DE102015100804B4 - Radarvorrichtung mit Rauschunterdrückung - Google Patents

Radarvorrichtung mit Rauschunterdrückung Download PDF

Info

Publication number
DE102015100804B4
DE102015100804B4 DE102015100804.1A DE102015100804A DE102015100804B4 DE 102015100804 B4 DE102015100804 B4 DE 102015100804B4 DE 102015100804 A DE102015100804 A DE 102015100804A DE 102015100804 B4 DE102015100804 B4 DE 102015100804B4
Authority
DE
Germany
Prior art keywords
signal
radar
digital
phase noise
oscillator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
DE102015100804.1A
Other languages
English (en)
Other versions
DE102015100804A1 (de
Inventor
Alexander Melzer
Mario Huemer
Rainer Stuhlberger
Alexander Onic
Florian STARZER
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Infineon Technologies AG
Original Assignee
Infineon Technologies AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Infineon Technologies AG filed Critical Infineon Technologies AG
Priority to DE102015100804.1A priority Critical patent/DE102015100804B4/de
Priority to US14/993,557 priority patent/US10371800B2/en
Publication of DE102015100804A1 publication Critical patent/DE102015100804A1/de
Application granted granted Critical
Publication of DE102015100804B4 publication Critical patent/DE102015100804B4/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/40Means for monitoring or calibrating
    • G01S7/4004Means for monitoring or calibrating of parts of a radar system
    • G01S7/4021Means for monitoring or calibrating of parts of a radar system of receivers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/03Details of HF subsystems specially adapted therefor, e.g. common to transmitter and receiver
    • G01S7/038Feedthrough nulling circuits
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/06Systems determining position data of a target
    • G01S13/08Systems for measuring distance only
    • G01S13/32Systems for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated
    • G01S13/34Systems for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated using transmission of continuous, frequency-modulated waves while heterodyning the received signal, or a signal derived therefrom, with a locally-generated signal related to the contemporaneously transmitted signal
    • G01S13/343Systems for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated using transmission of continuous, frequency-modulated waves while heterodyning the received signal, or a signal derived therefrom, with a locally-generated signal related to the contemporaneously transmitted signal using sawtooth modulation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/35Details of non-pulse systems
    • G01S7/352Receivers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/40Means for monitoring or calibrating
    • G01S7/4052Means for monitoring or calibrating by simulation of echoes
    • G01S7/4056Means for monitoring or calibrating by simulation of echoes specially adapted to FMCW
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/40Means for monitoring or calibrating
    • G01S7/4052Means for monitoring or calibrating by simulation of echoes
    • G01S7/406Means for monitoring or calibrating by simulation of echoes using internally generated reference signals, e.g. via delay line, via RF or IF signal injection or via integrated reference reflector or transponder
    • G01S7/4069Means for monitoring or calibrating by simulation of echoes using internally generated reference signals, e.g. via delay line, via RF or IF signal injection or via integrated reference reflector or transponder involving a RF signal injection

Abstract

Eine Radarvorrichtung, die aufweist: einen HF-Transceiver, der dazu ausgebildet ist, ein HF-Oszillatorsignal (sRF(t)) in einen Radarkanal (200) auszusenden und ein zugehöriges erstes HF-Radarsignal (yRF(t)) von dem Radarkanal zu empfangen; ein künstliches Radar-Ziel (300), welches aus einer Schaltungsanordnung aufgebaut ist, die zur Erzeugung eines zweiten HF-Radarsignals (yRF,O(t)) das HF-Oszillatorsignal (sRF(t)) mit einer Verstärkung (AO) und einer Verzögerung (τO) bereitstellt; eine erste Frequenzkonversionsschaltung, welche einen ersten Mischer (110) beinhaltet, der dazu ausgebildet ist, das erste HF-Radarsignal (yRF(t)) herunterzumischen; eine zweite Frequenzkonversionsschaltung, welche einen zweiten Mischer (110') beinhaltet, der dazu ausgebildet ist, das zweite HF-Radarsignal (yRF,O(t)) herunterzumischen; eine Analog-Digital-Wandlereinheit (120, 120'), die dazu ausgebildet ist, das heruntergemischte erste HF-Radarsignal (y'(t)) und das heruntergemischte zweite HF-Radarsignal (yO'(t)) zu digitalisieren, um ein erstes Digitalsignal (y[n]) bzw. ein zweites Digitalsignal (yO[n]) zu erzeugen; eine digitale Signalverarbeitungseinheit, die das erste und das zweite Digitalsignal (y[n], yO[n]) empfängt und die dazu ausgebildet ist: ein in dem zweiten Digitalsignal (yO[n]) enthaltenes Phasenrauschsignal (ΔφO[n]) zu schätzen, basierend auf dem geschätzten Phasenrauschsignal ein Kompensationssignal (ŷS[n]) zu erzeugen und das Kompensationssignal (ŷS[n]) von dem ersten Digitalsignal (y[n]) zu subtrahieren, um ein rauschkompensiertes digitales Radarsignal (z[n]) zu erhalten.

Description

  • TECHNISCHES GEBIET
  • Die vorliegende Beschreibung betrifft allgemein das Gebiet der Radarsensorsysteme und -vorrichtungen sowie die Signalverarbeitung, welche in derartigen Systemen und Vorrichtungen zum Einsatz kommt. Insbesondere betrifft die Erfindung die Unterdrückung von Rauschen, welches durch unerwünschte Radarechos von Zielen (Targets) in kurzer Distanz (Short-Range(SR-)Targets) verursacht wird (auch als Leckage aus kurzer Distanz, Short-Range-Leakage, bezeichnet).
  • HINTERGRUND
  • Radarsysteme sind weitläufig bekannt und können im Allgemeinen unterteilt werden in Impulsradarsysteme und Dauerstrichradarsystme (continuous wave (CW) radar systems). Ein Impulsradarsystem misst einen Abstand zu einem Objekt (üblicherweise als Ziel (Target) bezeichnet) durch Aussenden eines kurzen Hochfrequenz-(HF-)Pulses zu einem Objekt sowie Messen der Zeit, welche der reflektierte Puls (d. h. das Echo) bis zum Empfang benötigt. Da die Geschwindigkeit des Pulses bekannt ist (d. h. die Lichtgeschwindigkeit), kann der Abstand zu einem Objekt in einfacher Weise berechnet werden. Jedoch sind Impulsradarsysteme nicht zur Messung von Abständen von einigen 100 Meter geeignet, insbesondere weil die Pulslänge reduziert werden muss, wenn die Laufzeit (d. h. der Abstand zum Ziel) kleiner wird. Mit kleiner werdender Pulslänge wird auch die im Puls enthaltene Energie kleiner bis zu dem Punkt, an dem es unmöglich wird, das reflektierte Signal zu detektieren. Zur Messung von vergleichsweise kurzen Abständen werden stattdessen Dauerstrichradarsysteme verwendet. In vielen Anwendungen, wie z. B. Automobilanwendungen, werden sogenannte frequenzmodulierte Dauerstrichradarsysteme (frequency-modulated continuous wave (FMCW) radar systems) verwendet, um Ziele vor der Radarvorrichtung zu detektieren und die Anstände zu den Zielen sowie deren Geschwindigkeit zu messen.
  • Anders als bei Impulsradarsystemen, bei denen die Isolation zwischen dem Sendesignalpfad und dem Empfangssignalpfad aufgrund des gepulsten Betriebs des Transmitters nicht von spezieller Relevanz ist, ist ein als Leckage (leakage) bezeichnetes Phänomen bei FMCW-Radarsystemen ein Thema. Leckage beschreibt allgemein das Problem, dass ein kleiner Bruchteil des frequenzmodulierten Sendesignals in den Empfangssignalpfad des Radar-Transceivers hinein „leckt”, ohne dass es an einem Ziel zurückgestreut wurde. Wenn die Ursache der Leckage in dem HF-Frontend des Radar-Transceivers liegt (d. h. eine unvollkommene Isolation des Zirkulators, der in einer monostatischen Radarkonfiguration das Empfangssignal und das Sendesignal trennt), wird die Leckage auch als Übersprechen (crosstalk) zwischen Sendesignalpfad und Empfangssignalpfad bezeichnet. Bei der Integration des Radarsystems in einen einzigen monolithisch integrierten Mikrowellenschaltkreis (monolithic microwave integrated circuit, MMIC) ist Übersprechen oder sogenannte Leckage am Chip (on-chip leakage, On-Chip-Leckage) immer ein Thema. Die Publikation DE 10 2008 050 327 A1 beschreibt z. B. einen Empfangsmischer zur Verringerung von On-Chip-Leckage in einem Radar-MMIC. Dabei enthält der Chip einen Vergleichssignalpfad, der soweit wie möglich dem Empfangszweig der Radareinheit nachgebildet ist. Der Vergleichssignalpfad ermöglicht es, ein Referenzsignal zu erzeugen, welches ausschließlich die durch mischerinterne Überkopplungseffekte bedingten Störanteile enthält. Durch Subtraktion des Referenzsignals von dem über den Empfangszweig empfangenen Radarsignal im Basisband können die genannten Störanteile im Radarsignal eliminiert werden.
  • Eine andere Ursache für Leckage können Objekte sein, welche sehr nah an der Radarantenne sind (wie z. B. eine Befestigung oder eine Abdeckung, welche ein paar Zentimeter vor den Radarantennen montiert ist). Hier werden Reflektionen der ausgesendeten Radarsignale an solchen Objekten als Leckage aus kurzer Distanz (short-range leakage) bezeichnet, welche ein Bruchteil des von der Sendeantenne abgestrahlten und an den erwähnten Objekten, die sehr nah an der (den) Radarantenne(n) sind, zu der Empfangsantenne des FMCW-Radarsystems zurückreflektierten (zurückgestreuten) Sendesignals ist. Es versteht sich, dass in monostatischen Radarsystemen die Sendeantenne und die Empfangsantenne physikalisch dieselbe Antenne sind. Hier werden die erwähnten Reflexionen, welche von Zielen in kurzer Distanz (short-range targets, Short-Range-Ziele) verursacht werden, als Leckage aus kurzer Distanz (short-range leakage, Short-Range-Leckage) bezeichnet, da ihre Wirkung ähnlich ist zu der Wirkung von Leckage am Chip (on-chip leakage). Jedoch sind bekannte Methoden, welche zur Unterdrückung (cancellation) von On-Chip-Leckage oder Übersprechen geeignet sind, nicht geeignet für die Unterdrückung von Short-Range-Leckage. Die Publikation EP 2 439 552 A1 betrifft ein Signalverarbeitungsverfahren zur Unterdrücken von Leckage in Radarsystemen, wobei ein Modell der Leckage verwendet wird, um diese im empfangenen Radarsignal zu unterdrücken.
  • Im Radarsystemen begrenzt das Gesamtgrundrauchen die Empfindlichkeit, mit der Radarziele detektiert werden können, und folglich begrenzt dieses auch die Genauigkeit der Abstandsmessung. Im Allgemeinen wird das Grundrauschen von dem additiven Rauschen des Übertragungskanals dominiert. Jedoch kann im Falle, dass ein Short-Range-Ziel das ausgesendete Radarsignal mit vergleichsweise hoher Amplitude reflektiert (d. h. Short-Range-Leckage verursacht), das Phasenrauschen (phase noise, PN) des ausgesendeten Radarsignals das Grundrauschen dominieren. Das Phasenrauschen bewirkt eine verschlechterte Signaldetektionsqualität oder macht sogar die Detektion von Radarzielen mit kleinen Radarquerschnitten unmöglich. Eine der Erfindung zugrunde liegende Aufgabe besteht folglich darin, das durch Short-Range-Leckage in den Empfangszweig eines Radarempfängers hineingetragene Phasenrauschen zu unterdrücken und dadurch die Empfangsqualität zu verbessern. Diese Aufgabe wird durch eine Radarvorrichtung gemäß Anspruch 1 sowie durch ein Verfahren gemäß Anspruch 9 gelöst. Verschiedene Ausführungsbeispiele und Weiterentwicklungen sind Gegenstand der abhängigen Ansprüche.
  • ZUSAMMENFASSUNG
  • Hier beschriebene beispielhafte Ausführungsformen beziehen sich auf eine Radarvorrichtung (radar device). Gemäß einem Beispiel der vorliegenden Erfindung umfasst die Radarvorrichtung einen HF-Transceiver, der dazu ausgebildet ist, ein HF-Oszillatorsignal in einen Radarkanal auszusenden und ein zugehöriges erstes HF-Radarsignal von dem Radarkanal zu empfangen. Die Radarvorrichtung umfasst des Weiteren ein künstliches Radar-Ziel (Radar Target), welches aus einer Schaltungsanordnung aufgebaut ist, die zur Erzeugung eines zweiten HF-Radarsignals das HF-Oszillatorsignal mit Verstärkung (gain) und Verzögerung (delay) bereitstellt. Eine erste Frequenzkonversionsschaltung, welche einen ersten Mischer beinhaltet, ist dazu ausgebildet, das erste HF-Radarsignal herunterzumischen, und eine zweite Frequenzkonversionsschaltung, welche einen zweiten Mischer beinhaltet, ist dazu ausgebildet, das zweite HF-Radarsignal herunterzumischen. Eine Analog-Digital-Wandlereinheit ist dazu ausgebildet das heruntergemischte erste HF-Radarsignal und das heruntergemischte zweite HF-Radarsignal zu digitalisieren, um ein erstes Digitalsignal bzw. ein zweites Digitalsignal zu erzeugen. Eine digitale Signalverarbeitungseinheit empfängt das erste und das zweite Digitalsignal und ist dazu ausgebildet, ein in dem zweiten Digitalsignal enthaltenes Phasenrauschsignal (phase noise signal) zu schätzen und basierend auf dem geschätzten Phasenrauschsignal ein Kompensationssignal (cancellation signal) zu erzeugen. Das Kompensationssignal wird von dem ersten Digitalsignal subtrahiert, um ein rauschkompensiertes digitales Radarsignal zu erhalten.
  • Andere beispielhafte Ausführungsformen der vorliegenden Erfindung beziehen sich auf ein Verfahren zur Unterdrückung (cancellation) von Rauschen in einem Radarsignal. Gemäß einem Beispiel der Erfindung umfasst das Verfahren das Aussenden eines HF-Oszillatorsignals in einen Radarkanal und das Empfangen eines zugehörigen ersten HF-Radarsignals von dem Radarkanal sowie das Anlegen des HF-Oszillatorsignals an ein künstliches Radar-Ziel, welches aus einer Schaltungsanordnung aufgebaut ist, die zur Erzeugung eines zweiten HF-Radarsignals auf das HF-Oszillatorsignal eine Verstärkung (gain) und eine Verzögerung (delay) anwendet. Das erste HF-Radarsignal und das zweite HF-Radarsignal werden von einem HF-Frequenzband in ein Basisband heruntergemischt, und das heruntergemischte erste HF-Radarsignal sowie das heruntergemischte zweite HF-Radarsignal werden digitalisiert, um ein erstes Digitalsignal bzw. ein zweites Digitalsignal zu erzeugen. Des Weiteren umfasst das Verfahren das Schätzen eines in dem zweiten Digitalsignal enthaltenen Phasenrauschsignals und das Erzeugen eines Kompensationssignals basierend auf dem geschätzten Phasenrauschsignal. Das Kompensationssignal wird von dem ersten Digitalsignal subtrahiert, um ein rauschkompensiertes digitales Radarsignal zu erhalten.
  • KURZE BESCHREIBUNG DER ABBILDUNGEN
  • Die Erfindung lässt sicher mit Bezug auf die folgenden Abbildungen und Beschreibungen besser verstehen. Die in den Abbildungen dargestellten Komponenten sind nicht notwendigerweise maßstabsgetreu; vielmehr wird Wert darauf gelegt, das der Erfindung zugrundeliegende Prinzip zu erläutern. Des Weiteren bezeichnen in den Abbildungen gleiche Bezugsziechen korrespondierende Teile. Zu den Abbildungen:
  • 1 ist ein schematisches Diagramm, welches das Funktionsprinzip eines FMCW-Radarsensors mit einem einzigen Radar-Ziel (Radar-Target) im Übertragungskanal illustriert;
  • 2 illustriert den Signalverlauf der ausgesendeten und reflektierten Radarsignale in dem Radarsensor aus 1;
  • 3 ist ein Blockdiagramm, welches die Funktion des Radarsensors aus 1 illustriert;
  • 4 ist ein vereinfachtes Blockdiagramm, welches die Grundfunktion eines FMCW-Radarsensors repräsentiert;
  • 5 ist ein schematisches Diagramm, welches die Ursache und die Entstehung von Leckage durch Reflexion an einem Ziel in kurzer Distanz (short-range target) illustriert;
  • 6 ist ein Blockdiagramm, das einen Radarsensor mit Rauschunterdrückung gemäß einem Beispiel der vorliegenden Erfindung darstellt;
  • 7 ist ein Diagramm, welches das dekorrelierte Phasenrauschen für unterschiedliche Verzögerungszeiten darstellt;
  • 8 ist ein Diagramm, welches den Kreuzkorrelationskoeffizienten zwischen dem in der Short-Range-Leckage enthaltenen dekorrelierten Phasenrauschen und dem dekorrelierten Phasenrauschen, welches in dem von einem künstlichen On-Chip-Ziel erhaltenen Signal enthalten ist, illustriert; und
  • 9 ist ein Flussdiagramm, welches die Rauschunterdrückung (noise cancellation) gemäß einem anderen Beispiel der vorliegenden Erfindung darstellt.
  • DETAILLIERTE BESCHREIBUNG DER AUSFÜHRUNGSBEISPIELE
  • 1 zeigt ein konventionelles frequenzmodulierendes Dauerstrich(FMCW-)Radarsystem 100. In dem vorliegenden Beispiel werden separate Sende-(TX) und Empfangs-(RX)Antennen 101 bzw. 102 verwendet. Es versteht sich jedoch, dass eine einzelne Antenne verwendet werden kann, sodass die Empfangsantenne und die Sendeantenne physikalisch dieselbe sind (monostatische Radarkonfiguration). Die Sendeantenne strahlt kontinuierlich ein sinusförmiges HF-Signal sRF(t) ab, welches beispielsweise mittels eines Sägezahlsignals (periodisches, lineares Rampensignal) frequenzmoduliert ist. Das ausgesendete Signal sRF(t) wird zurückgestreut an einem Ziel (Target) T1, welches sich innerhalb des Messbereichs des Radarsystems befindet, und von der Empfangsantenne 102 empfangen. Das empfangene Signal wird mit yRF(t) bezeichnet. In der Radarvorrichtung 100 wird das empfangene Signal yRF(t) demoduliert durch Mischen des Signals yRF(t) mit einer Kopie des Sendesignals sRF(t), um ein Heruntermischen des HF-Signals yRF(t) in das Basisband zu bewirken. Dieses Heruntermischen (down-conversion) ist in 2 dargestellt. Das empfangene HF-Signal yRF(t) eilt aufgrund der Zeit, die das Signal benötigt, um zu dem Ziel T1 hin und von dem Ziel zurück zu laufen, dem Sendesignal sRF(t) nach. Als Konsequenz besteht eine konstante Frequenzdifferenz zwischen dem empfangenen HF-Signal yRF(t) und dem Referenzsignal (d. h. des Kopie des Sendesignals sRF(t)). Wenn die beiden Signale sRF(t) und yRF(t) gemischt (d. h. demoduliert) werden, erhält man ein demoduliertes Signal y(t) (auch als Schwebungsfrequenz (beat frequency) bezeichnet) konstanter Frequenz (im Falle einer linearen Frequenzmodulation). Die Schwebungsfrequenz des empfangenen und demodulierten Signals y(t) kann (z. B. mittels Fourieranalyse) bestimmt und dazu verwendet werden, den Abstand zwischen der Radarvorrichtung 100 und dem Ziel T1 zu berechnen.
  • Die Radarvorrichtung 100 kann einen monolithisch integrierten Mikrowellenschaltkreis (monolithic microwave integrated circuit, MMIC) enthalten oder in einem solchen implementiert sein, wobei der MMIC Schaltungsanordnungen beinhaltet, welche die für eine Abstands- und/oder Geschwindigkeitsmessung nötigen Kernfunktionen bereitstellen (auch als „Single-Chip-Radar” bezeichnet). Folglich kann der Chip unter anderem HF-Oszillatoren, Verstärker, Mischer, Analog-Digital-Wandler und digitale Signalprozessoren enthalten. 3 illustriert den Sendepfad und den Empfangspfad eines Radartransceivers, welcher zur Abstandsmessung in einer Radarvorrichtung 100, welches in 1 gezeigt ist, verwendet werden kann. Demnach umfasst der RF-Transceiver 1 einen Mischer 110, dem das Radarsignal yRF(t) und das HF-Oszillatorsignal sRF(r), welches zum Heruntermischen des Radarsignals yRF(t) in das Basisband verwendet wird, zugeführt sind. Das Radarsignal yRF(t) (d. h. ein zurückgestreuter Teil des Sendesignals sRF(t)) wird von der Antenne 102 empfangen und kann vorverstärkt werden (siehe HF-Verstärker 105), bevor es dem Mischer 110 zugeführt wird. In dem vorliegenden Beispiel wird das HF-Oszillatorsignal sRF(t) von einem Lokaloszillator (LO) 103 erzeugt, der einen in einen Phasenregelkreis (phase locked loop, PLL) gekoppelten, spannungsgesteuerten Oszillator (voltage controlled oscillator, VCO) enthalten kann. Abhängig von der tatsächlichen Anwendung kann das HF-Oszillatorsignal sRF(t) jedoch auch von einer anderen Schaltungsanordnung bereitgestellt werden. Bei Verwendung in einer Radar-Abstandsmessvorrichtung kann das HF-Oszillatorsignal sRF(t) im Bereich zwischen rund 24 GHz und 77 GHz liegen (im vorliegenden Beispiel 77 GHz). Jedoch können auch höhere oder niedrigere Frequenzen ebenso anwendbar sein. Das HF-Oszillatorsignal sRF(t) wird auch der Sendeantenne 101 zugeführt (z. B. über den Leistungsverstärker 104) und in Richtung des Radar-Ziels abgestrahlt (siehe auch 1).
  • Wie erwähnt mischt der Mischer 100 das Radarsignal (verstärktes Antennensignal A·yRF(t), Verstärkungsfaktor A) in das Basisband herunter. Das zugehörige Basisbandsignal (Mischerausgangssignal) wird mit y(t) bezeichnet. Das Basisbandsignal y(t) wird dann einer analogen Filterung (Filter 115) unterzogen, um unerwünschte Seitenbänder oder Spiegelfrequenzen zu unterdrücken, welche ein Resultat der Mischoperation sein können. Das Filter 115 kann ein Tiefpassfilter oder ein Bandpassfilter sein. Das gefilterte Basisbandsignal (Filterausgangssignal) wird mit y'(t) bezeichnet. Empfänger (oder die Empfangsteile von Tranceiver), die einen Mischer verwenden, um das empfangene HF-Signal in das Basisband zu herunterzumischen, sind an sich als Überlagerungsempfänger (Heterodynempfänger) bekannt und werden daher nicht detaillierter diskutiert. Das gefilterte Basisbandsignal y'(t) wird dann abgetastet (zeitliche Diskretisierung) und in ein Digitalsignal y[n] gewandelt (Analog-Digital-Wandler (ADC) 120), welches dann im Digitalbereich mittels digitaler Signalverarbeitung weiter verarbeitet wird (n ist der Zeitindex). Die digitale Signalverarbeitung kann in einer digitalen Signalverarbeitungseinheit 125 durchgeführt werden, welche z. B. einen digitalen Signalprozessor (DSP) beinhalten kann, der geeignete Softwareinstruktionen ausführt.
  • 3 illustriert dem Empfangspfad eines Radartransceivers 100' eines sogenannten bistatischen oder pseudo-monostatischen Radarsystems, in dem der Empfänger separat von dem Sender sein kann (da Empfänger und Sender separate Antennen benutzen). Im vorliegenden Beispiel sind jedoch der Sender- und Empfangsteil des Radar-Transceivers in einem MMIC integriert. In einem monostatischen Radarsystem wird zum Senden und Empfangen von HF-Radarsignalen dieselbe Antenne benutzt. In solchen Fällen umfasst der Radar-Transceiver zusätzlich einen mit dem Mischer gekoppelten Richtkoppler oder Zirkulator (nicht dargestellt) zum Trennen des HF-Sendesignals sRF(t) von dem empfangenen Signal yRF(t).
  • Der Übertragungskanal 200 repräsentiert den Signalpfad von der Sendeantenne 101 zum Ziel (Target) und zurück zur Empfangsantenne 102. Während sie den Übertragungskanal passieren, unterliegen die Radarsignale sRF(t) (ausgesendetes Signal) und yRF(t) (zurückgestreutes Signal) additivem Rauschen w(t), welches üblicherweise als additives weißes Gauß'sches Rauschen (additive white Gaussian noise, AWGN) modelliert wird. 4 ist ein vereinfachtes Blockdiagramm, welches das analoge Frontend des in 3 dargestellten Radar-Transceivers zeigt. Um eine einfache und klare Darstellung zu ermöglichen, wurden Antennen und Verstärker weggelassen. Demnach wird das HF-Sendesignal sRF(t), welches von dem Lokaloszillator 103 erzeugt werden kann, durch den Übertragungskanal 200 gesendet; das HF-Sendesignal sRF(t) erreicht schließlich (als empfangenes Radarsignal yRF(t)) den HF-Eingang des Mischers 110, welcher dazu ausgebildet ist, das Radarsignal yRF(t) in das Basisband herunterzumischen. Das resultierende Basisbandsignal y(t) wird tiefpassgefiltert (Tiefpassfilter 115), und das gefilterte Basisbandsignal y'(t) wird dann mittels des Analog-Digital-Wandlers 120 digitalisiert. Statt einer Tiefpassfilterung kann auch eine Bandpassfilterung zur Anwendung kommen. Das digitalisierte Basisbandsignal y[n] wird dann digital weiterverarbeitet, um den Abstand zwischen dem Transceiver 100' und dem Ziel (Target) zu schätzen. Wie erwähnt wird weißes Gauß'sches Rauschen zu dem Radarsignal hinzuaddiert, während es den Übertragungskanal 200 passiert.
  • 5 ist im Wesentlichen die gleiche Darstellung, wie sie in 1 gezeigt wird, jedoch mit einem zusätzlichen Objekt TS, welches sich im Übertragungskanal vergleichsweise nahe an den Antennen befindet (z. B. eine Halterung oder eine vor den Radarantennen montierte Abdeckung). Derartige Objekte werden hier als Ziele in kurzer Distanz (Short-Range-Ziele, short range targets) bezeichnet. Ein Short-Range-Ziel befindet sich üblicherweise einige wenige Zentimeter (z. B. weniger als 50 cm) vor der Radarvorrichtung (was weniger als die Untergrenze des Messbereichs des Radarsystems ist) und reflektiert einen Teil des Sendesignals sRF(t) zurück zur Empfangsantenne 102. Wie oben erwähnt führen solche Reflexionen an Short-Range-Zielen zu einem Phänomen, das als „Leckage aus kurzer Distanz” (Short-Range-Leckage, short-range leakage) bezeichnet wird. In dem Beispiel aus 5 wird das ausgesendete HF-Signal sRF(t) am Ziel T1 (welches sich innerhalb des normalen Messbereichs des Radar-Transceivers befindet) zurückgestreut sowie auch an dem Short-Tange-Ziel TS reflektiert. Das vom Ziel T1 zurückgestreute Signal wird als yRF,1(t) und das an dem Short-Tange-Ziel TS reflektierte Signal wird als yRF,S(t) bezeichnet. Beide Signale yRF,1(t) und yRF,S(t) überlagern sich, und das resultierende Summensignal yRF(t) wird von der Antenne 102 empfangen. Berücksichtigt man die Tatsache, dass die empfangene Signalleistung mit der vierten Potenz des Abstands sinkt, ist die Signalamplitude des Radarsignals yRF,S(t) aufgrund der Short-Range-Leckage erheblich. Des Weiteren ist als Folge der Short-Range-Leckage das Phasenrauschen des ausgesendeten Radarsignals sRF(t) die vorherrschende Ursache von Rauschen in dem empfangenen Radarsignal yRF(t).
  • 6 ist ein Blockdiagramm eines Radar-Transceivers gemäß einer beispielhaften Ausführungsform, der dazu ausgebildet ist, unter Verwendung von digitaler Signalverarbeitung im Basisband 200 und einem künstlichen Radarziel 300 (in der Folge als On-Chip-Ziel oder OCT (on-chip target) bezeichnet) die Short-Range-Leckage und folglich das erwähnte Phasenrauschen in dem empfangenen Radarsignal zu eliminieren (to cancel). Wieder wurden der Einfachheit und Klarheit halber in der Darstellung Antennen und Verstärker weggelassen. Das Sendesignal sRF(t) ist ein frequenzmoduliertes Dauerstrich(FMCW-)Signal (Chirp-Signal), welches auch als Chirp-Signal bezeichnet wird. Demnach kann das Signal sRF(t) geschrieben werden als: sRF(t) = cos(2πf0t + πkt2 + φ(t) + Φ), (1) wobei f0 die Startfrequenz des Chirp-Signals ist, k (k = B/T) die Steigung des Chirps mit Bandbreite B und Dauer T bezeichnet, Φ ein konstanter Phasenoffset und φ(t) das aufgrund von Unzulänglichkeiten des Lokaloszillators (siehe 3) eingebrachte Phasenrauschen (phase noise, PN) ist.
  • Der Übertragungskanal 200 (siehe 5 und 6) umfasst zwei Arten von Signalreflexionen. Erstens: Reflexionen (Zurückstreuen) an Zielen Ti, deren Abstand vom Radar-Transceiver gemessen werden soll. Diese Ziele Ti werden mittels einer Verzögerung (delay) τTi und einer Verstärkung ATi modelliert, wobei i = 1, 2, ..., NT, und NT die Anzahl der Ziele Ti (ohne das Short-Range-Ziel) bezeichnet. Zweitens: die Reflexion an einem Short-Range-Ziel, welches das unerwünschte, nahe Ziel repräsentiert, das jene Reflexionen (Short-Range-Leckage) verursacht, die eliminiert werden sollen. Analog zu einem normalen Ziel kann das Short-Range-Ziel modelliert werden mittels einer Verzögerung τS und einer Verstärkung AS. In der Praxis wird die Verstärkung AS erheblich größer sein als jedes der anderen Verstärkungen ATi. Dieses Modell des Übertragungskanals 200 ist im oberen Signalpfad des Blockdiagramms in 6 dargestellt. Auf der Empfängerseite wird additives weißes Gauß'sches Rauschen (AWGN) addiert, bevor die Heruntermischung in das Basisband erfolgt. Folglich kann das empfangene HF-Radarsignal yRF(t) geschrieben werden als:
    Figure DE102015100804B4_0002
    wobei der erste Summand die Signalkomponente aufgrund der Short-Range-Leckage repräsentiert, der zweite Summand repräsentiert die Signalkomponenten aufgrund von Reflexionen an dem (den) „normalen” Radarziel(en), und der letzte Summand repräsentiert AWGN. Die Verzögerungen τS und τTi werden auch als Hin-und-Zurück-Verzögerungszeiten (round trip delay time, RTDT) bezeichnet, die jeweils dem Short-Range-Ziel bzw. den Zielen Ti zugeordnet sind. Es sei angemerkt, dass in der vorliegenden Beschreibung die zuvor erwähnte On-Chip-Leckage (on-chip leakage) nicht betrachtet wird, da mehrere Konzepte zur Eliminierung von On-Chip-Leckage existieren.
  • Wie man in 6 sehen kann, wird das Radarsignal einer Heruntermischung mittels des Mischers 110 unterzogen sowie einer darauffolgenden Bandpass- oder Tiefpassfilterung mittels des Filters 115, der eine Filterimpulsantwort hF(t) hat. Wie in den vorhergehenden Darstellungen wird das heruntergemischte und gefilterte Signal mit y'(t) bezeichnet, welches wie folgt modelliert werden kann (der Einfachheit halber unter der Annahme Φ = 0):
    Figure DE102015100804B4_0003
    Die Schwebungsfrequenzen (beat frequencies), die eine Folge der Short-Range-Leckage und der Reflexionen an den normalen Zielen sind, werden mit fBS bzw.
    Figure DE102015100804B4_0004
    (für das Ziel Ti) bezeichnet und können durch die folgenden Gleichungen dargestellt werden:
    Figure DE102015100804B4_0005
    Des Weiteren können die konstanten Phasen ΦS and
    Figure DE102015100804B4_0006
    berechnet werden gemäß:
    Figure DE102015100804B4_0007
  • Die Schwebungsfrequenzen (Gleichungen 4) und die konstanten Phasen (Gleichungen 5) hängen nur von gegebenen Systemparametern (wie z. B. die Startfrequenz f0 des Chirps sowie dessen Bandbreite und Dauer, repräsentiert von der Variablen k = B/T) und den RTDTs τS und
    Figure DE102015100804B4_0008
    ab, welche der Short-Range Leckage bzw. den zu detektierenden Radarzielen Ti zugeordnet sind. Aus den Gleichungen 3, 4, und 5 folgt, dass jene Signalkomponente von y'(t), die eine Folge der Short-Range-Leckage ist (d. h. der erste Summand in Gleichung 3), null ist, wenn die RTDT τS null ist (τS = 0). Auch der Term φ(t) – φ(t – τS) wird null wenn die Verzögerungszeit τS null ist. Mit steigenden Werten der RTDT τS (d. h. mit steigendem Abstand des Short-Range-Ziels) nimmt die Korrelation der Phasenrauschkomponenten φ(t) und φ(t – τS) ab. Dieser Effekt wird auch „range correlation effect” genannt, und die Differenz φ(t) – φ(t – τS) wird als dekorreliertes Phasenrauschen (decorrelated phase noise) DPN bezeichnet. Es sei angemerkt, dass im Zusammenhang von On-Chip-Leckage DPN üblicherweise kein Thema ist, da die zugeordneten Verzögerungen vernachlässigbar klein sind.
  • Im Folgenden wird der erste Summand aus Gleichung 3, d. h. das Short-Range-Leckage-Signal
    Figure DE102015100804B4_0009
    detaillierter analysiert (siehe 6). In Gleichung 6 wird die Verstärkung AS/2 im Wesentlichen von dem Radarquerschnitt (radar cross section, RCS) des Short-Range-Ziels bestimmt. Im Allgemeinen kann der RCS von der Form und dem Material des Short-Range-Ziels abhängen. Die Schwebungsfrequenz fBS (siehe Gleichung 4) hängt von der dem Short-Range-Ziel zugeordneten RTDT τS ab. Die RTDT τS hängt vom Abstand dS zwischen der Radarvorrichtung und dem Short-Range-Ziel ab. Demnach kann der Abstand dS berechnet werden gemäß dS = c·τS/2, wobei c die Lichtgeschwindigkeit bezeichnet. In Gleichung 6 repräsentiert das DPN φ(t) – φ(t – τS) zusätzliches Rauschen, zusätzlich zu dem erwähnten AWGN. Um zu analysieren, wie sich das DPN auf das Spektrum des empfangenen Radarsignals auswirkt, wird die spektrale Leistungsdichte (power spectrum) SΔφ des DPN berechnet: SΔφ(f) = Sφ(f)·2(1 – cos(2πτSf)), (7) wobei Sφ(f) die spektrale Leistungsdichte des in dem HF-Sendesignal sRF(t) enthaltenen Phasenrauschsignals φ(t) ist. Eine weitere Analyse eines realistischen Beispiels (τS = 800 ps, ds ≈ 12 cm) zeigt, dass für Frequenzen von mehr als 100 kHz der Rauschpegel des DPN –140 dBm beträgt, wobei eine Sendeleistung von 10 dBm und ein AWGN-Grundrauschen von –140 dBm angenommen wird. Die Gegenwart von DPN zieht eine Erhöhung des Grundrauschens (noise floor) nach sich und hat eine Reduktion der Empfindlichkeit für die Detektion von Radarzielen von 10 dB zur Folge. Als Folge dessen steigt das Grundrauschen insgesamt an, was gleichbedeutend mit einem Verlust von 10 dB an Empfindlichkeit für die Detektion von Radarzielen ist.
  • Um den Effekt des DPN aufgrund von (unvermeidbaren) Short-Range-Zielen zumindest zu reduzieren, beinhaltet die Radarvorrichtung ein (künstliches) On-Chip-Ziel (on-chip target, OCT), das wie in 6 dargestellt in die Signalverarbeitungskette eingebunden wird. Das OCT wird dazu verwendet, um eine Schätzung des DPN zu erhalten und um im Basisband das DPN (zumindest teilweise) aus dem empfangenen Radarsignal zu eliminieren. Wie man in 6 sehen kann, wird das HF-Sendesignal sRF(t) (zusätzlich zur Abstrahlung in den Radarkanal 200) dem OCT 300 zugeführt, welches im Wesentlichen aus einer Verstärkung (gain) AO (AO < 1) und einer Verzögerung τO, die als On-Chip-RTDT gesehen werden kann, gebildet wird. Das vom OCT 300 empfangene HF-Signal wird als yRF,O(t) bezeichnet. Dieses Signal yRF,O(t) wird in gleicher Weise wie das vom Radarkanal 200 empfangene HF-Signal yRF(t) ins Basisband heruntergemischt (Mischer 110') und bandpassgefiltert (Filter 115'). Das heruntergemischte vom OCT 300 empfangene Signal wird mit yO(t) bezeichnet, und das zugehörige bandpassgefilterte (oder tiefpassgefilterte) Signal wird mit yO'(t) bezeichnet. Sowohl das vom Radarkanal 200 empfangene gefilterte Basisbandsignal y'(t) als auch das vom OCT 300 empfangene gefilterte Basisbandsignal yO'(t) werden für die weitere digitale Signalverarbeitung mittels der Analog-Digital-Wandler 120 bzw. 120' digitalisiert. In einem anderen Ausführungsbeispiel können ein einzelner Analog-Digital-Wandler und ein Multiplexer zur Bereitstellung derselben Funktion verwendet werden. Die zugehörigen Digitalsignale werden mit y[n] und yO[n] bezeichnet.
  • Theoretisch wäre es wünschenswert, dass die Verzögerung τO des OCT 300 gleich der RTDT τS des im Radarkanal 200 vorhandenen Short-Range-Ziels ist. In realistischen Beispielen befindet sich die RTDT τS des Short-Range-Ziels im Bereich von einigen hundert Pikosekunden bis hin zu einigen Nanosekunden, wohingegen die Verzögerung τO eines On-Chip-Ziels praktisch auf einige Pikosekunden limitiert ist, wenn man die Radarvorrichtung in einem einzelnen MMIC implementiert. In einem Single-Chip-Radar hätten höhere Werte für die Verzögerung τO (die im Falle τO = τS nötig wären) eine unerwünschte (oder sogar unrealistische) Erhöhung der Chipfläche und der Leistungsaufnahme zur Folge; höhere Werte für die Verzögerung τO sind folglich nur mittels diskreter Schaltungsbauelemente ökonomisch machbar. Folglich ist die Verzögerung τO des OCT 300 auf Werte limitiert, die erheblich niedriger sind als die RTDT τS eines jeden praktisch relevanten Short-Range-Ziels.
  • Eine weitere Analyse der Eigenschaften des Kreuzkorrelationskoeffizienten der dekorrelierten Phasenrausch-(DPN-)Signale ΔφS(t) = φ(t) – φ(t – τS), (8) d. h. des DPNs, welches in dem vom Short-Range-Ziel TS empfangenen HF-Signal enthalten ist, und ΔφO(t) = φ(t) – φ(t – τO) (9) d. h. des DPNs, welches in dem vom OCT 300 empfangenen HF-Signal enthalten ist, zeigt, dass der Kreuzkorrelationskoeffizient
    Figure DE102015100804B4_0010
    für verschiedene Werte der OCT-Verzögerung τO sehr ähnlich ist (der Operator E bezeichnet den Erwartungswert und
    Figure DE102015100804B4_0011
    die zugehörigen Varianzen). Es sei angemerkt, dass angenommen wird, dass die DPN-Terme einen Mittelwert von null haben. Für eine OCT-Verzögerung τO gleich der RTDT τS nimmt der Kreuzkorrelationskoeffizient für einen Zeitversatz von null (l = 0) ein Maximum an. Für kleinere Werte von τO (d. h. τO < τS) ist der Kreuzkorrelationskoeffizient skaliert und verschoben im Vergleich zu jenem Fall, in dem τO = τS ist. Dieses Ergebnis ist in den Diagrammen der 7 und 8 dargestellt.
  • 7 illustriert exemplarische Realisationen eines DPN-Signals Δφ(t) = φ(t) – φ(t – τ) für verschiedene Verzögerungszeiten τ. Die in 7 (für τ = 40 ps, τ = 160 ps, τ = 400 ps und τ = 800 ps) gezeigten DPN-Signale Δφ(t) erhielt man mittels Simulation des Phasenrauschens φ(t) unter Verwendung eines stochastischen Modells, das das Phasenrauschen des Lokaloszillators (siehe 3, LO 103) modelliert. In 7 kann man sehen, dass die Signalverläufe der resultierenden DPN-Signale sehr ähnlich sind, auch wenn die Verzögerungszeit τ unterschiedlich ist. In diesem Zusammenhang bedeutet „ähnlich”, dass ein Signalverlauf (z. B. für τ = 40 ps) in jeden anderen Signalverlauf (z. B. den Signalverlauf für τ = 800 ps) durch Anwenden einer Verstärkung (gain) und einer Zeitverschiebung (oder Phasenverschiebung) transformiert werden kann. Diese Tatsache kann man auch in dem in 8 dargestellten Kreuzkorrelationskoeffizienten beobachten. Gleichung 10 wurde mittels einer zeitdiskreten Simulation geschätzt, wobei der Erwartungswert (Operator E) über eine repräsentative Länge der (mittels des stochastischen Modells gewonnenen) Zufallssignale, die das Phasenrauschen φ(t) repräsentieren, approximiert wurde.
  • Da das DPN ΔφO(t), das in dem heruntergemischten, vom OCT 300 empfangenen HF-Signal
    Figure DE102015100804B4_0012
    enthalten ist, und das DPN ΔφS(t), das in dem von dem Short-Range-Ziel empfangenen Basisbandsignal yS(t) (siehe Gleichung 6) enthalten ist, stark korreliert sind, kann das DPN, das in dem vom OCT 300 gewonnenen Basisbandsignal yO(t) enthalten ist, dazu verwendet werden, das von der Short-Range-Leckage verursachte DPN zu schätzen. In Gleichung 11 bezeichnet fBO die von dem OCT 300 bewirkte Schwebungsfrequenz, die analog zu fBS (siehe Gleichung 4) berechnet wird. Auch die konstante Phase ΦO wird in analoger Weise berechnet wie die konstante Phase ΦS (siehe Gleichungen 5 und 14). In einem praktischen Beispiel beträgt die dem Short-Range-Ziel TS zugeordnete RTDT τS ungefähr 800 ps (entsprechend einem Abstand von dS = 12 cm), wohingegen die OCT-Verzögerungszeit τO lediglich 40 ps beträgt. Damit ist die Schwebungsfrequenz fBS 20 Mal höher als die Schwebungsfrequenz fBO.
  • Wie man in 6 sehen kann ist das Abtast-Taktsignal (sampling clock signal), das die Abtastung des oberen Signalpfads (d. h. die Abtastung des vom Kanal 200 empfangenen Signals y'(t)) triggert, um einen Zeitoffset ΔTA (time offset) verzögert. Dieser Zeitoffset des Abtast-Taktsignals kann gleich jenem Zeitversatz 1 gewählt werden, bei dem der Kreuzkorrelationskoeffizient (siehe Gleichung 10 und 8) für eine bestimmte RTDT τO sein Maximum aufweist, wobei τO < τS. Weitere Analyse des Kreuzkorrelationskoeffizienten zeigt, dass der optimale Abtast-Zeitoffset ΔTA gleich der halben Differenz τS – τO ist, d. h.
    Figure DE102015100804B4_0013
    Die Verwendung des erwähnten Abtast-Zeitoffsets (sampling time offset) für die Maximierung des Korrelationskoeffizienten hat einen hohen Korrelationskoeffizienten
    Figure DE102015100804B4_0014
    zur Folge, beispielsweise 0,9 für τS = 800 ps und τO = 40 ps (siehe Diagramm in 8).
  • Da die DPN-Signale, die in den zeitdiskreten Signalen y[n] und yO[n] (bereitgestellt durch die Analog-Digital-Wandler 120 bzw. 120') enthalten sind, stark korreliert sind (insbesondere bei Verwendung des erwähnten Abtast-Zeitoffsets), kann ein Schätzwert des zeitdiskreten DPN-Signals ΔφO[n] aus dem heruntergemischten, vom OCT 300 gewonnenen Signal yO[n] berechnet werden. Diese Schätzung und die nachfolgende Berechnung eines korrespondierenden Kompensationssignals (cancellation signal) wird durch den mit LC (Leakage Cancellation, Leckage-Eliminierung) beschrifteten Funktionsblock 130 durchgeführt. Daher stellt der LC-Funktionsblock 130 im Wesentlichen die beiden Funktionen der Schätzung des DPN aus dem Signal yO[n] und der Erzeugung eines Kompensationssignals ŷS[n] zur Verfügung, welches von dem heruntergemischten und digitalisierten Radarsignal y[n] subtrahiert werden soll, um die im Radarsignal y[n] enthaltene Short-Range-Leckage (siehe auch Gleichung 6) zu eliminieren..
  • Die zeitdiskrete Version von Gleichung 11 ist
    Figure DE102015100804B4_0015
    mit fBO = kτO, and ΦO = 2πf0τO + kπτ 2 / O, (14) wobei fA die durch die Periode TA des Abtast-Taktsignals festgelegte Abtastrate bezeichnet (fA = TA –1). Die Anwendung der trigonometrischen Identität cos(a + b) = cos(a)cos(b) + sin(a)sin(b) (15) sowie der Approximationen (da ΔφO[n] hinreichend klein ist) cos(ΔφO[n]) ≈ 1 und (16) sin(ΔφO[n]) ≈ ΔφO[n] (17) auf Gleichung 13 vereinfacht diese zu
    Figure DE102015100804B4_0016
  • Da die Verstärkung AO und die Schwebungsfrequenz fBP a-priori bekannte Systemparameter des Radarsystems sind, kann das DPN ΔφO[n] basierend auf dem heruntergemischten Signal yO[n], welches von dem OCT 300 empfangen wird, gemäß der folgenden Gleichung geschätzt werden:
    Figure DE102015100804B4_0017
    Die Schwebungsfrequenz fBO und die Phase ΦO können nach der Produktion der Radarvorrichtung als Teil einer Systemtest- und Kalibrierungsprozedur gemessen werden. Diese Parameter können auf die gleiche Weise berechnet werden wie für das Short-Range-Leckage-Signal yS[n] (siehe Gleichungen 4 und 5 und Gleichung 14). Um Parametervariationen des OCT 300 (beispielsweise aufgrund von Temperaturänderungen) Rechnung zu tragen, können die Schwebungsfrequenz fBO und die Phase ΦO wiederholt geschätzt und regelmäßig aktualisiert werden.
  • In einem alternativen Ausführungsbeispiel kann das DPN durch Anwendung eines Hochpassfilters auf das Signal yO[n] gewonnen werden, da das Phasenrauschen im Bereich von einigen hundert kHz dominiert. Im Wesentlichen kann der Hochpassfilter den ersten Summanden in Gleichung 18 eliminieren.
  • Da die DPN-Signale ΔφO[n] und ΔφS[n] stark korreliert sind, kann das Short-Range-Leckage-Signal (vgl. Gleichung 6)
    Figure DE102015100804B4_0018
    approximiert werden als
    Figure DE102015100804B4_0019
    wobei α als DPN-Verstärkung bezeichnet wird. Die Verstärkung α kann mit Hilfe der Autokovarianzfunktion
    Figure DE102015100804B4_0020
    und der Kreuzkovarianzfunktion
    Figure DE102015100804B4_0021
    bestimmt werden. Die DPN-Verstärkung α kann dann gemäß
    Figure DE102015100804B4_0022
    bestimmt werden. Es sei angemerkt, dass der Nenner Gleichung 23 entspricht (woraus α = 1 folgt), wenn τO = τS (siehe auch 8, in der der Kreuzkorrelationskoeffizient für τO = τS ein Maximum von 1 aufweist und ein Maximum kleiner 1 für τO < τS). Damit ist α ein Maß dafür, wie stark das DPN des OCT verstärkt werden muss, damit es das DPN der SR-Leckage approximiert. Mit einer typischen spektralen Leistungsdichte des Phasenrauschens hat beispielsweise τS = 800 ps und τO = 40 ps eine DPN-Verstärkung von α = 13.1 zur Folge.
  • Das geschätzte Short-Range-Leckage-Signal ŷS[n] wird von dem in 6 dargestellten LC-Funktionsblock 130 erzeugt. Die eigentliche Rauschunterdrückung (noise cancellation) erfolgt durch Subtraktion des geschätzten Short-Range-Leckage-Signal ŷS[n] von dem Signal y[n], das von dem Radarkanal empfangen wird. Das DPN-kompensierte Signal wird mit z[n] bezeichnet und wird berechnet gemäß: z[n] = y[n] – ŷS[n]. (25)
  • Die Rauschunterdrückungsmethode (cancellation method) ist in dem Flussdiagramm in 9 zusammengefasst. Verglichen mit einem bekannten Radarsystem wird das HF-Sendesignal sRF(t) an ein On-Chip-Ziel (OCT) 300 gesendet (siehe Schritt 701). Das von dem OCT 300 empfangene Signal yRF,O(t) wird ins Basisband heruntergemischt (Basisbandsignal yO(t), Schritt 702) und digitalisiert (digitales Basisbandsignal yO[n], Schritt 703). Das dekorrelierte Phasenrauschsignal (DPN-Signal) ΔφO[n] wird aus dem digitalisierten Signal yO[n] geschätzt, und basierend auf dem DPN-Signal ΔφO[n] wird ein korrespondierendes Kompensationssignal ŷS [n] erzeugt (Schritt 704). Schließlich wird das Kompensationssignal von dem (heruntergemischten und digitalisierten) Radar-Echosignal y[n] subtrahiert, um das darin enthaltene Short-Range-Leckage-Signal zu kompensieren.
  • Obwohl die Erfindung mit Bezug auf eine oder mehrere Implementierungen beschrieben und dargestellt wurde, können an den dargestellten Beispielen Änderungen und/oder Modifizierungen vorgenommen werden, ohne den Geist und den Umfang der beigefügten Ansprüche zu verlassen. Insbesondere bezüglich der verschiedenen Funktionen, die von den oben beschriebenen Komponenten oder Strukturen (Einheiten, Baugruppen, Vorrichtungen, Schaltungen, Systemen, usw.) ausgeführt werden, sollen die Bezeichnungen (einschließlich des Bezugs auf ein „Mittel”), die verwendet werden, um solche Komponente zu beschreiben, auch jeder anderen Komponente oder Struktur entsprechen, die die spezifizierte Funktion der beschriebenen Komponente ausführt (d. h. die funktional gleichwertig ist), auch wenn sie der offenbarten Struktur, die in den hier dargestellten beispielhaften Implementierungen der Erfindung die Funktion ausführt, nicht strukturell gleichwertig ist.
  • Des Weiteren, obwohl ein bestimmtes Merkmal der Erfindung nur in Bezug auf eine von mehreren Implementierungen offenbart wurde, können solche Eigenschaften mit einer oder mehreren Eigenschaften der anderen Implementierungen kombiniert werden, falls wünschenswert oder vorteilhaft für eine beliebige oder bestimmte Anwendung. Des Weiteren, insoweit Bezeichnungen wie „einschließlich”, einschließen”, „aufweisend”, „hat”, „mit” oder Variationen derselben entweder in der detaillierten Beschreibung oder in den Ansprüchen verwendet werden, sollen solche Bezeichnungen einschließend verstanden werden, ähnlich der Bezeichnung „umfassen”.

Claims (11)

  1. Eine Radarvorrichtung, die aufweist: einen HF-Transceiver, der dazu ausgebildet ist, ein HF-Oszillatorsignal (sRF(t)) in einen Radarkanal (200) auszusenden und ein zugehöriges erstes HF-Radarsignal (yRF(t)) von dem Radarkanal zu empfangen; ein künstliches Radar-Ziel (300), welches aus einer Schaltungsanordnung aufgebaut ist, die zur Erzeugung eines zweiten HF-Radarsignals (yRF,O(t)) das HF-Oszillatorsignal (sRF(t)) mit einer Verstärkung (AO) und einer Verzögerung (τO) bereitstellt; eine erste Frequenzkonversionsschaltung, welche einen ersten Mischer (110) beinhaltet, der dazu ausgebildet ist, das erste HF-Radarsignal (yRF(t)) herunterzumischen; eine zweite Frequenzkonversionsschaltung, welche einen zweiten Mischer (110') beinhaltet, der dazu ausgebildet ist, das zweite HF-Radarsignal (yRF,O(t)) herunterzumischen; eine Analog-Digital-Wandlereinheit (120, 120'), die dazu ausgebildet ist, das heruntergemischte erste HF-Radarsignal (y'(t)) und das heruntergemischte zweite HF-Radarsignal (yO'(t)) zu digitalisieren, um ein erstes Digitalsignal (y[n]) bzw. ein zweites Digitalsignal (yO[n]) zu erzeugen; eine digitale Signalverarbeitungseinheit, die das erste und das zweite Digitalsignal (y[n], yO[n]) empfängt und die dazu ausgebildet ist: ein in dem zweiten Digitalsignal (yO[n]) enthaltenes Phasenrauschsignal (ΔφO[n]) zu schätzen, basierend auf dem geschätzten Phasenrauschsignal ein Kompensationssignal (ŷS[n]) zu erzeugen und das Kompensationssignal (ŷS[n]) von dem ersten Digitalsignal (y[n]) zu subtrahieren, um ein rauschkompensiertes digitales Radarsignal (z[n]) zu erhalten.
  2. Die Radarvorrichtung gemäß Anspruch 1, wobei zur Schätzung des Phasenrauschsignals die digitale Signalverarbeitungseinheit dazu ausgebildet ist: einen Schätzwertes des Phasenrauschsignals (ΔφO[n]) abhängig von der Verstärkung (AO) und der Verzögerung (τO) des künstlichen Radar-Ziels (300) und abhängig von Signalparametern (f0, B, T) des HF-Oszillatorsignals (sRF(t)) zu berechnen.
  3. Die Radarvorrichtung gemäß Anspruch 2, wobei das HF-Oszillatorsignal (sRF(t)) eine Sequenz von Chirps ist und die Signalparameter des HF-Oszillatorsignals eine Startfrequenz (f0), eine Bandbreite (B) und eine Dauer (T) der Chirps sind.
  4. Die Radarvorrichtung gemäß Anspruch 1, wobei zur Schätzung des Phasenrauschsignals (ΔφO[n]) die digitale Signalverarbeitungseinheit dazu ausgebildet ist: einen Schätzwert des Phasenrauschsignals gemäß der folgenden Gleichung zu berechnen:
    Figure DE102015100804B4_0023
    wobei n ein Zeitindex ist, TA eine Abtastperiode der Analog-Digital-Wandlereinheit, ΔφO das Phasenrauschsignal, yO[n] das zweite Digitalsignal, AO die Verstärkung des künstlichen Radar-Ziels, fBO eine Schwebungsfrequenz und ΦO ein Phasenoffset, wobei fBO[n] = kτO und ΦO = 2πf0τO + kπτ 2 / O , und wobei τO die Verzögerung des künstlichen Radar-Ziels ist, k das Verhältnis von Bandbreite und Dauer der Chirps und fO eine Startfrequenz der Chirps, aus denen das HF-Oszillatorsignal zusammengesetzt ist.
  5. Die Radarvorrichtung gemäß einem der Ansprüche 1 bis 4, wobei zur Erzeugung des Kompensationssignals (ŷS[n]) die digitale Signalverarbeitungseinheit dazu ausgebildet ist: eine Rausch-Verstärkung (α) für das geschätzte Phasenrauschsignal (ΔφO[n]) zu berechnen.
  6. Die Radarvorrichtung gemäß Anspruch 5, wobei zur Erzeugung des Kompensationssignals (ŷS[n]) die digitale Signalverarbeitungseinheit dazu ausgebildet ist: die Rausch-Verstärkung (α) auf das das geschätzte Phasenrauschsignal (ΔφO[n]) anzuwenden; das Kompensationssignal (ŷS[n]) mit einer Schwebungsfrequenz (fBS) und einer Phase (ΦS) zu berechnen, die einem unerwünschten Objekt zugeordnet sind, das sich im Radarkanal (200) in einem Abstand vor der Radarvorrichtung befindet.
  7. Die Radarvorrichtung gemäß einem der Ansprüche 1 bis 6, wobei die Analog-Digital-Wandlereinheit (120, 120') dazu ausgebildet ist, das heruntergemischte erste HF-Radarsignal (y(t)) und das heruntergemischte zweite HF-Radarsignal (yO(t)) nach Maßgabe eines Abtast-Takts (TA) abzutasten, wobei das heruntergemischte erste HF-Radarsignal (y(t)) bezogen auf das heruntergemischte zweite HF-Radarsignal (yO(t)) um eine Abtastverzögerung (ΔTA) zeitlich verzögert abgetastet wird.
  8. Die Radarvorrichtung gemäß Anspruch 7, wobei die Abtastverzögerung (ΔTA) abhängt von der Verzögerung (τO) des künstlichen Radar-Ziels (300) und von einer Hin-und-Zurück-Verzögerungszeit eines unerwünschten Objekts (τS), das sich im Radarkanal (200) in einem Abstand vor der Radarvorrichtung befindet.
  9. Ein Verfahren zur Unterdrückung von Rauschen in einem Radarsignal; das Verfahren umfasst: Aussenden eines HF-Oszillatorsignals (sRF(t)) in einen Radarkanal (200) und Empfangen eines zugehörigen ersten HF-Radarsignals (yRF(t)) von dem Radarkanal (200); Anlegen des HF-Oszillatorsignals (sRF(t)) an ein künstliches Radar-Ziel (300), welches aus einer Schaltungsanordnung aufgebaut ist, die zur Erzeugung eines zweiten HF-Radarsignals (yRF,O(t)) auf das HF-Oszillatorsignal (sRF(t)) eine Verstärkung (AO) und eine Verzögerung (τO) anwendet; Heruntermischen des ersten HF-Radarsignals (yRF(t)) und des zweiten HF-Radarsignals (yRF,O(t)) von einem HF-Frequenzband in ein Basisband; Digitalisieren des heruntergemischten ersten HF-Radarsignal (y'(t)) sowie des heruntergemischten zweiten HF-Radarsignal (yO'(t)), um ein erstes Digitalsignal (y[n]) bzw. ein zweites Digitalsignal (yO[n]) zu erzeugen; Schätzen eines in dem zweiten Digitalsignal (yO[n]) enthaltenen Phasenrauschsignals (ΔφO[n]); Erzeugen eines Kompensationssignals (ŷS[n]) basierend auf dem geschätzten Phasenrauschsignal (ΔφO[n]); Subtrahieren des Kompensationssignals (ŷS[n]) von dem ersten Digitalsignal (y[n]), um ein rauschkompensiertes digitales Radarsignal (z[n]) zu erhalten.
  10. Das Verfahren gemäß Anspruch 9, wobei das Schätzen eines Phasenrauschsignals (ΔφO[n]) umfasst: Berechnen eines Schätzwertes des Phasenrauschsignals abhängig von der Verstärkung (AO) und der Verzögerung (τO) des künstlichen Radar-Ziels (300) und abhängig von Signalparametern (f0, B, T) des HF-Oszillatorsignals.
  11. Das Verfahren gemäß Anspruch 10, wobei das HF-Oszillatorsignal (sRF(t)) eine Sequenz von Chirps ist und die Signalparameter des HF-Oszillatorsignals (sRF(t)) eine Startfrequenz (f0), eine Bandbreite (B) und eine Dauer (T) der Chirps sind.
DE102015100804.1A 2015-01-20 2015-01-20 Radarvorrichtung mit Rauschunterdrückung Active DE102015100804B4 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
DE102015100804.1A DE102015100804B4 (de) 2015-01-20 2015-01-20 Radarvorrichtung mit Rauschunterdrückung
US14/993,557 US10371800B2 (en) 2015-01-20 2016-01-12 Radar device with noise cancellation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102015100804.1A DE102015100804B4 (de) 2015-01-20 2015-01-20 Radarvorrichtung mit Rauschunterdrückung

Publications (2)

Publication Number Publication Date
DE102015100804A1 DE102015100804A1 (de) 2016-07-21
DE102015100804B4 true DE102015100804B4 (de) 2016-11-17

Family

ID=56293654

Family Applications (1)

Application Number Title Priority Date Filing Date
DE102015100804.1A Active DE102015100804B4 (de) 2015-01-20 2015-01-20 Radarvorrichtung mit Rauschunterdrückung

Country Status (2)

Country Link
US (1) US10371800B2 (de)
DE (1) DE102015100804B4 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU207402U1 (ru) * 2021-06-04 2021-10-26 Федеральное государственное бюджетное образовательное учреждение высшего образования "Рязанский государственный радиотехнический университет имени В.Ф. Уткина" Вычислитель для компенсации помех

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10302741B2 (en) * 2015-04-02 2019-05-28 Texas Instruments Incorporated Method and apparatus for live-object detection
DE102015120733B4 (de) * 2015-11-30 2017-11-02 Infineon Technologies Ag Radarvorrichtung mit Schätzung des Phasenrauschens
US20170312033A1 (en) * 2016-04-27 2017-11-02 Metal Industries Research&Development Centre Surgery navigation system
GB201607875D0 (en) 2016-05-05 2016-06-22 Qinetiq Ltd Phase noise compensation system, and method
JP2018013358A (ja) * 2016-07-19 2018-01-25 ソニーセミコンダクタソリューションズ株式会社 レーダ装置、信号処理装置、信号処理方法及び移動体
US10783430B2 (en) 2016-09-26 2020-09-22 The Boeing Company Signal removal to examine a spectrum of another signal
DE102016120185B4 (de) * 2016-10-24 2018-05-30 Infineon Technologies Ag Radar-Transceiver mit Kompensation von Phasenrauschen
DE102017110404A1 (de) * 2017-05-12 2018-11-15 Symeo Gmbh Verfahren und Vorrichtung zur Kompensation von Störeinflüssen
DE102017110403A1 (de) * 2017-05-12 2018-11-15 Symeo Gmbh Verfahren und Vorrichtung zur Kompensation von Phasenrauschen
US10921422B2 (en) * 2017-10-25 2021-02-16 The Boeing Company Below-noise after transmit (BAT) Chirp Radar
EP3499731B1 (de) * 2017-12-18 2021-07-14 NXP USA, Inc. Vorrichtung und verfahren zur unterdrückung von störsignalen
JP7203817B2 (ja) * 2018-03-13 2023-01-13 古河電気工業株式会社 レーダ装置およびレーダ装置の対象物検出方法
US11002819B2 (en) 2018-04-24 2021-05-11 The Boeing Company Angular resolution of targets using separate radar receivers
CN108761415B (zh) * 2018-05-25 2020-09-29 中国人民解放军国防科技大学 基于特定切换选通时序的雷达运动目标相位恢复的方法
US20200049808A1 (en) * 2018-08-10 2020-02-13 GM Global Technology Operations LLC Target position estimation from cross transmission reflections of unsynchronized radars
DE102018130556A1 (de) * 2018-11-30 2020-06-04 Infineon Technologies Ag Phasenkalibrierung bei fmcw-radarsystemen
DE102019119974B4 (de) * 2019-07-24 2021-07-08 Infineon Technologies Ag Phasen-kalibrierung eines radarsystems mit übersprech-unterdrückung
US20210181303A1 (en) * 2019-12-16 2021-06-17 Semiconductor Components Industries, Llc Calibrating array antennas based on signal energy distribution as a function of angle
DE102020117017B4 (de) 2020-06-29 2022-02-03 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung eingetragener Verein Konzept zum Erzeugen eines Kompensationssignals für Radar-Anwendungen
CN112379336A (zh) * 2020-11-06 2021-02-19 西安乾景防务技术有限公司 雷达信号检测方法、装置、设备和存储介质
US20240012105A1 (en) * 2021-01-08 2024-01-11 Saab Ab A monostatic radar system

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008050327A1 (de) * 2008-10-07 2010-05-27 Endress + Hauser Gmbh + Co. Kg Empfangsmischer zur Verringerung von Überkopplungseffekten
EP2439552A1 (de) * 2010-10-06 2012-04-11 Astrium Limited Signalverarbeitung in einem Radarsystem zur Unterdrückung von Tx-Rx-Übersprechen

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3128462A (en) * 1959-07-02 1964-04-07 Aircraft Armaments Inc Test arrangement
US5138325A (en) * 1983-04-01 1992-08-11 The United States Of America As Represented By The Secretary Of The Navy Shipboard sensor exerciser apparatus
GB2246042A (en) * 1990-07-11 1992-01-15 Philips Electronic Associated Fmcw radar linearizer.
US5055850A (en) * 1990-09-04 1991-10-08 Electronics & Space Corporation Waveform generator
KR100436100B1 (ko) * 1995-07-07 2004-08-27 키네티큐 리미티드 페이즈드어레이레이더용회로모듈
US5828333A (en) * 1997-01-21 1998-10-27 Northrop Grumman Corporation Multiple access diplex doppler radar
US6067861A (en) * 1998-06-18 2000-05-30 Battelle Memorial Institute Method and apparatus for ultrasonic doppler velocimetry using speed of sound and reflection mode pulsed wideband doppler
US6236352B1 (en) * 1999-10-28 2001-05-22 Eaton-Vorad Technologies, L.L.C. Heterodyned double sideband diplex radar
US6871148B2 (en) * 2002-07-02 2005-03-22 Battelle Memorial Institute Ultrasonic system and technique for fluid characterization
US7391550B2 (en) * 2003-05-07 2008-06-24 Montana State University Method and apparatus for optical broadband frequency chirp
US7075378B2 (en) * 2003-07-11 2006-07-11 The United States of America as represented by the Secretary of Commerce, the National Institute of Standards and Technology High spectral purity microwave oscillator using air-dielectric cavity
GB0421520D0 (en) * 2004-09-28 2004-10-27 Qinetiq Ltd Frequency modulated continuous wave (FMCW) radar having improved frquency sweep linearity
US7826063B2 (en) * 2005-04-29 2010-11-02 Zygo Corporation Compensation of effects of atmospheric perturbations in optical metrology
US8169358B1 (en) * 2007-06-25 2012-05-01 Bbn Technologies Coherent multi-band radar and communications transceiver
US7714760B2 (en) * 2008-06-27 2010-05-11 Entropic Communications, Inc. Apparatus and methods for direct quadrature sampling
US20100265121A1 (en) * 2008-09-02 2010-10-21 Preco Electronics, Inc. Short Distance Range Resolution in Pulsed Radar
US8258877B2 (en) * 2009-03-18 2012-09-04 University Of Southern California Feed-back and feed-forward systems and methods to reduce oscillator phase-noise
US8223067B2 (en) * 2009-11-02 2012-07-17 Invention Planet, LLC Noise-canceling down-converting detector
US8718115B2 (en) * 2010-10-08 2014-05-06 Texas Instruments Incorporated Building, transmitting, and receiving frame structures in power line communications
KR101591063B1 (ko) * 2011-04-12 2016-02-03 한국전자통신연구원 레이더 장치
US10018716B2 (en) * 2014-06-26 2018-07-10 Honeywell International Inc. Systems and methods for calibration and optimization of frequency modulated continuous wave radar altimeters using adjustable self-interference cancellation

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008050327A1 (de) * 2008-10-07 2010-05-27 Endress + Hauser Gmbh + Co. Kg Empfangsmischer zur Verringerung von Überkopplungseffekten
EP2439552A1 (de) * 2010-10-06 2012-04-11 Astrium Limited Signalverarbeitung in einem Radarsystem zur Unterdrückung von Tx-Rx-Übersprechen

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU207402U1 (ru) * 2021-06-04 2021-10-26 Федеральное государственное бюджетное образовательное учреждение высшего образования "Рязанский государственный радиотехнический университет имени В.Ф. Уткина" Вычислитель для компенсации помех

Also Published As

Publication number Publication date
US10371800B2 (en) 2019-08-06
DE102015100804A1 (de) 2016-07-21
US20170199270A1 (en) 2017-07-13

Similar Documents

Publication Publication Date Title
DE102015100804B4 (de) Radarvorrichtung mit Rauschunterdrückung
DE102015120733B4 (de) Radarvorrichtung mit Schätzung des Phasenrauschens
DE102016120185B4 (de) Radar-Transceiver mit Kompensation von Phasenrauschen
DE102018102816B3 (de) Radar mit phasenkorrektur
DE102009000468B4 (de) Radarverfahren und -systeme mit Rampensequenzen
DE102018123383A1 (de) Radarerfassung mit Störungsunterdrückung
DE102018108648B4 (de) Fmcw radar mit störsignalunterdrückung
DE102018132745B4 (de) Fmcw radar mit störsignalunterdrückung im zeitbereich
DE102018130556A1 (de) Phasenkalibrierung bei fmcw-radarsystemen
EP1490707B1 (de) Radar-einrichtung fuer sowohl bistatischen als auch monostatischen betrieb
DE102018108219B3 (de) Spektrale Schätzung von Rauschen in Radarvorrichtungen
DE102018126034A1 (de) Fmcw radar mit störsignalunterdrückung
DE102010063733B4 (de) Beobachtungssignalverarbeitungsvorrichtung
DE102011085797A1 (de) Verfahren zur Bestimmung eines Schwellenwerts zur Erfassung einer Peak-Frequenz in einem Radar und das Verfahren anwendende Objektinformationserzeugungsvorrichtung
DE102017119212A1 (de) HF-Transceiver mit Testmöglichkeit
DE60130223T2 (de) Signalverarbeitung
DE102018114471B4 (de) Phasenmessung in einem radarsystem
EP2843439A1 (de) Verfahren zur Korrektur der Zeit- und Phasenreferenzen von nicht-synchronen SAR-Daten
DE102020117748A1 (de) Radarsystem mit monitoring-funktion
WO2021047844A1 (de) Radar-verfahren sowie radar-system
DE19743132C2 (de) Verfahren und Vorrichtung zur Abstandsmessung
DE102010063739B4 (de) Beobachtungssignalverarbeitungsvorrichtung
DE102011075936A1 (de) Verfahren und System zum Bestimmen der Flugzeit eines Signals
EP3009858A1 (de) Wolkenradar
DE102008050327A1 (de) Empfangsmischer zur Verringerung von Überkopplungseffekten

Legal Events

Date Code Title Description
R012 Request for examination validly filed
R083 Amendment of/additions to inventor(s)
R016 Response to examination communication
R016 Response to examination communication
R018 Grant decision by examination section/examining division
R020 Patent grant now final
R082 Change of representative
R084 Declaration of willingness to licence