deren Herstellung kann es vorteilhaft sein, Positionierungsmittel zu verwenden, die noch vor Fertigstellen des Bauteils, beispielsweise vor dem Ausschalen eines Betonbauteils, aus der Schalungseinrichtung entnommen werden, um wiederverwendet werden zu können. Nach der lagegenauen Positionierung der Elektroden kann der Beton in die Schalungseinrichtung eingebracht werden. Trotz der dabei auftretenden Belastungen auf die Elektroden behalten sie ihre definierte Lage bei, auch wenn der Beton anschließend durch Rüttler verdichtet wird.
  • Auch im Übrigen erfolgt nun ein übliches Herstellungsverfahren für Betonbauteile, nämlich das Aushärten lassen des Betons und das Entschalen des Bauteils. Während damit das Bauteil vorerst fertiggestellt ist, werden anschließend die Elektroden des kapazitiven Sensorsystems an eine Steuerungselektronik angeschlossen, die ihrerseits ggf. mit einer Stromquelle und einer Erdung verbunden wird, sofern die Schirmelektroden nicht separat geerdet werden. Dieser letzte Schritt kann ggf. auch erst nach Einbau des Bauteils in seiner Endlage in einem Gebäude vorzunehmen sein.
  • Die eingangs genannte Aufgabe wird außerdem gelöst durch die Verwendung eines kapazitiven Sensors mit einem oben näher beschriebenen Sensorabschnitt aus einem Baustoff als manuell betätigbare Steuerungseinrichtung. Demnach kann das kapazitive Sensorsystem mit einem Aktor verbunden sein, der beispielsweise einen Bestandteil einer Haustechnik steuert. Unter Haustechnik kann so gut wie jede elektrisch betriebene Einrichtung in einem privat oder gewerblich benutzten Gebäude zu verstehen sein, worunter eine Belichtungs-, Belüftungs- oder Klimatisierungseinrichtung ein Audio- oder ein Videosystem oder dergleichen verstanden werden kann. Das mit einem Aktor verbundene kapazitive Sensorsystem kann also beispielsweise einen Lichtschalter ersetzen oder eine Klimaanlage regeln. Denn unter Zufuhr bereits schwacher elektrischer Energie erzeugt die Sensorelektrode an der Bauteiloberfläche ein elektrisches Feld, dass sie in Folge einer Annäherung oder Berührung ändert. Die Feldänderung wird als Signal an eine signalverarbeitende Einheit in der Steuerungselektronik des Sensorsystems übermittelt und zu einem Steuerbefehl an den Aktor weitergeleitet. Damit kann durch einfache Berührung einer Bauteiloberfläche eine Beleuchtungseinrichtung aus- bzw. eingeschaltet werden. Durch Anordnung mehrerer Sensorelektroden oder Sensorsysteme nebeneinander lassen sich auf diese Weise Bedienfelder oder Schalttafeln ausbilden, die neben einfachen Schaltvorgängen auch Dimm- oder sequenzielle Schaltfunktionen bieten können.
  • Das erfindungsgemäße System bietet den Vorteil eines geringen Energieverbrauchs, weil die Sensorelektrode sehr oberflächennah angebracht ist. Trotz ihrer Anbringung in einem Sensorabschnitt aus einem herkömmlichen Baustoff bietet die Erfindung eine hochgenaue Positionierung und Konfektionierung der Sensorelektrode.
  • Das Prinzip der Erfindung wird im Folgenden anhand einer Zeichnung beispielshalber noch näher erläutert. In der Zeichnung zeigen:
  • 1a, b, c: Schematische Darstellungen für den Aufbau eines Sensorabschnitts
  • 2: Ein Betonelement mit Sensor- und Schirmelektrode in einer Explosionsansicht
  • 3: Hilfsmittel zur Herstellung des Betonelements
  • Die 1a bis 1c zeigen Schnitte dreier Sensorabschnitte 1 eines kapazitiven Sensorsystems in drei Grundformen. Gemeinsam ist den 1a bis 1c ein Sensorabschnitt 1 aus einem flachen Betonquader 2, in dem eine plattenförmige Sensorelektrode 3 vollständig eingebettet ist. Sie ist mit einem Elektrodenanschluss 4 kontaktiert, der aus dem Betonquader 2 an einer seiner Oberseite 10 gegenüberliegenden Rückseite 11 herausläuft. Der ebenfalls plattenförmige Betonquader 2 weist eine Dicke auf, die etwa der dreifachen Dicke der Sensorelektrode 3 entspricht. An ihren Randseiten überdeckt sie der Betonquader 2 um etwa das dreifache ihrer Dicke. Bei dem Betonquader 2 handelt es sich also um ein verhältnismäßig filigranes Bauteil, das die Sensorelektrode 3 dünnwandig ummantelt und in seiner äußeren Form derjenigen der Sensorelektrode 3 folgt.
  • Eine nicht dargestellte Steuerungselektronik und eine Stromquelle ergänzen den dargestellten Sensorabschnitt 1 zu einem kapazitiven Sensorsystem. Bei Anlage eines verhältnismäßig schwachen Storms am Elektrodenanschluss 4 erzeugt die Sensorelektrode 3 ein elektrostatisches Streufeld 5, das das Detektionsfeld der Sensorelektrode 3 darstellt. In einem mittleren Bereich der Sensorelektrode 3 zeigt es nahezu senkrecht einfallende Feldlinien 6, die an den Rändern 7 stark geneigt einfallen. Die senkrecht verlaufenden Feldlinien 6 definieren eine Detektionsrichtung R, die eine Wirkungsrichtung des kapazitiven Sensorsystems definiert. Gelangt ein in aller Regel geerdeter fester oder flüssiger Körper in das Streufeld 5, stellt er neben der Sensorelektrode 3 eine zweite Elektrode eines Kondensators dar, dessen Kapazität sich mit änderndem Abstand der Elektroden zueinander ebenfalls verändert. Mit Annäherung an den Sensorabschnitt 1 entgegen der Detektionsrichtung R oder mit einer Berührung des Sensorabschnitts 1 erfolgt also eine Spannungsänderung, die von der Steuerungselektronik erfasst und in ein Signal umgesetzt wird. Daraus lässt sich ein Steuerungsbefehl beispielsweise für einen Aktor generieren, der beispielsweise einen Schalter öffnet oder schließt.
  • 1a zeigt einen Sensorabschnitt 1 mit einer ungeschirmten Sensorelektrode 3. Gemäß 1b dagegen enthält der Sensorabschnitt 1 neben der Sensorelektrode 3 eine Schirmelektrode 8, die umfangseitig und damit an den schmalen Seitenrändern der plattenförmigen Sensorelektrode 3 angebracht ist. Die Schirmelektrode 8 verfügt über eine Erdung 9, die als isolierter Leiter aus dem Sensorabschnitt 1 herausführt. Sie dient dazu, die Inhomogenität des Feldes 5 an den Rändern 7 gemäß 1a zu unterbinden und das Streufeld 5 auf annähernd parallele Feldlinien 6 zu beschränken. Dabei steigt die Sensibilität des Sensorabschnitts 1, sodass auch kleinere Veränderungen besser detektiert werden können bzw. bei gleicher Empfindlichkeit des Sensorsystems weniger Energie dafür erforderlich ist.
  • Das Streufeld 5 des Sensorabschnitts 1 bildet sich an der Oberseite 10 und der Rückseite 11 in gleicher Weise aus. 1c zeigt eine Schirmelektrode 8, die die plattenförmige Sensorelektrode 3 im Schnitt dreiseitig umgibt, womit das Streufeld 5 auf die Oberseite 10 des Sensorabschnitts 3 konzentriert ist. Auch sie verfügt über eine Erdung 9. Mit der Schirmelektrode 8 gemäß 1c kann eine weitere Effizienzsteigerung des Sensorsystems erreicht werden.
  • Für den Betonquader 2 lassen sich grundsätzlich alle bekannten Betonmischungen verwenden. Der Sensorabschnitt 1 aus dem Betonquader 2 und der darin eingebetteten Sensorelektrode 3 lässt sich wie ein herkömmliches Einbauteil, beispielsweise wie eine Betoneinbaudose für einen Schalter oder einen Beleuchtungskörper an der Schalung einer Betonwand oder deren Bewehrung anbringen oder in einem Ziegelmauerwerk integrieren. Fällt die Oberseite 10 des Betonquaders 2 mit der Oberfläche der zukünftigen Gebäudewand zusammen, definiert die Überdeckung der Sensorelektrode 3 gegenüber der Oberseite 10 die Lage der Sensorelektrode 3 relativ zur Bauteiloberfläche. Damit kann der Betonquader 2 quasi als Positionierungsmittel dienen, das die Überdeckung der Sensorelektrode 3 bzw. ihre relative Lage zu einer Funktionsoberfläche definiert. Sie beeinflusst die Ausbreitung und Intensität des Streufelds 5. Aber auch die Geometrie der Sensorelektrode 3, ihre Größe und die zugeführte elektrische Energie kann die Ausdehnung des von der Sensorelektrode 3 erzeugten elektrostatischen Streufelds 5 und damit den Grad der Berührungssensitivität des kapazitiven Sensorsystems definieren.
  • 2 zeigt eine Explosionsdarstellung eines Sensorabschnitt 1 aus einem plattenförmigen Betonelement 20, in das vier rechteckige plattenförmige Sensorelektroden 22 und vier Schirmelektroden 24 eingebettet sind. Die Dicke des Betonelements 20 beträgt lediglich 20 mm, seine Länge ca. 1 m und seine Breite ca. 0,5 m. Die 2 bietet eine Ansicht der Oberseite 10 des Sensorabschnitts 1. Das Betonelement 20 ummantelt die vier nebeneinander angeordneten Schirmelektroden 24, die jeweils eine Sensorelektrode 22 rahmenförmig umgeben. Jede Sensorelektrode 22 besteht aus einem randseitig aufgekanteten Blech, das eine Vielzahl an kreisförmigen Durchbrüchen 27 aufweist. Sie sind im Einbauzustand der Sensorelektrode 22 mit Beton gefüllt und führen zu einer guten Verzahnung zwischen der Sensorelektrode 22 und dem Betonelement 20. An den randseitigen Aufkantungen 26 stehen laschenförmige Anschlüsse 23 der Sensorelektrode 22 ab. Aufgrund seiner Länge stehen sie aus einer in 2 verdeckten Rückseite 11 des Betonelements 20 hervor, sodass sie bei der Herstellung des Sensorabschnitts 1 nicht von Beton umschlossen werden. Jede Sensorelektrode 22 ist insbesondere gegenüber der sie umgebenden Schirmelektrode 24 elektrisch isoliert, indem sie eine Kunststoff- Pulverbeschichtung trägt.
  • Die Schirmelektrode 24 ist prinzipiell ähnlich aufgebaut, wie die Sensorelektrode 22. Sie besteht ebenfalls aus einem gekanteten Blechmaterial, dessen randseitige Aufkantungen 28 der rahmenförmigen Schirmelektrode 24 Verwindungssteifigkeit verleihen. An den Aufkantungen 28 stehen laschenförmige Anschlüsse 25 über, die wie die Anschlüsse 23 der Sensorelektrode 22 aus dem zukünftigen Betonelement 20 herausragen und somit eine elektrische Kontaktierung der Schirmelektroden 24 ermöglichen. Auch die Schirmelektrode 24 verfügt über eine Kunststoff- Pulverbeschichtung als elektrische Isolierung und ist von einer Vielzahl von kreisförmigen Durchbrüchen 27 durchsetzt.
  • 3 verdeutlicht die Herstellung des Betonelements 20 überkopf in einer geeigneten Schalungseinrichtung 30: Eine Schalungswanne 31 legt die äußeren Abmessungen des Betonelements 20 nach Länge und Breite fest. In sie lässt sich ein Positionierungsrahmen 32 einsetzen, der sich mit randseitigen Bügeln 33 auf einem Rand 34 der Schalungswanne 31 abstützt, sodass er eine Bodenfläche 35 der Schalungswanne 31 nicht berührt. Damit hängt er quasi in die Schalungswanne 31 hinein. An unterseitig von ihm abstehenden und in die Schalungswanne 31 hineinragenden Zapfen 36 lassen sich die Schirmelektroden 24 an ihren Anschlüssen 25 befestigen. Die Sensorelektroden 22 sind über ihre Anschlüsse 23 an den Schirmelektroden 25 befestigt (nicht dargestellt). Der Positionierungsrahmen 32 hält damit die Sensorelektroden 22 und die Schirmelektroden 24 in einem genau definierten Abstand über der Bodenfläche 35 der Schalungswanne 31. Er definiert damit eine Einbautiefe der Elektroden 22, 24 im Betonelement 20 bzw. deren Abstand von dessen Oberfläche 10 (1, 2).
  • Nach der Montage der Sensorelektroden 22 und der Schirmelektroden 24 im Positionierungsrahmen 32 und dessen Einsatz in der Schalungswanne 31 wird der Beton eingebracht. Aufgrund der zahlreichen Durchbrüche 27 in den Elektroden 22, 24 entsteht ein tragfähiger Verbund zwischen den Elektroden 22, 24 einerseits und dem zukünftigen Betonelement 20 andererseits. Zugleich wirken die Elektroden 22, 24 als Bewehrung des Betonelements 20. Lediglich die Anschlüsse 23, 25 der Elektroden 22, 24 stehen über eine Frischbetonoberfläche über, sodass sie und der Positionierungsrahmen 32 von Beton unberührt bleiben. Nach Erreichen einer ausreichenden Steifigkeit des Betons kann der Positionierungsrahmen 32 entfernt werden und für einen nachfolgenden Herstellungsschritt wiederverwendet werden. Nach dem vollständigen Aushärten des Betons in der Schalungswanne 31 kann das Betonelement 20 ausgeschalt werden und steht für einen bestimmungsgemäßen Einsatz als Sensorabschnitt 1 zur Verfügung.
  • Da es sich bei den vorhergehenden, detailliert beschriebenen Sensorabschnitten 1 um Ausführungsbeispiele handelt, können sie in üblicher Weise vom Fachmann in einem weiten Umfang modifiziert werden, ohne den Bereich der Erfindung zu verlassen. Insbesondere können auch die konkreten Ausgestaltungen der Elektroden 22, 24 in anderer geometrischer Form als in der hier beschriebenen erfolgen. Ebenso kann der Sensorabschnitt 1 aus anderen Materialien ausgebildet und ebenfalls in einer anderen geometrischen Form ausgestaltet werden, wenn dies aus Platzgründen bzw. designerischen Gründen notwendig ist. Weiterhin schließt die Verwendung der unbestimmten Artikel „ein” bzw. „eine” nicht aus, dass die betreffenden Merkmale auch mehrmals oder mehrfach vorhanden sein können.
  • Bezugszeichenliste
  • 1
    Sensorabschnitt
    2
    Betonquader
    3
    Sensorelektrode
    4
    Elektrodenanschluss
    5
    Streufeld
    6
    Feldlinien
    7
    Pole
    8
    Schirmelektrode
    9
    Erdung
    10
    Oberseite
    11
    Rückseite
    20
    Betonelement
    22
    Sensorelektrode
    23
    Anschluss
    24
    Elektrode
    25
    Anschluss
    26
    Aufkantung
    27
    Brüche
    28
    Aufkantung
    30
    Schalungseinrichtung/Gussform
    31
    Schalungswanne
    32
    Positionierungsrahmen
    33
    Bügel
    34
    Rand
    35
    Bodenfläche
    36
    Zapfen
    R
    Detektionsrichtung
  • ZITATE ENTHALTEN IN DER BESCHREIBUNG
  • Diese Liste der vom Anmelder aufgeführten Dokumente wurde automatisiert erzeugt und ist ausschließlich zur besseren Information des Lesers aufgenommen. Die Liste ist nicht Bestandteil der deutschen Patent- bzw. Gebrauchsmusteranmeldung. Das DPMA übernimmt keinerlei Haftung für etwaige Fehler oder Auslassungen.
  • Zitierte Patentliteratur
    • GB 2368126 [0002]
    • WO 2015/104480 A1 [0002]

Claims (9)

  1. Kapazitives Sensorsystem mit einer Sensorelektronik und mit einem Sensorabschnitt (1) aus einem synthetischen Baustoff, der eine Sensorelektrode (3; 22) umfasst.
  2. Sensorsystem nach Anspruch 1 mit einer in den Baustoff eingebetteten Sensorelektrode (3; 22).
  3. Sensorsystem nach Anspruch 1 oder 2 mit einer Detektionsrichtung (R), gekennzeichnet durch eine die Sensorelektrode (3; 22) zumindest in einer zur Detektionsrichtung (R) orthogonalen Ebene umgebenden Schirmelektrode (8).
  4. Sensorsystem nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass die Sensorelektrode (3; 22) und/oder die Schirmelektrode (8; 24) elektrisch isoliert ist/sind.
  5. Sensorsystem nach einem der Ansprüche 1 bis 4, gekennzeichnet durch Positionierungsmittel (32), die mit der/den Elektrode(n) (3; 8; 22; 24) gekoppelt sind und deren Lage im Sensorabschnitt (1) definieren.
  6. Sensorsystem nach einem der Ansprüche 1 bis 5, gekennzeichnet durch mehrere Sensorelektroden (3; 22) mit sich überlappenden Streufeldern (5).
  7. Sensorsystem nach einem der Ansprüche 3 bis 6, gekennzeichnet durch die Anordnung mehrerer Sensorelektroden (3; 22) und Schirmelektroden (8) in derselben Ebene nebeneinander zur Ausbildung eines Bedienfelds auf einer Bauteiloberfläche.
  8. Verfahren zum Herstellen eines kapazitiven Sensors mit einer in einen synthetischen Baustoff eingebetteten Sensorelektrode (3; 22), mit den folgenden Schritten: a) Positionieren der Sensorelektrode (3; 22) und/oder einer Schirmelektrode (8; 24) in einer Schalungseinrichtung/Gussform (30), b) Einbringen des synthetischen Baustoff in die Schalungseinrichtung (30), c) Aushärten lassen des Baustoff und Ausschalen/Entformen des Bauteils, d) Anschließen der Elektroden (22; 24) an eine Steuerungselektronik.
  9. Verwendung eines kapazitiven Sensors mit einem Sensorabschnitt aus einem Baustoff nach einem der Ansprüche 1 bis 7 als manuell betätigbare Steuerungseinrichtung insbesondere für Haustechnik.
DE102015115749.7A 2015-09-17 2015-09-17 Kapazitives Sensorsystem mit einem Sensorabschnitt aus einem synthetischen Baustoff, Verfahren zu seiner Herstellung und seine Verwendung Withdrawn DE102015115749A1 (de)

Priority Applications (5)

Application Number Priority Date Filing Date Title
DE102015115749.7A DE102015115749A1 (de) 2015-09-17 2015-09-17 Kapazitives Sensorsystem mit einem Sensorabschnitt aus einem synthetischen Baustoff, Verfahren zu seiner Herstellung und seine Verwendung
US15/761,021 US20180287605A1 (en) 2015-09-17 2016-09-16 Capacitive sensor system comprising a sensor portion consisting of a synthetic construction material, method for the production of said system and use of same
PCT/EP2016/071943 WO2017046311A1 (de) 2015-09-17 2016-09-16 Kapazitives sensorsystem mit einem sensorabschnitt aus einem synthetischen baustoff, verfahren zu seiner herstellung und seine verwendung
CN201680054007.9A CN108028647A (zh) 2015-09-17 2016-09-16 具有合成结构材料制成的传感器部的电容式传感器系统及其制造方法和应用
EP16778692.0A EP3350924A1 (de) 2015-09-17 2016-09-16 Kapazitives sensorsystem mit einem sensorabschnitt aus einem synthetischen baustoff, verfahren zu seiner herstellung und seine verwendung

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102015115749.7A DE102015115749A1 (de) 2015-09-17 2015-09-17 Kapazitives Sensorsystem mit einem Sensorabschnitt aus einem synthetischen Baustoff, Verfahren zu seiner Herstellung und seine Verwendung

Publications (1)

Publication Number Publication Date
DE102015115749A1 true DE102015115749A1 (de) 2017-03-23

Family

ID=57121188

Family Applications (1)

Application Number Title Priority Date Filing Date
DE102015115749.7A Withdrawn DE102015115749A1 (de) 2015-09-17 2015-09-17 Kapazitives Sensorsystem mit einem Sensorabschnitt aus einem synthetischen Baustoff, Verfahren zu seiner Herstellung und seine Verwendung

Country Status (5)

Country Link
US (1) US20180287605A1 (de)
EP (1) EP3350924A1 (de)
CN (1) CN108028647A (de)
DE (1) DE102015115749A1 (de)
WO (1) WO2017046311A1 (de)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4006119A1 (de) * 1990-02-27 1991-08-29 Ines Gmbh Kapazitives wegaufnehmersystem
GB2368126A (en) 2000-10-19 2002-04-24 Hampden Smith David Eric Modular sensor switch
WO2011098854A1 (en) * 2010-02-11 2011-08-18 Varidal Company Limited Method for the detection of a body with respect to a surface, detecting device for the implementation of the method, and surface comprising such devise
WO2015104480A1 (fr) 2014-01-09 2015-07-16 Open App Dispositif de commutation invisible et sans contact
DE102014212136A1 (de) * 2014-06-25 2015-12-31 Robert Bosch Gmbh Messvorrichtung, insbesondere Feuchtigkeitsmessvorrichtung
DE102015100711A1 (de) * 2015-01-19 2016-08-04 Kennwert RD GmbH Elektrisches Bauelement mit einem Sensorabschnitt aus Beton, Verfahren zu seiner Herstellung und seine Verwendung

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009058592A1 (de) * 2009-12-17 2011-06-22 Valeo Schalter und Sensoren GmbH, 74321 Bedien- und/oder Steuerelement mit kapazitivem Sensor

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4006119A1 (de) * 1990-02-27 1991-08-29 Ines Gmbh Kapazitives wegaufnehmersystem
GB2368126A (en) 2000-10-19 2002-04-24 Hampden Smith David Eric Modular sensor switch
WO2011098854A1 (en) * 2010-02-11 2011-08-18 Varidal Company Limited Method for the detection of a body with respect to a surface, detecting device for the implementation of the method, and surface comprising such devise
WO2015104480A1 (fr) 2014-01-09 2015-07-16 Open App Dispositif de commutation invisible et sans contact
DE102014212136A1 (de) * 2014-06-25 2015-12-31 Robert Bosch Gmbh Messvorrichtung, insbesondere Feuchtigkeitsmessvorrichtung
DE102015100711A1 (de) * 2015-01-19 2016-08-04 Kennwert RD GmbH Elektrisches Bauelement mit einem Sensorabschnitt aus Beton, Verfahren zu seiner Herstellung und seine Verwendung

Also Published As

Publication number Publication date
US20180287605A1 (en) 2018-10-04
WO2017046311A1 (de) 2017-03-23
EP3350924A1 (de) 2018-07-25
CN108028647A (zh) 2018-05-11

Similar Documents

Publication Publication Date Title
EP2250321B1 (de) Bedienungsvorrichtung für sanitärobjekte
DE102015100711B4 (de) Elektrisches Bauelement mit einem Sensorabschnitt aus Beton, Verfahren zu seiner Herstellung und seine Verwendung
DE10149729A1 (de) Funktions-und Verkleidungselement
EP2591181A2 (de) Lochplatten auf basis von gips sowie verfahren zum verlegen derselben
DE102015115749A1 (de) Kapazitives Sensorsystem mit einem Sensorabschnitt aus einem synthetischen Baustoff, Verfahren zu seiner Herstellung und seine Verwendung
EP0404983B1 (de) Installationsbaustein oder -block
EP2888417B1 (de) Einbaugerät zum einbau in eine arbeitsplatte
DE202019000997U1 (de) Schallschutzsystem
EP2140992A2 (de) Herstellung von Bauelementen, insbesondere von Wand- oder Fassadenelementen
DE102011018518A1 (de) Wasserablauf
DE202016005254U1 (de) Vorgefertigtes Deckenelement
EP0662546A2 (de) Montageblock zur wandseitigen Anbringung von bau- und haustechnischen Einrichtung und/oder Anlagen
EP0300135B1 (de) Verfahren zur Herstellung eines Estrichhohlbodens
DE202014002800U1 (de) Hochbau mit verstellbaren oder abnehmbaren Scheidewänden
DE102004023920B4 (de) Mosaikbelag
EP1194663A1 (de) Verschlusssystem für wandverkleidungsplatten
EP3145365B1 (de) Lotionsspender für bad- und sanitärräume
EP2557240B1 (de) Sanitärmodul
DE202005003095U1 (de) Fassadenelement aus ultrahochfestem Beton
DE202015001561U1 (de) Pumpensumpfschacht
DE2339649C3 (de) Schallschluckelement
DE102010026306A1 (de) Bauelement mit einem Einbauelement
DE202010002347U1 (de) Vorrichtung zum Befestigen von Gegenständen
DE2419253C3 (de) Profilleiste zur Schallisolierung und Abdichtung des Randes einer Badewanne
DE29906456U1 (de) Trockenestrichelement

Legal Events

Date Code Title Description
R012 Request for examination validly filed
R119 Application deemed withdrawn, or ip right lapsed, due to non-payment of renewal fee