-
Gebiet der Erfindung
-
Die Erfindung betrifft ein Verfahren zur Entfernung von Metallen aus hochsiedenden Kohlenwasserstofffraktionen, insbesondere zur Abtrennung von katalysatorstämmigen Nickel-, Cobalt- und Aluminiumverunreinigungen aus den Primärprodukten einer Kohlenwasserstoffsynthese, beispielsweise nach dem Fischer-Tropsch-Verfahren.
-
Stand der Technik
-
Kohlenwasserstoffe können als Syntheseprodukte aus chemisch-katalytischen Prozessen, wie beispielsweise dem Fischer-Tropsch-Verfahren erhalten werden, dessen Grundlagen in der Literatur ausführlich beschrieben wurden, z. B. in
Ullmann´s Encyclopedia of Industrial Chemistry, Sixth Edition, 1998 Electronic Release, Stichwort „Coal Liquefaction", Kapitel 2.2 „Fischer-Tropsch Synthesis". Eine moderne Verfahrensvariante stellt dabei die Umsetzung von Synthesegas in einer Suspension des festen, feinkörnigen Katalysators in den flüssigen Produktkohlenwasserstoffe dar (sogenannter Slurry-Prozess). Dabei werden hochaktive Katalysatoren eingesetzt, die als Aktivkomponenten Metalle, beispielsweise Cobalt, auf einem Trägermaterial, beispielsweise Aluminiumoxid, enthalten, wie es in der US-Patentschrift
US 4801573 beschrieben wird. Die internationale Patentanmeldung
WO 98/27181 A1 schlägt – neben zahlreichen anderen Veröffentlichungen – ein Verfahren zur Abtrennung der Katalysatorsuspension von dem Kohlenwasserstoffprodukt vor. Die dabei erhaltenen Produktkohlenwasserstoffe enthalten oftmals signifikante Mengen an Schwermetallen. Als Ursache dieser unerwünschten Schwermetallkontamination kommen Abrasions- und Korrosionsprozesse an den im Syntheseprozess verwandten Katalysatoren und/oder dem Behältermaterial in Betracht. Diese auf mechanischen Trennverfahren basierenden Methoden eignen sich allerdings nur für die Abtrennung partikelförmiger Metallverunreinigungen, nicht dagegen zur Abscheidung von in der Kohlenwasserstoffphase chemisch gebundenen oder feindispers bzw. kolloidal gelösten Metallen.
-
Zusätzlich zur Schwermetallkontamination werden auch Verunreinigungen mit dem Metall der Katalysator-Trägermatrix (z.B. Aluminium) beobachtet. Die beschriebene Metallkontamination kann bei einer weiteren chemisch-katalytischen Umsetzung der Produktkohlenwasserstoffe störend sein, da diese als Katalysatorgift wirksam werden kann. Zudem stellen Schwermetallkontaminationen, unabhängig in welchem Stoff diese beinhaltet sind, eine potentielle Umwelt- und Gesundheitsgefahr dar. Besonders sind hier Nickel und Cobalt anzuführen, welche als krebserzeugend eingestuft sind. Andererseits stellen beide Schwermetalle wertvolle Katalysatorbausteine dar, welche einem Recyclingprozess zugeführt werden sollten, um Verluste zu vermeiden.
-
Die deutsche Patentschrift
DE 1212662 beschreibt ein Verfahren zur Behandlung von Kohlenwasserstoffölen zwecks Entfernung metallischer Verunreinigungen, die für die bei ihren Umwandlungen verwendeten Katalysatoren schädlich sind. Hierbei wird vorgeschlagen, die kontaminierten Kohlenwasserstofföle mit einer Lösung von Fluorwasserstoff in einem organischen Lösungsmittel zu behandeln, wodurch die Metalle in einen schwerlöslichen Niederschlag überführt werden, der nachfolgend mit einer mechanischen Trennmethode abgetrennt werden kann. Hierdurch werden die oben beschriebenen Probleme bei der Behandlung eines Zweiphasengemisches aus Kohlenwasserstoffphase und wässriger Phase vermieden. Nachteilig ist allerdings die Verwendung des hochreaktiven, gasförmigen Fluorwasserstoffs zur Herstellung der Behandlungslösung aus Gründen der Arbeitssicherheit und der Handhabung.
-
Die US-Patentschrift
US 4518484 gibt ein Verfahren zur Behandlung metallhaltiger Kohlenwasserstoffeinsatzströme an, das folgende Schritte umfasst: (a) Kontaktieren der Kohlenwasserstoffeinsatzströme in einer Extraktionszone mit mindestens einem Kohlenwasserstoff-Lösungsmittel mit 2 bis 10 Kohlenstoffatomen pro Molekül unter überkritischen Bedingungen in Anwesenheit eines Entmetallisierungsmittels auf Organophosphor-Basis, (b) Ausleiten eines Kopfproduktes aus der Extraktionszone, das die weitgehend von Metallen befreiten Kohlenwasserstoffe enthält, und eines Sumpfproduktes, das das mit den Metallen beladene Lösungsmittel enthält. Als nachteilig ist die aufwendige Verfahrensführung, insbesondere das Einstellen überkritischer Bedingungen, zu betrachten.
-
Gegenstand der Patentanmeldung
DE 102011013470 A1 ist ein Verfahren und Mittel zur Entfernung von Metallverunreinigungen aus Kohlenwasserstofffraktionen, wie sie beispielsweise als Produkt der Fischer-Tropsch-Synthese unter Verwendung von suspendiertem Katalysator erhalten werden. Die Behandlung der Einsatzkohlenwasserstofffraktion erfolgt mit einem Entmetallisierungsmittel, umfassend mindestens eine Schwefelquelle und mindestens eine basische Verbindung, unter wasserfreien Bedingungen. Die zu entfernenden Metalle werden als Niederschlag erhalten, der mit einem mechanischen Trennverfahren, beispielsweise der Filtration, leicht abgetrennt werden kann.
-
In der internationalen Patentanmeldung
WO 2006/053350 A1 wird ein Verfahren zur Abtrennung von Metallverunreinigungen wie Aluminium oder Cobalt aus Kohlenwasserstofffraktionen offenbart, bei dem die Kohlenwasserstofffraktion mit einer wässrigen Phase bei Temperaturen von mindestens 160 °C, typischerweise um 170 °C, behandelt wird, wobei die wässrige Phase optional eine Säure, beispielsweise eine organische Säure wie Maleinsäure, umfassen kann. Zwar wird dort gelehrt, dass auch höhere Temperaturen als die oben genannten verwendet werden können, allerdings findet sich keine differenzierte Spezifizierung dieser höheren Temperaturen und etwaiger Vorteile.
-
Beschreibung der Erfindung
-
Der vorliegenden Erfindung liegt daher die Aufgabe zugrunde, ein einfaches Verfahren zur Entfernung von Metallverunreinigungen aus hochsiedenden Kohlenwasserstofffraktionen anzugeben, das sich durch eine einfache Verfahrensführung auszeichnet, und das ohne die Verwendung von Stoffen mit hohem Gefahrpotential durchgeführt werden kann.
-
Die Lösung der erfindungsgemäßen Aufgabe ergibt sich im Wesentlichen aus den Merkmalen des Anspruchs 1 durch ein Verfahren zur Herstellung einer metallarmen Kohlenwasserstofffraktion, wobei die Metalle in der Kohlenwasserstofffraktion chemisch gebunden oder in kolloidaler oder feindisperser Form in der Kohlenwasserstofffraktion dispergiert sind, umfassend folgende Schritte:
- (a) Bereitstellen der metallhaltigen Kohlenwasserstofffraktion in flüssiger Form,
- (d) Inkontaktbringen der flüssigen, metallhaltigen Kohlenwasserstofffraktion mit festem, pulverformigem Kieselgur unter Rühren bei einer Temperatur von mindestens 150 °C, bevorzugt mindestens 200 °C, wobei das Massenverhältnis von Kieselgur zum Gesamtmetallgehalt in der Kohlenwasserstofffraktion mindestens 10, bevorzugt mindestens 20 beträgt,
- (c) Beenden des Rührens, Abtrennung des metallbeladenen Kieselgurs mittels eines mechanischen Trennverfahrens,
- (d) Ausleiten der kohlenwasserstoffhaltigen Flüssigphase als an Metallen abgereicherte Kohlenwasserstofffraktion.
-
In alternativer Ausgestaltung erfolgt die Lösung der erfindungsgemäßen Aufgabe im Wesentlichen mit den Merkmalen des Anspruchs 2 durch ein Verfahren zur Herstellung einer metallarmen Kohlenwasserstofffraktion, wobei die Metalle in der Kohlenwasserstofffraktion chemisch gebunden oder in kolloidaler oder feindisperser Form in der Kohlenwasserstofffraktion dispergiert sind, umfassend folgende Schritte:
- (a) Bereitstellen der metallhaltigen Kohlenwasserstofffraktion in flüssiger Form,
- (d) Inkontaktbringen der flüssigen, metallhaltigen Kohlenwasserstofffraktion mit festem, pulverformigem Kieselgur unter Rühren bei einer Temperatur von mindestens 85 °C, wobei das Massenverhältnis von Kieselgur zum Gesamtmetallgehalt in der Kohlenwasserstofffraktion mindestens 50 beträgt,
- (c) Beenden des Rührens, Abtrennung des metallbeladenen Kieselgurs mittels eines mechanischen Trennverfahrens,
- (d) Ausleiten der kohlenwasserstoffhaltigen Flüssigphase als an Metallen abgereicherte Kohlenwasserstofffraktion.
-
Weitere vorteilhafte Ausgestaltungen des erfindungsgemäßen Verfahrens ergeben sich aus den Unteransprüchen.
-
Für die Behandlung nach dem erfindungsgemäßen Verfahren muss die Einsatzkohlenwasserstofffraktion flüssig vorliegen. Wachsartige Kohlenwasserstoffe, wie sie beispielsweise als Produkte des Fischer-Tropsch-Verfahrens erhalten werden, sind ggf. vor der Behandlung aufzuschmelzen.
-
Überraschenderweise wurde im Rahmen der Erfindung gefunden, dass durch eine Behandlung der Kohlenwasserstofffraktion mit pulverförmigem Kieselgur bei Temperaturen oberhalb von mindestens 150 °C, noch besser oberhalb von mindestens 200 °C, gefolgt von der anschließenden Abtrennung des metallbeladenen Kieselgurs, die Metalle komplett aus der Kohlenwasserstofffraktion entfernt werden können, wenn die in Anspruch 1 genannten Massenverhältnisse von Kieselgur zum Gesamtmetallgehalt in der Kohlenwasserstofffraktion eingehalten werden. In alternativer Ausgestaltung der Erfindung werden durch eine Behandlung der Kohlenwasserstofffraktion mit pulverförmigem Kieselgur bei Temperaturen oberhalb von mindestens 85 °C, gefolgt von der anschließenden Abtrennung des metallbeladenen Kieselgurs, die Metalle komplett aus der Kohlenwasserstofffraktion entfernt, wenn die in Anspruch 2 genannten Massenverhältnisse von Kieselgur zum Gesamtmetallgehalt in der Kohlenwasserstofffraktion eingehalten werden.
-
Die gefundenen Behandlungserfolge bei Anwendung des erfindungsgemäßen Verfahrens nach den oben beschriebenen Ausgestaltungen überraschen angesichts der Tatsache, dass die Metallverunreinigungen nicht nur als Partikel, sondern teilweise auch chemisch gebunden, homogen gelöst oder kolloidal dispergiert vorliegen.
-
Weitere bevorzugte Ausgestaltungen der Erfindung
-
In bevorzugter Ausgestaltung der Erfindung wird in dem Verfahrensschritt gemäß Anspruch 1. (c) oder 2. (c) die Filtration verwendet. Möglich ist auch die Verwendung der Zentrifugation oder Dekantation; allerdings bietet die Filtration ein Optimum hinsichtlich Aufwand und erreichter Trennleistung.
-
Besonders bevorzugt wird das erfindungsgemäße Verfahren unter Verwendung pulverförmigem Kieselgurs durchgeführt, dessen Partikelgröße kleiner als 40 µm ist.
-
Ausführungs- und Zahlenbeispiele
-
Weiterbildungen, Vorteile und Anwendungsmöglichkeiten der Erfindung ergeben sich auch aus der nachfolgenden Beschreibung von nicht beschränkenden Ausführungs- und Zahlenbeispielen. Dabei bilden alle beschriebenen Merkmale für sich oder in beliebiger Kombination die Erfindung, unabhängig von ihrer Zusammenfassung in den Ansprüchen oder deren Rückbeziehung.
-
Allgemeine Vorgehensweise bei den Versuchen
-
Die Rührgeschwindigkeit bei Verfahrensschritt (b) war in allen Versuchen gleich und betrug konstant 350 Umdrehungen pro Minute. Es können auch andere, bevorzugt höhere Rührgeschwindigkeiten benutzt werden, solange diese für eine intensive Durchmischung des Flüssigkeitsgemisches sorgen. Gegebenenfalls muss dann die benötigte Behandlungsdauer angepasst werden, um den gewünschten Metallabscheidegrad zu erzielen. Geeignete Zeitdauern können durch Routineversuche ermittelt werden. Alle Versuche wurden in einem Autoklav mit einem Innenvolumen von 300 ml durchgeführt.
-
Beispiel 1: Erfindung
-
100 g eines Kohlenwasserstoffgemisches (Wachsfraktion aus der Fischer-Tropsch-Synthese mit einem Metallgehalt von 367 Gew.-ppm (Aluminium, Nickel und Cobalt) wurden bei 85 °C aufgeschmolzen und in einem Autoklav vorgelegt. Die Bestimmung des Metallgehaltes erfolgte durch Röntgenfluoreszenzanalyse (RFA) mit der Methode Uniquant 2. Das aufgeschmolzene Wachs wurde dann auf 220 °C erhitzt und anschließend 0,75 g pulverförmiges Kieselgur mit einer Partikelgröße kleiner als 40 µm (Celite 577) zugegeben, die Mischung für weitere 5 min gerührt und danach filtriert. Das Filtrat, das dem gereinigten Kohlenwasserstoffgemisch entsprach, wurde analysiert. Die Analyse der Kohlenwasserstofffraktion zeigte keine nachweisbaren Konzentrationen von Nickel, Cobalt und Aluminium. Im Rahmen der Messgenauigkeit (Nachweisgrenze 10 Gew.-ppm) wurden die Metallverunreinigungen also vollständig aus der Kohlenwasserstofffraktion entfernt.
-
Beispiel 2: Erfindung
-
100 g eines Kohlenwasserstoffgemisches (Wachsfraktion aus der Fischer-Tropsch-Synthese mit einem Metallgehalt von 351 Gew.-ppm (Aluminium, Nickel und Cobalt) wurden bei 85 °C aufgeschmolzen und in einem Autoklav vorgelegt. Die Bestimmung des Metallgehaltes erfolgte durch Röntgenfluoreszenzanalyse (RFA) mit der Methode Uniquant 2. Dem aufgeschmolzenen Wachs wurde bei dieser Temperatur 2,0 g pulverförmiges Kieselgur mit einer Partikelgröße kleiner als 40 µm (Celite 577) zugegeben, die Mischung für weitere 5 min gerührt und danach filtriert. Das Filtrat, das dem gereinigten Kohlenwasserstoffgemisch entsprach, wurde analysiert. Die Analyse der Kohlenwasserstofffraktion zeigte keine nachweisbaren Konzentrationen von Nickel, Cobalt und Aluminium. Im Rahmen der Messgenauigkeit (Nachweisgrenze 10 Gew.-ppm) wurden die Metallverunreinigungen also vollständig aus der Kohlenwasserstofffraktion entfernt.
-
Beispiel 3: Vergleichsbeispiel
-
Analog zum Beispiel 1 wurden 100 g eines Kohlenwasserstoffgemisches (Wachsfraktion aus der Fischer-Tropsch-Synthese mit einem Metallgehalt von 367 Gew.-ppm (Aluminium, Nickel und Cobalt) bei 85 °C aufgeschmolzen und in einem Autoklav vorgelegt. Die Bestimmung des Metallgehaltes erfolgte durch Röntgenfluoreszenzanalyse (RFA) mit der Methode Uniquant 2. Das aufgeschmolzene Wachs wurde dann auf 220 °C erhitzt und anschließend 0,25 g pulverförmiges Kieselgur mit einer Partikelgröße kleiner als 40 µm (Celite 577) zugegeben, die Mischung für weitere 5 min gerührt und danach filtriert. Das Filtrat, das dem gereinigten Kohlenwasserstoffgemisch entsprach, wurde analysiert.
-
Die Analyse der Kohlenwasserstofffraktion zeigte, dass nur 69 % der Metalle aus der Kohlenwasserstofffraktion entfernt wurden. Die Metallabtrennung in diesem Vergleichsbeispiel war daher unzureichend.
-
Gewerbliche Anwendbarkeit
-
Mit der Erfindung wird ein Verfahren zur Entfernung von Metallverunreinigungen aus Kohlenwasserstofffraktionen zur Verfügung gestellt, das sich im Vergleich zu den im Stand der Technik bekannten Verfahren durch seine apparative Einfachheit sowie durch die Abwesenheit zusätzlicher, insbesondere verfahrensfremder, Extraktionsmittel auszeichnet. Ferner ist es vorteilhaft, dass nur Stoffe mit vernachlässigbarem oder geringem Gefährdungspotential zum Einsatz kommen und der Einsatz von Stoffen mit hohem Gefährdungspotential, wie beispielsweise Fluorwasserstoff, vermieden wird.
-
ZITATE ENTHALTEN IN DER BESCHREIBUNG
-
Diese Liste der vom Anmelder aufgeführten Dokumente wurde automatisiert erzeugt und ist ausschließlich zur besseren Information des Lesers aufgenommen. Die Liste ist nicht Bestandteil der deutschen Patent- bzw. Gebrauchsmusteranmeldung. Das DPMA übernimmt keinerlei Haftung für etwaige Fehler oder Auslassungen.
-
Zitierte Patentliteratur
-
- US 4801573 [0002]
- WO 98/27181 A1 [0002]
- DE 1212662 [0004]
- US 4518484 [0005]
- DE 102011013470 A1 [0006]
- WO 2006/053350 A1 [0007]
-
Zitierte Nicht-Patentliteratur
-
- Ullmann´s Encyclopedia of Industrial Chemistry, Sixth Edition, 1998 Electronic Release, Stichwort „Coal Liquefaction“, Kapitel 2.2 „Fischer-Tropsch Synthesis“ [0002]