DE102014223785A1 - Härtbare hochtransparente Siliconzusammensetzung mit verbesserter Mechanik für optische Bauteile - Google Patents

Härtbare hochtransparente Siliconzusammensetzung mit verbesserter Mechanik für optische Bauteile Download PDF

Info

Publication number
DE102014223785A1
DE102014223785A1 DE102014223785.8A DE102014223785A DE102014223785A1 DE 102014223785 A1 DE102014223785 A1 DE 102014223785A1 DE 102014223785 A DE102014223785 A DE 102014223785A DE 102014223785 A1 DE102014223785 A1 DE 102014223785A1
Authority
DE
Germany
Prior art keywords
refractive index
silicone composition
addition
crosslinking silicone
silica
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
DE102014223785.8A
Other languages
English (en)
Inventor
Arvid Kuhn
Inge Schreiber
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wacker Chemie AG
Original Assignee
Wacker Chemie AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wacker Chemie AG filed Critical Wacker Chemie AG
Priority to DE102014223785.8A priority Critical patent/DE102014223785A1/de
Priority to US15/526,492 priority patent/US10294352B2/en
Priority to PCT/EP2015/075111 priority patent/WO2016078890A1/de
Priority to EP15804685.4A priority patent/EP3221408A1/de
Priority to KR1020177013416A priority patent/KR101939140B1/ko
Publication of DE102014223785A1 publication Critical patent/DE102014223785A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/04Ingredients treated with organic substances
    • C08K9/06Ingredients treated with organic substances with silicon-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/56Organo-metallic compounds, i.e. organic compounds containing a metal-to-carbon bond
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D183/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Coating compositions based on derivatives of such polymers
    • C09D183/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/12Polysiloxanes containing silicon bound to hydrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/20Polysiloxanes containing silicon bound to unsaturated aliphatic groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/002Physical properties
    • C08K2201/006Additives being defined by their surface area
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/02Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group
    • C08L2205/025Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group containing two or more polymers of the same hierarchy C08L, and differing only in parameters such as density, comonomer content, molecular weight, structure

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

Die Erfindung betrifft eine hochtransparente Siliconzusammensetzung mit verbesserter Mechanik und deren Verwendung in optischen Bauteilen.

Description

  • Die Erfindung betrifft eine hochtransparente Siliconzusammensetzung mit verbesserter Mechanik und deren Verwendung in optischen Bauteilen.
  • Vergussmassen für optische Halbleiterbauteile wie LEDs (Light Emitting Diodes) oder Materialien für Pressformen oder Spritzguss z. B. für die Herstellung von Linsen für Sekundäroptiken müssen die Bauteile vor mechanischen und chemischen Umwelteinflüssen schützen, thermisch belastbar sein, hohe Transparenz aufweisen und hohe Lichtauskopplung gewährleisten. Gängige Materialien für den Verguss von LEDs sind dabei z. B. Epoxy-Vergussmassen oder Siliconvergussmassen, wobei in Hinblick auf die thermische Stabilität Siliconvergussmassen gegenüber den Epoxyvergussmassen bevorzugt sind. Für die Verwendung als primäre oder sekundäre Optik in optischen Elementen müssen die Siliconsysteme hohe optische Transparenz im sichtbaren und teilweise auch im UV-Bereich (UV-Vis) des elektromagnetischen Spektrums aufweisen. Mit vernetzten Polydiorganosiloxanen werden hohe Transmissionswerte bei Wellenlängen bis unter 300 nm erreicht. Nachteil dieser Systeme ist, dass die Härten beschränkt sind auf den unteren Shore A Bereich und dass die mechanische Belastbarkeit sehr gering ist. Bei der Verwendung von Siliconharzen können deutlich höhere Härten erreicht werden (oberer Shore A bis in den Shore D Bereich), bei ebenfalls guten Transmissionswerten.
  • EP 1424363 B1 beschreibt Zusammensetzungen enthaltend alkenyl-funktionelle Siliconharze in Kombination mit SiH-Komponenten, deren Vulkanisate Härten im Shore D Bereich aufweisen.
  • Siliconsysteme mit Alkylsubstituenten weisen Brechungsindices nD 25 um 1.41 auf. Durch Verwendung von Arylsubstituenten wie Phenyl kann der Brechungsindex auf nD 25 > 1.50 erhöht werden. Die Verwendung von Vergussmassen mit derartig erhöhtem Brechungsindex in optischen Halbleiterbauteilen verbessert die Lichtauskopplung und führt dadurch zu höherer Effizienz der Bauteile. US7282270 B2 beschreibt entsprechende Zusammensetzungen enthaltend alkenyl- und aryl-funktionelle Siliconharze in Kombination mit Si-H Komponenten, die hohe Brechungsindices aufweisen. Zwar können durch die Verwendung von Siliconharzformulierungen Vulkanisate mit Härten im Bereich Shore D erreicht werden. Allerdings bleiben andere mechanische Eigenschaften wie z. B. die Reißdehnung dennoch sehr gering. Dies ist in Vergussmassen oder Bauteilen in Sekundäroptiken nachteilig, da die hohen thermischen Spannungen bei geringer Reißdehnung im ausgehärteten Material zu einer erhöhten Rissbildung führen.
  • Zur Verbesserung der mechanischen Eigenschaften von Siliconen werden im Allgemeinen verstärkende Füllstoffe mit spezifischen Oberflächen zwischen 50 und 400 m2/g zugesetzt. Als verstärkende Füllstoffe wirken z. B. hochdisperse pyrogene oder gefällte Kieselsäuren oder auch andere pyrogene Metalloxide. Vulkanisate aus solchen mit z. B. pyrogener Kieselsäure verstärkten Siliconkautschuken sind aber durch optische Streueffekte nicht mehr hochtransparent, selbst wenn die Füllstoffpartikel kleiner sind als die Wellenlänge des sichtbaren Lichts.
  • Um optisch transparente Mischungen zu erhalten, müssen die Brechungsindizes von Füllstoff und Polymer aneinander angepasst sein.
  • EP 0644914 B1 beschreibt ein „Verfahren zur Herstellung von optisch homogenen, hochtransparenten oder lichtstreuenden polymeren Formkörpern oder von Einbettmassen” aus organischen Matrixmaterialien und anorganischen Füllstoffen wie Metalloxiden, wobei der Brechungsindex der Füllstoffpartikel an den Brechungsindex der organischen Matrix angepasst ist. So werden z. B. SiO2/TiO2 Mischoxid Partikel mit einem Brechungsindex von 1.52 hergestellt, was dem Brechungsindex eines für die Einbettung von optischen Bauelementen verwendeten Epoxidharzsystem entspricht, so dass hochtransparente Mischungen möglich sind.
  • Im Gegensatz dazu beschreibt z. B. US 2012/0235190 A1 , „Encapsulant with index matched thixotropic agent”, dass pyrogene Kieselsäure (SiO2) oft als Thixotropieadditiv eingesetzt wird. Durch die Unterschiede im Brechungsindex n zwischen verwendetem Siliconpolymer (hier n = 1.51) und pyrogener Kieselsäure (n = 1.46) kann aber das Licht der LED gestreut werden, was zu einer Trübung der Vergußmasse und zur Verringerung der Lichtausbeute führen kann. Statt pyrogener Kieselsäure werden als Thixotropieadditive deshalb bevorzugt Composit Additive wie z. B. Alumosilikate verwendet, deren Brechungsindizes sich nur wenig von denen der verwendeten Polymere unterscheiden. Die Schrift gibt keine Hinweise auf Veränderung der mechanischen Eigenschaften durch Verwendung solcher Thixotropieadditive.
  • Bei der Posterpräsentation PO-173 während des 17ten Internationalen Symposiums für Siliconchemie [ISOS XVII BERLIN 2014, ISBN 978-3-936028-85-0] offenbart der Autor die Brechungsindizes von Füllstoffen basierend auf pyrogenen Metall-Mischoxiden (Handelsname AEROXIDE®, der Firma Evonik) wie beispielsweise SiO2/Al2O3 in Abhängigkeit vom Mischungsverhältnis. Bei geeignetem Mischungsverhältnis kann der Brechungsindex des Metall-Mischoxids dem Brechungsindex von oft in optischen Anwendungen verwendeten Phenyl-haltigen Polyorganosiloxanen entsprechen. Diese im Brechungsindex von Füllstoff und Polymer angepassten Mischungen zeigen höhere Transparenz als Mischungen bei denen Füllstoff und Polymer unterschiedliche Brechungsindizes haben. Zudem weist der Autor darauf hin, dass eine Anpassung des Brechungsindexes von pyrogener Kieselsäure an den Brechungsindex der neuen Methyl-Phenyl-Polysiloxan-Matrix nicht möglich ist. Daher weisen solche Systeme eine schlechte Transparenz auf, und damit eine niedrigere Effektivität durch die vermehrt auftretende Lichtstreuung. In seinem Vortrag „AEROXIDE® Fumed Metal Oxides – Fillers for Optical Applications" vom 21 Mai 2014 auf der „2014 International Silicone Conference" in Akron, Ohio, USA offenbarte der Vortragende Simon Nordschild, Evonik Industries AG, mechanischen Eigenschaften der mit diesen Mischoxiden gefüllten Silicone. Es zeigte sich, dass sie jedoch wesentlich schlechter als die mechanischen Eigenschaften der mit pyrogener Kieselsäure gefüllten Systeme sind.
  • EP 2336230 A1 beschreibt die Verwendung von Cristobalit mit Brechungsindex n = 1.53 als die Wärmeleitfähigkeit verbessernden Füllstoff in Siliconzusammensetzungen mit einem Brechungsindex von z. B. n = 1.51. Der Füllstoff unterscheidet sich im Brechungsindex um maximal +/–0.03 vom Brechungsindex des Vulkanisats der Polymerzusammensetzung. Durch die Ähnlichkeit im Brechungsindex sollten sich transparente Vulkanisate herstellen lassen. Cristobalit verbessert aber die mechanischen Eigenschaften nicht.
  • Es besteht daher ein Bedarf an Siliconzusammensetzungen mit höherem Brechungsindex als bei Standard-additions-vernetzenden Polymethylsiloxan-Systemen (welche einen Brechungsindex von nD 25 = 1,41 aufweisen) und die gleichzeitig verbesserte mechanische Eigenschaften verglichen mit bisher bekannten Systemen zeigen. Es werden höhere Härten bei gleichzeitig verbesserter Reißdehnung und gleichbleibend hoher Transparenz benötigt.
  • Aufgabe der vorliegenden Erfindung war somit, Siliconzusammensetzungen bereit zu stellen, mit hohem Brechungsindex, verbesserten mechanischen Eigenschaften wie höherer Härte bei gleichzeitig besserer Reißdehnung und die zudem gleichzeitig eine hohe Transparenz aufweisen um allen Anforderungen an Vergussmassen oder für Bauteile in optischen Systemen besser erfüllen zu können.
  • Diese Aufgabe wird überraschenderweise durch die erfindungsgemäße additionsvernetzende Siliconzusammensetzung (X) gelöst.
  • Die erfindungsgemäßen additionsvernetzenden Siliconzusammensetzungen (X) enthalten
    • (A) mindestens eine lineare Verbindung, die Reste mit aliphatischen Kohlenstoff-Kohlenstoff-Mehrfachbindungen aufweist,
    • (B) mindestens ein lineares Organopolysiloxan mit Si-gebundenen Wasserstoffatomen, oder anstelle von (A) und (B)
    • (C) mindestens ein lineares Organopolysiloxan, das SiC-gebundene Reste mit aliphatischen Kohlenstoff-Kohlenstoff Mehrfachbindungen und Si-gebundene Wasserstoffatome aufweist,
    • (D) mindestens einen Hydrosilylierungskatalysator,
    • (E) mindestens einen verstärkenden Füllstoff aus pyrogenen oder gefällten Kieselsäuren mit einer BET-Oberfläche von mindestens 50 m2/g, dadurch gekennzeichnet, dass – der Brechungsindex nD 25 von (A) und (C) mindestens 1,42 beträgt, – die Kieselsäure (E) durch Oberflächenmodifizierung einen Brechungsindex nD 25 aufweist der um höchstens 0,03 von (A) oder/und (C) abweicht, und – die Oberflächenmodifizierung von (E), die entweder vor der Compoundierung oder in situ bei der Compoundierung der additionsvernetzenden Siliconzusammensetzung (X) erfolgt.
  • Der Brechungsindex nD 25 von (A) und (C) wird wie weiter unten beschrieben bestimmt und beträgt mindestens 1,42, bevorzugt mindestens 1,46 und besonders bevorzugt mindestens 1,48.
  • Bei den additionsvernetzenden Siliconzusammensetzungen (X) kann es sich um Einkomponenten-Siliconzusammensetzungen wie auch um Zweikomponenten-Siliconzusammensetzungen handeln.
  • Bei Zweikomponenten-Siliconzusammensetzungen können die beiden Komponenten der erfindungsgemäßen, additionsvernetzenden Siliconzusammensetzungen (X) alle Bestandteile in beliebiger Kombination enthalten, im Allgemeinen mit der Maßgabe, dass eine Komponente nicht gleichzeitig Siloxane mit aliphatischer Mehrfachbindung, Siloxane mit Si-gebundenem Wasserstoff und Katalysator, also im Wesentlichen nicht gleichzeitig die Bestandteile (A), (B) und (D) bzw. (C) und (D) enthält.
  • Die in den erfindungsgemäßen, additionsvernetzenden Siliconzusammensetzungen (X) eingesetzten Verbindungen (A) und (B) bzw. (C) werden bekanntermaßen so gewählt, dass eine Vernetzung möglich ist. So weist beispielsweise Verbindung (A) mindestens zwei aliphatisch ungesättigte Reste auf und (B) mindestens drei Si-gebundene Wasserstoffatome, oder Verbindung (A) weist mindestens drei aliphatisch ungesättigte Reste auf und Siloxan (B) mindestens zwei Si-gebundene Wasserstoffatome, oder aber anstelle von Verbindung (A) und (B) wird Siloxan (C) eingesetzt, welches aliphatisch ungesättigte Reste und Si-gebundene Wasserstoffatome in den oben genannten Verhältnissen aufweist. Auch sind Mischungen aus (A) und (B) und (C) mit den oben genannten Verhältnissen von aliphatisch ungesättigten Resten und Si-gebundenen Wasserstoffatomen möglich.
  • Die erfindungsgemäße additionsvernetzende Siliconzusammensetzung (X) enthält üblicherweise 30–95 Gew.-%, bevorzugt 50–90 Gew.-% und besonders bevorzugt 60–90 Gew.-% (A). Die erfindungsgemäße additionsvernetzende Siliconzusammensetzung (X) enthält üblicherweise 0,1–60 Gew.-%, bevorzugt 0,5–50 Gew.-% und besonders bevorzugt 1–30 Gew.-% (B). Falls die erfindungsgemäße additionsvernetzende Siliconzusammensetzung (X) die Komponente (C) enthält, sind üblicherweise 30–95 Gew.-%, bevorzugt 50–90 Gew.-%, besonders bevorzugt 60–90 Gew.-% (C) in der Formulierung enthalten.
  • Bei der erfindungsgemäß eingesetzten Verbindung (A) kann es sich um siliciumfreie organische Verbindungen mit vorzugsweise mindestens zwei aliphatisch ungesättigten Gruppen sowie um Organosiliciumverbindungen mit vorzugsweise mindestens zwei aliphatisch ungesättigten Gruppen handeln oder auch um deren Mischungen.
  • Beispiele für siliciumfreie organische Verbindungen (A) sind, 1,3,5-Trivinylcyclohexan, 2,3-Dimethyl-1,3-butadien, 7-Methyl-3-methylen-1,6-octadien, 2-Methyl-1,3-butadien, 1,5-Hexadien, 1,7-Octadien, 4,7-Methylen-4,7,8,9-tetrahydroinden, Methylcyclopentadien, 5-Vinyl-2-norbornen, Bicyclo[2.2.1]hepta-2,5-dien, 1,3-Diisopropenylbenzol, vinylgruppenhaltiges Polybutadien, 1,4-Divinylcyclohexan, 1,3,5-Triallylbenzol, 1,3,5-Trivinylbenzol, 1,2,4-Trivinylcyclohexan, 1,3,5-Triisopropenylbenzol, 1,4-Divinylbenzol, 3-Methyl-heptadien-(1,5), 3-Phenyl-hexadien-(1,5), 3-Vinyl-hexadien-(1,5 und 4,5-Dimethyl-4,5-diethyl-octadien-(1,7), N,N'-Methylen-bis-acrylsäureamid, 1,1,1-Tris(hydroxymethyl)-propan-triacrylat, 1,1,1-Tris(hydroxymethyl)propantrimethacrylat, Tripropylenglykol-diacrylat, Diallylether, Diallylamin, Diallylcarbonat, N,N'-Diallylharnstoff, Triallylamin, Tris(2-methylallyl)amin, 2,4,6-Triallyloxy-1,3,5-triazin, Triallyl-s-triazin-2,4,6(1H,3H,5H)-trion, Diallylmalonsäureester, Polyethylenglykoldiacrylat, Polyethylenglykol Dimethacrylat, Poly(propylenglykol)methacrylat.
  • Vorzugsweise enthalten die erfindungsgemäßen additionsvernetzenden Siliconzusammensetzungen (X) als Bestandteil (A) mindestens eine aliphatisch ungesättigte Organosiliciumverbindung, wobei alle bisher in additionsvernetzenden Zusammensetzungen verwendeten, aliphatisch ungesättigten Organosiliciumverbindungen eingesetzt werden können, wie beispielsweise lineare oder verzweigte Organopolysiloxane, Silicon-Blockcopolymere mit Harnstoffsegmenten, Silicon-Blockcopolymere mit Amid-Segmenten und/oder Imid-Segmenten und/oder Ester-Amid-Segmenten und/oder Polystyrol-Segmenten und/oder Silarylen-Segmenten und/oder Carboran-Segmenten und Silicon-Pfropfcopolymere mit Ether-Gruppen.
  • Als Organosiliciumverbindungen (A), die SiC-gebundene Reste mit aliphatischen Kohlenstoff-Kohlenstoff-Mehrfachbindungen aufweisen, werden vorzugsweise lineare oder verzweigte Organopolysiloxane aus Einheiten der allgemeinen Formel (I) R4 aR5 bSiO(4-a-b)/2 (I) eingesetzt, wobei
    R4 unabhängig voneinander, gleich oder verschieden, ein von aliphatischen Kohlenstoff-Kohlenstoff-Mehrfachbindungen freien, organischen oder anorganischen Rest, R5 unabhängig voneinander, gleich oder verschieden einen
    einwertigen, substituierten oder nicht substituierten, SiC-gebundenen Kohlenwasserstoffrest mit mindestens einer aliphatischen Kohlenstoff-Kohlenstoff-Mehrfachbindung,
    a 0, 1, 2 oder 3 ist, und
    b 0, 1 oder 2 ist
    bedeuten,
    mit der Maßgabe, dass die Summe a + b kleiner oder gleich 3 ist und mindestens 2 Reste R5 je Molekül vorliegen.
  • Bei Rest R4 kann es sich um ein- oder mehrwertige Reste handeln, wobei die mehrwertigen Reste, wie beispielsweise bivalente, trivalente und tetravalente Reste, dann mehrere, wie etwa zwei, drei oder vier, Siloxy-Einheiten der Formel (I) miteinander verbinden.
  • Weitere Beispiele für R4 sind die einwertigen Reste -F, -Cl, -Br, OR6, -CN, -SCN, -NCO und SiC-gebundene, substituierte oder nicht substituierte Kohlenwasserstoffreste, die mit Sauerstoffatomen oder der Gruppe -C(O)- unterbrochen sein können, sowie zweiwertige, beidseitig gemäß Formel (I) Si-gebundene Reste. Falls es sich bei Rest R4 um SiC-gebundene, substituierte Kohlenwasserstoffreste handelt, sind bevorzugte Substituenten Halogenatome, phosphorhaltige Reste, Cyanoreste, -OR6, -NR6-, -NR6 2, -NR6-C(O)-NR62, -C(O)-NR6 2, -C(O)R6, -C(O)OR6, -SO2-Ph und -C6F5. Dabei bedeuten R6 unabhängig voneinander, gleich oder verschieden ein Wasserstoffatom oder einen einwertigen Kohlenwasserstoffrest mit 1 bis 20 Kohlenstoffatomen und Ph gleich dem Phenylrest.
  • Beispiele für Reste R4 sind Alkylreste, wie der Methyl-, Ethyl-, n-Propyl-, iso-Propyl-, n-Butyl-, iso-Bulyl-, tert-Butyl-, n-Pentyl-, iso-Pentyl-, neo-Pentyl-, tert-Pentylrest, Hexylreste, wie der n-Hexylrest, Heptylreste, wie der n-Heptylrest, Octylreste, wie der n-Octylrest und iso-Octylreste, wie der 2,2,4-Trimethylpentylrest, Nonylreste, wie der n-Nonylrest, Decylreste, wie der n-Decylrest, Dodecylreste, wie der n-Dodecylrest, und Octadecylreste, wie der n-Octadecylrest, Cycloalkylreste, wie Cyclopentyl-, Cyclohexyl-, Cycloheptyl- und Methylcyclohexylreste, Arylreste, wie der Phenyl-, Naphthyl-, Anthryl- und Phenanthrylrest, der Indenyl-, Benzophenyl-, Fluorenyl-, Xanthenyl- und Anthronylrest, Alkarylreste, wie o-, m-, p-Tolylreste, Xylylreste und Ethylphenylreste, und Aralkylreste, wie der Benzylrest, der Cumylrest und der α- und der β-Phenylethylrest.
  • Beispiele für substituierte Reste R4 sind Halogenalkylreste, wie der 3,3,3-Trifluor-n-propylrest, der 2,2,2,2',2',2'-Hexafluorisopropylrest, der Heptafluorisopropylrest, Halogenarylreste, der Chlormethylrest, wie der o-, m- und p-Chlorphenylrest, der o-, m- und p-Chlormethylphenylrest, -(CH2)-N(R6)C(O)NR6 2, -(CH2)o-C(O)NR6 2, -(CH2)o-C(O)R6, -(CH2)o-C(O)OR6, -(CH2)o-C(O)NR6 2, -(CH2)-C(O)-(CH2)pC(O)CH3, -(CH2)-O-CO-R6, -(CH2)-NR6-(CH2)p-NR6 2, -(CH2)o-O-(CH2)pCH(OH)CH2OH, -(CH2)o(OCH2CH2)pOR6, -(CH2)o-SO2-Ph und -(CH2)o-O-C6F5, wobei R6 und Ph der oben dafür angegebene Bedeutung entspricht und o und p gleiche oder verschiedene ganze Zahlen zwischen 0 und 10 bedeuten.
  • Beispiele für R4 gleich zweiwertige, beidseitig gemäß Formel (I) Si-gebundene Reste sind solche, die sich von den voranstehend für Rest R4 genannten einwertigen Beispiele dadurch ableiten, dass eine zusätzliche Bindung durch Substitution eines Wasserstoffatoms erfolgt, Beispiele für derartige Reste sind -(CH2)-, -CH(CH3)-, -C(CH3)2-, -CH(CH3)-CH2-, -C6H4-, -CH(Ph)-CH2-, -C(CF3)2-, -(CH2)o-C6H4-(CH2)o-, -(CH2)o-C6H4-C6H4-(CH2)o-, -(CH2O)p, (CH2CH2O)o, -(CH2)o-Ox-C6H4-SO2-C6H4-Ox-(CH2)o-, wobei x 0 oder 1 ist, und Ph, o und p die voranstehend genannte Bedeutung haben.
  • Bevorzugt handelt es sich bei Rest R4 um einen einwertigen, von aliphatischen Kohlenstoff-Kohlenstoff-Mehrfachbindungen freien, SiC-gebundenen, gegebenenfalls substituierten Kohlenwasserstoffrest mit 1 bis 18 Kohlenstoffatomen, besonders bevorzugt um einen einwertigen, von aliphatischen Kohlenstoff-Kohlenstoff-Mehrfachbindungen freien, SiC-gebundenen Kohlenwasserstoffrest mit 1 bis 6 Kohlenstoffatomen, insbesondere um den Methyl- oder Phenylrest oder Chlormethylrest.
  • Bei Rest R5 kann es sich um beliebige, einer Anlagerungsreaktion (Hydrosilylierung) mit einer SiH-funktionellen Verbindung zugängliche Gruppen handeln.
  • Falls es sich bei Rest R5 um SiC-gebundene, substituierte Kohlenwasserstoffreste handelt, sind als Substituenten Halogenatome, Cyanoreste und -OR6 bevorzugt, wobei R6 die obengenannte Bedeutung hat.
  • Bevorzugt handelt es sich bei Rest R5 um Alkenyl- und Alkinylgruppen mit 2 bis 16 Kohlenstoffatomen, wie Vinyl-, Allyl-, Methallyl-, 1-Propenyl-, 5-Hexenyl-, Ethinyl-, Butadienyl-, Hexadienyl-, Cyclopentenyl-, Cyclopentadienyl-, Cyclohexenyl-, Vinylcyclohexylethyl-, Divinylcyclohexylethyl-, Norbornenyl-, Vinylphenyl- und Styrylreste, wobei Vinyl-, Allyl- und Hexenylreste besonders bevorzugt verwendet werden.
  • Das Molekulargewicht des Bestandteils (A) kann in weiten Grenzen variieren, etwa zwischen 102 und 106 g/mol. So kann es sich bei dem Bestandteil (A) beispielsweise um ein relativ niedermolekulares alkenylfunktionelles Oligosiloxan, wie 1,2-Divinyltetramethyldisiloxan, handeln, jedoch auch um ein über kettenständige oder endständige Si-gebundene Vinylgruppen verfügendes hochpolymeres Polydimethylsiloxan, z. B. mit einem Molekulargewicht von 105 g/mol (mittels NMR bestimmtes Zahlenmittel). Auch die Struktur der den Bestandteil (A) bildenden Moleküle ist nicht festgelegt; insbesondere kann die Struktur eines höhermolekularen, also oligomeren oder polymeren Siloxans linear, cyclisch, verzweigt oder auch harzartig, netzwerkartig sein. Lineare und cyclische Polysiloxane sind vorzugsweise aus Einheiten der Formel R4 3SiO1/2, R5R4 2SiO1/2, R5R4SiO2/2 und R4 2SiO2/2 zusammengesetzt, wobei R4 und R5 die vorstehend angegebene Bedeutung haben. Verzweigte und netzwerkartige Polysiloxane enthalten zusätzlich trifunktionelle und/oder tetrafunktionelle Einheiten, wobei solche der Formeln R4SiO3/2, R5SiO3/2 und SiO4/2 bevorzugt sind. Selbstverständlich können auch Mischungen unterschiedlicher, den Kriterien des Bestandteils (A) genügender Siloxane eingesetzt werden.
  • Besonders bevorzugt als Komponente (A) ist die Verwendung vinylfunktioneller, im wesentlichen linearer Polydiorganosiloxane mit einer Viskosität von 0,01 bis 500000 Pa·s, besonders bevorzugt von 0,1 bis 100000 Pa·s, jeweils bei 25°C.
  • Als Organosiliciumverbindung (B) können alle hydrogenfunktionellen Organosiliciumverbindungen eingesetzt werden, die auch bisher in additionsvernetzbaren Zusammensetzungen eingesetzt worden sind.
  • Als Organopolysiloxane (B), die Si-gebundene Wasserstoffatome aufweisen, werden vorzugsweise lineare, cyclische oder verzweigte Organopolysiloxane aus Einheiten der allgemeinen Formel (III) R4 cHdSiO(4-c-d)/2 (III) eingesetzt, wobei
    R4 die oben angegebene Bedeutung hat,
    c 0,1 2 oder 3 ist und
    d 0, 1 oder 2 ist,
    mit der Maßgabe, dass die Summe von c + d kleiner oder gleich 3 ist und mindestens zwei Si gebundene Wasserstoffatome je Molekül vorliegen.
  • Vorzugsweise enthält das erfindungsgemäß eingesetzte Organopolysiloxan (B) Si-gebundenen Wasserstoff im Bereich von 0,04 bis 1,7 Gewichtsprozent (Gew.-%), bezogen auf das Gesamtgewicht des Organopolysiloxans (B).
  • Das Molekulargewicht des Bestandteils (B) kann ebenfalls in weiten Grenzen variieren, etwa zwischen 102 und 106 g/mol. So kann es sich bei dem Bestandteil (B) beispielsweise um ein relativ niedermolekulares SiH-funktionelles Oligosiloxan, wie Tetramethyldisiloxan, handeln, jedoch auch um ein über kettenständige oder endständige SiH-Gruppen verfügendes hochpolymeres Polydimethylsiloxan oder ein SiH-Gruppen aufweisendes Siliconharz.
  • Auch die Struktur der den Bestandteil (B) bildenden Moleküle ist nicht festgelegt; insbesondere kann die Struktur eines höhermolekularen, also oligomeren oder polymeren SiH-haltigen Siloxans linear, cyclisch, verzweigt oder auch harzartig, netzwerkartig sein. Lineare und cyclische Polysiloxane (B) sind vorzugsweise aus Einheiten der Formel R4 3SiO1/2, HR4 2SiO1/2, HR4SiO2/2 und R4 2SiO2/2 zusammengesetzt, wobei R4 die vorstehend angegebene Bedeutung hat. Verzweigte und netzwerkartige Polysiloxane enthalten zusätzlich trifunktionelle und/oder tetrafunktionelle Einheiten, wobei solche der Formeln R4SiO3/2, HSiO3/2 und SiO4/2 bevorzugt sind, wobei R4 die vorstehend angegebene Bedeutung hat.
  • Selbstverständlich können auch Mischungen unterschiedlicher, den Kriterien des Bestandteils (B) genügende Siloxane eingesetzt werden. Besonders bevorzugt ist die Verwendung niedermolekularer SiH-funktioneller Verbindungen wie Tetrakis(dimethylsiloxy)silan und Tetramethylcyclotetrasiloxan, sowie höhermolekularer, SiH-haltiger Siloxane, wie Poly(hydrogenmethyl)siloxan und Poly(dimethylhydrogenmethyl)siloxan mit einer Viskosität bei 25°C von 10 bis 20000 mPa·s, oder analoge SiH-haltige Verbindungen, bei denen ein Teil der Methylgruppen durch 3,3,3-Trifluorpropyl- oder Phenylgruppen ersetzt ist.
  • In einer bevorzugten Ausführungsform unterscheidet sich auch der Brechungsindex nD 25 von (B) um höchstens 0,03 von (A) oder/und (C). Insbesondere um höchstens 0,02.
  • Bestandteil (B) ist vorzugsweise in einer solchen Menge in den erfindungsgemäßen vernetzbaren Siliconzusammensetzungen (X) enthalten, dass das Molverhältnis von SiH-Gruppen zu aliphatisch ungesättigten Gruppen aus (A) bei 0,1 bis 20, besonders bevorzugt zwischen 0,3 und 2,0 liegt.
  • Die erfindungsgemäß eingesetzten Komponenten (A) und (B) sind handelsübliche Produkte bzw. nach in der Chemie gängigen Verfahren herstellbar.
  • Anstelle von Komponente (A) und (B) können die erfindungsgemäßen Siliconzusammensetzungen Organopolysiloxane (C), die gleichzeitig aliphatische Kohlenstoff-Kohlenstoff-Mehrfachbindungen und Si-gebundene Wasserstoffatome aufweisen, enthalten. Auch können die erfindungsgemäßen Siliconzusammensetzungen alle drei Komponenten (A), (B) und (C) enthalten.
  • Falls Siloxane (C) eingesetzt werden, handelt es sich vorzugsweise um solche aus Einheiten der allgemeinen Formeln (IV), (V) und (VI) R4 fSiO3/2 (IV) R4 gR5SiO2-g/2 (V) R4 hHSiO2-h/2 (VI) wobei
    R4 und R5 die oben dafür angegebene Bedeutung haben
    f 0, 1, 2 oder 3 ist,
    g 0, 1 oder 2 ist und
    h 0, 1 oder 2 ist,
    mit der Maßgabe, dass je Molekül mindestens 2 Reste R5 und mindestens 2 Si-gebundene Wasserstoffatome vorliegen.
  • Beispiele für Organopolysiloxane (C) sind solche aus SiO4/2, R4SiO3/2-, R4 2SiO2/2, R4R5SiO2/2-, R4HSiO2/2, R4 3SiO1/2-, R4 2R5SiO1/2- und R4 2HSiO1/2-Einheiten, also z. B. sogenannte MQ-, MDQ-, MDT- und MT-Harze, sowie lineare Organopolysiloxane im Wesentlichen bestehend aus R4 2R5SiO1/2-, R4 2SiO2/2- und R4HSiO2/2-Einheiten sowie gegebenenfalls mit R4 2HSiO1/2- und R4R5SiO2/2-Einheiten mit R4 und R5 gleich der obengenannten Bedeutung.
  • Die Organopolysiloxane (C) besitzen vorzugsweise eine durchschnittliche Viskosität von 0,01 bis 500000 Pa·s, besonders bevorzugt 0,1 bis 100000 Pa·s jeweils bei 25°C. Organopolysiloxane (C) sind nach in der Chemie gängigen Methoden herstellbar.
  • Als Hydrosilylierungskatalysator (D) können alle dem Stand der Technik bekannten Katalysatoren verwendet werden. Komponente (D) kann ein Platingruppenmetall sein, beispielsweise Platin, Rhodium, Ruthenium, Palladium, Osmium oder Iridium, eine metallorganische Verbindung oder eine Kombination davon. Beispiele für Komponente (D) sind Verbindungen wie Hexachloroplatin(IV)-säure, Platindichlorid, Platinacetylacetonat und Komplexe der besagten Verbindungen, die in einer Matrix oder einer kernschalenartigen Struktur eingekapselt sind. Zu den Platinkomplexen mit niedrigem Molekulargewicht der Organopolysiloxane gehören 1,3-Diethenyl-1,1,3,3-Tetramethyldisiloxan-Komplexe mit Platin. Weitere Beispiele sind Platinphosphitkomplexe oder Platinphosphinkomplexe. Für licht- oder UV-härtende Zusammensetzungen können beispielsweise Alkylplatinkomplexe wie Derivate von Cyclopentadienyltrimethylplatin(IV), Cyclooctadienyldimethylplatin(II) oder Diketonatokomplexe wie zum Beispiel Bisacetylacetonatoplatin(II) verwendet werden, um die Additionsreaktion mit Hilfe von Licht zu starten. Diese Verbindungen können in einer Harzmatrix eingekapselt sein.
  • Die Konzentration von Komponente (D) soll ausreichend sein um die Hydrosilylierungsreaktion der Komponenten (A) und (B) und (C) zu katalysieren. Die Menge an Komponente (D) kann zwischen 0,1 und 1000 Teile pro Million (ppm), 0,5 und 100 ppm oder 1 und 25 ppm des Platingruppenmetalls betragen, je nach Gesamtgewicht der Komponenten. Die Härtungsrate kann gering sein, wenn der Bestandteil des Platingruppenmetalls bei unter 1 ppm liegt. Die Verwendung von mehr als 100 ppm des Platingruppenmetalls ist unwirtschaftlich oder setzt die Lagerstabilität der Siliconzusammensetzung (X) herab.
  • Die additionsvernetzende Siliconzusammensetzungen (X) enthält als weiteren Zusatzstoff mindestens einen verstärkenden Füllstoff (E) aus der Gruppe der pyrogenen oder gefällten Kieselsäuren mit einer BET-Oberfläche von mindestens 50 m2/g, welche oberflächenmodifiziert wurde, so dass sich ihr Brechungsindex nD 25 von (A) oder/und (C) um höchstens 0,03 unterscheidet, bevorzugt um höchstens 0,015.
  • Der Gehalt der erfindungsgemäßen vernetzbaren Siliconzusammensetzungen (X) an aktiv verstärkendem Füllstoff (E) liegt im Bereich von 1 bis 50 Gew.-% vorzugsweise bei 5 bis 40 Gew.-% insbesondere 10 bis 35 Gew.-%.
  • Bevorzugt als (E) sind gefällte oder pyrogene Kieselsäuren, insbesondere pyrogene Kieselsäure. Besonders bevorzugt ist eine Kieselsäure mit einer spezifischen Oberfläche nach BET von 80-400 m2/g, besonders bevorzugt 100–400 m2/g.
  • Die Oberflächenmodifizierung von (E) ist dem Fachmann bekannt.
  • Die Oberflächenmodifizierung der Kieselsäure (E) kann entweder vor der Herstellung (= Compoundierung) additionsvernetzender Siliconzusammensetzungen (X) oder bei der Compoundierung in Gegenwart eines Agenz nach dem in-situ Verfahren erfolgen.
  • Beide Verfahren können sowohl im Batch-Prozess als auch kontinuierlich durchgeführt werden. Als Agenzien können alle dem Fachmann bekannten Oberflächenmodifizierungsagenzien verwendet werden, wie z. B. Hydrophobierungsmittel oder Silylierungsagenzien.
  • Diese sind vorzugsweise Organometallverbindungen oder Halbmetallverbindungen, wie Siliciumverbindungen, Titanverbindungen, Zirconverbindungen, Aluminiumverbindungen oder die Oxide, Nitride oder Carbide der Metall- oder Halbmetallverbindungen und Vorstufen dieser Oxide oder Salze der Sauerstoffsäuren der Metalle, wie Bariumtitanat oder Strontiumtitanat.
  • Bei den Siliciumverbindungen können Silazane und/oder Polysilazane verwendet werden, wobei auch zusätzlich Wasser eingesetzt werden kann. Es können auch Silylierungs-Agenzien mit hydrolysierbaren oder reaktiven Gruppen verwendet werden, die als Hydrophobiermittel bekannt sind. Als reaktive Gruppen können z. B. die SiOH-, SiCl- und/oder SiOR Gruppen in entsprechenden funktionellen Silanen oder Siloxanen verwendet werden. Ebenso können zyklische, lineare oder verzweigte nicht-funktionelle Organosiloxane, wie beispielsweise Octaorganocyclotetrasiloxan oder Polydiorganosiloxan eingesetzt werden.
  • Die Agenzien zur Oberflächenbehandlung können alleine oder als Mischung oder nacheinander als Silylier-Agenzien eingesetzt werden.
  • Bevorzugt enthalten die funktionellen Silane oder die linearen oder verzweigten Organosiloxane organische Reste R4, die eine Erhöhung des Brechungsindex bewirken, wobei R4 die obige Bedeutung hat.
  • Um die Oberflächenmodifikation zu beschleunigen, ist auch der Zusatz von katalytisch aktiven Additiven, wie beispielsweise Hydroxiden, möglich. Die Oberflächenmodifikation kann in einem Schritt unter Verwendung von einem oder mehreren Agenzien, aber auch unter Verwendung von einem oder mehreren Agenzien in mehreren Schritten erfolgen.
  • Beispiele für organofunktionelle Silane sind Silazane wie Hexamethyldisilazan, 1,3-Divinyl-1,1,3,3-tetramethyldisilazan, Alkoxysilane wie Trimethoxy-methyl-silane, Dimethqoxy-dimethylsilan, Trimethoxy-phenyl-silan, dimethoxy-diphenylsilan, Trimethoxy-naphthylsilan, Chlorsilane wie Trimethyl-chlorsilan, Dimethyl-dichlorsilan, Triphenyl-chlorsilan, Diphenyl-dichlorsilan, Naphthyl-trichlorsilan.
  • Beispiele für Siloxane sind OH- oder Chlor- oder Alkoxy-terminierte Poly-dimethylsiloxane, Poly-dimethyl-methylphenyl-siloxane, Poly-methylphenyl-siloxane, Poly-dimethyl-diphenyl-siloxane und Poly-diphenylsiloxane.
  • Bei einer Methode die sich direkt an die Herstellung der hydrophilen Kieselsäure anschließt wird die Kieselsäure unter Stickstoffatmosphäre verdüst und mit VE-Wasser versetzt. Anschließend wird ein organofunktionelles Silan oder Siloxan unter Stickstoffatmosphäre durch Verdüsung dazugegeben und die Reaktionsmischung unter Rühren bei Raumtemperatur (25°C) homogenisiert und anschließend 0,5 bis 10 Stunden bei mindestens 200°C, bevorzugt mindestens 300°C erhitzt.
  • Bei einem anderen Verfahren wird in einem Kneter oder Dissolver die Komponente (A) und/oder (C) zusammen mit dem organofunktionellen Silan oder Siloxan vorgelegt und unter Kneten eine hydrophile Kieselsäure eingearbeitet. Anschließend wird die Mischung unter Kneten, bevorzugt unter Stickstoffatmosphäre, 0,5 bis 10 Stunden bei mindestens 150°C ausgeheizt.
  • Nach dem oben beschriebenen Verfahren müssen mindestens 20%, bevorzugt mindestens 50% der ursprünglich freien OH-Gruppen der Kieselsäure (X) belegt sein, um den gewünschten höheren Brechungsindex nD 25 einzustellen.
  • Bevorzugt werden pyrogene, Aryl-Silan- oder Aryl-Siloxan oberflächenmodifizierte Kieselsäuren (E) eingesetzt.
  • In der Siliconzusammensetzungen (X) können weitere optionale Bestandteile (F) von bis zu einem Anteil von 70 Gew.-%, enthalten sein, wie beispielsweise Inhibitoren, weitere Siliconharze, die sich von (A), (B) und (C) unterscheiden, Haftvermittler und weitere Additive zur Anpassung der Wärmeleitfähigkeit, Verbesserung der Temperaturstabilität, Lichstreuung, Lichtkonvertierung (dem Fachmann auch als Phosphore bekannt), nicht verstärkende Füllstoffe, Fungizide, Duftstoffe, rheologische Additive, Korrosionsinhibitoren, Oxidationsinhibitoren, Lichtschutzmittel, flammabweisend machende Mittel und Mittel zur Beeinflussung der elektrischen und thermischen Eigenschaften, Dispergierhilfsmittel, Lösungsmittel, Haftvermittler, Pigmente, Farbstoffe, Weichmacher, organische Polymere, Hitzestabilisatoren usw.
  • Die erfindungsgemäßen Siliconzusammensetzungen (X) werden hergestellt durch das Vermischen der Komponenten (A), (B) und/oder (C) mit (D) und (E) und bei Bedarf mit zusätzlichen Bestandteilen (F).
  • Die erfindungsgemäßen Siliconzusammensetzungen (X) können als Vergussmassen für beispielsweise LEDs sowie für die Herstellung optischer Bauteile wie beispielsweise Linsen, Primär- oder Sekundäroptiken verwendet werden. Bauteile, die aus den erfindungsgemäßen Siliconzusammensetzungen (X) hergestellt wurden, können beispielsweise in Anwendungen der Beleuchtung, Fahrzeugbeleuchtung, Optik oder Fresneloptik eingesetzt werden.
  • Die erfindungsgemäßen Siliconzusammensetzungen (X) können je nach Eigenschaften wie Viskosität nach allen dem Fachmann bekannten Verarbeitungsmethoden verarbeitet werden, wie beispielsweise Verguss, Dispensen, Beschichten, Rakeln, Siebdruck, Spritzguß, Spritzpressen, Transfer Molding so dass sie während der Verarbeitung oder anschließend beispielsweise zu Formteilen oder Beschichtungen aushärten.
  • Mess- und Analysemethoden:
  • Bestimmung des Kohlenstoffgehalts (%C)
  • Die Elementaranalyse auf Kohlenstoff erfolgte nach DIN ISO 10694 unter Verwendung eines CS-530 Elementaranalysators der Firma Eltra GmbH (D-41469 Neuss).
  • Bestimmung des Restgehalts an nicht modifizierten Kieselsäure-Silanolgruppen (%SiOH)
  • Die Bestimmung des Rest-Silanolgehalts erfolgte analog G. W. Sears et al. Analytical Chemistry 1956, 28, 1981ff mittels Säure-Base-Titration und der in einer 1:1-Mischung aus Wasser und Methanol suspendierten Kieselsäure. Die Titration erfolgte im Bereich oberhalb des isoelektrischen Punktes und unterhalb des pH-Bereichs der Auflösung der Kieselsäure.
  • Der Rest-Silanolgehalt in % (%SiOH) kann demnach nach folgender Formel errechnet werden: %SiOH = SiOH(silyl)/SiOH(phil)·100 mit
    SiOH(phil): Titrationsvolumen aus der Titration der unbehandelten Kieselsäure
    SiOH(silyl): Titrationsvolumen aus der Titration der silylierten Kieselsäure
  • Viskosität:
  • Viskositäten werden analog DIN EN ISO 3219 durch rotationsviskosimetrische Messungen in einem qPlatte-Kegel Verfahren bei 25°C und Normaldruck von 1013 mbar an einem rheologischen Messgerät der Firma Anton Paar, Ostfildern, Deutschland bestimmt. Bei nicht-newtonschen Systemen ist die Scherrate jeweils angegeben.
  • Brechungsindex:
  • Die Brechungsindices werden mit einem Refraktometer der Firma A. Krüss Optronics, Hamburg, Deutschland im Wellenlängenbereich des sichtbaren Lichtes bestimmt. Falls nicht anders angegeben handelt es sich um den Brechungsindex nD 25, der somit bei 589 nm und 25°C unter Normaldruck von 1013 mbar gemäß der Norm DIN 51423 bestimmt wurde.
  • Die Bestimmung des Brechungsindexes von (E) erfolgt indirekt. Dabei werden 5 Gew.-% der Kieselsäure (E) in einem bei Raumtemperatur von 25°C und Normaldruck von 1013 mbar flüssigen Diorganopolysiloxan mit definiertem Brechungsindex homogen eingearbeitet (= „gefüllte Probe”). Es werden flüssige Diorganopolysiloxane mit unterschiedlichem Brechungsindex verwendet. Wenn der Brechungsindex der Kieselsäure vom Brechungsindex des Diorganopolysiloxans abweicht, kommt es zur Brechung des Lichts an der Grenzfläche zwischen Kieselsäure und Polymer und die Mischung erscheint trübe. Wenn dagegen der Brechungsindex der Kieselsäure (E) innerhalb einer Toleranz von +/–0,03 mit dem Brechungsindex des Diorganopolysiloxans übereinstimmt, erscheint die Mischung transparent. In diesem Fall wird der Wert des Brechungsindex des Diorganopolysiloxans auch für die Kieselsäure (E) angenommen.
  • Der Brechungsindex des Diorganopolysiloxans läßt sich über die Auswahl (z. B. Phenylgruppen) und den Anteil in mol% der organischen Gruppen im Diorganopolysiloxan einstellen. Ein höherer Anteil an Phenyl-Gruppen bewirkt beispielsweise einen höheren Brechungsindex. Für die indirekte Bestimmung des Brechungsindex der Kieselsäuren (E) wurden Reihen von Diorganopolysiloxanen mit steigendem Brechungsindex verwendet (z. B, nD 25 = 1.460, 1.470 ...). Für die Feinbestimmung des Brechungsindex der Kieselsäuren (E) wurden Diorganopolysiloxane mit geringerem Unterschied im Brechungsindex verwendet (z. B. nD 25 = 1.4950, 1.500, ...).
  • Die Transparenz wird bestimmt über die Messung des Transmissionsanteils des einfallenden Lichts in Prozent bei Wellenlängen zwischen 400 und 800 nm, mit einem UV-VIS Spektrometer vom Typ Analytik Jena Specord 200.
  • Die Messung der Transmission der gefüllten Proben erfolgt in Quartzküvetten mit einer Schichtdicke von 10 mm bei 25°C und Normaldruck von 1013 mbar.
  • Als transparent gelten gefüllte Proben, wenn die Messung eine Transmission von mindestens 70% bevorzugt mindestens 80% ergibt.
  • Für gefüllte Proben, die als transparent gemessen werden, entspricht der Wert des Brechungsindexes der Kieselsäure (E) dem Wert des verwendeten Diorganopolysiloxans.
  • Die Messung der Transmission vulkanisierter Proben erfolgt an Probeplatten mit einer Schichtdicke von 2 mm bei 25°C und Normaldruck von 1013 mbar.
  • sAls transparent gelten vulkanisierte Proben, wenn die Messung eine Transmission von mindestens 80% bevorzugt mindestens 85% ergibt.
  • Mechanische Eigenschaften:
  • Die Härte Shore A wird nach DIN (Deutsche Industrie Norm) 53505 (Ausgabe August 2000) bestimmt.
  • Reißfestigkeit und Reißdehnung werden nach ISO 37 an Probekörpern der Form S3a bestimmt.
  • Beispiele
  • Die folgenden Beispiele dienen der Erläuterung der Erfindung ohne diese zu beschränken. Wenn nicht anders angegeben wurde bei Raumtemperatur (25°C) und Normaldruck (1013 mbar) gearbeitet.
  • Kieselsäure 1:
  • Zu 120 g einer hydrophilen Kieselsäure mit einer spezifischen Oberfläche von 300 m2/g, bestimmt nach der BET Methode entsprechend DIN 66131 und 66132 (erhältlich unter dem Namen HDK® T30 von Wacker Chemie AG, München, Deutschland) wurden unter Stickstoffatmosphäre durch Verdüsen über eine Zweistoffdüse (Hohlkegeldüse, Modell 121, der Firma Düsen-Schlick GmbH, D-96253 Untersiemau/Coburg, 30° Sprühwinkel, 0,1 mm Bohrung, betrieben mit 5 bar Stickstoff) 6,6 g VE-Wasser zugesetzt. Anschließend wurden auf analoge Weise 30,0 g Diphenyldimethoxysilan (bezogen über Sigma-Aldrich Chemie GmbH, D-89555 Steinheim) zugefügt (Hohlkegeldüse, Modell 121, der Firma Düsen-Schlick GmbH, D-96253 Untersiemau/Coburg, 30° Sprühwinkel, 0,2 mm Bohrung, betrieben mit 5 bar Stickstoff). Die Reaktionsmischung wurde 30 min durch Rühren bei Raumtemperatur homogenisiert und anschließend zwei Stunden 300°C erhitzt.
  • Der Kohlenstoffgehalt des Produkts wurde zu 9,6% bestimmt. Der Restsilanolgehalt des Materials betrug 22%. Der indirekt bestimmte Brechungsindex liegt bei 1.495 +/– 0.01.
  • Kieselsäure 2:
  • Zu 120 g einer hydrophilen Kieselsäure mit einer spezifischen Oberfläche von 300 m2/g, bestimmt nach der BET Methode entsprechend DIN 66131 und 66132 (erhältlich unter dem Namen HDK® T30 von Wacker Chemie AG, München, Deutschland) wurden unter Stickstoffatmosphäre durch Verdüsen über eine Zweistoffdüse (Hohlkegeldüse, Modell 121, der Firma Düsen-Schlick GmbH, D-96253 Untersiemau/Coburg, 30° Sprühwinkel, 0,1 mm Bohrung, betrieben mit 5 bar Stickstoff) 10,0 g VE-Wasser zugesetzt. Anschließend wurden auf analoge Weise 24,4 g Phenyltrimethoxysilan (bezogen über Sigma-Aldrich Chemie GmbH, D-89555 Steinheim) zugefügt (Hohlkegeldüse, Modell 121, der Firma Düsen-Schlick GmbH, D-96253 Untersiemau/Coburg, 30° Sprühwinkel, 0,2 mm Bohrung, betrieben mit 5 bar Stickstoff). Die Reaktionsmischung wurde 30 min durch Rühren bei Raumtemperatur homogenisiert und anschließend zwei Stunden 300°C erhitzt.
  • Der Kohlenstoffgehalt des Produkts wurde zu 6,6% bestimmt. Der Restsilanolgehalt des Materials betrug 42%. Der indirekt bestimmte Brechungsindex liegt bei 1.495 +/– 0.01.
  • Kieselsäure 3:
  • Zu 120 g einer hydrophilen Kieselsäure mit einer spezifischen Oberfläche von 300 m2/g, bestimmt nach der BET Methode entsprechend DIN 66131 und 66132 (erhältlich unter dem Namen HDK® T30 von Wacker Chemie AG, München, Deutschland) wurden unter Stickstoffatmosphäre durch Verdüsen über eine Zweistoffdüse (Hohlkegeldüse, Modell 121, der Firma Düsen-Schlick GmbH, D-96253 Untersiemau/Coburg, 30° Sprühwinkel, 0,2 mm Bohrung, betrieben mit 5 bar Stickstoff) 30,0 g eines hydroxy-terminierten oligo-Phenyl-Methyl Siloxans mit einer über 29Si NMR Spektroskopie bestimmten mittleren Kettenlänge von sieben Siloxyeinheiten und einem Silanolgehalt von 4 Gew.-% zugefügt. Die Reaktionsmischung wurde 30 min durch Rühren bei Raumtemperatur homogenisiert und anschließend zwei Stunden 300°C erhitzt.
  • Der Kohlenstoffgehalt des Produkts wurde zu 10,4% bestimmt. Der Restsilanolgehalt des Materials betrug 16%. Der indirekt bestimmte Brechungsindex liegt bei 1.500 +/– 0.01.
  • Kieselsäure 4:
  • Zu 120 g einer hydrophilen Kieselsäure mit einer spezifischen Oberfläche von 300 m2/g, bestimmt nach der BET Methode entsprechend DIN 66131 und 66132 (erhältlich unter dem Namen HDK® T30 von Wacker Chemie AG, München, Deutschland) wurden unter Stickstoffatmosphäre durch Verdüsen über eine Zweistoffdüse (Hohlkegeldüse, Modell 121, der Firma Düsen-Schlick GmbH, D-96253 Untersiemau/Coburg, 30° Sprühwinkel, 0,1 mm Bohrung, betrieben mit 5 bar Stickstoff) 10,0 g VE-Wasser zugesetzt. Anschließend wurden auf analoge Weise 30,6 g Naphthyltrimethoxysilan (bezogen über ABCR GmbH, D-76187 Karlsruhe) zugefügt (Hohlkegeldüse, Modell 121, der Firma Düsen-Schlick GmbH, D-96253 Untersiemau/Coburg, 30° Sprühwinkel, 0,2 mm Bohrung, betrieben mit 5 bar Stickstoff). Die Reaktionsmischung wurde 30 min durch Rühren bei Raumtemperatur homogenisiert und anschließend zwei Stunden 250°C erhitzt.
  • Der Kohlenstoffgehalt des Produkts wurde zu 8,9% bestimmt. Der Restsilanolgehalt des Materials betrug 46%. Der indirekt bestimmte Brechungsindex liegt bei 1.53 +/– 0.02.
  • Beispiel 1:
  • An einem Kneter werden 70 Teile eines vinyl-terminierten Poly-dimethyl-phenylmethyl-siloxan Copolymers mit der Zusammensetzung (Me2ViSiO1/2)2(MePhSiO2/2)49(Me2SiO2/2)124 (Brechungsindex nD 25 = 1.46, Viskosität η = 2500 mPas) mit 30 Teilen einer hydrophoben, mit Trimethylsiloxygruppen belegten pyrogenen Kieselsäure (BET Oberfläche 200 m2/g, Kohlenstoffgehalt 3%, Restsilanolgehalt 25%, indirekt bestimmter Brechungsindex nD 25 = 1.46 +/– 0.01) vermischt. 100 Teile dieser Mischung werden mit 1.6 Teilen eines SiH-haltigen Poly-dimethyl-phenylmethyl-siloxan Copolymers (Brechungsindex nD 25 = 1.45, SiH Gehalt 8 mmol/g, Viskosität η = 40 mPas) und 0.0005 Teilen (bezogen auf Platin) eines Platin-1,3-Divinyl-1,1,3,3-tetramethyldisiloxan-Komplexes vermischt. Die Mischung wird unter Druck 15 min bei 165°C vulkanisiert. Das Vulkanisat weißt eine Härte Shore A von 55, eine Reißfestigkeit von 4 N/mm2 und eine Reißdehnung von 300% auf. Die Probe zeigt bei Wellenlängen λ zwischen 400 und 800 nm in einer Schichtdicke von 2 mm Transmission von > 85%.
  • Beispiel 2 (nicht erfindungsgemäß):
  • An einem Kneter werden 70 Teile eines vinyl-terminierten Poly-dimethyl-siloxans mit der Zusammensetzung (Me2ViSiO1/2)2(Me2SiO2/2)180 (Brechungsindex nD 25 = 1.41, Viskosität η = 500 mPas) mit 30 Teilen einer hydrophoben, mit Trimethylsiloxygruppen behandelten pyrogenen Kieselsäure (BET Oberfläche 200 m2/g, Kohlenstoffgehalt 3%, Restsilanolgehalt 25%, indirekt bestimmter Brechungsindex nD 25 = 1.46) vermischt. 100 Teile dieser Mischung werden mit 1.6 Teilen eines SiH-haltigen Poly-dimethyl-siloxans (SiH Gehalt 5 mmol/g, Viskosität η = 80 mPas) und 0.001 Teil (bezogen auf Platin) eines Platin-1,3-Divinyl-1,1,3,3-tetramethyldisiloxan-Komplexes vermischt. Die Mischung wird unter Druck 15 min bei 165°C vulkanisiert. Das Vulkanisat ist transluzent und weißt eine Härte Shore A von 52, eine Reißfestigkeit von 3 N/mm2 und eine Reißdehnung von 190% auf. Die Probe zeigt bei Wellenlängen λ zwischen 500 und 800 nm in einer Schichtdicke von 2 mm Transmission von weniger als 80%, bei Wellenlängen λ zwischen 400 und 500 nm Transmission von weniger als 70%.
  • Beispiel 3 (nicht erfindungsgemäß):
  • 100 Teile eines vinyl-terminierten Poly-dimethyl-phenylmethyl-siloxan Copolymers mit der Zusammensetzung (Me2ViSiO1/2)2(MePhSiO2/2)72(Me2SiO2/2)14 (Brechungsindex nD 25 1.53, Viskosität η = 10000 mPas) werden mit 8 Teilen eines SiH-haltigen Poly-dimethyl-phenylmethyl-siloxan Copolymers (Brechungsindex nD 25 = 1.49, SiH Gehalt 5 mmol/g, Viskosität η = 70 mPas) und 0.0001 Teilen (bezogen auf Platin) eines Platin-1,3-Divinyl-1,1,3,3-tetramethyldisiloxan-Komplexes vermischt. Die Mischung wird unter Druck 15 min bei 165°C vulkanisiert. Das Vulkanisat ist transparent und weißt eine Härte Shore A von 25 auf. Die Probe ist spröde und zerbricht beim Ausstanzen von Probekörpern. Reißfestigkeit und Reißdehnung sind nicht messbar.
  • Beispiel 4 (nicht erfindungsgemäß):
  • 100 Teile eines vinyl-terminierten Poly-dimethyl-siloxans mit der Zusammensetzung (Me2ViSiO1/2)2(Me2SiO2/2)180 (Brechungsindex nD 25 = 1.41, Viskosität η = 500 mPas) werden an einem Dissolver mit 5 Teilen einer hydrophoben, mit Trimethylsiloxygruppen behandelten pyrogenen Kieselsäure (BET Oberfläche 200 m2/g, Kohlenstoffgehalt 3%, Restsilanolgehalt 25%, indirekt bestimmter Brechungsindex nD 25 = 1.46 +/– 0.01) vermischt. Die Probe wird in einem Exsiccator mit einer Vakuumpumpe entgast. Die Mischung ist trübe und zeigt bei Wellenlängen λ zwischen 500 und 800 nm in einer Schichtdicke von 10 mm Transmission von < 80%, bei Wellenlängen < 500 nm Transmission von < 60%.
  • Beispiel 5 (nicht erfindungsgemäß):
  • 100 Teile eines vinyl-terminierten Poly-dimethyl-siloxans mit der Zusammensetzung (Me2ViSiO1/2)2(Me2SiO2/2)180 (Brechungsindex nD 25 = 1.41, Viskosität η = 500 mPas) werden an einem Dissolver mit 5 Teilen der Kieselsäure 3 vermischt. Die Probe wird in einem Exsiccator mit einer Vakuumpumpe entgast. Die Mischung ist trübe und zeigt bei Wellenlängen λ zwischen 500 und 800 nm in einer Schichtdicke von 10 mm Transmission von < 70%, bei Wellenlängen < 500 nm Transmission von < 50%.
  • Beispiel 6 (nicht erfindungsgemäß):
  • 100 Teile eines vinyl-terminierten Poly-dimethyl-phenylmethyl-siloxan Copolymers mit der Zusammensetzung (Me2ViSiO1/2)2(MePhSiO2/2)49(Me2SiO2/2)124 (Brechungsindex nD 25 = 1.46, Viskosität η = 2500 mPas) werden an einem Dissolver mit 5 Teilen der Kieselsäure 2 vermischt. Die Probe wird in einem Exsiccator mit einer Vakuumpumpe entgast. Die Mischung ist trübe und zeigt bei Wellenlängen λ zwischen 500 und 800 nm in einer Schichtdicke von 10 mm Transmission von < 80% bei Wellenlängen < 500 nm Transmission von < 50%.
  • Beispiel 7:
  • 100 Teile eines vinyl-terminierten Poly-dimethyl-phenylmethyl-siloxan Copolymers mit der Zusammensetzung (Me2ViSiO1/2)2(MePhSiO2/2)25(Me2SiO2/2)21 (Brechungsindex nD 25 1.50, Viskosität η = 600 mPas) werden an einem Dissolver mit 5 Teilen der Kieselsäure 1 vermischt. Die Probe wird in einem Exsiccator mit einer Vakuumpumpe entgast. Die Mischung ist transparent und farblos. Die Probe zeigt bei Wellenlängen λ zwischen 400 und 800 nm in einer Schichtdicke von 10 mm Transmission von > 80%.
  • Beispiel 8:
  • An einem Kneter werden 80 Teile eines vinyl-terminierten Poly-dimethyl-phenylmethyl-siloxan Copolymers mit der Zusammensetzung (Me2ViSiO1/2)2(MePhSiO2/2)55(Me2SiO2/2)53 (Brechungsindex nD 25 = 1.50, Viskosität η = 3300 mPas) mit 20 Teilen der Kieselsäure 1 vermischt. Die Mischung ist transparent. Der Brechungsindex der Mischung beträgt nD 25 = 1.50. Die Viskosität beträgt η = 300000 mPas bei D = 25 s–1 und η = 550000 mPas bei D = 10 s–1. 100 Teile dieser Mischung werden mit 4 Teilen eines SiH-haltigen Poly-dimethyl-phenylmethyl-siloxan Copolymers (Brechungsindex nD 25 = 1.49, SiH Gehalt 5 mmol/g, Viskosität η = 70 mPas) und 0.0005 Teilen (bezogen auf Platin) eines Platin-1,3-Divinyl-1,1,3,3-tetramethyldisiloxan-Komplexes vermischt. Die Mischung wird unter Druck 15 min bei 165°C vulkanisiert. Das Vulkanisat weißt eine Härte Shore A von 60, eine Reißfestigkeit von 2.8 N/mm2 und eine Reißdehnung von 190% auf.
  • Die Probe zeigt bei Wellenlängen λ zwischen 400 und 800 nm in einer Schichtdicke von 2 mm Transmission von > 85%.
  • Beispiel 9:
  • An einem Kneter werden 80 Teile eines vinyl-terminierten Poly-dimethyl-phenylmethyl-siloxan Copolymers mit der Zusammensetzung (Me2ViSiO1/2)2(MePhSiO2/2)72(Me2SiO2/2)14 (Brechungsindex nD 25 = 1.53, Viskosität η = 10000 mPas) mit 20 Teilen der Kieselsäure 4 vermischt. Die Mischung ist transparent. 100 Teile dieser Mischung werden mit 5 Teilen eines SiH-haltigen Poly-dimethyl-phenylmethyl-siloxan Copolymers (Brechungsindex nD 25 = 1.49, SiH Gehalt 5 mmol/g, Viskosität η = 70 mPas) und 0.0005 Teilen (bezogen auf Platin) eines Platin-1,3-Divinyl-1,1,3,3-tetramethyldisiloxan-Komplexes vermischt. Die Mischung wird unter Druck 15 min bei 165°C vulkanisiert. Das Vulkanisat ist transparent und weißt eine Härte Shore A von 55, eine Reißfestigkeit von 2.1 N/mm2 und eine Reißdehnung von 150% auf.
  • Beispiel 10:
  • An einem Kneter werden 77 Teile eines vinyl-terminierten Poly-dimethyl-phenylmethyl-siloxan Copolymers mit der Zusammensetzung (Me2ViSiO1/2)2(MePhSiO2/2)168(Me2SiO2/2)163 (Brechungsindex nD 25 = 1.50, Viskosität η = 52000 mPas) mit 23 Teilen der Kieselsäure 3 vermischt. Die Mischung ist transparent. Der Brechungsindex der Mischung beträgt nD 25 = 1.50. 100 Teile dieser Mischung werden mit 1.45 Teilen eines SiH-haltigen Poly-dimethyl-phenylmethyl-siloxan Copolymers (Brechungsindex nD 25 = 1.49, SiH Gehalt 5 mmol/g, Viskosität η = 70 mPas) und 0.0005 Teilen (bezogen auf Platin) eines Platin-1,3-Divinyl-1,1,3,3-tetramethyldisiloxan-Komplexes vermischt. Die Mischung wird unter Druck 15 min bei 165°C vulkanisiert. Das Vulkanisat weißt eine Härte Shore A von 55, eine Reißfestigkeit von 3.7 N/mm2 und eine Reißdehnung von 310% auf. Die Probe zeigt bei Wellenlängen λ zwischen 400 und 800 nm in einer Schichtdicke von 2 mm Transmission von > 85%.
  • ZITATE ENTHALTEN IN DER BESCHREIBUNG
  • Diese Liste der vom Anmelder aufgeführten Dokumente wurde automatisiert erzeugt und ist ausschließlich zur besseren Information des Lesers aufgenommen. Die Liste ist nicht Bestandteil der deutschen Patent- bzw. Gebrauchsmusteranmeldung. Das DPMA übernimmt keinerlei Haftung für etwaige Fehler oder Auslassungen.
  • Zitierte Patentliteratur
    • EP 1424363 B1 [0003]
    • US 7282270 B2 [0004]
    • EP 0644914 B1 [0007]
    • US 2012/0235190 A1 [0008]
    • EP 2336230 A1 [0010]
  • Zitierte Nicht-Patentliteratur
    • ISOS XVII BERLIN 2014, ISBN 978-3-936028-85-0 [0009]
    • „AEROXIDE® Fumed Metal Oxides – Fillers for Optical Applications” vom 21 Mai 2014 auf der „2014 International Silicone Conference” in Akron, Ohio, USA [0009]
    • DIN ISO 10694 [0071]
    • G. W. Sears et al. Analytical Chemistry 1956, 28, 1981ff [0072]
    • DIN EN ISO 3219 [0074]
    • Norm DIN 51423 [0075]
    • DIN (Deutsche Industrie Norm) 53505 (Ausgabe August 2000) [0084]
    • ISO 37 [0085]
    • DIN 66131 und 66132 [0087]
    • DIN 66131 und 66132 [0089]
    • DIN 66131 und 66132 [0091]
    • DIN 66131 und 66132 [0093]

Claims (10)

  1. Additionsvernetzende Siliconzusammensetzung (X) enthaltend (A) mindestens eine lineare Verbindung, die Reste mit aliphatischen Kohlenstoff-Kohlenstoff-Mehrfachbindungen aufweist, (B) mindestens ein lineares Organopolysiloxan mit Si-gebundenen Wasserstoffatomen, oder anstelle von (A) und (B) (C) mindestens ein lineares Organopolysiloxan, das SiC-gebundene Reste mit aliphatischen Kohlenstoff-Kohlenstoff Mehrfachbindungen und Si-gebundene Wasserstoffatome aufweist, (D) mindestens einen Hydrosilylierungskatalysator, (E) mindestens einen verstärkenden Füllstoff aus pyrogenen oder gefällten Kieselsäuren mit einer BET-Oberfläche von mindestens 50 m2/g, dadurch gekennzeichnet, dass – der Brechungsindex nD 25 von (A) und (C) mindestens 1,42 beträgt, – die Kieselsäure (E) durch Oberflächenmodifizierung einen Brechungsindex nD 25 aufweist der um höchstens 0,03 von (A) oder/und (C) abweicht, und – die Oberflächenmodifizierung von (E) entweder vor der Compoundierung oder in situ bei der Compoundierung der additionsvernetzenden Siliconzusammensetzung (X) erfolgt.
  2. Additionsvernetzende Siliconzusammensetzung (X) gemäß Anspruch 1, dadurch gekennzeichnet, dass (E) eine vor der Compoundierung Aryl-Silan- oder Aryl-Siloxan-Oberflächenmodifizierte pyrogene Kieselsäure ist.
  3. Additionsvernetzende Siliconzusammensetzung (X) gemäß Anspruch 1 oder 2, dadurch gekennzeichnet, dass der Brechungsindex nD 25 von (A) und (C) mindestens 1,46 beträgt.
  4. Additionsvernetzende Siliconzusammensetzung (X) gemäß einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass der Brechungsindex nD 25 der oberflächenbehandelten Kieselsäure (E) um maximal 0,015 von (A) und/oder (C) abweicht.
  5. Additionsvernetzende Siliconzusammensetzung (X) gemäß einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass der Brechungsindex nD 25 von (B) um höchstens 0,03 von (A) oder/und (C) abweicht.
  6. Additionsvernetzende Siliconzusammensetzung (X) gemäß einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass sie weitere Bestandteile (F) enthalten die ausgewählt werden aus der Gruppe enthaltend Inhibitoren, Siliconharze die sich von (A), (B) und (C) unterscheiden, Haftvermittler, Additive zur Anpassung der Wärmeleitfähigkeit, Verbesserung der Temperaturstabilität, Lichstreuung, Lichtkonvertierung, nicht verstärkende Füllstoffe, Fungizide, Duftstoffe, rheologische Additive, Korrosionsinhibitoren, Oxidationsinhibitoren, Lichtschutzmittel, flammabweisend machende Mittel und Mittel zur Beeinflussung der elektrischen und thermischen Eigenschaften, Dispergierhilfsmittel, Lösungsmittel, Haftvermittler, Pigmente, Farbstoffe, Weichmacher, organische Polymere.
  7. Herstellung eine additionsvernetzenden Siliconzusammensetzungen (X) gemäß einem der Ansprüche 1 bis 5 durch das Vermischen der Komponenten (A), (B) und/oder (C) mit (D) und (B).
  8. Herstellung eine additionsvernetzenden Siliconzusammensetzungen (X) gemäß Anspruch 6 durch das Vermischen der Komponenten (A), (B) und/oder (C) mit (D) und (E) und (F).
  9. Verwendung der Siliconzusammensetzungen (X) gemäß einem der Ansprüche 1 bis 6 als Vergussmassen.
  10. Verwendung der Siliconzusammensetzungen (X) gemäß einem der Ansprüche 1 bis 6 für die Herstellung optischer Bauteile.
DE102014223785.8A 2014-11-21 2014-11-21 Härtbare hochtransparente Siliconzusammensetzung mit verbesserter Mechanik für optische Bauteile Withdrawn DE102014223785A1 (de)

Priority Applications (5)

Application Number Priority Date Filing Date Title
DE102014223785.8A DE102014223785A1 (de) 2014-11-21 2014-11-21 Härtbare hochtransparente Siliconzusammensetzung mit verbesserter Mechanik für optische Bauteile
US15/526,492 US10294352B2 (en) 2014-11-21 2015-10-29 Curable, highly transparent silicone composition with improved mechanics, for optical components
PCT/EP2015/075111 WO2016078890A1 (de) 2014-11-21 2015-10-29 Härtbare hochtransparente siliconzusammensetzung mit verbesserter mechanik für optische bauteile
EP15804685.4A EP3221408A1 (de) 2014-11-21 2015-10-29 Härtbare hochtransparente siliconzusammensetzung mit verbesserter mechanik für optische bauteile
KR1020177013416A KR101939140B1 (ko) 2014-11-21 2015-10-29 광학 컴포넌트용, 개선된 기계적 특성을 가지는 경화성 고투명성 실리콘 조성물

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102014223785.8A DE102014223785A1 (de) 2014-11-21 2014-11-21 Härtbare hochtransparente Siliconzusammensetzung mit verbesserter Mechanik für optische Bauteile

Publications (1)

Publication Number Publication Date
DE102014223785A1 true DE102014223785A1 (de) 2016-05-25

Family

ID=54782664

Family Applications (1)

Application Number Title Priority Date Filing Date
DE102014223785.8A Withdrawn DE102014223785A1 (de) 2014-11-21 2014-11-21 Härtbare hochtransparente Siliconzusammensetzung mit verbesserter Mechanik für optische Bauteile

Country Status (5)

Country Link
US (1) US10294352B2 (de)
EP (1) EP3221408A1 (de)
KR (1) KR101939140B1 (de)
DE (1) DE102014223785A1 (de)
WO (1) WO2016078890A1 (de)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102018101291A1 (de) 2018-01-22 2019-07-25 Hans-Erich Gubela Elastischer Retroreflektor
US10809425B2 (en) 2018-01-22 2020-10-20 Hans-Erich Gubela Retroreflector element for use in road traffic
US11029456B2 (en) 2018-01-22 2021-06-08 Imos Gubela Gmbh Retroreflector having a curved surface

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11434372B2 (en) * 2015-07-07 2022-09-06 Henkel Ag & Co. Kgaa High temperature resistant, two component, low viscosity silicone composition
CN107915999A (zh) * 2016-10-11 2018-04-17 华成新材料(惠州)有限公司 一种加成型导热阻燃绝缘硅橡胶及其制作方法
CN110669472A (zh) * 2019-11-01 2020-01-10 重庆天旗实业有限公司 一种透明阻燃硅酮密封胶
KR20230033466A (ko) * 2021-09-01 2023-03-08 주식회사 한솔케미칼 돔 형상이 가능한 경화성 실리콘 조성물 및 그 경화물
KR20230114490A (ko) * 2022-01-25 2023-08-01 주식회사 한솔케미칼 고휘도 실리콘수지 조성물 및 그 경화물
KR20240053901A (ko) * 2022-10-18 2024-04-25 주식회사 한솔케미칼 안정적인 돔 형성 및 유지가 가능한 경화성 실리콘 조성물 및 그 경화물

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0644914B1 (de) 1992-06-12 1999-10-27 MERCK PATENT GmbH Anorganische füllstoffe und organische matrixmaterialien mit brechungsindex-anpassung
EP1424363B1 (de) 2002-11-29 2007-02-14 Shin-Etsu Chemical Co., Ltd. Silikonharz Zusammensetzung für LED Bauteile
US7282270B2 (en) 2002-10-28 2007-10-16 Dow Corning Toray Silicone Company, Ltd. Curable organopolysiloxane composition and a semiconductor device made with the use of this composition
EP2336230A1 (de) 2009-12-15 2011-06-22 Shin-Etsu Chemical Co., Ltd. Harzzusammensetzung zur Verkapselung eines optischen Halbleiterelements und optische Halbleitervorrichtung
US20120235190A1 (en) 2011-03-18 2012-09-20 Cree, Inc. Encapsulant with index matched thixotropic agent

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3996189A (en) * 1975-04-29 1976-12-07 American Optical Corporation Optically clear filled silicone elastomers
US5661210A (en) * 1996-09-25 1997-08-26 Dow Corning Corporation Optically clear liquid silicone rubber
US7160972B2 (en) * 2003-02-19 2007-01-09 Nusil Technology Llc Optically clear high temperature resistant silicone polymers of high refractive index
US7066955B2 (en) 2003-09-30 2006-06-27 Advanced Medical Optics, Inc. High refractive index compositions useful for intraocular lenses and methods for making same
JP5000566B2 (ja) * 2008-03-27 2012-08-15 信越化学工業株式会社 硬化性シリコーンゴム組成物、およびそれを封止材料として用いた光半導体装置
JP5907262B2 (ja) * 2011-07-22 2016-04-26 エルジー・ケム・リミテッド 硬化性組成物
KR101560038B1 (ko) * 2011-11-25 2015-10-15 주식회사 엘지화학 경화성 조성물

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0644914B1 (de) 1992-06-12 1999-10-27 MERCK PATENT GmbH Anorganische füllstoffe und organische matrixmaterialien mit brechungsindex-anpassung
US7282270B2 (en) 2002-10-28 2007-10-16 Dow Corning Toray Silicone Company, Ltd. Curable organopolysiloxane composition and a semiconductor device made with the use of this composition
EP1424363B1 (de) 2002-11-29 2007-02-14 Shin-Etsu Chemical Co., Ltd. Silikonharz Zusammensetzung für LED Bauteile
EP2336230A1 (de) 2009-12-15 2011-06-22 Shin-Etsu Chemical Co., Ltd. Harzzusammensetzung zur Verkapselung eines optischen Halbleiterelements und optische Halbleitervorrichtung
US20120235190A1 (en) 2011-03-18 2012-09-20 Cree, Inc. Encapsulant with index matched thixotropic agent

Non-Patent Citations (9)

* Cited by examiner, † Cited by third party
Title
"AEROXIDE® Fumed Metal Oxides - Fillers for Optical Applications" vom 21 Mai 2014 auf der "2014 International Silicone Conference" in Akron, Ohio, USA
DIN (Deutsche Industrie Norm) 53505 (Ausgabe August 2000)
DIN 66131 und 66132
DIN EN ISO 3219
DIN ISO 10694
G. W. Sears et al. Analytical Chemistry 1956, 28, 1981ff
ISO 37
ISOS XVII BERLIN 2014, ISBN 978-3-936028-85-0
Norm DIN 51423

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102018101291A1 (de) 2018-01-22 2019-07-25 Hans-Erich Gubela Elastischer Retroreflektor
US10809425B2 (en) 2018-01-22 2020-10-20 Hans-Erich Gubela Retroreflector element for use in road traffic
US11029456B2 (en) 2018-01-22 2021-06-08 Imos Gubela Gmbh Retroreflector having a curved surface
US11215740B2 (en) 2018-01-22 2022-01-04 Hans-Erich Gubela Elastic retroreflector

Also Published As

Publication number Publication date
WO2016078890A1 (de) 2016-05-26
US20170321039A1 (en) 2017-11-09
KR101939140B1 (ko) 2019-01-16
EP3221408A1 (de) 2017-09-27
US10294352B2 (en) 2019-05-21
KR20170070215A (ko) 2017-06-21

Similar Documents

Publication Publication Date Title
DE102014223785A1 (de) Härtbare hochtransparente Siliconzusammensetzung mit verbesserter Mechanik für optische Bauteile
DE3888048T4 (de) Verfahren zur Herstellung von durchsichtigen Polysiloxanelastomeren.
EP1845131B1 (de) Vernetzbare Massen auf der Basis von Organosiliciumverbindungen
EP2272916A1 (de) Verfahren zur Herstellung von Siliconbeschichtungen und Siliconformkörpern aus durch Licht vernetzbaren Siliconmischungen
EP2627714B1 (de) Schleifbare siliconelastomerzusammensetzung und deren verwendung
EP2841514B1 (de) Siliconzusammensetzung mit schadstoffschutz
EP3341441B1 (de) Siloxanharzzusammensetzungen
EP3562890B1 (de) Siliconelastomer mit fluorierten seitengruppen
WO2010028969A1 (de) Siliconelastomere mit verbesserter einreissfestigkeit
EP3612584B1 (de) Stabilisierung von edelmetallkatalysatoren
EP3341442B1 (de) Siloxanharzzusammensetzungen
DE102021118751A1 (de) Aushärtbare silikonzusammensetzung, einkapselungsmittel und optische halbleitervorrichtung
EP2284223A1 (de) Härtbare Siliconzusammensetzungen
EP4077491B1 (de) Siliconpartikel mit einem vernetzten kern und deren herstellung
EP2457953B1 (de) Einkomponentige Organopolysiloxanmassen mit hoher relativer Permittivität
DE10235268A1 (de) Vernetzende Siliconelastomere, Verfahren zu deren Herstellung sowie die Verwendung der vernetzbaren Massen
WO2007045692A1 (de) Siliconkautschukzusammensetzung mit verbesserter weiterreissfestigkeit
DE102013215105A1 (de) Polyorganosiloxanzubereitung für optische Halbleiter
DE102017216072A1 (de) Durch Bestrahlung mit UV-Licht vernetzbare Siliconzusammensetzungen
DE102022110708A1 (de) Aushärtbare silikonzusammensetzung, einkapselungsmittel und optische halbleitervorrichtung
EP1498457A1 (de) Lagerstabile Siliconmassen
DE10353062A1 (de) Lagerstabile Siliconmassen

Legal Events

Date Code Title Description
R119 Application deemed withdrawn, or ip right lapsed, due to non-payment of renewal fee