DE102013021502A1 - Elektrisch leitende Flüssigkeiten auf der Basis von Metall-Diphosphonat-Komplexen - Google Patents

Elektrisch leitende Flüssigkeiten auf der Basis von Metall-Diphosphonat-Komplexen Download PDF

Info

Publication number
DE102013021502A1
DE102013021502A1 DE102013021502.1A DE102013021502A DE102013021502A1 DE 102013021502 A1 DE102013021502 A1 DE 102013021502A1 DE 102013021502 A DE102013021502 A DE 102013021502A DE 102013021502 A1 DE102013021502 A1 DE 102013021502A1
Authority
DE
Germany
Prior art keywords
metal
liquid
mixtures
electrolyte
diphosphonate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
DE102013021502.1A
Other languages
English (en)
Inventor
Andreas Seidel
Thomas Booz
Fabian Distelrath
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Schlenk Metallfolien GmbH and Co KG
Original Assignee
Schlenk Metallfolien GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Schlenk Metallfolien GmbH and Co KG filed Critical Schlenk Metallfolien GmbH and Co KG
Priority to DE102013021502.1A priority Critical patent/DE102013021502A1/de
Priority to US15/105,816 priority patent/US20160319451A1/en
Priority to EP14821610.4A priority patent/EP2989236B1/de
Priority to PCT/EP2014/078556 priority patent/WO2015091854A2/de
Publication of DE102013021502A1 publication Critical patent/DE102013021502A1/de
Ceased legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D7/00Electroplating characterised by the article coated
    • C25D7/06Wires; Strips; Foils
    • C25D7/0614Strips or foils
    • C25D7/0692Regulating the thickness of the coating
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/30Electroplating: Baths therefor from solutions of tin
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/38Electroplating: Baths therefor from solutions of copper
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/54Electroplating: Baths therefor from solutions of metals not provided for in groups C25D3/04 - C25D3/50
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/18Electroplating using modulated, pulsed or reversing current
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/34Pretreatment of metallic surfaces to be electroplated
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/60Electroplating characterised by the structure or texture of the layers
    • C25D5/605Surface topography of the layers, e.g. rough, dendritic or nodular layers
    • C25D5/611Smooth layers
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/60Electroplating characterised by the structure or texture of the layers
    • C25D5/615Microstructure of the layers, e.g. mixed structure
    • C25D5/617Crystalline layers
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/627Electroplating characterised by the visual appearance of the layers, e.g. colour, brightness or mat appearance
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D7/00Electroplating characterised by the article coated
    • C25D7/06Wires; Strips; Foils
    • C25D7/0614Strips or foils
    • C25D7/0628In vertical cells
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D7/00Electroplating characterised by the article coated
    • C25D7/06Wires; Strips; Foils
    • C25D7/0614Strips or foils
    • C25D7/0664Isolating rolls
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25FPROCESSES FOR THE ELECTROLYTIC REMOVAL OF MATERIALS FROM OBJECTS; APPARATUS THEREFOR
    • C25F3/00Electrolytic etching or polishing
    • C25F3/02Etching
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25FPROCESSES FOR THE ELECTROLYTIC REMOVAL OF MATERIALS FROM OBJECTS; APPARATUS THEREFOR
    • C25F7/00Constructional parts, or assemblies thereof, of cells for electrolytic removal of material from objects; Servicing or operating

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Electroplating Methods And Accessories (AREA)
  • Chemically Coating (AREA)
  • Chemical Treatment Of Metals (AREA)

Abstract

Die vorliegende Erfindung betrifft elektrisch leitende Flüssigkeiten auf der Basis von Diphosphonat-Komplexen sowie deren Verwendung bei Verfahren zur elektrolytischen Oberflächenmodifizierung eines flächigen Metallwerkstücks. Die Erfindung betrifft ferner die mit diesem Verfahren hergestellten flächigen Metallwerkstücke sowie die Verwendung der Metallwerkstücke als Substrat für die Bildung von festen Haftverbänden mit einer Vielzahl von Materialien und für die Aufnahme von flüssigen und festen Stoffen.

Description

  • Die vorliegende Erfindung betrifft elektrisch leitende Flüssigkeiten auf der Basis von Diphosphonat-Komplexen sowie deren Verwendung bei Verfahren zur elektrolytischen Oberflächenmodifizierung eines flächigen Metallwerkstücks. Die Erfindung betrifft ferner die mit diesem Verfahren hergestellten flächigen Metallwerkstücke sowie die Verwendung der Metallwerkstücke als Substrat für die Bildung von festen Haftverbänden mit einer Vielzahl von Materialien und für die Aufnahme von flüssigen und festen Stoffen.
  • Ein bekanntes Verfahren für die Oberflächenbehandlung eines Metallwerkstücks, wie beispielsweise eines Metallbandes oder eines Bleches, stellt das elektrolytische Beschichten einer Metalloberfläche mit einem Metall oder einer Metalllegierung dar. Beispielsweise wird bei der elektrolytischen Bandbeschichtung das Band durch eine oder mehrere Elektrolysezellen geführt. In jeder Elektrolysezelle wird das Band üblicherweise über sogenannte Stromrollen in eine Fest-Fest-Verbindung mit dem Minuspol eines Gleichrichters gebracht. Das Band dient folglich als negative Elektrode, d. h. als Kathode. Die positive Elektrode, d. h. die Anode, ist in der Regel als Elektrodenpaar ausgebildet, wobei das Band zwischen den beiden Elektroden hindurchläuft.
  • Nachteile bei diesem Verfahren zeigen sich insbesondere beim Übergang von höheren Banddicken zu Foliendicken, indem erhebliche Schwierigkeiten und Einschränkungen dahingehend auftreten können, dass (a) durch die Abwärme des Stromübergangs von der Stromrolle die Folie überhitzt und oxidiert, wodurch die erforderlichen Ströme nicht mehr erzielt werden können, (b) durch den niedrigen effektiven Querschnitt einer Folie der innere Widerstand sehr hoch wird, wodurch es zu einer Überhitzung der Folie zwischen Stromrolle und Elektrolytoberfläche und zu Oxidationsschäden kommen kann, (c) beim Kontakt der Folie mit der Stromrolle durch kleinste, nicht entfernte Partikel und Rückstände lokale Widerstandsspitzen auftreten, die zum Durchschweißen oder lokalen Verfärben der Folie führen können, und (d) aufgrund der verwendeten Vorbehandlung und dem anschließenden Folienlauf in der Beschichtungsanlage die Aktivierung der Oberfläche der Folie auf die Reduktion und die Anbeizung der Korngrenzen beschränkt bleibt, so dass für die nachfolgende elektrolytische Metallabscheidung keine strukturell optimierte Oberfläche vorliegt.
  • Durch das elektrolytische Beschichten wird das zu beschichtende Metallwerkstück allseitig gleichmäßig mit einem im Wesentlichen ebenen Metallüberzug versehen. Selbst bei der Verwendung von Metallwerkstücken mit einer verhältnismäßig rauen Oberflächenbeschaffenheit wird die Oberfläche nivelliert. Für Anwendungen, bei denen eine gute Adhäsion mit einem anderen Material erforderlich ist, kann jedoch eine glatte Oberfläche unerwünscht sein. Eine gute Adhäsion zwischen zwei Werkstoffen wird dann erzielt, wenn es zu einer chemischen Wechselwirkung und/oder zu einem mechanischen Ineinandergreifen in topographische Merkmale der Adhäsionspartner kommt. Ist dies nicht oder nicht ausreichend der Fall, verschlechtert sich die Adhäsion. So kann eine schlechte Adhäsion zwischen einer Metalloberfläche und dem gleichen oder einem anderen Material, beispielsweise einer Lackschicht, einer Farbschicht oder einem Klebstoff, zu qualitativ minderwertigen oder sogar unbrauchbaren Produkten führen.
  • Zur Verbesserung der Adhäsion auf Metalloberflächen sind verschiedene technische Lösungen entwickelt worden. Als elektrolytischer Prozess zur Verbesserung der Adhäsion auf Metalloberflächen ist das Anodisieren bekannt. Beim Anodisieren wird unter Verwendung eines sauren Elektrolyten, wie z. B. Schwefel-, Phosphor- oder Chromsäure, auf der Oberfläche eines als Anode geschalteten Metallwerkstücks eine regelmäßig strukturierte, poröse Oxidschicht gebildet. Die Poren ermöglichen das mechanische Ineinandergreifen des anodisierten Metallwerkstücks mit einem anderen Material, wie einer Farb-, Lack- oder Klebeschicht. Das Anodisieren ist jedoch auf wenige Metallwerkstoffe, wie beispielsweise Aluminium, Titan und Legierungen, beschränkt. Industriell bedeutsam ist vor allem das Anodisieren von Aluminium (Eloxal-Verfahren; elektrolytische Oxidation von Aluminium). Hierbei bildet sich auf der Oberfläche des Aluminiummaterials eine Aluminiumoxidschicht mit poröser Struktur.
  • Eine Lösung der sich bei den beschriebenen klassischen Verfahren oder der Kombination davon ergebenden Problematik stellt das Mittelleiterprinzip (MLP) dar, das in der elektrolytischen Reinigung und in der elektrolytischen Beize von Endlosmaterial (Band, Draht) eingesetzt wird. Bei diesem Verfahrensprinzip erfolgt eine kombinierte anodische und kathodische Behandlung. Bei der anodischen Behandlung wird ein Abtragsprozess induziert, bei dem kleinste auf der Oberfläche der Metallfolie befindliche Partikel und Rückstande bzw. Verunreinigungen entfernt werden und eine blanke Oberfläche erhalten wird. Bei der darauffolgenden kathodischen Behandlung wird ein Abscheidungs/Beschichtungsprozess induziert, bei dem ein Metall aus der Behandlungsflüssigkeit an der gereinigten und blanken Oberfläche abgeschieden wird. Beim geschlossenen MLP wird für den Bereich der kathodisch gepolten Elektrode und für den Bereich der anodisch gepolten Elektrode, d. h. für den Abtrag- und den Beschichtungsschritt, dieselbe Behandlungsflüssigkeit verwendet. Beim offenen MLP (mit getrennten Bädern) werden zwei verschiedene Behandlungsflüssigkeiten verwendet, die nicht miteinander in Kontakt stehen.
  • Der schwerwiegende Nachteil des geschlossenen Mittelleiterprinzips gegenüber der klassischen galvanischen Beschichtung mit Fest-Fest-Kontakt besteht darin, dass der Abtrag von der Oberfläche eines Substrats und die anschließende Beschichtung des Substrats mit einem Fremdmaterial mit dauerhaft gleichbleibender Qualität und Zusammensetzung der Behandlungsflüssigkeit nicht realisierbar sind. Beim offenen Mittelleiterprinzip wird dieser Nachteil zwar durch Verwendung verschiedener Behandlungsflüssigkeiten behoben, der Wechsel der Behandlungsflüssigkeit birgt jedoch andere Nachteile in sich, insofern als der Kontakt des Substrats mit der Flüssigkeit, beispielsweise bei einer Zwischenspüle, unterbrochen und die nicht benetzten Bereiche des Substrats nach dem elektrolytischen Abtrag der Atmosphäre ausgesetzt sind. Durch die dabei einsetzende Passivierung und gegebenenfalls Rekorrosion der frisch geöffneten Oberfläche wird der eigentliche Vorteil des Mittelleiterprinzips wieder eingeschränkt oder verwirkt. Ferner wird die Kühlung des Substrats durch die Behandlungsflüssigkeit unterbrochen.
  • Vorgeschlagene Lösungen, etwa durch Verkapselung des Elektrodenraumes der Abtragszone mit ionenspezifischen Membranen, wie beispielsweise in der DE 199 51 324 beschrieben, sind ihrerseits mit Nachteilen behaftet, da (i) die Verschleppung der gelösten Metallionen in der Laufrichtung des Endlosmaterials nicht verhindert wird, (ii) für die ionenspezifische Membran für eine technisch brauchbare Ionenseparation generell große Eigenschafts- oder Konzentrationsunterschiede der zu separierenden Ionen vorliegen müssen, (iii) bei einer Ionenaustauschwirkung dieser Membranen Redoxprozesse zwischen den Ionen nicht unterdrückt werden und (iv) die Kontinuität des Gesamtprozesses durch die Erschöpfung der Austauscherkapazität der Membran nicht mehr gegeben ist.
  • Als Elektrolyte zur Abscheidung von Metalloberflächen in galvanischen Beschichtungsverfahren werden neben klassischen Metallsalz-Elektrolyten aus Metallionen und einfachen Anionen, wie zum Beispiel wässrigen Metallsulfatlösungen, u. a. auch Metallkomplexe aus Metallionen und Liganden bzw. Komplexbildnern aus der Familie der Polyhydroxycarbonsäuren, der Polyamino-, -imino- oder -nitriloessigsäuren, -methylenphosphonsäuren und -3-propionsäuren und Gemische davon verwendet. Die Nutzung von Komplexbildnern dient der Verbesserung des Abscheideverfahrens und ist für die Erzielung der ausreichenden Löslichkeit und die Stabilisierung von ausgewählten Oxidationszuständen von Metallionen in bestimmten pH-Bereichen (üblicherweise 3,5 < pH < 11,5) essentiell. Polyhydroxycarbonsäuren, Polyamino-, -imino- und -nitriloessigsäuren, Methylenphosphonsäuren und -3-propionsäuren, und Gemische davon sind im elektrolytischen Prozess nicht ausreichend stabil, da sie der Zerstörung in der Elektrokolbereaktion unterliegen oder sich in einer Sekundärreaktion nach der Oxidation der Methylen-, Amino-, Imino- oder Nitrilofunktion zersetzen. So werden Carboxylate an der Anode zu Carboxylradikalen oxidiert, die sich unter Abspaltung von Kohlendioxid in ein hochreaktives Alkylradikal stabilisieren. Diese Radikale setzen weitere Bindungsspaltungen in Gang, und in der Regel führt dies zur Umwandlung der genannten Inhaltsstoffe in Carbonat und wenig lösliche Zersetzungsprodukte, die ständig aus dem Prozess entfernt werden müssen. Ähnlich verhalten sich Methylenphosphonate, die praktisch Abkömmlinge des Formaldehyds sind. Diese Methylengruppe wird ebenfalls unter Bildung von Formiat oder Carbonat leicht oxidiert, wodurch die N-Methylenbindung und die P-Methylenbindung brechen. Im Elektrolyten reichern sich dann die sehr schwer entfernbaren Zersetzungsprodukte an, die in der Regel Amine, Hydroxylamine und Phosphate sind.
  • Die DE 3347593 beschreibt Elektrolyte, die Kupferkomplexe aus Kupferionen und einem Diphosphonation als Komplexbildner und einen Puffer umfassen, für klassische galvanische Beschichtungen. Die darin beschriebenen Elektrolyte auf Diphosphonatbasis werden bevorzugt aus Kupfer(II)-sulfat hergestellt und bei erhöhter Badtemperatur zur Abscheidung einer Kupferschicht verwendet. Zur Verwendung bei Verfahren zur Oberflächenmodifizierung nach dem Mittelleiterprinzip erweisen sich die Diphosphonat-Elektrolyte der DE 3347593 aufgrund ihres Sulfatgehalts als ungeeignet. Harte Anionen wie Sulfat oder Chlorid eignen sich zum Brechen der Passivierung der Anodenoberfläche und zum Ermöglichen einer anodischen Abtragsreaktion, im Verfahren nach dem Mittelleiterprinzip erweisen sie sich jedoch insbesondere in Kombination mit dem Diphosphonation als nachteilig, da sie an der Anode zur Nebenreaktion der schleichenden Oxidation und Zerstörung des Diphosphonations oder von anderen organischen Steuerzusätzen führen.
  • Es besteht somit ein Bedarf nach einem verbesserten Elektrolyten bzw. nach einem verbesserten Verfahren zur elektrolytischen Oberflächenmodifizierung von flächigen Metallwerkstücken. Es ist daher die Aufgabe der vorliegenden Erfindung, eine verbesserte Behandlungsflüssigkeit für ein verbessertes Verfahren zur Modifizierung einer Metalloberfläche eines flächigen Metallwerkstücks ohne die bestehenden Nachteile des Stands der Technik bereitzustellen. Bestandteil dieses Bedarfs ist die Erstellung einer Elektrolytfamilie, die unabhängig vom abzutragenden und vom abzuscheidenden Metall nahezu gleiche Oberflächenaktivtät zeigt und die in der Lage ist, aufgrund der familiären Ähnlichkeit die Oberfläche im Abtragsschritt optimal auf die nachfolgende Abscheidung vorzubereiten. Die Elektrolytfamilie sollte eine in engen Grenzen variierende Dichte und einen in engen Grenzen variierenden pH-Wert aufweisen und außer den abgetragenen bzw. abzuscheidenden Metallionen aus identischen Komponenten bestehen, nicht sauer und von hoher Ionenstärke sein. Unter diesen Voraussetzungen wird beispielsweise die Trennung von Abtrags- und Abscheidungszone im MLP durch eine nicht mischbare, nicht leitende, schwere, inerte Trennflüssigkeit realistisch, und das Substrat kann unter kontinuierlicher Benetzung und Kühlung im MLP abgetragen und mit substratfremden Elementen beschichtet werden.
  • Mit Hilfe dieser verbesserten Behandlungsflüssigkeit bzw. dieses verbesserten Verfahrens sollen Metalloberflächen durch Aufbringen von über die Fläche gleichmäßig verteilten Aggregaten aus einem oder mehreren verschiedenen Metallen modifiziert werden können, um beispielsweise flächige Metallwerkstücke mit verbessertem Haftvermögen von auf die Metallwerkstücke aufgebrachten Beschichtungen bereitzustellen.
  • Eine weitere Aufgabe der vorliegenden Erfindung ist es, Behandlungsflüssigkeiten zur Verfügung zu stellen, mit denen es möglich ist, auf flächigen Metallwerkstücken Beschichtungen mit Metallionen abzuscheiden, die bislang in elektrolytischen Verfahren nicht als Treatment auf Metalloberflächen abscheidbar waren.
  • Kurze Beschreibung der Erfindung
  • Zur Lösung der oben genannten Aufgaben wird erfindungsgemäß eine elektrisch leitende Flüssigkeit zur Verfügung gestellt, umfassend eine wässrige Lösung eines Metallkomplexes, wobei der Metallkomplex ein Komplex ist aus
    • (i) einem oder mehreren Metallen, ausgewählt aus der Gruppe, bestehend aus Cu, Zn, Mn, In, Sn, Sb, Bi, Fe, Ni, Co, Ti, Zr, Nb, Y, Nd, Sm, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu oder Mischungen davon, und
    • (ii) einem oder mehreren Diphosphonat-Liganden der allgemeinen Formel (I) O=P(OH)2-X-(OH)2P=O (I) wobei die OH-Gruppen in der allgemeinen Formel (I), die an die beiden Phosphoratome gebunden sind, unabhängig voneinander protoniert (OH) oder deprotoniert (O) sind, worin: X = O, NR1 oder CR1R2, insbesondere X = CR1R2, wobei R1 = H, C1-C18-Alkyl oder C3-C18-Isoalkyl, C5-C5-Cycloalkyl, unsubstituiertes oder substituiertes Benzyl und substituiertes oder unsubstituiertes Phenyl, R2 = R1, -OR3 oder -NHR3, und R3 = H, C1-C4 Alkyl oder C3-C4-Isoalkyl, und
    wobei die Flüssigkeit ferner gegebenenfalls ein Additiv der allgemeinen Formel (II) umfasst: HO-(CHR6-CHR7-Z)n-CHR6-CHR7-OH (II) worin:
    n = eine ganze Zahl von 1 bis 11,
    Z = S oder O,
    R6 = H, Methyl oder Phenyl, und
    R7 = H, Methyl oder Phenyl.
  • Ist das Metall Cu, so ist bei der vorliegenden Erfindung das Additiv vorzugsweise in einer Menge von 0,05 bis 0,5 Gew.-%, bevorzugter in einer Menge von 0,1 bis 0,2 Gew.-%, enthalten.
  • Diese elektrisch leitende Flüssigkeit bildet die Behandlungsflüssigkeit (Elektrolyt) für ein erfindungsgemäßes Verfahren zur elektrolytischen Oberflächenmodifizierung eines flächigen Metallwerkstücks, bei dem wenigstens eine Oberfläche des flächigen Metallwerkstücks in einer Behandlungsflüssigkeit anodisch polarisiert wird und dadurch ein anodischer Auflösungsprozess induziert wird, und dann die wenigstens eine Oberfläche des flächigen Metallwerkstücks in einer Behandlungsflüssigkeit aus der gleichen Gruppe der Behandlungsflüssigkeiten kathodisch polarisiert wird und dadurch ein kathodischer Abscheidungsprozess zur Abscheidung eines oder mehrere Metalle auf der wenigstens einen Oberfläche des flächigen Metallwerkstücks induziert wird. Das erfindungsgemäße Verfahren ermöglicht die Herstellung von in der Oberfläche modifizierten flächigen Metallwerkstücken, die gemäß einem weiteren Aspekt der Erfindung als Substrat für die Bildung von festen Haftverbänden mit anderen Materialien dienen können.
  • Detaillierte Beschreibung der Erfindung
  • Die elektrisch leitende Flüssigkeit der vorliegenden Erfindung, die als Behandlungsflüssigkeit bei dem erfindungsgemäßen Verfahren zur elektrolytischen Oberflächenmodifizierung eines flächigen Metallwerkstücks eingesetzt wird, umfasst eine wässrige Lösung eines Metallkomplexes. Speziell handelt es sich bei dem Metallkomplex um den Komplex eines Metalls mit Liganden der Formel (I), wobei es sich bei dem Metall entweder um ein einziges oder um zwei oder mehrere verschiedene Metalle handeln kann.
  • Das Metall oder die mehreren Metalle des Metallkomplexes sind ausgewählt aus der Gruppe, bestehend aus Cu, Zn, Mn, In, Sn, Sb, Bi, Fe, Ni, Co, Ti, Zr, Nb, Y, Ce, Nd, Sm, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu oder Mischungen davon. Vorzugsweise ist das Metall ausgewählt aus Cu, Zn, Mn, In, Sn, Sb, Bi, Co, Ti, Zr, Nb und Mischungen davon. Besonders bevorzugt ist das Metall ausgewählt aus Mn, Cu, Zn, Cd, In, Sn, Sb, Bi und Mischungen davon, insbesondere Cu, Zn, Sn, Bi und Mischungen davon. Speziell ist das Metall des Metallkomplexes Cu, Sn, Sb oder eine Mischung davon. Wenn mehr als ein Metall vorhanden ist, handelt es sich vorzugsweise um eine Kombination aus Zn und Cu oder Ni und Cu. Bei weiteren bevorzugten Ausführungsformen ist das Metall ausgewählt aus Cu, Zn, Mn, In, Sn, Sb, Bi, Fe, Ni, Co und Mischungen davon und ist mit einem oder mehreren Dotiermetallen dotiert. Als Dotiermetalle eignen sich bei der vorliegenden Erfindung Y, Nd, Sm, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Ti, Zr, Nb und Mischungen davon. Bevorzugte Kombinationen aus Metall und Dotiermetall sind Kombinationen aus Sn und Gd; Sn und Zr; Zn und Y, Dy, Zr oder Mischungen davon, oder Kombinationen aus Fe, Ni, Co oder Mischungen davon mit Y, Nd, Sm, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu oder Mischungen davon, wie zum Beispiel Ni, Gd und Tb; Fe und Ln (Ln = Sm, Gd, Dy, Er); Co und Ln (Ln = Nd, Sm, Gd, Dy, Er).
  • Geeignete Diphosphonat-Liganden sind Verbindungen der allgemeinen Formel (I) O=P(OH)2-X-(OH)2P=O (I) worin:
    X = O, NR1 oder CR1R2, wobei
    R1 = H, C1-C18-Alkyl oder C3-C18-Isoalkyl, C5-C6-Cycloalkyl, unsubstituiertes oder substituiertes Benzyl und substituiertes oder unsubstituiertes Phenyl,
    R2 = R1, -OR3 oder -NHR3, und
    R3 = H, C1-C4 Alkyl oder C3-C4-Isoalkyl.
  • Die an die beiden Phosphoratome gebundenen OH-Gruppen der allgemeinen Formel (I) liegen unabhängig voneinander protoniert (OH) oder deprotoniert (O) vor.
  • Vorzugsweise ist in der allgemeinen Formel (I) X = CR1R2.
  • Vorzugsweise sind 2, 3 oder 4 (alle) der an die beiden Phosphoratome gebundenen Hydroxylgruppen des Diphosphonat-Liganden der allgemeinen Formel (I) deprotoniert. Derart deprotonierte Diphosphonat-Liganden der allgemeinen Formel (I) können im pH-Bereich zwischen etwa 6,5 und 11,0 verwendet werden.
  • In Abhängigkeit von der speziellen Kombination aus Metall(en) und Diphosphonatliganden beträgt das Molverhältnis von Metall:Diphosphonat vorzugsweise 1:2 bis 1:4. Der Diphosphonatligand kann außerdem mit den Zentralionen unterschiedliche Chelate bilden, wobei er in der Regel als zweizähnig oder dreizähnig anlagern kann. Die Größe des Chelatrings reicht von 4 über 5 bis 6.
  • Zur Herstellung der elektrisch leitenden Flüssigkeiten auf der Basis von Metalldiphosphonatkomplexen sind in Abhängigkeit vom Metall oder den Metallen im Komplex verschiedene Wege gangbar.
  • Beispielsweise werden Oxide oder Carbonate der gewünschten Metalle mit der freien Diphosphonsäure behandelt. Anschließend erfolgt die Neutralisation zum Beispiel mit Kalilauge zur Einstellung des optimalen pH-Bereiches, der in der Regel im Bereich von 8,5 bis 10 liegt. Durch dieses Herstellungsverfahren wird der Eintrag harter Ionen wie z. B. Halogenide oder Sulfate in die Behandlungsflüssigkeit weitestgehend oder vollständig vermieden.
  • Dieses Verfahren eignet sich vorzugsweise zur Herstellung der Diphosphonatkomplexe des Kupfers, des Zinks, des Mangans, des Indiums, des Zinns, des Antimons, des Wismuts, des Yttriums, des Lanthans und der Lanthanoiden Praseodym, Neodym, Samarium, Europium, Gadolinium, Terbium, Dysprosium, Holmium, Erbium, Thulium, Ytterbium und Lutetium. Auch Diphosphonatkomplexe des Cobalts sind auf diesem Wege zugänglich, wenngleich deren Stabilität bei pH-Werten zwischen 8,5 und 10 eingeschränkt ist. Der Cobalt-Diphosphonat-Komplex ist bis zu 48 h in Lösung haltbar ist. Um eine längere Haltbarkeit zu erzielen, muss er jedoch vorzugsweise innerhalb von 8 Stunden nach der Gewinnung mit dem Diphosphonat-Komplex eines Lanthanoid(III)-Ions verschnitten werden.
  • Ein anderer Weg zur Herstellung fremdanionenfreier Metalldiphosphonat-Flüssigkeiten besteht in der elektrolytischen Aufmetallisierung des Dikaliumdiphosphonats oder eines Diphosphonatkomplexes eines sogenannten „inerten” Metallions, d. h. Ionen, die aus wässriger Lösung nicht als Metalle elektrolytisch abgeschieden werden können, mit einem Überschuss an Dikaliumdiphosphonat in einer speziellen Elektrolysezelle. Diese Zelle arbeitet mit einem Stromdichteverhältnis zwischen Anode und Kathode von mindestens 1:10, beide Elektroden bestehen aus dem in die Flüssigkeit einzubauenden Metall, oder die Kathode besteht abweichend aus Titan, Edelstahl, Gold oder Platin. Die Kathode kann mit einem Elektrodensack versehen sein. Als Diphosphonatgrundkomponente dient das Dikaliumsalz oder die Komplexe, bzw. Gemische davon. Bevorzugt werden die Diphosphonatkomplexe der trivalenten Ionen von Y, Nd, Sm, Gd, Tb, Dy, Ho, Er, Tm, Yb und Lu eingesetzt, die beispielsweise aus den entsprechenden Metalloxiden, 1-Hydroxyethan-1,1-diphosphonsäure (HEDP) und Kaliumhydroxid einfach herzustellen sind.
  • Durch die Nutzung der Diphosphonatkomplexe des Y, Nd, Sm, Gd, Tb, Dy, Ho, Er, Tm, Yb und/oder Lu gelingt auch die Gewinnung von bei pH-Werten von 8,5 bis 10 stabilen Metall-Diphosphonaten zum Beispiel von Cobalt, Nickel oder Eisen (als Gemischtmetall-Diphosphonate). Dies ist überraschend, da reine Nickel- oder Eisen-Diphosphonatkomplexe im Bereich zwischen pH = 8,5 und pH = 10 nicht existieren bzw. reine Cobalt-Diphosphonatkomplexe nicht stabil sind. Gemischtmetall-Diphosphonat-Komplexe sind zum Beispiel durch gemeinsames Behandeln geeigneter Metallsalze mit freier Diphosphonsäure, durch Aufmetallisieren eines Y- und/oder Ln-Diphosphonats oder durch Verschneiden von Metall-Diphosphonat-Komplexen mit Y- und/oder Ln-Diphosphonat-Komplexen zugänglich, wobei letztere in dieser Funktion oftmals als Verdünnungskomplexe bezeichnet werden. Die einzelnen Lösungen auf Diphosphonatbasis sind üblicherweise miteinander in jedem Verhältnis mischbar.
  • Beispielsweise ist für die Herstellung der Eisendiphosphonat enthaltenden Flüssigkeiten die elektrolytische Aufmetallisierung des ungesättigten Lanthanoid-Diphosphonats mit Eisen(II)-Ionen der optimal gangbare Weg zur Herstellung einer einsatzfähigen Behandlungsflüssigkeit.
  • Die Nickeldiphosphonatelelektrolyte werden am besten durch die gemeinsame Auflösung von Lanthanoid(III)-oxid und Nickel(II)-hydroxid oder Nickel(II)-carbonat in HEDP und anschließende pH-Justierung mittels Kalilauge hergestellt, wobei der Nickelgehalt im Vergleich zur Summe aller komplexbildenden Ionen nie mehr als 20 Mol-% betragen darf. Stabile Cobaltdiphosphonate lassen sich ebenfalls durch gemeinsame Auflösung von Lanthanoid(III)-oxid und Cobalt(II)-carbonat in HEDP und anschließende pH-Justierung mittels Kalilauge herstellen, wobei der Cobaltgehalt bis zu 85 Mol-% der Summe aller komplexbildenden Ionen betragen darf.
  • Titan und Zirkonium werden in der vorliegenden Erfindung auch als inerte Ionen bezeichnet, da sie aus Wasser nicht als Metalle elektrolytisch abgeschieden werden können. Sie besitzen in Form ihrer Oxide ein erhebliches Potenzial im Korrosionsschutz und in der Cr(VI)-freien Passivierung von Metalloberflächen. Ihre Präparation und Anwendung erfolgt daher nicht mit dem Ziel, Ti oder Zr als metallische Schichten abzuscheiden, sondern sie anstelle der, oder mit den Lanthanoidenkomplexen als Zusatz zu den Diphosphonatkomplexen oder Stabilisatoren von Diphosphonatkomplexen abscheidbarer Metalle (z. B. Zn, Cu, Ni, Co, Fe, In, Sn, Sb, Bi) zu nutzen. Die entsprechenden Diphosphonatkomplexe dieser Ti(IV)- oder Zr(IV)-Ionen werden über die Lösung der sauren Sulfate hergestellt, da die HEDP nicht sauer genug ist, um die basischen Carbonate oder gar Oxide dieser Elemente aufzulösen. Die stabilen komplexen Lösungen weisen maximal ein Metall(IV)-Diphosphonat-Verhältnis von 1:3 auf. Die Mischung der sauren Sulfate und der HEDP-Lösung führt zur Fällung der HEDP, die durch die schnelle, extrem exotherme Justierung mittels Kalilauge rückgängig gemacht wird. Bereits unmittelbar nach der Auflösung der HEDP setzt aufgrund des hohen Kaliumüberschusses in der Lösung die Fällung von gut kristallisiertem Kaliumsulfat ein. Durch die Abkühlung der Komplexlösung auf Temperaturen zwischen 0°C und 5°C führt der Löslichkeitsunterschied zwischen dem Kaliumsulfat und den restlichen Komponenten zur nahezu kompletten Fällung des Sulfates. Die Restkonzentration an Sulfat in diesen Diphosphonatkomplexen von Ti(VI) und Zr(IV) liegt unter 1 g/l.
  • Um die Sulfatkonzentration weiter zu verringern wird die nach Abtrennung des gefällten Sulfats erhaltene Lösung unter Rühren mit einer Bariumdiphosphonat-Aufschlämmung versetzt (Aufschlämmung: 1 Massenteil 60 gew.-%ige Lösung von Diphosphonsäure in Wasser und 1,84 Massenteile von Bariumhydroxid-octahydrat). Der entstandene Niederschlag wird nach 2 h abfiltriert. Die Sulfatkonzentration nach diesem zusätzlichen Behandlungsverfahren beträgt etwa 1 mg/l.
  • Die erfindungsgemäß elektrisch leitende Flüssigkeit kann als weitere Komponente ein Additiv der allgemeinen Formel (II) umfassen: HO-(CHR6-CHR7-Z)n-CHR6-CHR7-OH (II) worin
    n = eine ganze Zahl von 1 bis 11,
    Z = S oder O,
    R6 = H, Methyl oder Phenyl, und
    R7 = H, Methyl oder Phenyl.
  • Vorzugsweise ist n = 1–3 und Z ist S. Ein besonders bevorzugtes Additiv der allgemeinen Formel (II) ist 1,8-Dihydroxy-3,6-dithiaoctan (DTO).
  • Das Additiv liegt in der erfindungsgemäßen Flüssigkeit üblicherweise in einer Menge von 0 bis 1 Gew.-%, vorzugsweise in einer Menge von 0,05 bis 0,7 Gew.-%, besonders bevorzugt in einer Menge von 0,1 von 0,5 Gew.-%, bezogen auf das Gewicht der Gesamtlösung, vor. Enthält die elektrisch leitende Flüssigkeit Kupfer-Diphosphonat-Komplex als einzigen Metall-Diphosphonat-Komplex, ist vorzugsweise das Additiv in einer Menge von 0,05 bis 0,2 Gew.-%, bezogen auf die Gesamtlösung, enthalten. Bei einer Ausführungsform der vorliegenden Erfindung ist das Metall des Metall-Diphosphonat-Komplexes Cu, und als Additiv wird 1,8-Dihydroxy-3,6-dithiaoctan verwendet. Vorzugsweise beträgt bei dieser Ausführungsform die Menge an Additiv 0,05 bis 0,2 Gew.-% bezogen auf die Gesamtlösung.
  • Bei einer speziellen Ausführungsform der Erfindung ist die elektrisch leitende Flüssigkeit im Wesentlichen frei von Sulfat- und Halogenidionen. Die Bezeichnung ”im Wesentlichen frei” bedeutet im Sinne dieser Erfindung eine Restkonzentration dieser Ionen von unter 45 ppm (Masse) bei Halogeniden und von unter 120 ppm (Masse) bei Sulfat. Bei noch einer weiteren speziellen Ausführungsform ist das Metall des Metallkomplexes ausgewählt aus der Gruppe, bestehend aus Cu, Zn, Mn, In, Sn, Sb, Bi, Fe, Ni, Co, Nb und Mischungen davon, und die elektrisch leitende Flüssigkeit ist im Wesentlichen frei von Sulfat- und Halogenidionen.
  • Bei noch einer weiteren Ausführungsform der Erfindung enthält die erfindungsgemäße Flüssigkeit neben dem Diphosphonat der Formel (I) keinen zusätzlichen Puffer wie beispielsweise Carbonate, Borate, Acetate oder Mischungen davon.
  • Die elektrisch leitende Flüssigkeit der vorliegenden Erfindung verfügt über spezielle Eigenschaften, die sie insbesondere für den Einsatz als Behandlungsflüssigkeit in Verfahren zur elektrolytischen Oberflächenmodifizierung von Metallsubstraten geeignet macht. Für derartige Verfahren werden Behandlungsflüssigkeiten benötigt, die mit Komponenten versehen sind, welche beispielsweise in einem Abtragsprozess des Oberflächenmodifizierungsverfahrens stabil sind, d. h. nicht bzw. nur in geringem Maße zersetzt werden und in einem Abscheidungsprozess des Oberflächenmodifizierungsverfahrens durch den Eingriff über Sekundärgleichgewichte in die Prozesse in der elektrischen Doppelschicht eingreifen und/oder zum Aufwachsen von Submikroaggregaten führen, die klein, in sich kristallin kompakt und über die Fläche gleichmäßig verteilt sind.
  • Daher stellt die vorliegende Erfindung auch ein Verfahren zur elektrolytischen Oberflächenmodifizierung eines flächigen Metallwerkstücks bereit, bei dem wenigstens eine Oberfläche des flächigen Metallwerkstücks in einer Behandlungsflüssigkeit anodisch gepolt wird und dadurch ein anodischer Auflösungsprozess induziert wird, und anschließend die wenigstens eine Oberfläche des flächigen Metallwerkstücks in einer Behandlungsflüssigkeit kathodisch gepolt wird und dadurch ein kathodischer Abscheidungsprozess zur Abscheidung eines oder mehrere Metalle auf der wenigstens einen Oberfläche des flächigen Metallwerkstücks induziert wird, wobei als Behandlungsflüssigkeit eine oder mehrere der oben beschriebenen elektrisch leitenden Flüssigkeiten verwendet wird.
  • Der Einsatz der Behandlungsflüssigkeiten auf der Basis von Metall-Diphosphonat-Komplexen beim erfindungsgemäßen Verfahren zur elektrolytischen Oberflächenmodifizierung kann in vielfältigen Ausführungsformen erfolgen.
  • Bei einer Ausführungsform des Abscheidungsprozesses des erfindungsgemäßen Verfahrens, welcher dem Prinzip der klassischen Bandgalvanik folgt, wird das Band als Substrat über einen außerhalb der Behandlungsflüssigkeit liegenden Fest-Fest-Kontakt in Form einer Stromrolle als Kathode geschaltet. Die Anode ist parallel zur Bandoberfläche gegenüber einer oder beider Seiten des Bandes angeordnet. Die Diphosphonat-Komplexe liefern bei dieser Form des Abscheidungsprozesses insbesondere dann einen vorteilhaften Beitrag, wenn ansonsten nur saure, hochalkalische oder cyanidische Elektrolyten der abzuscheidenden Metalle zur Verfügung stehen oder wenn die Diphosphonat-Komplexe mehrerer Metalle in einer Behandlungsflüssigkeit in dieser Kombination ansonsten nicht erhalten werden können. Dazu gehören u. a. die Behandlungslösungen auf der Basis der Diphosphonatkomplexe der Monometalle Sn, Zn, Sb, In, Bi und Cu (in Kombination mit DTO), sowie der Bi- und Trimetalle: Sn-Gd-DTO, Sn-Zr, Zn-Zr, Fe-In, Co-Ln und Ni-Ln. Der Einsatz dieser Behandlungsflüssigkeiten bleibt hier nur auf kleine Stromdichten (in der Regel < 8 A/dm2) beschränkt, da bei der Auflösung der Schicht in Einzelaggregate unter der Anwendung höherer Stromdichten die Haftfestigkeit aufgrund der ungenügend vorbereiteten Oberfläche mit steigender Stromdichte ständig abnimmt.
  • Bei einer weiteren Ausführungsform des erfindungsgemäßen Verfahrens zur elektrolytischen Oberflächenmodifizierung eines flächigen Metallwerkstücks nach dem geschlossenen Mittelleiterprinzip wird das flächige Metallwerkstück weder kathodisch noch anodisch in Fest-Fest-Kontakt gebracht, sondern wird durch wenigstens eine Kathode anodisch (positiv) polarisiert und dann durch wenigstens eine Anode kathodisch (negativ) polarisiert. Dabei erfolgt die Stromübertragung auf das flächige Metallwerkstück nicht durch direkte Kontaktierung des flächigen Metallwerkstücks über ein mit einer Stromquelle verbundenes Kontaktelement (wie z. B. einer Stromrolle bei der Bandgalvanik), sondern durch die Behandlungsflüssigkeit hindurch. Bei der anodischen Polarisation wird auf einer Oberfläche des flächigen Metallwerkstücks ein anodischer Auflösungs- bzw. Abtragsprozess induziert, bei dem kleinste auf der Oberfläche der Metallfolie befindliche Partikel und Rückstände bzw. Verunreinigungen entfernt werden, wodurch eine metallisch blanke Oberfläche erhalten wird. Ferner werden die topographischen Merkmale der Metalloberfläche, insbesondere die Rauheitsspitzen, eingeebnet. Des Weiteren führt die anodische Polarisation bzw. der dadurch induzierte anodische Auflösungsprozess zu einer aktivierten Oberfläche für die nachfolgende Metallabscheidung. Insbesondere zeigt die mit dem erfindungsgemäßen Verfahren erhaltene Oberfläche strukturelle Ähnlichkeit oder strukturelle Identität zu den im nachfolgenden Abscheidungsprozess auf der Oberfläche des flächigen Metallwerkstücks abgeschiedenen Metallaggregaten auf (Epitaxie bzw. Syntaxie). Durch die darauffolgende kathodische Polarisation wird ein kathodischer Abscheidungsprozess induziert, bei dem ein Metall oder eine Metalllegierung (d. h. mehrere verschiedene Metalle) auf der Oberfläche des flächigen Metallwerkstücks abgeschieden wird.
  • Bei einer speziellen Ausführungsform nach dem offenen Mittelleiterprinzip (MLP) finden Abtrag- und Abscheidung in getrennten Zellen statt, die mit Vorteil durch eine Abblaszone, eine Spüle oder beides in Kombination getrennt vorliegen, um die Verschleppung der Behandlungsflüssigkeit der Abtragsreaktion (Anode) in die Behandlungsflüssigkeit der Abscheidungsreaktion (Kathode) zu verhindern.
  • Für die Abtragsreaktion wird dann mit Vorteil eine Behandlungsflüssigkeit auf Diphosphonat-Basis genutzt, die das gleiche Metall enthält wie das Substrat und die nur aus einem Gemisch von Kaliumdihydrogen- und Kaliumhydrogendiphosphonat (K2H2Cb und K3HCb) oder aus einem Diphosphonatkomplex eines oder mehrerer inerter Metallionen, bevorzugt die Komplexe von Y, Nd, Sm, Gd bis Lu, Zr, mit einem Überschuss an den Kaliumsalzen des Liganden, bevorzugt K2H2Cb, K3HCb und K4Cb, besteht (wobei H4Cb die Abkürzung der (vierwertigen/vierprotonigen) Diphosphonsäure ist). Diese Ausführungsform ist nahtlos auf die Behandlung eines diskreten flächigen Werkstücks im entsprechend getakteten Verfahren übertragbar. Diese Ausführungsform gestattet bereits die Nutzung hoher Stromdichten, um haftfeste Einzelaggregate abzuscheiden. Sie kann bei Stromdichten von bis zu 27 A/dm2 betrieben werden. Bei steigender Stromdichte geht die kompakt abgeschiedene Schicht in Einzelaggregate über, die sehr haftfest sind. Die klassische Galvanik kann solche Einzelaggregate nicht haftfest darstellen.
  • Diese Ausführungsform ist deshalb so interessant, da vorhandene Anlagen dafür genutzt werden können, indem die Beize durch den Einbau der Hilfskathoden in die Abtragszelle umgebaut wird und die klassische Abscheidung durch den Austausch der Stromrollen gegen Umlenkrollen und die Beibehaltung der Anoden als Abscheidungszone im offenen Mittelleiterprinzip erhalten bleibt.
  • Die Passivierung der frisch abgetragenen Oberfläche durch die Atmosphäre oder das Spülwasser wird durch das Diphosphonat selbst oder zum Beispiel durch DTO oder durch beide (falls DTO als Additiv enthalten ist) im Gegensatz zu sauren Behandlungsflüssigkeiten sichtbar unterdrückt und die Aktivität der Oberfläche ausreichend erhalten.
  • Das im Rahmen der vorliegenden Erfindung verwendete flächige Metallwerkstück ist vorzugsweise ein Metallwerkstück mit einer Dicke, die mindestens 100-fach, bevorzugter mindestens 1000-fach und besonders bevorzugt mindestens 10000-fach geringer ist als die Länge und/oder Breite des Metallwerkstücks. Folglich ist mit dem Begriff „Oberfläche des flächigen Metallwerkstücks” in aller Regel die durch die Länge und Breite definierte Fläche, nicht die durch die Dicke und Breite bzw. Dicke und Länge definierte Fläche gemeint. Vorzugsweise ist das flächige Metallwerkstück ein Metallband oder eine Metallfolie. Unter dem Begriff „Metallband” wird hierin ein flächiges Metallwerkstück mit gegebener Breite und einer Dicke von 100 µm bis 1 mm bezeichnet. Der Begriff „Metallfolie” bezeichnet ein flächiges Metallwerkstück mit gegebener Breite und einer Dicke von weniger als 100 µm, üblicherweise mit einer Dicke von 2 µm bis weniger als 100 µm.
  • Das flächige Metallwerkstück besteht in der Regel vollständig aus einem einzelnen Metall, insbesondere aus Kupfer, Zinn, Zink, Aluminium, Eisen, Nickel. Es kann jedoch auch aus einer Metalllegierung, beispielsweise aus mindestens zwei der genannten Metalle, vorzugsweise aus einer Kupferknetlegierung, Eisenlegierung, Silberlegierung oder Zinnlegierung, bestehen. Auch ein flächiges Metallwerkstück aus Stahl kann verwendet werden. Besonders bevorzugt ist das flächige Metallwerkstück eine Kupferfolie, ein Kupferband, eine verzinnte Folie oder ein verzinntes Band, insbesondere eine verzinnte Kupferfolie oder ein verzinntes Kupferband.
  • Ferner kann das flächige Metallwerkstück auch aus zwei oder mehreren Schichten aus einem Metall oder einer Metalllegierung bestehen, wobei die Schichten gleich oder unterschiedlich sein können. Ferner kann das flächige Metallwerkstück so ausgebildet sein, dass mindestens eine und vorzugsweise beide Oberflächen des flächigen Metallwerkstücks aus einem Metall bzw. einer Metalllegierung bestehen und der übrige Anteil des flächigen Metallwerkstücks ein beliebiges Material sein kann, sofern dieses zur Anwendung in dem erfindungsgemäßen Verfahren geeignet ist.
  • Vor der Verwendung in dem erfindungsgemäßen Verfahren wird das flächige Metallwerkstück üblicherweise vorbehandelt. Entsprechende Vorbehandlungsverfahren sind im Stand der Technik bekannt und umfassen beispielsweise Entfetten, Spülen mit Wasser, wässrigen Tensidlösungen oder Lösungsmitteln, und Dekapierung mit der Lösung einer Mineralsäure in Wasser, bevorzugt Schwefelsäure.
  • Das flächige Metallwerkstück wird während der Elektrolyse vorzugsweise durch die Behandlungsflüssigkeit und vorbei an der wenigstens einen Kathode und der wenigstens einen Anode geführt. Dies erfolgt in einer Art und Weise, dass es zur beschriebenen anodischen Polarisation und kathodischen Polarisation und dem dadurch induzierten anodischen Auflösungsprozess und kathodischen Abscheidungsprozess kommt. Im Falle von Endlosmetallfolien oder -bändern werden diese üblicherweise unter Verwendung von Führungselementen (z. B. Umlenkrollen) durch die Behandlungsflüssigkeit geführt. Falls zur Durchführung des erfindungsgemäßen Verfahrens eine Foliendurchlaufanlage benützt wird, können auch mehrere Elektrolysebäder (Elektrolysezellen) hintereinander geschaltet sein.
  • Im Rahmen der vorliegenden Erfindung sind vielerlei Anordnungen der wenigstens einen Kathode und der wenigstens einen Anode denkbar. Beispielsweise können 1, 2, 3, 4 oder mehr Kathoden und 1, 2, 3, 4 oder mehr Anoden pro Elektrolysezelle bzw. Elektrolytbad verwendet werden. Diese können unterschiedlich angeordnet sein (z. B. alternierend Kathode und Anode, zunächst alle Kathoden und dann alle Anoden, mehrere Kathoden im Wechsel mit mehreren Anoden, Kathoden und Anoden nur auf einer Seite des flächigen Metallwerkstücks oder auf beiden Seiten angeordnet, etc.).
  • Gemäß einer bevorzugten Ausführungsform werden vorzugsweise wenigstens ein Kathodenpaar und wenigstens ein Anodenpaar eingesetzt. Die beiden Kathoden des Kathodenpaars und die beiden Anoden des Anodenpaars sind auf gegenüberliegenden Seiten des flächigen Metallwerkstücks angeordnet, so dass sich das flächige Metallwerkstück zwischen den beiden Anoden bzw. zwischen den beiden Kathoden befindet. Es kommt folglich auf beiden Seiten des flächigen Metallwerkstücks zu einer anodischen bzw. kathodischen Polarisation. Eine solche Konfiguration erlaubt die zweiseitige Modifizierung des flächigen Metallwerkstücks mit abgeschiedenen Metallaggregaten. Gemäß einer anderen bevorzugten Ausführungsform wird das flächige Metallwerkstück zunächst von zwei Kathoden, die auf derselben Seite des flächigen Metallwerkstücks angeordnet sind, anodisch polarisiert und dann von zwei Anoden, die beide auf derselben Seite des flächigen Metallwerkstücks angeordnet sind wie die Kathoden, kathodisch polarisiert.
  • Üblicherweise wird die wenigstens eine Oberfläche des flächigen Metallwerkstücks zunächst durch die wenigstens eine Kathode anodisch polarisiert und dann durch die wenigstens eine Anode kathodisch polarisiert. Es ist jedoch auch vorgesehen, dass der Zyklus „anodische Polarisation/kathodische Polarisation” mehrmals durchlaufen wird. Des Weiteren kann das flächige Metallwerkstück in beliebiger Reihenfolge ein oder mehrmals anodisch und ein oder mehrmals kathodisch polarisiert werden, wobei typischerweise zunächst der anodische Auflösungsprozess überwiegt und dann der kathodische Abscheidungsprozess überwiegt. Dabei kann eine Phase mit dominierendem Auflösungsprozess durch eine kurze Phase mit dem Abscheidungsprozess unterbrochen sein (dominierender Auflösungsprozess, unterbrochen durch Abscheidungsprozess) und umgekehrt (dominierender Abscheidungsprozess, unterbrochen durch Auflösungsprozess). Die eine oder mehrfache anodische Polarisation und die eine oder mehrfache kathodische Polarisation kann, wie oben bereits erwähnt, durch Verwendung einer entsprechenden Anzahl räumlich getrennter Anoden bzw. Kathoden erreicht werden. Es ist jedoch auch möglich, Elektroden einzusetzen, die wahlweise positiv oder negativ geschaltet (kontaktiert) werden und folglich sowohl als Kathode wie auch als Anode fungieren.
  • Die Kathoden und Anoden werden mit Gleichstrom oder einem gepulsten Strom, üblicherweise einem gepulsten Gleichstrom, betrieben. Hierzu können Gleichrichter verwendet werden. Falls die Anzahl der Elektroden zwei übersteigt (d. h. mehr als eine Kathode und/oder mehr als eine Anode) werden die zusätzlichen Elektroden vorzugsweise durch einen zusätzlichen Gleichrichter bedient. Im Rahmen der vorliegenden Erfindung ist es auch möglich, dass in mindestens einem Arbeitsbereich (kathodisch, anodisch) jede Elektrode durch einen anderen Gleichrichter versorgt wird, während in einem anderen Arbeitsbereich mehrere Gleichrichter auf eine Elektrode aufgeschaltet werden.
  • Als Anoden können in dem erfindungsgemäßen Verfahren unlösliche oder lösliche Anoden verwendet werden. Die unlöslichen Anoden bestehen typischerweise aus einem inerten Material (bzw. deren Oxiden), wie beispielsweise Blei, Graphit, Titan, Platin und/oder Iridium (und/oder deren Oxiden). Bevorzugte unlösliche Anoden sind aus Titan beschichtet mit Platin oder Iridium und/oder Ruthenium (und/oder deren Oxiden). Besonders bevorzugt ist eine mit Iridium oder Iridiumoxid beschichtete Titananode. Die löslichen Anoden bestehen demgegenüber aus dem zu beschichtenden Metall oder der zu beschichtenden Metalllegierungen. Beispiele für geeignete lösliche Anoden sind Anoden aus Kupfer oder Zinn.
  • Geeignete Kathoden können aus demselben Material wie das Material der Anoden bestehen. Als Kathode kann beispielsweise eine Kupferkathode verwendet werden. In einer bevorzugten Ausführungsform werden sowohl als Anode wie auch als Kathode Kupferelektroden verwendet, insbesondere falls auf der Oberfläche des flächigen Metallwerkstücks Kupfer abgeschieden werden soll.
  • Wie bei der Beschreibung der erfindungsgemäßen elektrisch leitenden Flüssigkeit erörtert, kann die Behandlungsflüssigkeit ein Additiv wie beispielsweise 1,8-Dihydroxy-3,6-dithiaoctan (DTO) enthalten. Der Eingriff des DTO in die anodischen Abtrags- und kathodischen Abscheidungsprozesse führt beispielsweise bei Zink, Kupfer, Nickel, Eisen, Zinn und Wismut zur Abscheidung von sehr haftfesten submikro- und mikrokristallinen Aggregaten auf den Oberflächen des zu modifizierenden Substrats. Der mögliche Zusatz von zum Beispiel DTO – ohne dass dieses im elektrolytischen Prozess zersetzt wird – ist daher ein entscheidender technischer Vorteil der Metall- und Gemischtmetall-Diphosphonatbehandlungsflüssigkeiten.
  • Ein wesentlicher Vorteil der Verwendung der Diphosphonat-Metallkomplexe enthaltenden Behandlungsflüssigkeit beim erfindungsgemäßen Verfahren ist, dass das Diphosphonat im kontinuierlichen Betrieb keine schleichende Hydrolyse erleidet, wie etwa die strukturell verwandten und gleichartig wirkenden Pyrophosphate. Ferner stellt das Diphosphonat selbst einen ausgezeichneten Puffer dar, es verursacht selbst eine ausgezeichnete Streuung der abgeschiedenen Schicht und braucht keine Hilfspuffer, wie Carbonat oder das giftige Borat. In einer bevorzugten Ausführungsform des erfindungsgemäßen Verfahrens wird daher auf den Einsatz von zusätzlichen Puffern wie z. B. Carbonaten, Borsten, Acetaten oder Mischungen davon in der Behandlungsflüssigkeit verzichtet. Die Diphosphonat-Behandlungsflüssigkeiten besitzen darüber hinaus ein ausgezeichnetes Streuverhalten in der Struktur der Abscheidung, so dass bei dem erfindungsgemäßen Verfahren auch auf den Zusatz von Streuungsverbesserern wie Gelatine oder Einebner verzichtet werden kann.
  • Ferner wurde überraschend festgestellt, dass das Diphosphonation selbst in der Lage ist, die anodische Abtragsreaktion zu initiieren, und dass somit eine Diphosphonatkomplex enthaltende Behandlungsflüssigkeit keine harten Anionen wie Sulfat oder Chlorid benötigt, um die Passivierung der Anodenoberfläche zu brechen. Dies ist insbesondere von Vorteil, da wie oben beschrieben die harten Anionen an der Anode u. a. zur Nebenreaktion der schleichenden Oxidation und Zerstörung des Diphosphonations führen. Daher sind bei einer speziellen Ausführungsform des erfindungsgemäßen Verfahrens die Behandlungsflüssigkeiten im Wesentlichen frei von Sulfat- und Halogenidionen. Die Bezeichnung ”im Wesentlichen frei” bedeutet im Sinne dieser Erfindung eine Restkonzentration dieser Ionen von unter 45 ppm (Masse) bei Halogeniden, von unter 120 ppm (Masse) bei Sulfat.
  • Ohne diese die sekundären anodischen Oxidationsprozesse initiierenden harten Zusatzionen bilden auf Diphosphonat basierte, elektrisch leitende Behandlungsflüssigkeiten auch optimale Voraussetzungen für den Einsatz in Gegenwart oxidationssensibler Steuerzusätze. So kann die beim erfindungsgemäßen Verfahren eingesetzte Behandlungsflüssigkeit Additive enthalten, welche die Viskosität, Wärmeleitfähigkeit, elektrische Leitfähigkeit und/oder die Abscheidung der Metallaggregate beeinflussen, ohne dass diese während des Verfahrens zersetzt werden.
  • Abhängig von den in den Behandlungsflüssigkeiten verwendeten Komponenten lassen sich durch das erfindungsgemäße Verfahren zur elektroytischen Oberflächenmodifizierung von flächigen Metallwerkstücken verschiedenartige besonders vorteilhafte Wirkungen im Hinblick auf das Verfahren selbst oder die mittels des Verfahrens erzeugte modifizierte Oberfläche erzielen.
  • Beispielsweise zeigen die aus den Lanthanoid-Zirconium-Behandlungsflüssigkeiten mit Zink, Kupfer, Nickel, Cobalt, Eisen, Zinn und/oder Wismut abgeschiedenen Schichten auch auf Kupfer eine extreme Widerstandsfähigkeit gegenüber Korrosion. Dies ist bei Eisen und Zinn besonders auffällig und interessant. Die Trocknungsgeschwindigkeit der Eisenschichten auf Kupfer spielt bei der Abscheidung aus den Diphosphonaten praktisch keine Rolle. Im Gegensatz dazu korrodiert aus sauren Behandlungsflüssigkeiten abgeschiedenes Eisen bereits während des Spülvorgangs nach der Beschichtung.
  • Bei Zinn tritt eine gewisse Selektivität der Mischungen zutage: Die Gemischt-Diphosphonat-Behandlungsflüssigkeiten auf der Basis von Zinn-Gadolinium-Diphosphonat (75 Mol-% Sn, 25 Mol-% Gd) liefern unter Zusatz von 0,1 bis 0,5 Mol-% DTO sehr stabile, aus kräftigen Säulen bestehende Zinnschichten auf Zinn oder auf Kupfer. Die Oberfläche ist lagerstabil und zeigt gute Adhäsionseigenschaften. Ähnliche Vorteile sind bei den Zinnschichten zu erkennen, die aus den Gemischtdiphosphonatbehandlungsflüssigkeiten mit Zinn und Zirconium (Sn mindestens 25 Mol-%, Zr (1:4) mindestens 11 Mol-%) abgeschieden werden. Obwohl in der Zinnschicht auf Stahl oder auf Kupfer nur im ppm-Bereich Zirconium nachgewiesen wird, neigen diese Schichten unter thermischer Belastung nahe dem Schmelzpunkt des Zinns nicht oder signifikant weniger zur Vergilbung oder Vergrauung. Das trifft auch für bereits niedergeschmolzene Zinnschichten aus dieser Abscheidung zu.
  • Durch die Kombination der Diphosphonate von z. B. Ni(II) (19 Mol-%), Gd(III) (76 Mol-%), Tb(III) (5 Mol-%) und dem Zusatz von DTO (0,1 bis 0,5 Mol-%) wird Nickel der Oberflächenstrukturierung zugänglich. Die kleinen, grauschwarz erscheinenden Nickelaggregate auf der Nickeloberfläche sind haftfest und liefern eine deutlich gesteigerte Adhäsion zu den aufgepressten Kunststoffen und Klebefolien.
  • Die Nutzung der Diphosphonat-Gemischtbehandlungsflüssigkeiten aus den abzuscheidenden Metallionen wie Zn, Cu, Ni, Co, Fe, Sn, Bi und den Diphosphonat-Lösungen von Y, Nd, Sm, Gd, Tb, Dy, Ho, Er, Yb und Lu gestattet die gezielt einstellbare Abscheidung von mit den Lanthanoidmetallen dotierten Schichten der genannten, auch allein aus wässriger Lösung abscheidbaren Wirtsmetalle. Dabei können die Konzentrationen der Ln-Dotanten systemabhängig von Prozentbruchteilen (Gd-Sn) bis zu 20 Mol-% (Sm-Co) erreichen.
  • Bei einer Ausführungsform des erfindungsgemäßen Verfahrens werden Schichten von Cu, Zn, Mn, In, Sn, Sb, Bi, Fe, Ni, Co, oder Mischungen davon als Wirtsmetalle und Ti, Zr, Nb, Y, Nd, Sm, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu oder Mischungen davon als Dotiermetalle auf den flächigen Metallwerkstücken abgeschieden. Die Dotiermetalle werden dabei vorzugsweise in einer Konzentration im Bereich von 1 ppm bis 20000 ppm bezogen auf die Wirtsmetalle abgeschieden. Die relative Menge an Dotiermetall lässt sich dabei durch Variierung der mittleren Stromdichte der Abscheidung und Variierung des Konzentrationsverhältnisses (vorzugsweise im Bereich von 1:5 bis 150:1) zwischen Dotiermetall und Wirtsmetall in der Behandlungsflüssigkeit einstellen.
  • Bei einer weiteren Ausführungsform des erfindungsgemäßen Verfahrens werden potenziell stark ferromagnetische, geschlossene Schichten mit einer Auflage im Bereich von 10 nm bis 1 μm der mit Y, Nd, Sm, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu oder Mischungen davon dotierten Metalle Cu, Zn, Mn, In, Sn, Sb, Bi, Fe, Ni, Co, oder Mischungen davon abgeschieden, die eine größere Schichtdicke des Umkippens zwischen der In-plane- und der Out-of-plane-Orientierung der Domänen aufweisen als bei vakuumtechnisch abgeschiedenen, ferromagnetischen, reinen Metallschichten.
  • Das erfindungsgemäße Verfahren eignet sich insbesondere auch zur Abscheidung korrosionsstabiler Eisen- und/oder Zinnoberflächen und von rekristallisationsgehemmten Zinnoberflächen.
  • Im Folgenden werden beispielhaft einige Vorrichtungen zur Durchführung des erfindungsgemäßen Verfahrens veranschaulicht.
  • Die Vorrichtungen umfassen wenigstens ein Behältnis zur Aufnahme einer Behandlungsflüssigkeit, wenigstens eine in dem Behältnis angeordnete Kathode und wenigstens eine in dem Behältnis angeordnete Anode, wobei die wenigstens eine Kathode und die wenigstens eine Anode mit einer Stromquelle verbunden sind und wobei das flächige Metallwerkstück nicht mit einer Stromquelle verbunden ist.
  • Vorzugsweise ist wenigstens eine Kathode und/oder wenigstens eine Anode der Vorrichtung als Strömungselektrode ausgestaltet, umfassend ein Elektrodengehäuse mit einem Metallgitter, durch das die Behandlungsflüssigkeit (im Folgenden auch als Elektrolyt bezeichnet) in das Gehäuse eintreten kann, wobei das Elektrodengehäuse zumindest teilweise mit Metallkugeln gefüllt ist, die untereinander und mit dem Metallgitter in Kontakt stehen. Das Elektrodengehäuse umfasst ferner eine Elektrolytzuführung zum Einleiten eines Elektrolyten und eine Strömungsöffnung, aus welcher der Elektrolyt, der von der Elektrolytzuführung zwischen den Metallkugeln hindurch zur Strömungsöffnung geströmt ist, austritt. Die Strömungsöffnung ist so angeordnet, dass eine ausreichende Beströmung der Arbeitszone, d. h. des Raumes zwischen Elektrode und flächigem Metallwerkstück, erfolgt. Hierzu ist die Strömungsöffnung üblicherweise so angeordnet, dass der austretende Elektrolyt an dem Metallgitter vorbei strömt. Vorzugsweise erfolgt das Vorbeiströmen im Wesentlichen parallel zu dem Metallgitter. Im Betrieb ergibt sich auf diese Weise eine im Wesentlichen laminare Strömung im Raum zwischen der Elektrode und dem flächigen Metallwerkstück, das vorzugsweise ein durchlaufendes Metallband oder eine durchlaufende Metallfolie ist.
  • Üblicherweise umfasst das Elektrodengehäuse zudem einen Deckel, um ein Herausfallen der Metallkugeln zu verhindern und eine definierte Durchströmung der Strömungselektrode mit Elektrolyt sicherzustellen. Der Deckel kann beispielsweise mit Rändelschrauben lösbar mit dem Elektrodengehäuse verbunden sein und ferner Kontakte zum Anschließen an eine Stromquelle umfassen. Im Betrieb wird die Strömungselektrode anodisch bzw. kathodisch an eine Stromquelle angeschlossen, wobei üblicherweise das Metallgitter anodisch bzw. kathodisch kontaktiert wird.
  • Der Elektrolyt, der durch die Metallkugeln hindurchgeströmt ist, wird vorzugsweise in einem Elektrolytkanal gesammelt und dann der Strömungsöffnung zugeführt. Der Elektrolytkanal und die Strömungsöffnung befinden sich vorzugsweise im Boden des Elektrodengehäuses. Die Strömungsöffnung ist vorzugsweise als Strömungslippe ausgestaltet, die sich bevorzugt über die ganze Länge des Metallgitters im Boden des Elektrodengehäuses erstreckt. Falls ein vor dem Metallgitter angeordnetes Filtervlies als Anodensack verwendet wird, ist die Strömungsöffnung so angeordnet, dass der Elektrolyt vor dem Filtervlies austritt und, im Wesentlichen laminar, an diesem entlang strömt.
  • Das Elektrodengehäuse kann beispielsweise aus einem Kunststoff, wie Polypropylen, bestehen. Die Metallkugeln können aus den oben für die Anode und Kathode genannten Metallen bestehen. Vorzugsweise ist wenigstens eine Anode in Form der oben beschriebenen Strömungselektrode ausgestaltet. Im Falle der Anode bestehen die Metallkugeln vorzugsweise aus dem Metall oder den Metallen, das bzw. die auf dem flächigen Metallwerkstück abgeschieden werden sollen. Vorzugsweise sind die Metallkugeln Kupferkugeln. Das Metallgitter ist vorzugsweise ein Streckmetallgitter (Streckmetall-Blendfläche), insbesondere ein Titanstreckmetall.
  • 1 zeigt schematisch eine Ausführungsform einer Auflöse-/Abscheidezelle 30 zur Durchführung des erfindungsgemäßen Verfahrens zur Oberflächenbehandlung eines flächigen Metallwerkstücks 32, in diesem Fall einer Metallfolie. Die Auflöse-/Abscheidezelle 30 hat ein trogartiges, nach oben offenes Behältnis 31, in dem sich Behandlungsflüssigkeit 36 befindet. Die Auflöse-/Abscheidezelle 30 weist ferner eine erste, zweite und dritte Umlenkrolle 34a, 34b und 34c sowie eine erste Arbeitselektrode, die aus zwei parallel angeordneten Kathoden 40a und 40b besteht, und eine zweite Arbeitselektrode, die aus zwei parallel angeordneten Anoden 44a und 44b besteht, auf. Die Kathoden 40a und 40b und die Anoden 44a und 44b sind an eine Stromquelle 45 angeschlossen. Die erste und dritte Umlenkrolle 34a, 34c sind oberhalb des Behältnisses 31 außerhalb der Behandlungsflüssigkeit 36 und über den ersten und zweiten Arbeitselektroden angeordnet, während sich die zweite Umlenkrolle am Boden des Behältnisses 31 innerhalb der Behandlungsflüssigkeit und unterhalb der Arbeitselektroden befindet. Des Weiteren weist die Auflöse-/Abscheidezelle 30 ein Trennelement 48 zur Reduzierung von Blindströmen auf.
  • Das flächige Metallwerkstück 32 läuft über die erste Umlenkrolle 34a in die Behandlungsflüssigkeit 36 ein und zwischen den beiden Kathoden 40a, 40b hindurch, so dass sich diese auf jeweils einer der beiden Seiten des durchlaufenden flächigen Metallwerkstücks 32 befinden. Weder das flächige Metallwerkstück 32 noch die erste Umlenkrolle 34a ist an eine Stromquelle angeschlossen. Der sich zwischen den beiden Kathoden 40a, 40b befindliche Bereich 38a des flächigen Metallwerkstück 32 wird durch die beiden Kathoden 40a, 40b positiv (anodisch) polarisiert. Die beiden Kathoden 40a, 40b definieren einen Auflösungsbereich 42. In dem vergrößert und schematisch dargestellten Ausschnitt des Auflösungsbereichs 42 werden auf der Oberfläche des flächigen Metallwerkstücks 32 vorliegende Verunreinigungen und gegebenenfalls vorkommende Fremdmetalle und/oder bestimmte (z. B. unebene) Metallstrukturen weitgehend beseitigt. Als Ergebnis wird eine verunreinigungsfreie, homogene und definierte Oberfläche des flächigen Metallwerkstücks 32 erhalten, die sich in dem nachfolgenden Abscheidungsschritt zur Erzielung von definierten Metallstrukturen eignet.
  • Nach Durchlaufen der Kathoden 40a, 40b, d. h. des Auflösebereichs 42, wird das flächige Metallwerkstück 32 über die ebenfalls nicht an eine Stromquelle angeschlossene zweite Umlenkrolle 34b zwischen den beiden Anoden 44a, 44b hindurchgeführt, die sich jeweils auf einer der beiden Seiten des flächigen Metallwerkstücks 32 befinden und die zweite Arbeitselektrode bilden. Durch die beiden Anoden 44a, 44b wird ein Bereich 38b des flächigen Metallwerkstücks 32 negativ (kathodisch) polarisiert. Die beiden Anoden definieren einen Abscheidungsbereich 46. In dem vergrößert und schematisch dargestellten Ausschnitt des Abscheidungsbereichs 46 wandern die positiv geladenen Metallionen der Behandlungsflüssigkeit 36 zur negativ polarisierten Oberfläche des flächigen Metallwerkstücks 32 und scheiden sich in definierter Weise auf der Oberfläche des flächigen Metallwerkstücks 32 ab. Nach Durchlauf des Abscheidungsbereichs 46 läuft das flächige Metallwerkstück 32 aus der Behandlungsflüssigkeit 36 heraus und über die nicht an eine Stromquelle angeschlossene dritte Umlenkrolle 34c.
  • Das auf diese Art und Weise mit einer Behandlungsflüssigkeit gemäß der Erfindung elektrolytisch behandelte flächige Metallwerkstück 32 weist auf dessen Oberfläche definierte Metallaggregate im Submikrometerbereich auf und zeigt überraschend gute Adhäsions- und Hafteigenschaften.
  • Alternativ zur in 1 beschriebenen Ausführungsform nach dem geschlossenen Mittelleiterprinzip (MLP) können im Auflösungsbereich 42 und im Abscheidungsbereich 46 unterschiedliche Behandlungsflüssigkeiten verwendet werden, die durch eine dichte, nichtleitende, prozessinerte Trennflüssigkeit getrennt werden, die auch Kontakt zum flächigen Werkstück besitzt. Auf diese Weise wird aus dem geschlossenen MLP von 1 ein offenes MLP mit getrennten Abtrags- und Abscheidungszonen, und das Substrat kann unter kontinuierlicher Benetzung und Kühlung im Auflösungsbereich abgetragen und im Abscheidungsbereich mit substratfremden Elementen beschichtet werden.
  • 2 beschreibt beispielhaft eine solche Apparatur zur Durchführung eines Verfahrens nach dem offenen Mittelleiterprinzip am Beispiel einer Verzinnung von Kupferfolie. Als Auflöse-/Abscheidezelle wird ein trogartiges, nach oben offenes Behältnis (BW) aus Polypropylen mit einer Behälterwanddicke von 20 mm verwendet, das durch eine 15 mm starke Polypropylen-Trennwand (TW) in eine Auflöse- und eine Abscheidezone unterteilt wird, wobei die Trennwand nicht bis ganz an den Boden des Behältnisses reicht. Am Boden des Behältnisses befindet sich eine dichte, nichtleitende, prozessinerte Trennflüssigkeit, die bis über den unteren Rand der Trennwand reicht und eine Trennmittelzone (TM) im Behältnis bildet. Über dieser Trennmittelzone befindet sich in der Auflösezone ein Kupfer-Diphosphonat-DTO-Elektrolyt (CuE), dessen Flüssigkeitsstand bis zu einer Überlauföffnung (ÜL-Cu) in der Auflösezone des Behältnisses reicht. In der Abscheidezone liegt über der Trennmittelzone ein Zinn-Gadolinium-Diphosphonat-DTO-Elektrolyt (SnGdE), dessen Flüssigkeitsstand bis zu einer Überlauföffnung (ÜL-Sn) in der Abscheidezone des Behältnisses reicht. In den Kupfer-Diphosphonat-DTO-Elektrolyten taucht eine Hilfskathode (HK), die von einem Titanstreckmetallfenster (TiF) umschlossene Kupferkugeln (Cu) enthält. In den Zinn-Gadolinium-Diphosphonat-DTO-Elektrolyten taucht eine Hilfsanode (HA), die von einem Titanstreckmetallfenster (TiF) umschlossene Zinngranalien (Sn) enthält. Die Einströmung des Kupfer-Diphosphonat-DTO-Elektrolyten (ES-Cu) erfolgt in der Auflösezone über die Hilfskathode, die des Zinn-Gadolinium-Diphosphonat-DTO-Elektrolyten (ES-Sn) in der Abscheidezone über die Hilfsanode, wie in 2 gezeigt. Die Abstreiferdüsen AD-Cu und AD-TM dienen der vollständigen Ablösung des vorherigen Mediums von der Folienoberfläche, auch als turbulentes Abstreifen bezeichnet. Der Reinigungskreislauf (RKL-TM) ist die extraktive Wäsche/Pflege des Trennmittels von eingeschleppten Elektrolytresten. Die Auflöse-/Abscheidezonen weisen ferner jeweils zwei Umlenkrollen (UW) auf, wobei jeweils eine oberhalb des Elektrolyten und jeweils eine in der Trennmittelzone angeordnet sind. Das flächige Kupferwerkstück läuft in Band- bzw. Folienlaufrichtung (BLR) über die erste Umlenkrolle in die Kupfer-Diphosphonat-DTO-Elektrolyt enthaltende Behandlungsflüssigkeit und an der Hilfskathode in der Auflösezone vorbei, wodurch das flächige Metallwerkstück positiv (anodisch) polarisiert und ein Abtrag von auf der Oberfläche des flächigen Kupferwerkstücks vorliegenden Verunreinigungen und unebenen Metallstrukturen erfolgt. Als Ergebnis wird eine verunreinigungsfreie, homogene und definierte Oberfläche auf dem Kupferwerkstück erhalten, die sich in dem nachfolgenden Abscheidungsschritt zur Erzielung von definierten Metallstrukturen eignet. Das Kupferwerkstück tritt anschließend in die Trennmittelzone ein und wird von dort mittels der darin befindlichen Umlenkrollen unter ständigem Flüssigkeitskontakt in die Abscheidezone befördert. Hier wird das Kupferwerkstück beim Passieren der Hilfsanode negativ (kathodisch) polarisiert und es scheiden sich positiv geladene Zinnionen aus der Zinn-Gadolinium-Diphosphonat-DTO-Behandlungsflüssigkeit in definierter Weise an der negativ geladenen Kupferoberfläche des Kupferwerkstücks ab. Ebenso kann gemeinsam mit dem Zinn Gadolinium im ppm-Bereich abgeschieden werden. Nach Durchlaufen der Abscheidezone läuft das verzinnte Kupferwerkstück aus der Behandlungsflüssigkeit SnGdE heraus.
  • Es wurde gefunden, dass das Metall bzw. die Metalle, die gemäß dem erfindungsgemäßen Verfahren abgeschieden werden, die Oberfläche des flächigen Metallwerkstücks nicht durchgängig überziehen, sondern vielmehr in Form von gleichmäßig verteilten, diskreten Metallaggregaten. Die vorliegende Erfindung betrifft daher auch die mit diesem Verfahren hergestellten flächigen Metallwerkstücke, deren Oberflächen mit Metallaggregaten versehen sind. Diese Metallaggregate sind Metallaufwachsungen auf der Oberfläche des flächigen Metallwerkstücks, erzeugt durch die elektrolytische Abscheidung eines oder mehrerer Metalle. Die Metallaggregate liegen in der Regel gleichmäßig verteilt auf der Oberfläche vor und können ein unterschiedliches Erscheinungsbild aufweisen. Typisch sind kompakte Aggregate auf kristalliner Basis mit unterschiedlichem Habitus. Die Größe der Metallaggregate liegt in der Regel im Submikrometerbereich (< 1 µm). Typischerweise besitzen 90% oder mehr (bevorzugter 95% oder mehr, insbesondere 99% oder mehr) der Metallaggregate eine Größe im Bereich von 0,05 bis 1 µm, bevorzugt im Bereich von 0,3 bis 0,7 µm und insbesondere im Bereich zwischen 0,35 und 0,65 µm. Die Größe bezieht sich dabei auf den mittleren Durchmesser der abgeschiedenen Metallaggregate, bestimmt anhand elektronenmikroskopischer Aufnahmen.
  • 3 zeigt eine REM Aufnahme einer im geschlossenen MLP mit dem elektrolytisch gewonnenen Cu-DTO-Diphosphonat-Elektrolyten behandelten Kupferfolie. Die hier auch als vsbp bezeichnete Oberfläche (very small black pyramids) sieht je nach Aggregatdichte braun bis schwarz aus. Es wird vermutet, dass es sich bei der Schwärzung um einen physikalischen Auslöschungsprozess des Lichts durch Interferenz an der Oberfläche handelt. Die abgebildeten kleinsten Aggregate sind mit ihrer Netzebenenbasis auf der vorher abgetragenenen Folie aufgewachsen und zeigen ebene Kristallflächen. Sie bestehen (im Rahmen der Messgenauigkeit) ausschließlich aus Kupfer. Die Schichtdicke liegt unter 0,5 µm. Die Ausdehnung in der Ebene der Folie liegt im Bereich von 30 nm bis 300 nm.
  • Die Rauheit der Metalloberfläche erhöht sich durch die Abscheidung der Metallaggregate in geringem Maße. Nach der Abscheidung der Metallaggregate, insbesondere von Kupferaggregaten, auf einem flächigen Metallwerkstück, insbesondere auf einer Kupferfolie oder -band, liegen die mittleren Rauheitswerte Ra und Rz, bestimmt gemäß DIN EN ISO 4288:1998, vorzugsweise im Bereich von 0,22 bis 0,32 µm für Ra und insbesondere im Bereich von 0,24 bis 0,28 µm für Ra, sowie vorzugsweise im Bereich von 1,4 bis 2,1 µm für Rz und insbesondere im Bereich von 1,6 bis 1,9 µm für Rz. Demgegenüber weist beispielsweise eine Kupferfolie vor der Abscheidung Rauheitswerte von etwa 0,20 µm für Ra und 1,3 µm für Rz auf.
  • Diese speziellen Metallaggregate sind dafür verantwortlich, dass die erhaltene Oberfläche hervorragende Hafteigenschaften (Adhäsionseigenschaften) aufweist und sich ausgezeichnet als Substrat für die Bildung von festen Haftverbänden mit einer Vielzahl von Materialien eignet. Die Erhöhung des Haftvermögens wird dabei in erster Linie damit erklärt, dass die Metallaggregate von der Oberfläche des flächigen Metallwerkstücks abstehen und quasi als „Ankerpunkte” für den Adhäsionspartner dienen. Insbesondere führen die Metallaggregate auf der Oberfläche des flächigen Metallwerkstücks beim Verpressen oder Verwalzen (Walzplattieren) mit dem gleichen oder einem anderen Material, beim Lackieren mit oder ohne nachträgliche Härtung/Vernetzung oder beim Verkleben zu einem festen Haftverbund. Als Haftpartner für das erfindungsgemäße Metallwerkstück kommen eine Vielzahl von Materialien in Betracht, beispielsweise Thermoplaste, wie PA 66, PI und PET, Kunstharze (Epoxide), Klebstoffe, Lacke und Pasten, wie Graphitpasten.
  • Die vorliegende Erfindung betrifft daher auch die Verwendung der gemäß dem erfindungsgemäßen Verfahren hergestellten Metallwerkstücke als Substrat für die Bildung von festen Haftverbänden mit anderen Materialien wie beispielsweise Thermoplasten, Kunstharzen, Klebstoffen, Lacken und Pasten.
  • Mit Hilfe des erfindungsgemäßen Verfahrens lassen sich unter Verwendung entsprechender Behandlungsflüssigkeiten auf der Basis von Metall-Diphosphonat-Komplexen ferner auch über die Fläche strukturierte Schichten aus einem oder mehreren verschiedenen Metallen aufbringen, darunter als Dotanten in der Schicht auch solche, die normalerweise aus wässriger Lösung nicht elektrolytisch abscheidbar sind. Auch können flächige Schichten aufgebracht werden, die ein hohes Potenzial für den Einsatz in der Sensorik von Magnetfeldern und die Aufnahme/Umwandlung in katalytisch aktive Zentren in der Schicht besitzen. Die vorliegende Erfindung betrifft daher auch die Verwendung der mit dem erfindungsgemäßen Verfahren hergestellten Metallwerkstücke als Basiswerkstoffe für die Fertigung von GMR-Sensoren oder Hall-Sensoren (Detektion von Magnetfeldern), sowie als Basiswerkstoffe, deren Oberfläche durch Oxidation in katalytisch aktive Mischoxide und dünnste Oxidkeramiken, analog LNO-Schichten, umgewandelt werden kann.
  • Weitere Beispiele für die Vielzahl von Anwendungen, für die die nach dem erfindungsgemäßen Verfahren hergestellten flächigen Metallwerkstücke eingesetzt werden können, sind u. a. Laminate von Kupfer mit PET für die Abschirmung von Kabeln und Stecker- und Gerätegehäusen gegen elektromagnetische Störungen, insbesondere in der Signalübertragung. Weiterhin ist die Verwendung als elektrischer Leiter bei der Herstellung von MID (Moulded Interconnect Devices) Schaltungen anzuführen. Dies sind Schaltungen, die auf der Basis einer Heißprägung von metallischen Folien auf thermoplastischen Kunststoffsubstraten beruhen. Eine weitere Anwendung ist als Schichtträger für Elektrodenmaterial in der Batterietechnik. Insbesondere können die erfindungsgemäßen flächigen Metallwerkstücke auch bei der Herstellung von stabilen, in der Leiterplattentechnologie zur Herstellung von Kupferlaminaten benötigten Verbindungen verwendet werden. Speziell bei der Herstellung von Leiterplatten ist die Haftfestigkeit des metallischen Leiters auf dem Substrat (z. B. FR-4) von zentraler Bedeutung. Dies ist zum einen durch die in der Herstellung notwendigen Prozessschritte (Ätzen, Bohren, Verpressen) und zum anderen durch die Belastung der Leiterplatte in dem Endprodukt selbst bedingt.
  • BEISPIELE
  • HERSTELLUNG VON DIPHOSPHONAT-ELEKTROLYTEN
  • Herstellung aus Metalloxiden und Diphosphonsäure
  • Synthesebeispiel 1: Elektrolyt A – Kupfer-Diphosphonat-DTO-Elektrolyt
  • In einem 2000-ml-Becherglas werden 327,5 g vollentsalztes Wasser und 466,7 g einer 60%igen wässrigen Lösung von 1-Hydroxyethan-1,1-diphosphonsäure (Cublen K60, erhältlich von Zschimmer & Schwarz, 09217 Burgstädt, Deutschland) durch Rühren vermischt. Innerhalb von 30 Minuten werden bei 60°C unter Rühren 54,5 g feinpulveriges, blauschwarzes Kupfer(II)-oxid eingetragen. Das Oxid löst sich anfangs auf, bildet danach einen tief blauen Schlamm. Nach dem Ende der Zugabe wird das Becherglas in ein Wasserbad von Raumtemperatur gestellt. Nach 10 Minuten wird vorsichtig unter starkem Rühren/Kneten mit der langsamen, kontinuierlichen Zugabe von 461,3 g Kaliumhydroxid-Lösung 45% (D = 1,46 g/cm3) begonnen. Bei der Zugabe wird die Temperatur kontrolliert. Die Reaktionstemperatur wird stets bei ≤ 90°C gehalten. Nach 20 Minuten ist die Zugabe der Kalilauge beendet. Die erhaltene Lösung wird noch 2 h bei 90°C gehalten, wobei ständig der Verdunstungsverlust durch Zugabe von weiterem vollentsalztem Wasser ausgeglichen wird. Danach wird auf 25°C gekühlt, der pH-Wert auf 8,5 bis 10 mit Kaliumhydroxid eingestellt. Die erhaltene tief blaue Lösung wird bei Raumtemperatur über einen mit Aktivkohle besetzten Filter (< 50 µm) filtriert, und nach der Filtration wird mit vollentsalztem Wasser auf 1000 ml aufgefüllt.
  • Der erhaltene Kupfer-Diphosphonat-Elektrolyt A ist eine farblose Flüssigkeit mit einem pH-Wert von 9,2 ± 0,5 und einer Dichte von 1,31 g/cm3 bei 25°C. Das molare Verhältnis von Cu:P:K beträgt 1:4,0 ± 0,2:5,4 ± 0,4 (ermittelt durch optische Emissionsspektrometrie mit induktiv gekoppeltem Plasma (ICP-OES), 6%ige Salpetersäure).
  • Die obige Lösung wurde anschließend auf 60°C erwärmt und unter gutem Rühren in Stufen mit insgesamt 0,1 Gew.-%, bezogen auf das Gesamtgewicht des Elektrolyten, (1,31 g) 1,8-Dihydroxy-3,6-dithiaoctan (DTO) versetzt, um den Kupfer-Diphosphonat-DTA-Elektrolyt zu erhalten. Das DTO löst sich innerhalb weniger 2 Minuten vollständig auf.
  • Synthesebeispiel 2: Elektrolyt B – Bismut-Diphosphonat-Elektrolyt
  • In einem 2000-ml-Becherglas werden 344,6 g vollentsalztes Wasser und 438,1 g einer 60%igen wässrigen Lösung von 1-Hydroxyethan-1,1-diphosphonsäure (Cublen K60, erhältlich von Zschimmer & Schwarz, 09217 Burgstädt, Deutschland) durch Rühren vermischt. Innerhalb von 30 Minuten werden unter Rühren 95,6 g feinpulveriges, gelbes Bismut(III)-oxid eingetragen. Das Oxid löst sich anfangs auf, bildet danach einen weißen Schlamm und einen gelben Bodensatz. Nach dem Ende der Zugabe wird das Becherglas in ein Wasserbad von Raumtemperatur gestellt. Eine Titan-Sonotrode wird im Zentrum des Becherglases positioniert und zugeschaltet. Nach 10 Minuten wird vorsichtig mit der langsamen, kontinuierlichen Zugabe von 476,7 g Kaliumhydroxid-Lösung 45% (D = 1,46 g/cm3) begonnen. Bei der Zugabe wird zwecks Temperaturkontrolle die Beschallung und die Zugabe unterbrochen. Die Reaktionstemperatur wird stets bei ≤ 85°C gehalten. Nach 30 Minuten ist die Zugabe der Kalilauge und die Beschallung beendet. Die erhaltene Lösung wird noch 6 h bei 90°C gehalten, wobei ständig der Verdunstungsverlust ausgeglichen wird. Danach wird auf 25°C gekühlt, der pH-Wert auf 8,5 bis 9,5 mit Kaliumhydroxid eingestellt.
  • Die erhaltene farblose Lösung kann noch einen leichten Schleier besitzen, der sich durch 24 h Lagerung verliert. Sollte der Schleier verbleiben, wird über einen mit Aktivkohle besetzten Filter (< 50 µm) filtriert, und nach der Filtration wird mit vollentsalztem Wasser auf 1000 ml aufgefüllt.
  • Der erhaltene Bismut-Diphosphonat-Elektrolyt B ist eine farblose Flüssigkeit mit einem pH-Wert von 8,8 ± 0,3 und einer Dichte von 1,355 g/cm3 bei 25°C. Das molare Verhältnis von Bi:K:P beträgt 1:7,6 ± 0,4:6,4 ± 0,3 (ermittelt durch ICP-OES, 6%ige Salpetersäure).
  • Synthesebeispiel 3: Elektrolyt C – Cobalt-Diphosphonat-Elektrolyt
  • In einem 2000-ml-Becherglas werden 360 g vollentsalztes Wasser und 466 g einer 60%igen wässrigen Lösung von 1-Hydroxyethan-1,1-diphosphonsäure (Cublen K60, erhältlich von Zschimmer & Schwarz, 09217 Burgstädt, Deutschland) durch Rühren vermischt. Innerhalb von 60 Minuten werden unter Rühren 81,3 g feinpulveriges, rosarotes Cobalt(II)-carbonat eingetragen. Das Carbonat löst sich anfangs schnell auf, bildet danach einen blass rosaroten Schlamm. Insbesondere nach der einsetzenden Schlammbildung muss vorsichtig zugesetzt werden, um ein Überschäumen des Reaktionsgefäßes zu vermeiden (entweichendes Reaktionsgas Kohlendioxid). Sofort nach dem Ende der Zugabe und der Gasentwicklung wird das Becherglas in ein Wasserbad von Raumtemperatur gestellt. Ohne Pause und unter kräftigem Rühren/Kneten wird vorsichtig mit der langsamen, kontinuierlichen Zugabe von 412,4 g Kaliumhydroxid-Lösung 45% (D = 1,46 g/cm3) begonnen. Bei der Zugabe wird die Temperatur ständig kontrolliert, wobei die Reaktionstemperatur stets bei ≤ 85°C gehalten wird. Nach 15 Minuten ist die Zugabe der Kalilauge beendet. Die erhaltene Lösung wird danach 1 h bei 90°C gehalten, wobei ständig der Verdunstungsverlust ausgeglichen wird. Danach wird auf 25°C gekühlt, der pH-Wert auf 9,0 bis 10 mit Kaliumhydroxid eingestellt. Die kräftig rosarote Lösung wird über einen mit Aktivkohle besetzten Filter (< 50 µm) filtriert, und nach der Filtration wird mit vollentsalztem Wasser auf 1000 ml aufgefüllt. Der erhaltene Cobalt-Diphosphonat-Elektrolyt C ist eine rosarote Flüssigkeit mit einem pH-Wert von 9,5 ± 0,5 und einer Dichte von 1,32 g/cm3 bei 25°C. Das molare Verhältnis von Co:P:K beträgt 1:4,0 ± 0,2:4,9 ± 0,3 (ermittelt durch ICP-OES, 6%ige Salpetersäure).
  • Synthesebeispiel 4: Elektrolyt D – Zinn-Diphosphonat-Elektrolyt
  • In einem 2000-ml-Becherglas werden 325,6 g vollentsalztes Wasser und 464 g einer 60%igen wässrigen Lösung von 1-Hydroxyethan-1,1-diphosphonsäure (Cublen K60, erhältlich von Zschimmer & Schwarz, 09217 Burgstädt, Deutschland) durch Rühren vermischt. Innerhalb von 60 Minuten werden unter Rühren 91,8 g feinschuppiges, schwarzes Zinn(II)-oxid eingetragen. Das Oxid löst sich anfangs langsam auf, bildet danach einen weißen Schlamm und einen grauen Bodensatz. Nach dem Ende der Zugabe wird noch 4 h nachgerührt. Danach wird das Becherglas in ein Wasserbad von Raumtemperatur gestellt. Nach 10 Minuten wird unter Rühren/Kneten vorsichtig mit der langsamen, kontinuierlichen Zugabe von 458,5 g Kaliumhydroxid-Lösung 45% (D = 1,46 g/cm3) begonnen. Bei der Zugabe wird die Reaktionstemperatur kontrolliert. Die Reaktionstemperatur wird stets bei ≤ 80°C gehalten. Nach 30 Minuten ist die Zugabe der Kalilauge beendet. Die erhaltene Lösung wird noch 6 h bei 80°C gehalten, wobei ständig der Verdunstungsverlust ausgeglichen wird. Danach wird auf 25°C gekühlt und weitere 48 h gelagert. Der pH-Wert wird mit Kaliumhydroxid auf 9,0 bis 10 eingestellt.
  • Die erhaltene farblose Lösung besitzt noch einen farblosen Schleier und einen ölige Deckfilm und wird über einen mit Aktivkohle besetzten Filter (< 50 µm) filtriert. Nach der Filtration wird mit vollentsalztem Wasser auf 1000 ml aufgefüllt.
  • Der erhaltene Zinn-Diphosphonat-Elektrolyt D ist eine farblose Flüssigkeit mit einem pH-Wert von 9,4 ± 0,3 und einer Dichte von 1,34 g/cm3 bei 25°C. Das molare Verhältnis von Sn:P:K beträgt 1:4,9 ± 0,3:8,5 ± 0,5 bei variablem Sn(II):Sn(IV)-Verhältnis (ermittelt durch ICP-OES, 6%ige Salpetersäure).
  • Synthesebeispiel 5: Elektrolyt E – Erbium-Diphosphonat-Elektrolyt
  • In einem 2000-ml-Becherglas werden 377 g vollentsalztes Wasser und 504,6 g einer 60%igen wässrigen Lösung von 1-Hydroxyethan-1,1-diphosphonsäure (Cublen K60, erhältlich von Zschimmer & Schwarz, 09217 Burgstädt, Deutschland) durch Rühren vermischt. Innerhalb von 20 Minuten werden unter Rühren 141,6 g feinpulveriges, rotes Erbium(III)-oxid eingetragen. Das Oxid löst sich anfangs auf, bildet danach einen roten Schlamm und einen roten Bodensatz. Nach dem Ende der Zugabe wird das Becherglas in ein Wasserbad von Raumtemperatur gestellt. Eine Titan-Sonotrode wird im Zentrum des Becherglases positioniert und zugeschaltet. Nach 10 Minuten wird vorsichtig mit der langsamen, kontinuierlichen Zugabe von 446,7 g Kaliumhydroxid-Lösung 45% (D = 1,46 g/cm3) begonnen. Bei der Zugabe werden zur Temperaturkontrolle die Beschallung und die Zugabe unterbrochen. Die Reaktionstemperatur wird stets bei ≤ 90°C gehalten. Nach 30 Minuten ist die Zugabe der Kalilauge und die Beschallung beendet. Die erhaltene Lösung wird noch 2 h bei 90°C gehalten, wobei ständig der Verdunstungsverlust ausgeglichen wird. Danach wird auf 25°C gekühlt, der pH-Wert auf 8,5 bis 9,5 mit Kaliumhydroxid eingestellt.
  • Die erhaltene rote Lösung darf keinen Schleier besitzen. Sollte ein Schleier verbleiben, wird über einen mit Aktivkohle besetzten Filter (< 50 µm) filtriert und nach der Filtration das Volumen mit vollentsalztem Wasser auf 1000 ml aufgefüllt.
  • Der erhaltene Erbium-Diphosphonat-Elektrolyt E ist eine himbeerrote Flüssigkeit mit einem pH-Wert von 9,0 ± 0,5 und einer Dichte von 1,43 g/cm3 bei 25°C. Das molare Verhältnis von Er:P:K beträgt 1:4,0 ± 0,2:4,8 ± 0,3 (ermittelt durch ICP-OES, 6%ige Salpetersäure).
  • Synthesebeispiel 6: Elektrolyt F – Terbium-Diphosphonat-Elektrolyt
  • Durch Nacharbeiten des Synthesebeispiels 5, jedoch unter Austausch des Erbium(III)-oxids gegen 138,4 g Terbium(III/IV)-oxid, wurde Terbium-Diphosphonat-Elektrolyt F als eine blassgrüne Flüssigkeit mit einem pH-Wert von 9,0 ± 0,5, einer Dichte von 1,43 g/cm3 und einem molaren Verhältnis von Tb:P:K von 1:4,0 ± 0,2:4,8 ± 0,3 erhalten.
  • Synthesebeispiel 7: Elektrolyt G – Gadolinium-Diphosphonat-Elektrolyt
  • In einem 2000-ml-Becherglas werden 318 g vollentsalztes Wasser und 465,8 g einer 60%igen wässrigen Lösung von 1-Hydroxyethan-1,1-diphosphonsäure (Cublen K60, erhältlich von Zschimmer & Schwarz, 09217 Burgstädt, Deutschland) durch Rühren vermischt. Innerhalb von 30 Minuten werden unter Rühren 123,8 g feinpulveriges, farbloses Gadolinium(III)-oxid eingetragen. Das Oxid löst sich anfangs exotherm auf, bildet danach einen weißen Schlamm und einen farblosen Bodensatz. Nach dem Ende der Zugabe wird das Becherglas in ein Wasserbad von Raumtemperatur gestellt. Nach 10 Minuten wird vorsichtig unter starkem Rühren/Kneten mit der langsamen, kontinuierlichen Zugabe von 412,4 g Kaliumhydroxid-Lösung 45% (D = 1,46 g/cm3) begonnen. Bei der Zugabe wird stets Temperatur des Reaktionsgemisches kontrolliert. Die Reaktionstemperatur wird stets bei ≤ 90°C gehalten. Nach 20 Minuten ist die Zugabe der Kalilauge beendet. Die erhaltene Lösung wird noch 2 h bei 90°C gehalten, wobei ständig der Verdunstungsverlust ausgeglichen wird. Danach wird auf 25°C gekühlt und der pH-Wert auf 8,5 bis 9,5 mit Kaliumhydroxid eingestellt.
  • Die erhaltene farblose Lösung besitzt noch einen leichten Schleier, der sich durch 24 h Lagerung verliert kann. Sollte der Schleier verbleiben, wird über einen mit Aktivkohle besetzten Filter (< 50 µm) filtriert. Nach der Filtration wird mit vollentsalztem Wasser auf 1000 ml aufgefüllt.
  • Der erhaltene Gadolinium-Diphosphonat-Elektrolyt G ist eine farblose Flüssigkeit mit einem pH-Wert von 9,0 ± 0,5 und einer Dichte von 1,32 g/cm3 bei 25°C. Das molare Verhältnis von Gd:P:K beträgt 1:4,0 ± 0,2:4,8 ± 0,3 (ermittelt durch ICP-OES, 6%ige Salpetersäure).
  • Synthesebeispiel 8: Elektrolyt H – Neodymium-Diphosphonat-Elektrolyt
  • In einem 2000-ml-Becherglas werden 275,6 g vollentsalztes Wasser und 472,9 g einer 60%igen wässrigen Lösung von 1-Hydroxyethan-1,1-diphosphonsäure (Cublen K60, erhältlich von Zschimmer & Schwarz, 09217 Burgstädt, Deutschland) durch Rühren vermischt. Innerhalb von 30 Minuten werden unter Rühren 77,2 g feinpulveriges, blaues Neodym(III)-oxid eingetragen. Das Oxid löst sich anfangs stark exotherm auf, bildet danach einen violetten Schlamm. Nach dem Ende der Zugabe wird das Becherglas in ein Wasserbad von Raumtemperatur gestellt. Nach 10 Minuten wird unter gutem Rühren/Kneten vorsichtig mit der langsamen, kontinuierlichen Zugabe von 514,3 g Kaliumhydroxid-Lösung 45% (D = 1,46 g/cm3) begonnen. Bei der Zugabe wird die Temperatur des Reaktionsgemisches stets überwacht. Die Reaktionstemperatur wird stets bei ≤ 90°C gehalten. Nach 20 Minuten ist die Zugabe der Kalilauge beendet. Die erhaltene Lösung wird noch 1 h bei 90°C gehalten, wobei ständig der Verdunstungsverlust ausgeglichen wird. Danach wird auf 25°C gekühlt und der pH-Wert auf 9,0 bis 9,8 mit Kaliumhydroxid eingestellt. Am Ende wird mit vollentsalztem Wasser auf 1000 ml aufgefüllt.
  • Der erhaltene Neodymium-Diphosphonat-Elektrolyt H ist eine rotviolette Flüssigkeit mit einem pH-Wert von 9,4 ± 0,4 und einer Dichte von 1,34 g/cm3 bei 25°C. Das molare Verhältnis von Nd:P:K beträgt 1:6,0 ± 0,4:9,0 ± 0,5 (ermittelt durch ICP-OES, 6%ige Salpetersäure).
  • Synthesebeispiel 9: Elektrolyt I – Nickel-Gadolinium-Diphosphonat-Elektrolyt
  • In einem 2000-ml-Becherglas werden 324,8 g vollentsalztes Wasser und 465,8 g einer 60%igen wässrigen Lösung von 1-Hydroxyethan-1,1-diphosphonsäure (Cublen K60, erhältlich von Zschimmer & Schwarz, 09217 Burgstädt, Deutschland) durch Rühren vermischt. Innerhalb von 30 Minuten werden unter Rühren zuerst 12,7 g feinpulveriges, apfelgrünes Nickel(II)-hydroxid und direkt darauf folgend 99,0 g feinpulvriges Gadolinium(III)-oxid eingetragen. Die Oxide lösen sich anfangs auf, bilden danach einen blass gelben Schlamm und einen fast farblosen Bodensatz, der keine Grünanteile enthalten darf. Nach dem Ende der Zugabe der Oxide wird das Becherglas in ein Wasserbad von Raumtemperatur gestellt. Ohne Pause wird unter starkem Rühren/Kneten vorsichtig mit der langsamen, kontinuierlichen Zugabe von 417,6 g Kaliumhydroxid-Lösung 45% (D = 1,46 g/cm3) begonnen. Bei der Zugabe wird die Reaktionstemperatur kontrolliert und stets bei ≤ 90°C gehalten. Nach 20 Minuten ist die Zugabe der Kalilauge beendet. Die erhaltene Lösung wird noch 2 h bei 90°C gehalten, wobei ständig der Verdunstungsverlust ausgeglichen wird. Danach wird auf 25°C gekühlt und der pH-Wert auf 8,5 bis 9,5 mit Kaliumhydroxid eingestellt. Die erhaltene grüngelbe Lösung kann noch einen leichten Schleier besitzen, der sich durch 24 h Lagerung verliert. Sollte der Schleier verbleiben, wird über einen mit Aktivkohle besetzten Filter (< 50 µm) filtriert und nach der Filtration mit vollentsalztem Wasser auf 1000 ml aufgefüllt.
  • Der erhaltene Nickel-Gadolinium-Diphosphonat-Elektrolyt I ist eine grüngelbe Flüssigkeit mit einem pH-Wert von 9,0 ± 0,5 und einer Dichte von 1,32 g/cm3 bei 25°C. Das molare Verhältnis von [Gd + Ni]:P:K beträgt 1:4,1 ± 0,3:4,4 ± 0,3 bei einem Ni:Gd-Verhältnis von 1:3,9 (ermittelt durch ICP-OES, 6%ige Salpetersäure).
  • Synthesebeispiel 10: Elektrolyt J – Nickel-Gadolinium-Terbium-Diphosphonat-Elektrolyt mit Additivierung durch 0,5 M% DTO
  • 1000 ml dieses Elektrolyten werden hergestellt, indem 950 ml (1254 g) des Nickel-Gadolinium-Diphosphonat-Elektrolyten I von Synthesebeispiel 9 mit 50 ml (70,5 g) des Terbium(III)-Diphosphonat-Elektrolyten F von Synthesebeispiel 6 verschnitten werden.
  • Die erhaltene Nickel-Gadolinium-Terbium-Diphosphonat-Lösung wird anschließend auf 60°C erwärmt und unter gutem Rühren in Stufen mit insgesamt 0,5 Gew.-%, bezogen auf das Gesamtgewicht des Elektrolyten, (5,5 g) 1,8-Dihydroxy-3,6-dithiaoctan (DTO) versetzt, um den Elektrolyt J als eine grüngelbe Flüssigkeit mit einem pH-Wert von 9,0 ± 0,5, einer Dichte von 1,32 g/cm3 bei 25°C, einem molaren Verhältnis [Gd + Tb + Ni]:P:K von 1:4,0 ± 0,3:4,5 ± 0,3 und einem Ni:Gd:Tb-Verhältnis von 1:3,9:0,2 (ICP-OES, 6%ige Salpetersäure) zu erhalten.
  • Herstellung durch Aufmetallisierung
  • Synthesebeispiele 11–14: Elektrolyte K, L, M und N – Kupfer-Diphosphonat-DTO-Elektrolyte
  • In einem 2000-ml-Becherglas werden 336,4 g vollentsalztes Wasser und 451,7 g einer 60%igen wässrigen Lösung von 1-Hydroxyethan-1,1-diphosphonsäure (Cublen K60, erhältlich von Zschimmer & Schwarz, 09217 Burgstädt, Deutschland) durch Rühren vermischt. Das Becherglas wird in ein Wasserbad von Raumtemperatur gestellt. Danach wird unter gutem Rühren vorsichtig mit der langsamen, kontinuierlichen Zugabe von 491,9 g Kaliumhydroxid-Lösung 45% (D = 1,46 g/cm3) begonnen. Bei der Zugabe wird Temperatur kontrolliert. Die Reaktionstemperatur wird stets bei ≤ 80°C gehalten. Nach 20 Minuten ist die Zugabe der Kalilauge und beendet. Danach wird auf 25°C gekühlt, der pH-Wert auf 6,5 bis 8,5 mit Kaliumhydroxid oder Diphosphonat eingestellt.
  • Die erhaltene farblose Lösung ist klar und wird mit vollentsalztem Wasser auf 1000 ml aufgefüllt. Die farblose Flüssigkeit besitzt einen pH-Wert von 8,8 ± 0,3, eine Dichte von 1,27 ± 0,02 g/cm3 bei 25°C, und ein molares Verhältnis K:P von 1,5:1 (ICP-OES, 6%ige Salpetersäure).
  • In ein separates 1000-ml-Becherglas werden zwei 8-mm-Kupferanoden eingebracht, in der Mitte eine Kupferkathode aus 0,5-mm-Kupferblech. Die Elektroden werden gegeneinander mit zwei 0,3-mm-HDPE-Platten verblendet. Das Verhältnis der eintauchenden Anodenoberfläche gegenüber der Kathodenoberfläche beträgt 10:1. Die Kathode wird mit einem Fangsack aus PP-Faser umbunden, um ungewollt abscheidendes und partiell abplatzendes Kupfer aus der Lösung fern zu halten. Anschließend werden 860 ml (= 1100 g) der oben erhaltenen farblosen Lösung eingefüllt. Die Apparatur wird mit einem Magnetrührstab versehen und auf einem Magnetrührer in einem Wasserbad positioniert. Die Apparatur wird bei 600 U/min gerührt, ein Gleichrichter wird angeschlossen und die maximal mögliche Stromstärke (23 A) angelegt. Zur Stromversorgung wird ein Netzteil des Typs Statron Typ 3254.1 mit vorwählbarer Stromstärke und Anzeige der korrespondierenden Spannung genutzt. Zwischen dem Netzteil und der Elektrolysezelle befindet sich ein Polwendeschalter, wodurch die Polung der Folie und der Elektroden während des Versuches in beliebiger Folge und in beliebiger Zeit gewendet (getauscht) werden kann.
  • Durch die Elektrolyse steigt die Temperatur innerhalb von 24 Minuten auf 60°C an, wobei bei ca. 48°C die Maximalstromdichte erreicht wird. Während der Aufmetallisierung wird in Abständen von 60 Minuten der Kupfergehalt kontrolliert. Dieser nimmt am Anfang schnell zu und änderte sich oberhalb von 13,5 g/l Kupfer nur noch langsam. Nach 3 × 6 h = 18 h Aufmetallisierung wird die Elektrolyse abgebrochen, die Elektroden werden entfernt, die Apparatur aus dem Wasserbad genommen und auf Raumtemperatur abgekühlt. Anschließend wird der pH-Wert der Lösung mit Kaliumhydroxid (45%) auf etwa 9,5 justiert und die Apparatur mit vollentsalztem Wasser auf 860 ml aufgefüllt. Die erhaltene Kupfer-Diphosphonat-Lösung ist eine tief blaue Flüssigkeit mit einem pH-Wert von 9,5 ± 0,3 und einer Dichte von 1,31 ± 0,02 g/cm3 bei 25°C. Die Cu-Konzentration beträgt 15,3 g/l, das molare Verhältnis von Cu:P:K beträgt etwa 1:11:14,8 (ermittelt durch ICP-OES, 6%ige Salpetersäure)
  • Die obige Lösung wurde anschließend auf 60°C erwärmt und unter gutem Rühren in Stufen mit insgesamt 0,05 Gew.-%, bezogen auf das Gesamtgewicht des Elektrolyten, (0,56 g) 1,8-Dihydroxy-3,6-dithiaoctan (DTO) versetzt, um den Kupfer-Diphosphonat-DTO-Elektrolyt zu erhalten. Das DTO löst sich innerhalb von 2 Minuten vollständig auf. Die tiefblaue Farbe der Lösung bleibt unverändert erhalten.
  • Auf ähnliche Weise, jedoch unter Zusatz von insgesamt 0,1 Gew.-% (1,13 g), 0,2 Gew.-% (2,26 g) bzw. 0,5 Gew.-% (5,5 g) DTO, wurden die Elektrolyte L, M und N hergestellt.
  • OBERFLÄCHENMODIFIZIERUNG VON FLÄCHIGEN METALLWERKSTÜCKEN
  • Beispiel 1: Modifizierung einer verzinnten Kupferfolie durch Abscheidung von Zinnaggregaten auf der Folienoberfläche nach dem geschlossenen Mittelleiterprinzip
  • Elektrolyseanordnung
  • Für die Oberflächenmodifizierung einer verzinnten Kupferfolie wurde nachstehende statische Elektrolyseanordnung zur Simulation des geschlossenen Mittelleiterprinzips eingesetzt:
    Die statische Elektrolysezelle umfasst ein mit einem Elektrolyten (900 ml) gefülltes 1000-ml-Becherglas. Das Becherglas steht auf einem Heizrührer. Der Heizrührer wird zur Erwärmung des Elektrolyten genutzt, wobei die Temperatur ständig durch ein Thermoelement mit Edelstahlhülle geprüft wird und im Rahmen von ±2°C konstant gehalten wird. Die Rührgeschwindigkeit wird bei 1000 U/min gehalten und die Rührung durch einen Magnetrührstab rund (PTFE) der Abmessung 40 × d6 auf die Elektrolytlösung übertragen.
  • Über dem Becherglas befindet sich eine Deckplatte aus PP, die über das Becherglas gelegt wird und jeweils im Abstand von 30 mm beidseitig je eine Inertelektrode aus Ti/IrO2 besitzt. Diese Elektroden sind ebene Bleche, die zueinander parallel und jeweils senkrecht in die Elektrolytlösung eintauchen. Die einseitige, eintauchende Fläche liegt je Elektrode zwischen 60 mm × 80 mm und 60 mm × 100 mm. In der Mitte wurde die Kunststoffplatte parallel zu den Inertelektroden mit einer Öffnung von 20 mm × 80 mm versehen, durch die hindurch der flexible Folienhalter in die Zelle eingefügt werden kann. Dieser Folienhalter wurde deshalb flexibel gestaltet, damit die Folie, einmal eingespannt, anschließend den gesamten Prozess einschließlich der Vor- und Nachbehandlungsschritte (z. B. Reinigung/Spüle/Spüle, Beize/Dekapierung/Spüle/Spüle, Elektrolyse/Spüle/Spüle, Passivierung/Spüle/VE-Spüle) im gleichen Halter durchlaufen kann und erst nach der letzten Spüle zur Trocknung aus dem Halter herausgenommen werden muss. Der Folienhalter besteht aus zwei PP-Rahmen mit einem Fenster von 80 mm × 60 mm, in den die Folie eingespannt wird. Die Spannschrauben sind aus PA6-Kunststoff gefertigt. Die unteren Spannschrauben dienen nur zum Spannen der Folie, die oberen Spannschrauben dienen zusätzlich zur Herstellung eines lösbaren Presskontaktes zu einem TiPt-Streckmetallgitter. Diese Kontaktstelle taucht in die Lösung ein, so dass die Folie vollständig im Elektrolyten eintaucht und die Kontaktstelle durch den Rahmen des Folienhalters gegenüber dem Feld der Zelle verblendet wird. Das zur Kontaktierung verwendete Streckmetall ragt oben aus der Zelle heraus und wird über eine Krokodilklemme mit Strom versorgt. Zur Stromversorgung wird ein Netzteil des Typs Statron mit vorwählbarer Stromstärke und Anzeige der korrespondierenden Spannung genutzt. Zwischen dem Netzteil und der Elektrolysezelle befindet sich ein Polwendeschalter, wodurch die Polung der Folie und der Elektroden während des Versuches in beliebiger Folge und in beliebiger Zeit gewendet (getauscht) werden kann.
  • Oberflächenmodifizierung
  • Eine verzinnte Kupferfolie mit Reinzinnauflage von etwa 2 µm, einer Kupferschichtdicke von 35 µm, einer Länge von 8,5 cm (effektiv) und einer Breite von 5,0 cm wurde zunächst einer Vorbehandlung unterworfen, die folgende Schritte in der angegebenen Reihenfolge umfasste:
    • – Vorreinigung: Purax 6029PUS, 40 g/l, 60°C, stromlos, 10 s.
    • – Spüle: Wasser
    • – Feinreinigung: Velocit 1127M, 25 g/l, 60°C, stromlos, 10 s.
    • – Spüle: Wasser
    • – Beize/Dekapierung: Schwefelsäure (7%ig in Wasser), 25°C–35°C.
    • – Spüle: Wasser
  • Die so vorbehandelte Kupferfolie wurde anschließend in der beschriebenen statischen Elektrolyseanordnung unter Verwendung des Elektrolyts D aus Synthesebeispiel 4 bei 60°C oberflächenmodifiziert. Die genutzten Stromdichten wurden zwischen 0,52 A/dm2 und 10,4 A/dm2 variiert. Die anodische Stromausbeute liegt bis zu einer Stromdichte von 1,2 A/dm2 oder einer Ladungsdichte von 23,7 C/dm2 bei 100%. Beim Überschreiten dieser Grenzwerte bleibt der Abtrag von der Folie konstant bei 7,5 ± 0,6 mg/dm2, d. h. die anodische Stromausbeute sinkt oberhalb der Grenzwerte ständig ab. Die Auftrags-/Abscheidungsreaktion wurde unmittelbar im Anschluss an die Abtragsreaktion durchgeführt. Auch hier wurden die Stromdichten zwischen 0,52 A/dm2 und 10,4 A/dm2 variiert.
  • Die Inertelektroden wurden vor der ersten Bestromung im Elektrolyten mit einem Anodensack versehen, um bei der Polwendung dieser Elektroden von kathodisch nach anodisch abgesprengte Zinnpartikel vom Elektrolyten fernzuhalten.
  • Nach dem Durchlaufen der Elektrolyseapparatur wurde die oberflächenmodifizierte Folie einer Nachbehandlung unterworfen, die folgende Schritte in der angegeben Reihenfolge umfasste:
    • – Spüle: Wasser
    • – Passivierung: Lösung von 6 g Kaliumdichromat in Wasser bei Raumtemperatur.
    • – Spüle: Wasser
    • – Trocknung mit Warmluft zwischen 90°C und 120°C.
    Tabelle 1 Ergebnisse der elektrolytischen Behandlung einer verzinnten Kupferfolie mit Zinn-Diphosphonat-Elektrolyt: Zur Einordnung der Ergebnisse werden die theoretischen Werte der Abscheidungsleistung für Zinn aufgeführt: Zinn(II) → Zinn(0) = 0,615 mg/As; Zinn(IV) → Zinn (0) = 0,308 mg/As.
    Lfd. Nr. Stromdichte A/dm2 Ladungsdichte in C/dm2 = As/dm2 Auftragsleistung in mg/As Effektive Ladungszahl von Zinn
    1 0,52 2,6 0,600 2
    2 0,52 5,2 0,604 2
    3 0,52 10,4 0,611 2
    4 1,2 6 0,608 2
    5 1,2 12 0,612 2
    6 1,2 24 0,605 2
    7 1,77 8,85 0,594 2,07
    8 1,77 17,7 0,603 2
    9 1,77 35,4 0,610 2
    10 3,54 17,7 0,578 2,13
    11 3,54 35,4 0,591 2,08
    12 3,54 70,8 0,547 2,25
    13 5,82 29,1 0,561 2,19
    14 5,82 58,2 0,540 2,28
    15 5,82 116,4 0,536 2,30
    16 8,32 41,6 0,498 2,47
    17 8,32 83,2 0,471 2,61
    18 8,32 166,4 0,469 2,62
    19 9,36 46,8 0,485 2, 54
    20 9,36 93,6 0,468 2,63
    21 9,36 187,2 0,463 2,68
    22 10,4 52 0,490 2,51
    23 10,4 104 0,469 2,62
    24 10,4 208 0,472 2,61
  • Die abgeschiedene Zinnschicht zeigt stark verzweigte Aggregate und erreicht bei einer Ladungsdichte von 208 C/dm2 eine Aufwachsungshöhe von > 5 µm auf der Folie. Bei Ladungsdichten ab 90 C/dm2 und ständig bei > 116 C/dm2 werden die abgeschiedenen Zinnaggregate brüchig und die Farbe der erhaltenen Oberfläche geht von lichtgrau in matt dunkelgrau über. Nach dem Abschluss der Versuche wurde der Elektrolyt auf den Gehalt von Zinn(II) (jodatometrisch), Gesamtzinn und zusätzlich auf den Eintrag von Kupfer aus der Folienseele untersucht (Sn, Cu – ICP-OES, salpetersauer):
    Die Konzentration von Zinn im Elektrolyten sank von 64,7 g/l auf 59,3 g/l ab. Der Zinn(II)-Gehalt sank von ursprünglich 14,7 g/l (22,7%) auf 1,6 g/l (2,7%) ab. In der Elektrolytlösung konnte am Anfang kein Kupfer nachgewiesen werden, nach dem Ende der Behandlung der verzinnten Kupferfolie wurden 20 ± 5 mg Cu/l Elektrolytlösung gemessen.
  • Die Ursachen des Zinnverlustes sind die Verschleppung in die Spüle und die Asymmetrie des Prozesses zwischen Abtrag und Abscheidung auf dieser Folie. Außerdem wurde Zinn in den Anodensäcken der Inertelektroden gefunden. Die Regeneration des Zinn(II) aus Zinn(IV) an der Inertkathode ist unvollständig. Hier werden dieser Prozess und die Abscheidung von metallischem Zinn gefunden. Im Gegensatz zu sauren Zinnelektrolyten des Stands der Technik wirkt sich das Verhältnis zwischen Zinn(II) und Zinn(IV) im Elektrolyten auf die Qualität der abgeschiedenen Zinnschicht nicht aus. Der Elektrolyt zeigt auch ohne Zusätze eine ausgezeichnete Mikrostreuung, ähnlich den Stannat(IV)-Elektrolyten. Saure Zinn(II)-Elektrolyten sind ohne die Mikrostreuung verbessernde Additive praktisch nicht nutzbar.
  • Beispiel 2: Modifizierung einer Kupferfolie durch Abscheidung von Kupferaggregaten auf der Folienoberfläche nach dem geschlossenen Mittelleiterprinzip
  • Elektrolyseanordnung
  • Für die Oberflächenmodifizierung einer Kupferfolie unter Verwendung von Kupfer-Diphosphonat-Elektrolyten wurde eine nach dem geschlossenen Mittelleiterprinzip arbeitende Foliendurchlaufanlage verwendet, die auf Folien bzw. Bänder bis zu einer Breite von 330 mm ausgelegt ist. Die Anlage entspricht im Wesentlichen der in 1 gezeigten Anlage und verfügt über eine Abhaspel und eine Aufhaspel mit elektronischer Zugregelung. Die Regelmöglichkeiten umfassen Stromstärke der einzelnen Elektrodensegmente, Bandzug, Bandgeschwindigkeit und Temperatur des Elektrolyten. Die verwendeten Gleichrichter stammen von der Firma plating electronic Typ pe86CW-6-424-960-4 mit 4 Ausgängen. Der maximale Pulsstrom liegt bei 960 A, der maximale Dauerstrom bei 424 A. Der zeitliche Verlauf des Stromes ist als Pulsfolge über die zugehörige Software definierbar.
  • Die Elektrolysezelle der verwendeten Foliendurchlaufanlage umfasst eine Kathode und eine Anode zur einseitigen elektrolytischen Abscheidung. Die Kathode und die Anode sind parallel zum Folienlauf positioniert und so angeordnet, dass beim Foliendurchlauf dieselbe Seite bzw. Oberfläche der Metallfolie zunächst der Kathode und dann der Anode gegenüberliegt. Des Weiteren sind die Kathode und die Anode vollständig von Elektrolyt umgeben. Obwohl in den hierin beschriebenen Versuchen nur eine Kathode und eine Anode verwendet wird, kann im Prinzip eine Vielzahl von abweichenden Konfigurationen verwendet werden, beispielsweise eine Doppelkathode und eine Doppelanode zur beidseitigen elektrolytischen Abscheidung oder zwei nacheinander angeordnete Kathoden und Anoden.
  • Als Elektroden (Anode und Kathode) wurden bei diesem Versuch Strömungselektroden verwendet, die ein Elektrodengehäuse aus Polypropylen und einem Hochstrom-Titan-Kontaktrahmen mit einer Blendfläche aus Titanstreckmetall, das mit Kupferkugeln hinterfüllt ist, umfassen. Die Elektrode befindet sich in einem Anodensack aus PP-Gewebe. Die Durchströmungsgeschwindigkeit ist bis zu 20 l/min möglich. Der Elektrolyt wird über eine Elektrolytzuführung in die Strömungselektrode eingeführt, strömt an den Metallkugeln vorbei in Richtung Gehäuseboden des Elektrodengehäuses und wird von einem Elektrolytkanal in dem Boden des Elektrodengehäuses aufgenommen. Der Elektrolyt tritt dann über eine Strömungsöffnung in Form einer Strömungslippe aus dem Elektrolytkanal aus und strömt an dem Metallgitter vorbei nach oben. In dieser alternativen Form der Foliendurchlaufanlage gelangt der Elektrolyt nach dem Durchtritt durch die Strömungselektrode in das Elektrolysebad und von dort über einen Überlauf in einen Vorratsbehälter, aus dem der Elektrolyt dann erneut in die Strömungselektrode gepumpt wird.
  • Alternativ zur oben beschriebenen und Strömungselektrode kann auch eine dreigeteilte Kupferblech-Konvektionselektrode verwendet werden. Die einzelnen Elektrodensegmente können dabei getrennt über einen Gleichrichter angesteuert oder gleichpolig geschaltet. Die Elektrode befindet sich in einem Anodensack aus Polypropylen-Gewebe. Die notwendige Strömung wird mittels einer B2-Stabpumpe der Firma Lutz erzeugt (insgesamt 40 l/min verteilt auf 2 Elektroden).
  • Oberflächenmodifizierung
  • Eine Kupferfolie in walzhartem Gefügezustand mit einer Dicke von 0,035 mm und einer Breite von 300 mm wurde zunächst einer Vorbehandlung unterworfen, die folgende Schritte in der angegebenen Reihenfolge umfasste:
    • – Entfettung: Tauchdurchlauf mit elektrolytischer Unterstützung, 45°C, alkalischer Reiniger
    • – Spüle: Wasser, Tauchdurchlauf, 45°C
    • – Dekapierung: Schwefelsäure 4%ig in Wasser, Tauchdurchlauf, 30–35°C
    • – Spüle: Wasser, Tauchdurchlauf, Raumtemperatur
    • – Spüle: Wasser, Tauchdurchlauf, Raumtemperatur
  • Die so vorbehandelte Kupferfolie wurde anschließend in der beschriebenen Foliendurchlaufanlage unter Verwendung der Elektrolyte K, L oder M (Synthesebeispiele 11 und 13) sowie eines weiteren Elektrolyten, der analog zu Synthesebeispiel 11 hergestellt wurde, dem jedoch kein DTO zugesetzt worden war, oberflächenmodifiziert. Die Verfahrensparameter waren wie folgt:
    Foliengeschwindigkeit: 2 m/min
    Mittlere Stromstärke: 66 A (= 27,5 A/dm2)
    Pulssequenz: 10 ms bei 132 A, 10 ms Pause
    Elektrolyttemperatur: 50 ± 2°C
    Elektrodenabstand: 30 mm
  • Nach dem Durchlaufen der Elektrolyseapparatur wurde die oberflächenmodifizierten Kupferfolien einer Nachbehandlung unterworfen, die folgende Schritte in der angegeben Reihenfolge umfasste:
    • – Spüle: Wasser, Tauchdurchlauf, Raumtemperatur
    • – Spüle: Wasser, Tauchdurchlauf, Raumtemperatur
    • – Passivierung: Chrom(VI)-haltige Lösung, Tauchdurchlauf, Raumtemperatur
    • – Spüle: Wasser, Tauchdurchlauf, Raumtemperatur
    • – Spüle: Vollentsalztes Wasser, Abnebeln, Raumtemperatur
    • – Trocknung mit Warmluft 90°C
  • Die mit den Elektrolyten K, L und M erhaltenen oberflächenmodifizierten Kupferfolien zeigten rasterelektronenmikroskopischen Aufnahmen der Oberfläche (REM extern, FEI XL 30, 45° Kippwinkel, 15 kV AcT (Beschleunigungsspannung), SE-Detektor, 10000-fache Vergrößerung) deutliche und gleichmäßige Abscheidungen von Kupferaggretaten auf der Kupferoberfläche. Bei einer mit einem Kupferelektrolyten ohne DTO-Zusatz behandelten Kupferfolie konnten keine derartigen Abscheidungen beobachtet werden.
  • Beispiel 3: Modifizierung einer Kupferfolie durch Abscheidung von Zinnaggregaten auf der Folienobefläche nach dem offenen Mittelleiterprinzip
  • Für die Modifizierung einer Kupferfolie durch Abscheidung einer Zinnschicht im Verfahren des offenen Mittelleiterprinzips wird eine Apparatur wie in 2 dargestellt und wie diesbezüglich oben erörtert verwendet. Als Kupferfoliensubstrat dient eine 40 Meter lange und 200 mm breite Kupferfolie mit einer Dicke von etwa 35 µm. Als Trennflüssigkeit wird 2-Methoxy-1-iodbenzol eingesetzt. Als Behälter für die Durchlaufapparatur wird ein Polypropylenbehälter mit einer Seitenwandstärke von 20 mm und einem Fassungsvermögen von etwa 12 l verwendet. Als Behandlungsflüssigkeit für den Abtrag werden 30 l des Kupfer-Diphosphonat-DTO-Elektrolyts M (von Synthesebeispiel 13) mit einem Kupfergehalt von 17,1 g/l, einer Dichte von 1,32 g/cm3 bei 25°C und pH = 9,2 bei 60°C genutzt. Als Hilfskathode für den Abtrag dient eine Rahmenelektrode aus Polypropylen (PP) mit einem Ti-Streckmetallfenster (270 mm breit und 110 mm lang in Folienlaufrichtung), das mit Kupferkugeln hinterfüllt ist. Der PP-Rahmen ist so gestaltet, dass der Zulauf der umgewälzten Behandlungsflüssigkeit durch den Elektrodenrahmen so erfolgt, dass die Kupferkugeln, das potenzialbildende Fenster und der Zwischenraum zwischen Hilfselektrodenfenster und zu behandelnder Folie gezielt umspült werden. Als Behandlungsflüssigkeit für die Abscheidung werden insgesamt 30 l eines Verschnitts aus dem Zinn-Diphosphonat-Elektrolyt D (von Synthesebeispiel 4) und dem Gadolinium-Diphosphonat-Elektrolyt G (von Synthesebeispiel 7) in einem Verhältnis von 80% Sn und 20% Gd verwendet, der 5,1 g/l 1,8-Dihydroxy-3,6-dithiaoctan zugesetzt werden. Als Hilfsanode wird der gleiche Elektrodentyp eingesetzt wie in der Abtragszone, als Hinterfüllung der Ti-Streckmetallfensters werden jedoch anstelle der Kupferkugeln Zinngranalien mit einem maximalen Durchmesser bis 12 mm eingesetzt. Auch diese Behandlungsflüssigkeit wird bei 60°C, pH = 9,2 genutzt. Beide Behandlungsflüssigkeiten liegen in getrennten Vorratsbehältern vor und werden innerhalb von 15 Minuten jeweils vollständig umgewälzt. Die Trennflüssigkeit wird als statische Phase am Boden der Behandlungszelle genutzt und liegt in einer Menge von 4 l (= 7,3 kg) vor. Die Folie wird mit einer Geschwindigkeit von 0,4 m/min an den Elektroden vorbeigeführt. Die Elektrodenlänge in Folienlaufrichtung beträgt 110 mm. Die genutzte Stromdichte wird in verschiedenen Pulsen appliziert und beträgt 6,82 A/dm2. Die applizierte Ladungsdichte liegt bei 112 C/dm2.
  • Nach der Behandlung der Kupferfolie werden das abgeschiedene Schichtgewicht an Zinn/Gd auf der Kupferfolie, der Anteil an Gd gegenüber Zinn in der Schicht, die Metallgehalte der Behandlungsflüssigkeiten und die Einschleppung des Kupfers aus der Abtragszone in die Abscheidungszone bestimmt:
    Mittleres Schichtgewicht: 1,1 ± 0,1 g/m2
    Molares Verhältnis Gd/Sn in der Schicht: 68 ppm
    Gehalt Kupfer in Abtragselektrolyten: 16,9 g/l (Start 17,1 g/l)
    Gehalt Zinn im Abscheidungselektrolyten: 51,1 g/l (Start 51,7 g/l)
    Gehalt Gadolinium im Abscheidungselektrolyten: 16,8 g/l (Start 16,7 g/l)
    Eingeschlepptes lösliches Kupfer im Abscheidungselektrolyten: < 0,02 g/l
  • Die Sondenelemente der Behandlungsflüssigkeiten, bzw. des Trennmittels Kalium, Phosphor, Schwefel und Iod werden in der abgeschiedenen Schicht nicht nachgewiesen (< 5 ppm).
  • UNTERSUCHUNG DER HAFTUNGSEIGENSCHAFTEN
  • Testverfahren 1 – Haftungstest
  • Ein Klebestreifen (Tesafilm® Transparent 57404-00002) wurde über die elektrolytisch behandelte, trockene, kalte und mindestens 15 Minuten abgelagerte Metallfolienoberfläche gelegt und mit einer weichen Rolle fest auf die Oberfläche gedrückt. Dabei wurde darauf geachtet, dass sich zwischen dem Klebeband und der Folienoberfläche keine Luftblasen bildeten. Nach einer Zeitspanne von 30 Sekunden nach dem Aufdrücken des Klebestreifens wurde dieser an seinem Überstand erfasst und von der festgehaltenen Metallfolie abgezogen. Dabei wurde eine Ziehgeschwindigkeit von 2 bis 3 Sekunden für eine Länge von 8 cm eingehalten.
  • Der abgezogene Klebestreifen wurde dann auf ein weißes Blatt Papier aufgeklebt und die Farbänderung beurteilt, die durch Metallaggregate verursacht wird, die von der Folienoberfläche abgerissen werden und am Klebestreifen bleiben. Des Weiteren wurde beurteilt, ob die Klebeschicht des Tesafilms nach dem Abziehen ganz oder teilweise auf der Oberfläche der Metallfolie verblieb.
  • Testverfahren 2 – Schälfestigkeitstest
  • Die Schälfestigkeit wurde gemäß DIN EN 60249 an einem Schälgerät Modell Zwick BZ2/TN1S mit Kraftmessdose Xforce HP 500 N und Software testXpert 12.3 bestimmt. Hierfür wurden die Proben aus einer verpressten Verbundplatte geschnitten und die Folie unter einem Winkel von 180° abgezogen bzw. geschält. Die verpresste Verbundplatte wurde durch Verpressen der Folie mit einem Kunststoffsubstrat bei einer Temperatur von 160 ± 10°C und einem Pressdruck von 120 ± 5 bar über eine Zeitspanne von 60 ± 5 min erzeugt. Die Ergebnisse des Schältests sind in N/mm angegeben.
  • Beispiel 4: Haftung auf mit Zinn-Diphosphonat-Elektrolyt behandelter verzinnter Kupferfolie
  • Die in Beispiel 1 erhaltenen Folien mit nicht brüchigen Zinnaufwachsungen (Lfd. Nr. 1 bis 14, siehe Tabelle 1) wurden dem oben beschriebenen Haftungstest unterworfen. Zum Vergleich dienten klassisch hergestellte, unpassivierte und ungeölte Weißblechoberflächen im originalen (dendritischen) Abscheidungszustand und im niedergeschmolzenen Zustand (Auflage 8,2 g Sn/m2 Oberfläche, 0,32 mm Kernband, unstrukturiert (Giebel KWW GmbH Iserlohn)). Alle Proben zeigten eine im Vergleich zur Weißblechoberfläche deutlich verbesserte Haftfestigkeit des Klebestreifens auf der mit Zinn beschichteten Metalloberfläche, die sich als Vergrauung der Folienklebeschicht durch abgerissene Zinnaggregate manifestierte. Die Proben 4–14 lassen ein einfaches Abziehen des Klebestreifens nicht mehr zu; die Klebeschicht bleibt in der Oberfläche der Folie haften, und im Einzelfall zerreißt die Folie beim Abziehen. Hingegen lassen die zu Vergleichszwecken genutzten Weißblechoberflächen in jedem Falle ein vollständiges Abziehen des Klebestreifens zu. Das Abziehen des Klebestreifens von der Oberfläche des Weißblechs im niedergeschmolzenen Zustand erfolgt zu 80%, ohne sichtbare Spuren auf der Oberfläche zu hinterlassen.
  • Beispiel 5: Haftung auf mit Zinn-Diphosphonat-Elektrolyt behandelter Kupferfolie
  • Der oben und in Beispiel 4 beschriebene Haftungstest wurde mit der in Beispiel 3 erhaltenen, im Verfahren nach dem offenen Mittelleiterprinzip Sn-modifizierten Kupferfolie wiederholt. Der Test ergab eine hervorragende Haftung des Klebefilms auf der Zinnschicht. Die Klebeschicht des Films verblieb auf der Zinnschicht, bzw. der Filmstreifen wurde beim Versuch des Abziehens von der Zinnoberfläche zerstört.
  • Die Verwendung von Zinn-Diphosphonat-Elektrolyten zur Abscheidung von Sn-Schichten liefert somit sowohl im geschlossenen als auch im offenen Mittelleiterprinzip im Abscheidungsprozess mikrostrukturierte, haftfeste Oberflächen, die u. a. gegenüber Klebeband hervorragende Haftfestigkeiten aufweisen.
  • Beispiel 6: Schälfestigkeiten verpresster Verbundplatten aus mit Kupfer-DTO-Elektrolyt modifizierten Kupferfolien und verschiedenen Kunststoffen
  • Verbundplatten wurden durch Verpressen der mit dem Elektrolyt L oberflächenmodifizierten Kupferfolie von Beispiel 2 und folgenden Kunststoffsubstraten hergestellt: a) Ultramid® A3X2 G5, b) Grivory® HT2V-3H, c) FR-4 Epoxidharz und d) FR-4 Polyimid. Zum Vergleich diente eine Verbundplatte, die aus der mit dem Elektrolyten ohne DTO-Zusatz (Elektrolyt 0: Kupfergehalt 7,0 g/l, Sulfatgehalt 69,4 g/l, Dichte 1,07 g/cm3) elektrolytisch modifizierten Kupferfolie (analog Beispiel 2) und FR-4-Epoxidharz hergestellt wurde. Die Schälfestigkeiten der jeweiligen Verbundplatten wurden gemäß dem oben beschriebenen Schälfestigkeitstest untersucht und betragen:
    Elektrolyt L/Ultramid® A3X2 G5 1,7 N/mm
    Elektrolyt L/Grivory® HT2V-3H 1,3 N/mm
    Elektrolyt L/FR-4-Epoxidharz 2,0 N/mm
    Elektrolyt L/FR-4-Polyimid 1,7 N/mm
    Elektrolyt 0/FR-4-Epoxidharz 1,2 N/mm
  • In 4 sind die Schälfestigkeiten zur besseren Veranschaulichung graphisch dargestellt. Wie aus diesen Daten ersichtlich nimmt die Schälfestigkeit eines Verbunds aus FR-4-Epoxidharz und mit Elektrolyt L modifizierter Kupferfolie verglichen mit der eines Verbunds aus FR-4-Epoxidharz und mit Elektrolyt 0 modifizierter Kupferfolie deutlich zu.
  • Auch die Schälversuche mit den Kunststoffsubstraten belegen das hervorragende adhäsive Potenzial der erfindungsgemäß modifizierten Oberflächen.
  • ZITATE ENTHALTEN IN DER BESCHREIBUNG
  • Diese Liste der vom Anmelder aufgeführten Dokumente wurde automatisiert erzeugt und ist ausschließlich zur besseren Information des Lesers aufgenommen. Die Liste ist nicht Bestandteil der deutschen Patent- bzw. Gebrauchsmusteranmeldung. Das DPMA übernimmt keinerlei Haftung für etwaige Fehler oder Auslassungen.
  • Zitierte Patentliteratur
    • DE 19951324 [0008]
    • DE 3347593 [0010, 0010]
  • Zitierte Nicht-Patentliteratur
    • DIN EN ISO 4288:1998 [0084]
    • DIN EN 60249 [0139]

Claims (21)

  1. Elektrisch leitende Flüssigkeit, umfassend eine wässrige Lösung eines Metallkomplexes, wobei der Metallkomplex ein Komplex ist aus (i) einem oder mehreren Metallen, ausgewählt aus der Gruppe, bestehend aus Cu, Zn, Mn, In, Sn, Sb, Bi, Fe, Ni, Co, Ti, Zr, Nb, Y, Ce, Nd, Sm, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu oder Mischungen davon, und (ii) einem oder mehreren Diphosphonat-Liganden der allgemeinen Formel (I) O=P(OH)2-X-(OH)2P=O (I) wobei die OH-Gruppen in der allgemeinen Formel (I), die an die beiden Phosphoratome gebunden sind, unabhängig voneinander protoniert (OH) oder deprotoniert (O) sind, worin: X = O, NR1 oder CR1R2, insbesondere X = CR1R2, R1 = H, C1-C18-Alkyl oder C3-C18-Isoalkyl, C5-C6-Cycloalkyl, unsubstituiertes oder substituiertes Benzyl und substituiertes oder unsubstituiertes Phenyl, R2 = R1, -OR3 oder -NHR3, und R3 = H, C1-C4 Alkyl oder C3-C4-Isoalkyl, und wobei die an die beiden Phosphoratome gebundenen OH-Gruppen der allgemeinen Formel (I) unabhängig voneinander protoniert (OH) oder deprotoniert (O) sind, wobei die Flüssigkeit ferner gegebenenfalls ein Additiv der allgemeinen Formel (II) umfasst: HO-(CHR6-CHR7-Z)n-CHR6-CHR7-OH (II) worin: n = eine ganze Zahl von 1 bis 11, Z = S oder O, R6 = H, Methyl oder Phenyl, und R7 = H, Methyl oder Phenyl.
  2. Die Flüssigkeit nach Anspruch 1, wobei das Metall ausgewählt ist aus Cu, Zn, Mn, In, Sn, Sb, Bi, Fe, Ni, Co, Ti, Zr, Nb und Mischungen davon, gegebenfalls dotiert mit Y, Nd, Sm, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu oder Mischungen davon,
  3. Die Flüssigkeit nach Anspruch 2, wobei das Metall ausgewählt ist aus Cu, Sn, Sb oder Mischungen davon, und vorzugweise Cu ist.
  4. Die Flüssigkeit nach Anspruch 2, wobei das Metall ausgewählt ist aus Fe, Ni, Co oder Mischungen davon, dotiert mit Y, Nd, Sm, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu oder Mischungen davon, vorzugsweise mit Sm, Gd, Dy, Er oder Mischungen davon.
  5. Die Flüssigkeit nach einem der Ansprüche 1 bis 4, wobei das Additiv in einer Menge von 0 bis 1 Gew.-%, vorzugsweise in einer Menge von 0,05 bis 0,7 Gew.-%, besonders bevorzugt in einer Menge von 0,1 von 0,5 Gew.-%, bezogen auf die Masse der Gesamtlösung, enthalten ist.
  6. Die Flüssigkeit nach einem der Ansprüche 1 bis 5, wobei in Formel (II) n = 1–3 und Z = S ist.
  7. Die Flüssigkeit nach Anspruch 6, wobei das Additiv 1,8-Dihydroxy-3,6-dithiaoctan ist.
  8. Die Flüssigkeit nach Anspruch 1, wobei das Metall Cu ist und das Additiv 1,8-Dihydroxy-3,6-dithiaoctan ist.
  9. Die Flüssigkeit nach einem der Ansprüche 1 bis 8, wobei die Flüssigkeit im Wesentlichen frei von Sulfat-, Nitrat-, Halogenat- und Halogenidionen ist.
  10. Die Flüssigkeit nach einem der Ansprüche 1 bis 9, wobei die Flüssigkeit neben dem Liganden der Formel (I) keinen zusätzlichen Puffer enthält.
  11. Verfahren zur elektrolytischen Oberflächenmodifizierung eines flächigen Metallwerkstücks, bei dem wenigstens eine Oberfläche des flächigen Metallwerkstücks in einer Behandlungsflüssigkeit anodisch gepolt wird und dadurch ein anodischer Auflösungsprozess induziert wird, und dann die wenigstens eine Oberfläche des flächigen Metallwerkstücks in einer Behandlungsflüssigkeit kathodisch gepolt wird und dadurch ein kathodischer Abscheidungsprozess zur Abscheidung eines oder mehrere Metalle auf der wenigstens einen Oberfläche des flächigen Metallwerkstücks induziert wird, dadurch gekennzeichnet, dass die Behandlungsflüssigkeit eine Flüssigkeit nach einem der Ansprüche 1 bis 10 ist.
  12. Verfahren nach Anspruch 11, wobei das flächige Metallwerkstück zur Induzierung des Auflösungsprozesses durch wenigstens eine Kathode ohne direkte Kontaktierung anodisch polarisiert wird, das flächige Metallwerkstück zur Induzierung des Abscheidungsprozesses durch wenigstens eine Anode ohne direkte Kontaktierung kathodisch polarisiert wird, und die Kathode und die Anode so angeordnet sind, dass sich zwischen Anode und Metallwerkstück und zwischen Kathode und Metallwerkstück Behandlungsflüssigkeit befindet.
  13. Verfahren nach einem der Ansprüche 11 und 12, wobei die Behandlungsflüssigkeit beim anodischen Auflösungsprozess und die Behandlungsflüssigkeit beim kathodischen Abscheidungsprozess unterschiedliche Behandlungsflüssigkeiten sind und die Behandlungsflüssigkeit beim anodischen Auflösungsprozess und die Behandlungsflüssigkeit beim kathodischen Abscheidungsprozess durch eine nichtleitende Trennflüssigkeit, die Kontakt zum flächigen Werkstück besitzt, getrennt sind.
  14. Verfahren nach einem der Ansprüche 11 bis 13, wobei durch Variierung der mittleren Stromdichte der Abscheidung und Variierung des Konzentrationsverhältnisses zwischen Dotiermetall(en) und Wirtsmetall(en) zwischen 1:5 und 150:1 in der Behandlungsflüssigkeit mit Dotiermetallen dotierte Schichten von Wirtsmetallen abgeschieden werden, wobei die Wirtsmetalle ausgewählt sind aus Cu, Zn, Mn, In, Sn, Sb, Bi, Fe, Ni, Co und Mischungen davon, die Dotiermetalle ausgewählt sind aus Y, Nd, Sm, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Ti, Zr, Nb und Mischungen davon, und die Dotiermetalle in einer Menge im Bereich von 1 ppm bis 20000 ppm in der Schicht vorliegen.
  15. Verfahren nach einem der Ansprüche 11 bis 14, wobei ferromagnetische geschlossene Schichten der Metalle Cu, Zn, Mn, In, Sn, Sb, Bi, Fe, Ni, Co, Nb oder Mischungen davon, die mit Y, Nd, Sm, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu oder Mischungen davon dotiert sind, in einer Dicke von 10 nm bis 1 µm abgeschieden werden, die vorzugsweise eine größere Schichtdicke des Umkippens zwischen der In-plane und der out-of-plane Orientierung der Domänen aufweisen als bei vakuumtechnisch abgeschiedenen, ferromagnetischen, reinen Metallschichten.
  16. Verfahren nach einem der Ansprüche 11 bis 14 zur Erzeugung von korrosionsstabilen Eisen- und/oder Zinnoberflächen und von rekristallisationsgehemmten Zinnoberflächen.
  17. Flächiges Metallwerkstück, erhalten nach dem Verfahren nach einem der Ansprüche 11 bis 16.
  18. Flächiges Metallwerkstück nach Anspruch 17, wobei die Oberfläche des flächigen Metallwerkstücks Metallaggregate aufweist, wobei vorzugsweise 90% oder mehr bevorzugter 95% oder mehr, insbesondere 99% oder mehr der Metallaggregate eine Größe im Bereich von 0,05 bis 1 µm, vorzugsweise im Bereich von 0,3 bis 0,7 µm und insbesondere im Bereich zwischen 0,35 und 0,65 µm aufweisen.
  19. Flächiges Metallwerkstück nach Anspruch 18, wobei die Metallaggregate Cu, Zn, Mn, In, Sn, Sb, Bi, Fe, Ni, Co, Nb oder Mischungen davon, und vorzugsweise ein oder mehrere Dotiermetall(e) ausgewählt aus Y, Nd, Sm, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Ti, Zr und Mischungen davon, umfassen und das (die) Dotiermetall(e) vorzugsweise in einer Menge im Bereich von in 1 ppm bis 20000 ppm im Metallaggregat vorliegen.
  20. Verwendung des flächigen Metallwerkstücks nach einem der Ansprüche 17, 18 oder 19 als Substrat für die Bildung von festen Haftverbänden mit anderen Materialien.
  21. Verwendung nach Anspruch 20, wobei die anderen Materialien ausgewählt sind aus Thermoplasten, Kunstharzen, Klebstoffen, Lacken und Pasten.
DE102013021502.1A 2013-12-19 2013-12-19 Elektrisch leitende Flüssigkeiten auf der Basis von Metall-Diphosphonat-Komplexen Ceased DE102013021502A1 (de)

Priority Applications (4)

Application Number Priority Date Filing Date Title
DE102013021502.1A DE102013021502A1 (de) 2013-12-19 2013-12-19 Elektrisch leitende Flüssigkeiten auf der Basis von Metall-Diphosphonat-Komplexen
US15/105,816 US20160319451A1 (en) 2013-12-19 2014-12-18 Electrically conductive liquids based on metal-diphosphonate complexes
EP14821610.4A EP2989236B1 (de) 2013-12-19 2014-12-18 Elektrisch leitende flüssigkeiten auf der basis von metall-diphosphonat-komplexen
PCT/EP2014/078556 WO2015091854A2 (de) 2013-12-19 2014-12-18 Elektrisch leitende flüssigkeiten auf der basis von metall-diphosphonat-komplexen

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102013021502.1A DE102013021502A1 (de) 2013-12-19 2013-12-19 Elektrisch leitende Flüssigkeiten auf der Basis von Metall-Diphosphonat-Komplexen

Publications (1)

Publication Number Publication Date
DE102013021502A1 true DE102013021502A1 (de) 2015-06-25

Family

ID=52278621

Family Applications (1)

Application Number Title Priority Date Filing Date
DE102013021502.1A Ceased DE102013021502A1 (de) 2013-12-19 2013-12-19 Elektrisch leitende Flüssigkeiten auf der Basis von Metall-Diphosphonat-Komplexen

Country Status (4)

Country Link
US (1) US20160319451A1 (de)
EP (1) EP2989236B1 (de)
DE (1) DE102013021502A1 (de)
WO (1) WO2015091854A2 (de)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102017107007A1 (de) * 2017-03-31 2018-10-04 Mkm Mansfelder Kupfer Und Messing Gmbh Verfahren zum Herstellen eines Kupferprofils aus einem Kupferausgangsmaterial sowie Kupferprofil und Vorrichtung
CN113054257A (zh) * 2021-03-16 2021-06-29 广州天赐高新材料股份有限公司 磷酸酯类电解液添加剂、电解液及锂离子电池

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3706635A (en) * 1971-11-15 1972-12-19 Monsanto Co Electrochemical compositions and processes
DE2942792A1 (de) * 1978-10-23 1980-04-30 Richardson Chemical Co Waessriges bad zur stromlosen abscheidung von uebergangsmetallen, komplexierungsmittel dafuer und verwendung dieses bades
DE3347593A1 (de) 1983-01-03 1984-07-05 Omi International Corp., Warren, Mich. Waessriger alkalischer cyanidfreier kupferelektrolyt und verfahren zur galvanischen abscheidung einer kornverfeinerten duktilen und haftfesten kupferschicht auf einem leitfaehigen substrat
DE19951324A1 (de) 1999-10-20 2001-05-03 Atotech Deutschland Gmbh Verfahren und Vorrichtung zum elektrolytischen Behandeln von elektrisch leitfähigen Oberflächen von gegeneinander vereinzelten Platten- und Folienmaterialstücken sowie Anwendung des Verfahrens
DE10046600A1 (de) * 2000-09-20 2002-04-25 Schloetter Fa Dr Ing Max Elektrolyt und Verfahren zur Abscheidung von Zinn-Kupfer-Legierungsschichten
RU2276205C1 (ru) * 2004-09-13 2006-05-10 Федеральное государственное унитарное предприятие "Калужский научно-исследовательский институт телемеханических устройств" Способ приготовления электролитов и растворов для получения покрытий металлами и сплавами
WO2009157334A1 (ja) * 2008-06-26 2009-12-30 日本高純度化学株式会社 還元型無電解スズめっき液及びそれを用いたスズ皮膜
CN101660183A (zh) * 2008-08-27 2010-03-03 比亚迪股份有限公司 一种镁合金电镀方法
EP2588644B1 (de) * 2010-06-30 2014-06-18 Schauenburg Ruhrkunststoff GmbH Tribologisch belastbare edelmetall/metallschichten

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2602816A (en) 1947-06-18 1952-07-08 Goodrich Co B F Method for preparing sulfur-containing carboxylic acids
US3970537A (en) * 1973-07-11 1976-07-20 Inland Steel Company Electrolytic treating apparatus
US4253920A (en) * 1980-03-20 1981-03-03 American Chemical & Refining Company, Incorporated Composition and method for gold plating
CA1228000A (en) * 1981-04-16 1987-10-13 David E. Crotty Chromium appearance passivate solution and process
DE19951325C2 (de) * 1999-10-20 2003-06-26 Atotech Deutschland Gmbh Verfahren und Vorrichtung zum elektrolytischen Behandeln von elektrisch gegeneinander isolierten, elektrisch leitfähigen Strukturen auf Oberflächen von elektrisch isolierendem Folienmaterial sowie Anwendungen des Verfahrens
DE10243139A1 (de) * 2002-09-17 2004-03-25 Omg Galvanotechnik Gmbh Dunkle Schichten
JP4756886B2 (ja) * 2005-03-22 2011-08-24 石原薬品株式会社 非シアン系のスズ−銀合金メッキ浴
JP4799887B2 (ja) * 2005-03-24 2011-10-26 石原薬品株式会社 電気銅メッキ浴、並びに銅メッキ方法
PL1961840T3 (pl) * 2007-02-14 2010-06-30 Umicore Galvanotechnik Gmbh Elektrolit miedziowo-cynowy i sposób osadzania warstw brązu

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3706635A (en) * 1971-11-15 1972-12-19 Monsanto Co Electrochemical compositions and processes
DE2942792A1 (de) * 1978-10-23 1980-04-30 Richardson Chemical Co Waessriges bad zur stromlosen abscheidung von uebergangsmetallen, komplexierungsmittel dafuer und verwendung dieses bades
DE3347593A1 (de) 1983-01-03 1984-07-05 Omi International Corp., Warren, Mich. Waessriger alkalischer cyanidfreier kupferelektrolyt und verfahren zur galvanischen abscheidung einer kornverfeinerten duktilen und haftfesten kupferschicht auf einem leitfaehigen substrat
DE19951324A1 (de) 1999-10-20 2001-05-03 Atotech Deutschland Gmbh Verfahren und Vorrichtung zum elektrolytischen Behandeln von elektrisch leitfähigen Oberflächen von gegeneinander vereinzelten Platten- und Folienmaterialstücken sowie Anwendung des Verfahrens
DE10046600A1 (de) * 2000-09-20 2002-04-25 Schloetter Fa Dr Ing Max Elektrolyt und Verfahren zur Abscheidung von Zinn-Kupfer-Legierungsschichten
RU2276205C1 (ru) * 2004-09-13 2006-05-10 Федеральное государственное унитарное предприятие "Калужский научно-исследовательский институт телемеханических устройств" Способ приготовления электролитов и растворов для получения покрытий металлами и сплавами
WO2009157334A1 (ja) * 2008-06-26 2009-12-30 日本高純度化学株式会社 還元型無電解スズめっき液及びそれを用いたスズ皮膜
CN101660183A (zh) * 2008-08-27 2010-03-03 比亚迪股份有限公司 一种镁合金电镀方法
EP2588644B1 (de) * 2010-06-30 2014-06-18 Schauenburg Ruhrkunststoff GmbH Tribologisch belastbare edelmetall/metallschichten

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
DIN EN 60249
DIN EN ISO 4288:1998

Also Published As

Publication number Publication date
WO2015091854A3 (de) 2015-09-11
US20160319451A1 (en) 2016-11-03
EP2989236B1 (de) 2018-06-27
WO2015091854A2 (de) 2015-06-25
EP2989236A2 (de) 2016-03-02

Similar Documents

Publication Publication Date Title
EP0862665B1 (de) Verfahren zur elektrolytischen abscheidung von metallschichten
DE19653681C2 (de) Verfahren zur elektrolytischen Abscheidung von Kupferschichten mit gleichmäßiger Schichtdicke und guten optischen und metallphysikalischen Eigenschaften und Anwendung des Verfahrens
EP3481976A1 (de) Verfahren zur galvanischen abscheidung von zink- und zinklegierungsüberzügen aus einem alkalischen beschichtungsbad mit reduziertem abbau von organischen badzusätzen
DE1496916B1 (de) Cyanidfreies,galvanisches Bad und Verfahren zum Abscheiden galvanischer UEberzuege
DE2939190C2 (de)
EP2989236B1 (de) Elektrisch leitende flüssigkeiten auf der basis von metall-diphosphonat-komplexen
DE1800049A1 (de) Nickel- oder Kupferfolie mit elektrolytisch aufgebrachter nickelhaltiger Haftschicht,insbesondere fuer duroplastische Traeger von gedruckten Schaltungen
DE10297114B4 (de) Verfahren zum Anodisieren von Magnesium und Elektrolytlösung
DE2337899C3 (de) Verfahren zur Herstellung einer negativen Kadmiumelektrode für galvanische Elemente
DE3875943T2 (de) Verfahren zur elektroplattierung einer metallschicht mit aluminium.
DE102005016819B4 (de) Elektrolyt, Verfahren zur Abscheidung von Zinn-Wismut-Legierungsschichten und Verwendung des Elektrolyten
EP1626098A2 (de) Verfahren zur Auflösung von Zink in Laugen
DE102011121799A1 (de) Abscheidung von Kupfer-Zinn-Zink-Legierungen aus einem Elektrolyten
EP3084043B1 (de) Verfahren zur elektrolytischen oberflächenmodifizierung von flächigen metallwerkstücken in sulfatometallathaltigen kupfersulfat-behandlungsflüssigkeiten
DE3347593C2 (de)
DE2352970A1 (de) Korrosionsbestaendige metallueberzuege, die galvanisch abgeschiedenes nickel und mikroporoeses chrom enthalten
DE956903C (de) Verfahren zum elektrolytischen UEberzieen eines nichtmagnetischen Metalls mit einer Nickel-Kobalt-Legierung
EP0328128B2 (de) Verfahren zur Haftvermittlung zwischen Metallwerkstoffen und galvanischen Aluminiumschichten und hierbei eingesetzte nichtwässrige Elektrolyte
DE3713734A1 (de) Verfahren zur aussenstromlosen abscheidung von ternaeren, nickel und phosphor enthaltenden legierungen
DE2037968C3 (de) Positive Nickelelektrode für wiederaufladbare alkalische Zellen und Verfahren zu ihrer Herstellung
DE112018002512T5 (de) Aluminium-Plattierfilm und Verfahren zur Herstellung eines Aluminium-Plattierfilms
DE102012004348A1 (de) Zusatz zur Verbesserung der Schichtdickenverteilung in galvanischen Trommelelektrolyten
EP2431500B1 (de) Regeneration alkalischer Zinknickelelektrolyte durch Entfernen von Cyanidionen mit Hilfe von löslichen quartären Ammoniumverbindungen
EP2384800A1 (de) Regeneration alkalischer Zinknickelelektrolyte durch Entfernen von Cyanidionen
DE102014118614A1 (de) Borsäurefreies Nickel-Bad

Legal Events

Date Code Title Description
R012 Request for examination validly filed
R002 Refusal decision in examination/registration proceedings
R003 Refusal decision now final