DE102008002748A1 - Mikro-Gyroskop - Google Patents

Mikro-Gyroskop Download PDF

Info

Publication number
DE102008002748A1
DE102008002748A1 DE102008002748A DE102008002748A DE102008002748A1 DE 102008002748 A1 DE102008002748 A1 DE 102008002748A1 DE 102008002748 A DE102008002748 A DE 102008002748A DE 102008002748 A DE102008002748 A DE 102008002748A DE 102008002748 A1 DE102008002748 A1 DE 102008002748A1
Authority
DE
Germany
Prior art keywords
masses
oscillating
anchor
previous ones
springs
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
DE102008002748A
Other languages
English (en)
Inventor
Alessandro Rocchi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hanking Electronics Ltd Solon Us
Original Assignee
SensorDynamics AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SensorDynamics AG filed Critical SensorDynamics AG
Priority to DE102008002748A priority Critical patent/DE102008002748A1/de
Priority to KR1020117001949A priority patent/KR101665021B1/ko
Priority to CA2729111A priority patent/CA2729111C/en
Priority to EP09769333.7A priority patent/EP2294359B1/de
Priority to JP2011515393A priority patent/JP5560451B2/ja
Priority to US13/001,126 priority patent/US8429970B2/en
Priority to CN200980124429.9A priority patent/CN102077054B/zh
Priority to PCT/EP2009/058000 priority patent/WO2009156485A1/de
Publication of DE102008002748A1 publication Critical patent/DE102008002748A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C19/00Gyroscopes; Turn-sensitive devices using vibrating masses; Turn-sensitive devices without moving masses; Measuring angular rate using gyroscopic effects
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C19/00Gyroscopes; Turn-sensitive devices using vibrating masses; Turn-sensitive devices without moving masses; Measuring angular rate using gyroscopic effects
    • G01C19/56Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces
    • G01C19/5705Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces using masses driven in reciprocating rotary motion about an axis
    • G01C19/5712Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces using masses driven in reciprocating rotary motion about an axis the devices involving a micromechanical structure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B7/00Microstructural systems; Auxiliary parts of microstructural devices or systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C19/00Gyroscopes; Turn-sensitive devices using vibrating masses; Turn-sensitive devices without moving masses; Measuring angular rate using gyroscopic effects
    • G01C19/56Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C19/00Gyroscopes; Turn-sensitive devices using vibrating masses; Turn-sensitive devices without moving masses; Measuring angular rate using gyroscopic effects
    • G01C19/56Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces
    • G01C19/5719Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces using planar vibrating masses driven in a translation vibration along an axis
    • G01C19/5733Structural details or topology
    • G01C19/574Structural details or topology the devices having two sensing masses in anti-phase motion

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Gyroscopes (AREA)

Abstract

Die Erfindung betrifft ein Mikro-Gyroskop zur Ermittlung von Rotationsbewegungen um eine x-, y- oder z-Achse. Auf einem Substrat ist zumindest ein Anker befestigt. Mehrere, insbesondere vier, radial zu dem Anker oszillierende Massen sind mittels Federn an dem Anker befestigt. Antriebselemente dienen zum oszillierenden Schwingen zumindest einzelner der Massen in x- oder y-Richtung, um bei einer Auslenkung des Substrats Corioliskräfte zu erzeugen. Mit Sensorelementen werden Auslenkungen der Massen aufgrund der erzeugten Corioliskräfte erfasst. Die oszillierenden Massen sind mit wenigstens einer weiteren, nicht oszillierenden, aber zusammen mit den oszillierenden Massen auf dem Substrat um den zumindest einen Anker drehbaren Masse verbunden. Dieser weiteren Masse ist ein weiteres Sensorelement zugeordnet.

Description

  • Die vorliegende Erfindung betrifft ein Mikro-Gyroskop gemäß Oberbegriff des Anspruches 1.
  • Mikro-Gyroskope werden in der Regel zur Ermittlung einer Drehbewegung um eine Achse in einem x-y-z-Koordinatensystem verwendet. Um Drehbewegungen des Systems um jede der drei Achsen ermitteln zu können, sind daher drei derartige Mikro-Gyroskope erforderlich. Dies ist kostenintensiv und aufwändig in der Steuerung bzw. Auswertung der Daten.
  • Um ein dreidimensionales Gyroskop schaffen zu können, bei welchem Drehungen in allen drei Achsen festgestellt werden können, hat D. Wood et al. in dem Artikel „A monolithic silicone gyroscope capable of sensing about three axes simultaneously" 1996 vorgeschlagen, ein Gyroskop zu schaffen, welches ringförmig um einen zentralen Anker angeordnete oszillierende Massen aufweist, welche sowohl Kipp- als auch eine Drehbewegungen aufgrund auftretender Corioliskräfte feststellen kann. Nachteilig hierbei ist, dass die Fertigung eines solchen Sensors ebenso wie der Antrieb der bewegten Massen schwierig bzw. nicht realisierbar ist. Die Ausführungen von D. Wood et al. blieben daher lediglich theoretischer Art.
  • In dem Artikel „Design and dynamics of an innovative micro-gyroscop against coupling effects" von Nan-Chyuan Tsai wurde ebenfalls ein 3D-Gyroskop vorgeschlagen. Nachteilig hierbei ist, dass eine innere Platte und ein äußerer Ring sowie vier bewegte Massen vorhanden sind. Die Auslenkungen, insbesondere der inneren Scheibe, sind nur schwierig zu ermitteln.
  • Aufgabe der vorliegenden Erfindung ist es, einen zu vertretbaren Kosten herstellbaren 3D-Mikro-Gyro-Sensor mit hoher Erfassungsgenauigkeit zu schaffen.
  • Die Aufgabe wird gelöst mit einem Mikro-Gyroskop mit den Merkmalen des Anspruches 1. Vorteilhaft ist es hierbei, dass an dem Anker sowohl die oszillierenden Massen als auch, jedenfalls mittelbar, die zumindest eine weitere Masse gelagert ist. Die Erfassung der Auslenkungen durch die Corioliskräfte erfolgt durch Sensorelemente, welche den oszillierenden Massen und den weiteren Massen zugeordnet sind. Es werden damit Schwenkbewegungen und/oder Drehbewegungen der Massen erfasst. Der Anker kann einteilig sein oder auch aus verschiedenen Teilen bestehen. Bei einem mehrteiligen Anker kann es sein, dass jede der oszillierenden Massen an einem dieser Teilanker angeordnet ist. Wesentlich ist, dass die oszillierenden Massen einerseits eine radiale Bewegung weg von und hin zu dem oder den Anker(n) erlauben und andererseits auch eine Kippbewegung und eine Drehbewegung um den Anker ermöglichen. Hierdurch ist es einerseits möglich, dass die oszillierenden Massen als Antriebsmassen einsetzbar sind und andererseits Bewegungen aufgrund der Corioliskräfte auf die entsprechenden Massen übertragen werden können. Damit ist es möglich Drehungen des Gyroskops, d. h. insbesondere des Substrats, um eine x-, y- oder z-Achse zusammen mit den jeweils zugeordneten Sensorelementen feststellen zu können.
  • Vorzugsweise und nicht einschränkend sind die Sensorelemente zum Erfassen der Auslenkung der oszillierenden Massen unterhalb der oszillierenden Massen, d. h. zwischen den oszillierenden Massen und dem Substrat angeordnet. Die Sensorelemente können dabei, wenn sie beispielsweise kapazitiver Art sind, durch Änderung der Spannungen eine Auslenkung der oszillierenden Massen feststellen. Das Sensorelement zum Erfassen einer Drehbewegung der weiteren Masse kann entweder durch ebenfalls mit der weiteren Masse in Verbindung stehende kapazitive Sensoren oder durch andere gleichwertige Sensoren festgestellt werden, welche eine Abstandsänderung zu einem feststehenden Element dieses Sensorelementes feststellt.
  • Besonders vorteilhaft ist es, wenn die weitere Masse die oszillierenden Massen als ein Ring oder Rahmen umgibt. Hierdurch ist gleichzeitig eine Befestigung und Abstützung der oszillierenden Masse an ihrem äußeren Umfang an der weiteren Masse ermöglicht. Es entsteht hierdurch ein stabiles System, welches auch gegenüber äußeren Schockeinflüssen stabil ist.
  • Ist die weitere Masse mit Biegefedern an dem Substrat befestigt, so kann sich diese auch entsprechend abstützen, um Stöße, welche von außen auf das System einwirken, dämpfen zu können und Fehlmessungen zu vermeiden.
  • Erlauben die Biegefedern eine Rotation der weiteren Masse um die z-Achse, so sind sie dazu geeignet, entsprechende Corioliskräfte, welche eine Rotation der weiteren Masse bewirken, sehr einfach auf eine Auslenkung der weiteren Masse umzusetzen, ohne dem hinderlich zu sein.
  • Vorzugsweise ist der eine Anker zentral angeordnet. Dies erlaubt eine gute und gleichmäßige Auslenkung in allen vier Drehachsen.
  • Sind die oszillierenden Massen an dem zentralen Anker befestigt, so ist ebenfalls ein gleichmäßiges und symmetrisches System zur guten und gleichmäßigen Erfassung aller drei Drehmöglichkeiten gegeben.
  • In einer besonders vorteilhaften Ausgestaltung der Erfindung ist zwischen den oszillierenden Massen und dem zentralen Anker eine Zentralplatte angeordnet. Die Zentralplatte kann die Schwenk- und Drehbarkeit der oszillierenden Massen sowie der daran angeordneten weiteren Masse(n) besonders gut realisiert werden. Ist die Zentralplatte an dem Anker nach Art eines Kar dangelenkes befestigt, so erlaubt diese Befestigung eine Schwenkbewegung der Massen um die x- und y-Achse.
  • Um die oszillierenden Massen in radialer Richtung beweglich auszugestalten, ist es vorteilhaft, wenn die oszillierenden Massen mittels Federn an der Zentralplatte oder bei Fehlen der Zentralplatte an dem Anker direkt und/oder mittels weiterer Federn an den weiteren Massen befestigt sind. Die oszillierenden Massen sind damit in der Lage, in der x-y-Ebene hin- und herzuschwingen. Vorzugsweise sind die Federn derart ausgestaltet, dass sie eine Bewegung der oszillierenden Massen in z-Richtung vermeiden, insbesondere dann, wenn die oszillierenden Massen an der Zentralplatte, welche ihrerseits wieder beweglich gelagert ist, befestigt sind. Sind die Federn relativ starr in z-Richtung, so ist eine Auslenkung der oszillierenden Massen in z-Richtung nur zusammen mit der elastisch gelagerten Zentralplatte und der in dieser Richtung fest mit den oszillierenden Massen verbundenen weiteren Massen möglich.
  • Um ein gleichmäßiges Schwingen der oszillierenden Massen zu ermöglichen, sind vorteilhafterweise Synchronisierfedern vorgesehen, welche die oszillierenden Massen miteinander verbinden. Die Synchronisierfedern erlauben einerseits eine gewisse Elastizität in Umfangsrichtung um den Anker, um zu erlauben, dass die oszillierenden Massen sich bei ihrer linearen Radialbewegung etwas voneinander entfernen. Andererseits behindern sie aber die oszillierenden Massen, sofern diese dazu neigen sollten, nicht gleichmäßig und gleichzeitig nach außen und innen zu schwingen.
  • Sind die oszillierenden Massen und die weitere Masse und/oder die Zentralplatte drehbar um die z-Achse gelagert, insbesondere mit entsprechenden Federn, so ist es möglich, dass die oszillierenden Massen und die weitere Masse eine Drehbewegung aufgrund einer Corioliskraft, welche um die z-Achse wirkt, anzuzeigen, indem sich diese Massen in die entsprechende Richtung bewegen. Die Drehbewegung kann mittels Sensorelementen sodann erfasst und ausgewertet werden.
  • Zum Antrieb der oszillierenden Massen sind vorzugsweise Elektroden, insbesondere Gabel- oder Kammelektroden, vorgesehen. Diese Elektroden regen die oszillierenden Massen zur jeweiligen Schwingung an und bewirken eine gezielte Schwingung mit einer vorbestimmten Frequenz.
  • Weitere Vorteile der Erfindung und weitere erfinderische Gedanken sind in der nachfolgenden Beschreibung von Ausführungsbeispielen dargelegt. Es zeigt:
  • 1 einen Überblick über eine mögliche Ausgestaltung der Erfindung,
  • 2 das Arbeitsprinzip des Gyroskops gemäß 1,
  • 3 ein weiteres Ausführungsbeispiel der Erfindung,
  • 4 die Antriebsstruktur der Ausführung gemäß 3,
  • 5 die Zentralplatte der Ausführung gemäß 3 und
  • 6 den äußeren Rahmen der Ausführung gemäß 3.
  • 1 zeigt ein mögliches Ausführungsbeispiel eines erfindungsgemäßen Mikro-Gyroskops. In einem zentralen Anker 1, welcher an einem in der Zeichenebene liegenden Substrat befestigt ist, sind vier oszillierende Antriebsmassen 2 angeordnet. Die Massen 2 sind mittels Federn 3 an dem Anker 1 befestigt, so dass die Federn einerseits um den Anker 1 herum in der Zeichenebene drehbar sind, andererseits aber auch um eine in der Zeichenebene liegende Drehachse schwenken können. Die Federn 3, welche hier sym bolisch rautenförmig dargestellt sind, ermöglichen darüber hinaus, dass sich die Antriebsmassen 2 radial von dem zentralen Anker 1 weg und wieder zurück zu diesem hin bewegen können. Die Antriebsmassen oszillieren somit in radialer Richtung. Hierzu sind nicht dargestellte Antriebselemente, beispielsweise Antriebselektroden, vorgesehen, welche die Massen 2 in oszillierender Bewegung halten. Die Antriebsmassen 2 sind von einer weiteren Masse, hier einem Ring 4, umgeben. Der Ring 4 ist mit den Massen 2 mittels Federn 5 verbunden. Die Federn 5 sind derart angeordnet und ausgerichtet, dass sie einerseits die oszillierende Bewegung der Massen 2 möglichst wenig behindern, andererseits aber auch eine Kopplung des Rings 4 mit den Antriebsmassen 2 in Rotations- und in Schwenkrichtung bewirken. Werden die Antriebsmassen 2 und der Ring 4 aufgrund einer auftretenden Corioliskraft ausgelenkt, so sind sowohl die oszillierenden Massen als auch die weitere Masse in Form des Rings 4 miteinander gekoppelt und erfahren die gleiche Auslenkung. Die Federn 5 sind dementsprechend so ausgebildet, dass sie in radialer Richtung nachgiebig, in den anderen Richtungen jedoch steif sind. Sie können aber in einer anderen Ausführung auch so ausgebildet sein, dass sie die Kippbewegung der oszillierenden Massen zwar erlauben, nicht aber der weiteren Masse bzw. des Rings 4. Die Federn 5 sind in diesem Falle außer in Drehrichtung um die z-Achse weich ausgebildet. Die oszillieren Massen bewegen sich in diesem Falle bei einer Kippbewegung um die x- oder y-Achse relativ zu dem Ring 4 und der Ring 4 bleibt in seiner x-y-Ebene ungekippt stehen.
  • Zwischen den vier Antriebsmassen 2 sind jeweils Synchronisierfedern 6 angeordnet. Die Synchronisierfedern 6 sind derart ausgebildet, dass sie ein synchrones Schwingen der Antriebsmassen 2 unterstützen. Sie erlauben somit eine gewisse Dehnung bei einer Vergrößerung des Spaltes zwischen zwei Antriebsmassen 2 bei einem radial nach außen Wandern der Antriebsmassen 2 und eine Verringerung des Spaltes, wenn die Antriebsmassen 2 wieder Richtung Zentrum bewegt werden. Andererseits sind die Synchroni sierfedern allerdings steif, wenn die Antriebsmassen 2 versuchen würden, ungleichmäßig zu oszillieren.
  • Unterhalb der Antriebsmassen 2 und im Bereich des Rings 4, insbesondere an dessen Peripherie, sind Sensorelektroden angeordnet, welche eine Abstandsveränderung feststellen können. Diese Sensorelektroden bestehen beispielsweise aus kapazitiv wirkenden Platten, welche eine Drehbewegung des Systems um den zentralen Anker 1 oder eine Kippbewegung um eine der in der Zeichenebene liegenden Achsen feststellt.
  • 2 zeigt die verschiedenen Bewegungsrichtungen des Mikro-Gyroskops aus 1. Der Antrieb erfolgt durch eine oszillierende Bewegung der vier Antriebsmassen 2 in radialer Richtung ausgehend vom Zentralanker 1. Die Antriebsmassen 2 oszillieren synchron in der Zeichenebene, d. h. in der x-y-Ebene. Die Federn 3, 5 und 6 stabilisieren die Antriebsmassen 2 einerseits und erlauben andererseits eine leichtgängige oszillierende Bewegung. Der Ring 4 bleibt in dieser Ausgangssituation unbewegt.
  • Tritt eine Corioliskraft auf, welche eine Drehbewegung des Systems um die x-Achse bewirkt, so bewegen sich die oben und unten dargestellten Massen 2 nach oben bzw. unten. Auch der Ring 4 kann in dieser Richtung bewegt werden, wenn die Federn 5 dementsprechend ausgebildet sind, d. h. es schwenkt das gesamte System bestehend aus Antriebsmassen 2 und dem Ring 4 nach oben bzw. unten um die x-Achse. Bei einer anderen Ausführung der Federn 5 schwenken jedoch nur die Massen 2 nach oben und unten und der Ring 4 bleibt ungeschwenkt in der Zeichenebene stehen. Wie in dem mittleren Bild dargestellt, bewegt sich bei einer Corioliskraft, welche eine Drehbewegung des Systems um die y-Achse bewegt, die links und rechts dargestellte Masse 2 zusammen mit oder bei entsprechender Ausgestaltung der Federn 5 auch ohne dem Ring 4 um die y-Achse und schwenken damit nach oben bzw. unten.
  • Soll eine Corioliskraft festgestellt werden, welche eine Drehung des Systems um die aus der Zeichenebene herausragende z-Achse bewirkt, so dreht sich das System um den Zentralanker 1. Sowohl die Massen 2 als auch der Ring 4 werden dabei durch die Steifigkeit der Federn 5 in dieser Richtung gemeinsam um die z-Achse bewegt.
  • Mit dem erfindungsgemäßen System ist es relativ einfach möglich, Bewegungen des Mikro-Gyroskops in drei Drehachsen x, y und z festzustellen. Die jeweiligen Auslenkungen werden durch Sensorelektroden, welche im Bereich der ausgelenkten Massen angeordnet sind, festgestellt.
  • In 3 ist ein weiteres Ausführungsbeispiel der vorliegenden Erfindung dargestellt. Es zeigt einen erfindungsgemäßen Sensor im Überblick. Der vorgeschlagene Sensor ist ein 3D-Miniatur-Gyroskop, welches in der Lage ist, Drehbeschleunigungen um die drei Achsen x, y und z festzustellen. Der Sensor ist in bekannter Micro-Machining-Technik hergestellt. Ein wesentliches Merkmal der Erfindung sind vier synchron angetriebene Massen 2, welche unter dem Einfluss externer Drehgeschwindigkeiten ihre Bewegung verändern. Diese Bewegungsänderung wird von Elektroden mittels Kapazitätsänderungen festgestellt. Die synchronen Massen 2 erlauben eine einzige Antriebskontrollschleife in der zugehörigen Elektronik, wodurch ein einfaches und billiges System resultiert. Um die Kosten des Sensorsystems, d. h. des Mikro-Gyroskops, zusammen mit der Auswerteelektronik zu verringern, kann durch das erfindungsgemäße Sensordesign ein Time-Sharing beim Abfragen der Sensorelektroden vorgenommen werden. Die Winkelgeschwindigkeiten um die x-, y- und z-Achse können durch denselben und einzigen Kanal ausgelesen werden, wobei die einzelnen Winkelgeschwindigkeiten nacheinander in verschiedenen Zeitbereichen abgefragt werden. Hierdurch ist die gesamte Auswerteelektronik wesentlich kostengünstiger herzustellen, ohne dass die Genauigkeit des Systems verloren geht. In den folgenden Figuren werden Einzelheiten des Sensors näher beschrieben.
  • In 4 ist die Antriebsstruktur des Sensors dargestellt. Die vier Antriebsmassen 2 werden oszillierend in radialer Richtung durch nicht dargestellte Antriebselemente, wie beispielsweise Elektroden, in hoher Frequenz angetrieben. Jede der Antriebsmassen ist mit Federn 3, 5 und 6 befestigt. Die Feder 3 ist bei diesem Ausführungsbeispiel an einer später beschriebenen Zentralplatte an einer Kontaktstelle befestigt. Diese Kontaktstelle ist zentral zwischen zwei weiteren Befestigungsstellen der Feder 3 angeordnet, welche an der Masse 2 befestigt sind. Hierdurch entsteht ein System, welches eine gewisse Elastizität in radialer Richtung aufweist. Außerdem ist das System elastisch bzgl. Drehbewegungen um die z-Achse. Die Masse 2 ist weiterhin befestigt über zwei Federn 5, welche z-artig ausgebildet sind und die Masse 2 an einem äußeren Rahmen 7 befestigt. Durch die Ausgestaltung dieser beiden Federn 5 wird wiederum eine elastische Lagerung der Masse 2 in radialer Richtung bewirkt, so dass die Masse 2 sich oszillierend bewegen kann. Andererseits können die Federn 5 alternativ so ausgestaltet sein, dass sie eine starre oder eine weiche Kopplung der Masse 2 mit dem Rahmen 7 in Bezug auf Kippbewegungen um die x- oder y-Achse bewirken. Bzgl. Drehbewegungen um die z-Achse sind die Massen 2 und der Rahmen 7 weitgehend starr über die Federn 5 miteinander verbunden. Treten Kräfte auf, welche das System um die x-, y- oder z-Achse bewegen, so kann das System der Masse 2 und des Rahmens 7 starr miteinander gekoppelt sein, so dass beide gleichermaßen ausgelenkt werden. Die starre Kopplung kann jedoch auch so ausgeführt sein, dass sie nur eine Drehbewegung um die z-Achse betrifft. Bei einer Bewegung um die x- oder y-Achse kippt in dieser Alternative nur die bewegten Massen 2, nicht aber der Rahmen 7.
  • Um benachbarte Massen 2 synchron oszillierend schwingen lassen zu können, sind diese mit Synchronisierfedern 6 verbunden. Diese befinden sich im Spalt zwischen zweier benachbarter Massen 2 und erlauben, dass sich der Spalt zwischen den beiden benachbarten Massen 2 vergrößert und verkleinert, je nachdem ob sich die Massen nahe dem Zentrum des Sensors oder weiter von diesem entfernt befinden. Andererseits weisen die Synchronisier federn 6 eine Stabilität und Steifigkeit auf, wenn die benachbarten Massen versuchen würden, asynchron zu schwingen. Es wird somit nicht zugelassen, dass sich eine der Massen 2 näher am Zentrum des Sensors befindet als die benachbarte Masse 2.
  • Die vier Antriebsmassen 2 schwingen wie durch die Doppelpfeile angedeutet ist. Die Gestalt der Massen 2 kann selbstverständlich anders als hier dargestellt sein. So können die Massen beispielsweise eine andere Form aufweisen und insbesondere auch die Antriebselektroden in sich integriert haben. Die Antriebsmassen 2 können elektrostatisch mit Antriebselektroden betätigt werden. Sie können als Gabeln, Kämme oder als parallele Elektroden oder auch andersartig ausgestaltet sein. Die Antriebsbewegung wird überwacht durch Antriebsüberwachungselektroden, welche ebenfalls im Bereich der Massen 2 angeordnet sein können. Sie können hergestellt sein als Kämme oder wiederum als parallele Elektroden oder auch in anderer Form. Durch diese Elektroden wird kontrolliert, dass der Antrieb der Massen 2 ordnungsgemäß und mit einer vorbestimmten Frequenz erfolgt.
  • Unter jeder der Antriebsmassen 2 sind vorzugsweise Plattenelektroden 8 angeordnet, welche eine Auslenkung um die x- oder y-Achse feststellen.
  • In 5 ist eine Zentralplatte 10 näher dargestellt. Die Zentralplatte 10 ist ähnlich einem Kardangelenk aufgebaut. Sie besteht aus zwei konzentrisch zueinander angeordneten Rahmen, wobei der innere Rahmen an den Zentralanker 1 mit einer in x-Richtung ausgerichteten Feder verbunden ist. Der äußere Rahmen ist mit dem inneren Rahmen über eine in y-Richtung ausgerichtete Feder verbunden. Hierdurch ist es bei entsprechender Ausgestaltung der Federn möglich, dass der äußere Rahmen leichter um die y-Achse schwenkt, während der innere Rahmen zusammen mit dem äußeren Rahmen leichter um die x-Achse schwenkt. Dadurch wird bewirkt, dass die Massen 2 und der Rahmen 7, welche ihrerseits an der Zentralplatte 10, insbesondere an dem äußeren Ring der Zentralplatte 10 befestigt sind, entspre chend um die x-Achse oder y-Achse schwenkbar sind. Corioliskräfte, welche eine derartige Auslenkung bewirken, können somit festgestellt werden. Selbstverständlich kann die Befestigung der Massen 2 auch andersartig an dem Zentralanker 1 erfolgen. Bei entsprechender Ausbildung der Federn ist beispielsweise die direkte Befestigung an dem Zentralanker 1 möglich.
  • Die Zentralplatte 10 wird benutzt, um die Federn 3 der Antriebsmassen 2 zu befestigen. Bei einer entsprechenden Ausgestaltung der Befestigungsfedern, mit welchen der äußere Rahmen an dem inneren Rahmen und dieser wiederum an dem Zentralanker 1 befestigt ist, kann die Zentralplatte 10 um die x- und um die y-Achse herumschwenken. Die Zentralplatte 10 weist darüber hinaus den Vorteil auf, dass sie äußerst stabil sein kann, insbesondere was Stöße von außen gegen das System betrifft. Sie bewirkt somit eine stabile Lagerung der Massen 2 und des Rahmens 7, ohne dass diese Gefahr laufen, bereits bei leichten Schlägen soweit ausgelenkt zu werden, dass sie auf das Substrat aufschlagen und damit Fehlergebnisse erzeugen. Die Zentralplatte 10 ist an dem Sensorsubstrat über den zentralen Anker 1 befestigt.
  • In 6 ist der äußere Rahmen 7 des Sensors genauer dargestellt. Der äußere Rahmen 7 ist über die Federn 5 an den bewegten Massen befestigt. Der Rahmen 7 kann auch anders ausgebildet sein, beispielsweise als Ring, wie in 1 und 2, oder auch als Ring- oder Rahmensegment, welche die einzelnen benachbarten Massen 2 miteinander verbinden. Der Rahmen 10 ist mit Rahmenfedern 11 mit dem Substrat verbunden. Die Rahmenfedern 11 sind so ausgebildet, dass sie eine Drehung des Rahmens 10 um die z-Achse erlauben. Sie sind somit bzgl. einer solchen Drehbewegung biegeweich.
  • Die Rahmenfedern 11 sind an ihrem von dem Rahmen abgewandten Ende mit Federankern 12 an dem Substrat befestigt. Drehungen des Rahmens 7 können mit Rahmensensorelektroden festgestellt werden, welche in der Rahmenperipherie 12 angeordnet sind. Diese Elektroden können als Finger ausgebildet sein, welche radial angeordnet sind oder sie können auch als Kammpaare ausgebildet sein, welche radial angeordnet sind.
  • Die vorliegende Erfindung ist nicht auf die dargestellten Ausführungsbeispiele beschränkt. Es sind viele andere Ausführungen im Rahmen des Wortlautes der Patentansprüche und der Beschreibung möglich. Auch Kombinationen der Ausführungen einzelner Bauteile der Ausführungsbeispiele sind jederzeit untereinander möglich.
  • ZITATE ENTHALTEN IN DER BESCHREIBUNG
  • Diese Liste der vom Anmelder aufgeführten Dokumente wurde automatisiert erzeugt und ist ausschließlich zur besseren Information des Lesers aufgenommen. Die Liste ist nicht Bestandteil der deutschen Patent- bzw. Gebrauchsmusteranmeldung. Das DPMA übernimmt keinerlei Haftung für etwaige Fehler oder Auslassungen.
  • Zitierte Nicht-Patentliteratur
    • - D. Wood et al. in dem Artikel „A monolithic silicone gyroscope capable of sensing about three axes simultaneously” 1996 [0003]
    • - D. Wood et al. [0003]
    • - „Design and dynamics of an innovative micro-gyroscop against coupling effects” von Nan-Chyuan Tsai [0004]

Claims (13)

  1. Mikro-Gyroskop zur Ermittlung von Rotationsbewegungen um eine x-, y- oder z-Achse, – mit einem Substrat, auf welchem zumindest ein Anker befestigt ist, – mit mehreren, insbesondere vier radial zu dem Anker oszillierenden Massen, wobei die oszillierenden Massen mittels Federn an dem Anker befestigt sind, – mit Antriebselementen zum oszillierenden Schwingen zumindest einzelner der Massen in x- oder y-Richtung, um bei einer Auslenkung des Substrats Corioliskräfte zu erzeugen und – mit Sensorelementen, um Auslenkungen der Massen aufgrund der erzeugten Corioliskräfte zu erfassen, dadurch gekennzeichnet, dass – die oszillierenden Massen mit wenigstens einer weiteren, nicht oszillierenden, aber zusammen mit den oszillierenden Massen auf dem Substrat um den zumindest einen Anker drehbaren Masse verbunden sind und – dieser weiteren Masse ein weiteres Sensorelement zugeordnet ist.
  2. Mikro-Gyroskop nach Anspruch 1, dadurch gekennzeichnet, dass Sensorelemente zum Erfassen der Auslenkung der oszillierenden Massen unterhalb der oszillierenden Massen angeordnet sind.
  3. Mikro-Gyroskop nach einem oder mehreren der vorherigen Ansprüche, dadurch gekennzeichnet, dass die weitere Masse die oszillierenden Massen als ein Ring umgibt.
  4. Mikro-Gyroskop nach einem oder mehreren der vorherigen Ansprüche, dadurch gekennzeichnet, dass die weitere Masse mit Biegefedern an dem Substrat befestigt ist.
  5. Mikro-Gyroskop nach einem oder mehreren der vorherigen Ansprüche, dadurch gekennzeichnet, dass die Biegefedern eine Rotation der weiteren Masse um die z-Achse erlauben.
  6. Mikro-Gyroskop nach einem oder mehreren der vorherigen Ansprüche, dadurch gekennzeichnet, dass der zumindest eine Anker zentral angeordnet ist
  7. Mikro-Gyroskop nach einem oder mehreren der vorherigen Ansprüche, dadurch gekennzeichnet, dass die oszillierenden Massen an dem zentralen Anker befestigt sind.
  8. Mikro-Gyroskop nach einem oder mehreren der vorherigen Ansprüche, dadurch gekennzeichnet, dass zwischen den oszillierenden Massen und dem zentralen Anker eine Zentralplatte angeordnet ist.
  9. Mikro-Gyroskop nach einem oder mehreren der vorherigen Ansprüche, dadurch gekennzeichnet, dass die Zentralplatte an dem Anker nach Art eines Kardangelenkes befestigt sind, um eine Schwenkbewegung der Massen um die x- und y-Achse zu erlauben.
  10. Mikro-Gyroskop nach einem oder mehreren der vorherigen Ansprüche, dadurch gekennzeichnet, dass die oszillierenden Massen mittels Federn an der Zentralplatte und/oder der weiteren Masse befestigt sind.
  11. Mikro-Gyroskop nach einem oder mehreren der vorherigen Ansprüche, dadurch gekennzeichnet, dass die oszillierenden Massen mit Synchronisierfedern miteinander verbunden sind.
  12. Mikro-Gyroskop nach einem oder mehreren der vorherigen Ansprüche, dadurch gekennzeichnet, dass die oszillierenden Massen und die weitere Masse und/oder die Zentralplatte drehbar um die z-Achse gelagert sind.
  13. Mikro-Gyroskop nach einem oder mehreren der vorherigen Ansprüche, dadurch gekennzeichnet, dass die Antriebselemente der oszillierenden Massen Elektroden, insbesondere Gabelelektroden, sind.
DE102008002748A 2008-06-27 2008-06-27 Mikro-Gyroskop Withdrawn DE102008002748A1 (de)

Priority Applications (8)

Application Number Priority Date Filing Date Title
DE102008002748A DE102008002748A1 (de) 2008-06-27 2008-06-27 Mikro-Gyroskop
KR1020117001949A KR101665021B1 (ko) 2008-06-27 2009-06-25 마이크로자이로스코프
CA2729111A CA2729111C (en) 2008-06-27 2009-06-25 Microgyroscope
EP09769333.7A EP2294359B1 (de) 2008-06-27 2009-06-25 Mikro-gyroskop
JP2011515393A JP5560451B2 (ja) 2008-06-27 2009-06-25 マイクロジャイロスコープ
US13/001,126 US8429970B2 (en) 2008-06-27 2009-06-25 Microgyroscope
CN200980124429.9A CN102077054B (zh) 2008-06-27 2009-06-25 微陀螺仪
PCT/EP2009/058000 WO2009156485A1 (de) 2008-06-27 2009-06-25 Mikro-gyroskop

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102008002748A DE102008002748A1 (de) 2008-06-27 2008-06-27 Mikro-Gyroskop

Publications (1)

Publication Number Publication Date
DE102008002748A1 true DE102008002748A1 (de) 2009-12-31

Family

ID=41130360

Family Applications (1)

Application Number Title Priority Date Filing Date
DE102008002748A Withdrawn DE102008002748A1 (de) 2008-06-27 2008-06-27 Mikro-Gyroskop

Country Status (8)

Country Link
US (1) US8429970B2 (de)
EP (1) EP2294359B1 (de)
JP (1) JP5560451B2 (de)
KR (1) KR101665021B1 (de)
CN (1) CN102077054B (de)
CA (1) CA2729111C (de)
DE (1) DE102008002748A1 (de)
WO (1) WO2009156485A1 (de)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010028005A1 (de) * 2010-04-20 2011-10-20 Sensordynamics Ag Mikro-Gyroskop zur Ermittlung von Bewegungen
WO2011136969A1 (en) * 2010-04-30 2011-11-03 Qualcomm Mems Technologies, Inc. Micromachined piezoelectric z-axis gyroscope
DE102011057081A1 (de) * 2011-12-28 2013-07-04 Maxim Integrated Products, Inc. Mikro-Drehratensensor und Verfahren zum Betreiben eines Mikro-Drehratensensors
US9097524B2 (en) 2009-09-11 2015-08-04 Invensense, Inc. MEMS device with improved spring system
US9683844B2 (en) 2009-09-11 2017-06-20 Invensense, Inc. Extension-mode angular velocity sensor
EP3696501A1 (de) * 2019-02-15 2020-08-19 Murata Manufacturing Co., Ltd. Ausgeglichenes mehrachsiges gyroskop
DE102009061797B3 (de) * 2009-02-27 2020-12-10 Hanking Electronics, Ltd. MEMS-Gyroskop zur Ermittlung von Rotationsbewegungen um eine x-, y-, oder z-Achse
DE102009001248B4 (de) * 2009-02-27 2020-12-17 Hanking Electronics, Ltd. MEMS-Gyroskop zur Ermittlung von Rotationsbewegungen um eine x-, y- oder z-Achse

Families Citing this family (60)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110185829A1 (en) * 2008-08-06 2011-08-04 Pioneer Corporation Rotational vibration gyro
ATE496279T1 (de) * 2008-11-11 2011-02-15 Fraunhofer Ges Forschung Mikromechanischer coriolis-drehratensensor
IT1391972B1 (it) 2008-11-26 2012-02-02 St Microelectronics Rousset Giroscopio microelettromeccanico con movimento di azionamento rotatorio e migliorate caratteristiche elettriche
IT1392741B1 (it) 2008-12-23 2012-03-16 St Microelectronics Rousset Giroscopio microelettromeccanico con migliorata reiezione di disturbi di accelerazione
DE102009001244A1 (de) * 2009-02-27 2010-09-02 Sensordynamics Ag Mikro-Gyroskop zur Ermittlung von Rotationsbewegungen um eine x-, y- oder z-Achse
DE102009002066A1 (de) * 2009-03-31 2010-10-07 Sensordynamics Ag Verfahren zum Erfassen von Beschleunigungen und Drehraten sowie MEMS-Sensor
IT1394007B1 (it) 2009-05-11 2012-05-17 St Microelectronics Rousset Struttura microelettromeccanica con reiezione migliorata di disturbi di accelerazione
US8710599B2 (en) 2009-08-04 2014-04-29 Fairchild Semiconductor Corporation Micromachined devices and fabricating the same
ITTO20091042A1 (it) 2009-12-24 2011-06-25 St Microelectronics Srl Giroscopio integrato microelettromeccanico con migliorata struttura di azionamento
KR101871865B1 (ko) 2010-09-18 2018-08-02 페어차일드 세미컨덕터 코포레이션 멀티-다이 mems 패키지
KR101352827B1 (ko) 2010-09-18 2014-01-17 페어차일드 세미컨덕터 코포레이션 단일 프루프 매스를 가진 미세기계화 3축 가속도계
US9352961B2 (en) 2010-09-18 2016-05-31 Fairchild Semiconductor Corporation Flexure bearing to reduce quadrature for resonating micromachined devices
EP2616771B8 (de) 2010-09-18 2018-12-19 Fairchild Semiconductor Corporation Mikroverarbeiteter monolithischer inertialsensor mit sechs achsen
US8813564B2 (en) 2010-09-18 2014-08-26 Fairchild Semiconductor Corporation MEMS multi-axis gyroscope with central suspension and gimbal structure
US9156673B2 (en) 2010-09-18 2015-10-13 Fairchild Semiconductor Corporation Packaging to reduce stress on microelectromechanical systems
KR101332701B1 (ko) 2010-09-20 2013-11-25 페어차일드 세미컨덕터 코포레이션 기준 커패시터를 포함하는 미소 전자기계 압력 센서
WO2012040245A2 (en) 2010-09-20 2012-03-29 Fairchild Semiconductor Corporation Through silicon via with reduced shunt capacitance
JP5652112B2 (ja) * 2010-10-18 2015-01-14 セイコーエプソン株式会社 物理量センサーおよび電子機器
JP5652117B2 (ja) * 2010-10-21 2015-01-14 セイコーエプソン株式会社 物理量センサーおよび電子機器
JP5790915B2 (ja) * 2011-01-13 2015-10-07 セイコーエプソン株式会社 物理量センサー及び電子機器
US9354061B2 (en) * 2011-03-31 2016-05-31 Ramot At Tel Aviv University Ltd. Compliant structures with time-varying moment of inertia
ITTO20110806A1 (it) 2011-09-12 2013-03-13 St Microelectronics Srl Dispositivo microelettromeccanico integrante un giroscopio e un accelerometro
EP2573516B1 (de) * 2011-09-21 2013-11-20 Tronics Microsystems S.A. Eine mikroelektromechanische Gyroskop-Vorrichtung
FR2983574B1 (fr) * 2011-12-06 2014-01-10 Sagem Defense Securite Capteur angulaire inertiel de type mems equilibre et procede d'equilibrage d'un tel capteur
US9062972B2 (en) 2012-01-31 2015-06-23 Fairchild Semiconductor Corporation MEMS multi-axis accelerometer electrode structure
US8978475B2 (en) 2012-02-01 2015-03-17 Fairchild Semiconductor Corporation MEMS proof mass with split z-axis portions
US9488693B2 (en) 2012-04-04 2016-11-08 Fairchild Semiconductor Corporation Self test of MEMS accelerometer with ASICS integrated capacitors
US9069006B2 (en) 2012-04-05 2015-06-30 Fairchild Semiconductor Corporation Self test of MEMS gyroscope with ASICs integrated capacitors
EP2648334B1 (de) 2012-04-05 2020-06-10 Fairchild Semiconductor Corporation Front-end-Ladungsverstärker einer MEMS-Vorrichtung
EP2647955B8 (de) 2012-04-05 2018-12-19 Fairchild Semiconductor Corporation MEMS-Vorrichtung mit Quadraturphasenverschiebungsauslöschung
EP2647952B1 (de) 2012-04-05 2017-11-15 Fairchild Semiconductor Corporation Automatische Verstärkungsregelungsschleife einer MEMS-Vorrichtung für mechanischen Amplitudenantrieb
US9094027B2 (en) 2012-04-12 2015-07-28 Fairchild Semiconductor Corporation Micro-electro-mechanical-system (MEMS) driver
US9625272B2 (en) 2012-04-12 2017-04-18 Fairchild Semiconductor Corporation MEMS quadrature cancellation and signal demodulation
DE102013014881B4 (de) 2012-09-12 2023-05-04 Fairchild Semiconductor Corporation Verbesserte Silizium-Durchkontaktierung mit einer Füllung aus mehreren Materialien
CN104870939B (zh) * 2012-12-11 2017-08-01 株式会社村田制作所 角速度检测元件
US9404747B2 (en) 2013-10-30 2016-08-02 Stmicroelectroncs S.R.L. Microelectromechanical gyroscope with compensation of quadrature error drift
TWI580632B (zh) 2014-03-14 2017-05-01 財團法人工業技術研究院 具用於旋轉元件之摺疊彈簧的微機電裝置
WO2015167066A1 (ko) * 2014-04-28 2015-11-05 주식회사 티엘아이 링 스프링을 가지는 3축 마이크로 자이로스코프
KR101645940B1 (ko) 2014-04-28 2016-08-05 주식회사 티엘아이 링 스프링을 가지는 3축 마이크로 자이로스코프
US10113873B2 (en) * 2015-05-22 2018-10-30 The Charles Stark Draper Laboratory, Inc. Whole angle MEMS gyroscope
US10317210B2 (en) 2015-05-22 2019-06-11 The Charles Stark Draper Laboratory, Inc. Whole angle MEMS gyroscope on hexagonal crystal substrate
US20160370180A1 (en) * 2015-06-17 2016-12-22 Freescale Semiconductor, Inc. Inertial sensor with couple spring for common mode rejection
CN104931032B (zh) * 2015-06-26 2018-04-10 清华大学 一种单锚定点四质量块mems谐振式陀螺仪
US9609856B1 (en) 2015-07-01 2017-04-04 Bite Buddy, LLC Multi-level programmable alerting system
KR101717877B1 (ko) * 2016-01-22 2017-03-17 한국기술교육대학교 산학협력단 Z형 커플링 구조를 갖는 일체형 3축 mems 자이로 센서
US10696541B2 (en) 2016-05-26 2020-06-30 Honeywell International Inc. Systems and methods for bias suppression in a non-degenerate MEMS sensor
US10371521B2 (en) 2016-05-26 2019-08-06 Honeywell International Inc. Systems and methods for a four-mass vibrating MEMS structure
CN106441261B (zh) * 2016-10-21 2019-05-10 厦门大学 一种微机械陀螺仪
US10697994B2 (en) 2017-02-22 2020-06-30 Semiconductor Components Industries, Llc Accelerometer techniques to compensate package stress
CN107192384B (zh) * 2017-07-24 2022-04-05 深迪半导体(绍兴)有限公司 一种mems三轴陀螺仪
JP6891932B2 (ja) * 2018-10-03 2021-06-18 株式会社村田製作所 ピエゾz軸ジャイロスコープ
EP3671116B1 (de) * 2018-12-19 2021-11-17 Murata Manufacturing Co., Ltd. Synchronisiertes gyroskop mit mehreren achsen
EP3671118B1 (de) 2018-12-19 2021-08-25 Murata Manufacturing Co., Ltd. Vibrationsrobuster mehrachsiger kreisel
KR102111568B1 (ko) * 2019-02-12 2020-05-18 주식회사 신성씨앤티 통합 3축 멤스 자이로스코프
EP3696503B1 (de) * 2019-02-15 2022-10-26 Murata Manufacturing Co., Ltd. Vibrationsrobuster mehrachsiger kreisel
JP7188311B2 (ja) 2019-07-31 2022-12-13 セイコーエプソン株式会社 ジャイロセンサー、電子機器、及び移動体
FR3102240B1 (fr) * 2019-10-18 2021-10-01 Safran Electronics & Defense Capteur à compensation mécanique de l’anisotropie de fréquence
JP7014267B2 (ja) * 2020-07-22 2022-02-01 セイコーエプソン株式会社 物理量センサーおよび電子機器
CN112683256B (zh) * 2020-11-30 2023-05-30 瑞声科技(南京)有限公司 Mems陀螺仪
CN113607152B (zh) * 2021-08-30 2023-03-17 武汉大学 一种三轴微机电陀螺仪及其制备封装方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000029855A1 (en) * 1998-10-14 2000-05-25 Irvine Sensors Corporation Multi-element micro-gyro
WO2002103364A2 (en) * 2001-06-14 2002-12-27 Microsensors, Inc. Angular rate sensor having a sense element constrained to motion about a single axis and flexibly attached to a rotary drive mass
DE19982627C2 (de) * 1998-06-22 2003-04-17 Tokai Rika Co Ltd Zweiachsiger Giersensor und Verfahren zu dessen Herstellung
EP1832841A1 (de) * 2006-03-10 2007-09-12 STMicroelectronics S.r.l. Mikroelektromechanische integrierte Sensorstruktur mit Rotationsantriebsbewegung

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9621873D0 (en) 1996-10-21 1996-12-11 British Tech Group A solid state,multi-axis gyroscope
DE69736630D1 (de) * 1997-06-19 2006-10-19 St Microelectronics Srl Hermetisch abgeschlossener Sensor mit beweglicher Mikrostruktur
JP3753209B2 (ja) * 1997-08-27 2006-03-08 アイシン精機株式会社 角速度センサ
JPH11351878A (ja) * 1998-06-10 1999-12-24 Japan Aviation Electronics Ind Ltd 振動型角速度センサ
JP3882973B2 (ja) * 1998-06-22 2007-02-21 アイシン精機株式会社 角速度センサ
DE19938206A1 (de) * 1999-08-12 2001-02-15 Bosch Gmbh Robert Mikromechanischer Drehbeschleunigungssensor
JP2002277248A (ja) * 2001-03-22 2002-09-25 Matsushita Electric Ind Co Ltd 角速度センサ
US6722197B2 (en) * 2001-06-19 2004-04-20 Honeywell International Inc. Coupled micromachined structure
US6513380B2 (en) * 2001-06-19 2003-02-04 Microsensors, Inc. MEMS sensor with single central anchor and motion-limiting connection geometry
DE102004017480B4 (de) * 2004-04-08 2009-04-16 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Rotations-Drehratensensor mit mechanisch entkoppelten Schwingungsmoden
EP1617178B1 (de) * 2004-07-12 2017-04-12 STMicroelectronics Srl Mikroelektromechanische Struktur mit elektrisch isolierten Gebieten und Verfahren zu ihrer Herstellung
US7100446B1 (en) 2004-07-20 2006-09-05 The Regents Of The University Of California Distributed-mass micromachined gyroscopes operated with drive-mode bandwidth enhancement
DE112005002196B4 (de) * 2004-09-27 2023-12-21 Conti Temic Microelectronic Gmbh Drehratensensor
WO2006126253A1 (ja) * 2005-05-24 2006-11-30 Japan Aerospace Exploration Agency ジャイロスコープ
JP4874067B2 (ja) * 2006-02-07 2012-02-08 セイコーインスツル株式会社 角速度センサ
JP4310325B2 (ja) * 2006-05-24 2009-08-05 日立金属株式会社 角速度センサ
DE102006046772A1 (de) * 2006-09-29 2008-04-03 Siemens Ag Anordnung zur Messung einer Drehrate mit einem Vibrationssensor
DE102007017209B4 (de) * 2007-04-05 2014-02-27 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Mikromechanischer Inertialsensor zur Messung von Drehraten
WO2009087858A1 (ja) * 2008-01-07 2009-07-16 Murata Manufacturing Co., Ltd. 角速度センサ
FI122397B (fi) * 2008-04-16 2011-12-30 Vti Technologies Oy Värähtelevä mikromekaaninen kulmanopeusanturi
DE102009001244A1 (de) * 2009-02-27 2010-09-02 Sensordynamics Ag Mikro-Gyroskop zur Ermittlung von Rotationsbewegungen um eine x-, y- oder z-Achse
US8534127B2 (en) * 2009-09-11 2013-09-17 Invensense, Inc. Extension-mode angular velocity sensor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19982627C2 (de) * 1998-06-22 2003-04-17 Tokai Rika Co Ltd Zweiachsiger Giersensor und Verfahren zu dessen Herstellung
WO2000029855A1 (en) * 1998-10-14 2000-05-25 Irvine Sensors Corporation Multi-element micro-gyro
WO2002103364A2 (en) * 2001-06-14 2002-12-27 Microsensors, Inc. Angular rate sensor having a sense element constrained to motion about a single axis and flexibly attached to a rotary drive mass
EP1832841A1 (de) * 2006-03-10 2007-09-12 STMicroelectronics S.r.l. Mikroelektromechanische integrierte Sensorstruktur mit Rotationsantriebsbewegung

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
"Design and dynamics of an innovative micro-gyroscop against coupling effects" von Nan-Chyuan Tsai
D. Wood et al. in dem Artikel "A monolithic silicone gyroscope capable of sensing about three axes simultaneously" 1996
NAN-CHYUAN,T.,et.al.:Design and dynamics of an innovative micro gyroscope against coupling effects.Microsys Technol,2008,14,S.295-306 *
WOOD D.,et.al.:A Monolithic Silicon Gyroscope Capable of Sensing About Three Axes Sumultaneously.In:1996 The Institution of Electrical Engineers.Printed and published by the IEE.Savoy Place ,London WC2R,OBL,UK *
WOOD D.,et.al.:A Monolithic Silicon Gyroscope Capable of Sensing About Three Axes Sumultaneously.In:1996 The Institution of Electrical Engineers.Printed and published by the IEE.Savoy Place ,London WC2R,OBL,UK NAN-CHYUAN,T.,et.al.:Design and dynamics of an innovative micro gyroscope against coupling effects.Microsys Technol,2008,14,S.295-306

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009001248B4 (de) * 2009-02-27 2020-12-17 Hanking Electronics, Ltd. MEMS-Gyroskop zur Ermittlung von Rotationsbewegungen um eine x-, y- oder z-Achse
DE102009061797B3 (de) * 2009-02-27 2020-12-10 Hanking Electronics, Ltd. MEMS-Gyroskop zur Ermittlung von Rotationsbewegungen um eine x-, y-, oder z-Achse
US10551193B2 (en) 2009-09-11 2020-02-04 Invensense, Inc. MEMS device with improved spring system
US9891053B2 (en) 2009-09-11 2018-02-13 Invensense, Inc. MEMS device with improved spring system
US9683844B2 (en) 2009-09-11 2017-06-20 Invensense, Inc. Extension-mode angular velocity sensor
US9097524B2 (en) 2009-09-11 2015-08-04 Invensense, Inc. MEMS device with improved spring system
US9157740B2 (en) * 2010-04-20 2015-10-13 Maxim Integrated Products, Inc. Micro-gyroscope for detecting motions
US20130031977A1 (en) * 2010-04-20 2013-02-07 Maxim Integrated Gmbh Micro-gyroscope for detecting motions
CN103026172A (zh) * 2010-04-20 2013-04-03 玛克西姆综合公司 用于探测运动的微陀螺仪
US9857175B2 (en) 2010-04-20 2018-01-02 Hanking Electronics, Ltd. Micro-gyroscope for detecting motions
DE102010028005A1 (de) * 2010-04-20 2011-10-20 Sensordynamics Ag Mikro-Gyroskop zur Ermittlung von Bewegungen
CN103026172B (zh) * 2010-04-20 2016-07-06 玛克西姆综合公司 用于探测运动的微陀螺仪
US9410805B2 (en) 2010-04-30 2016-08-09 Qualcomm Mems Technologies, Inc. Micromachined piezoelectric z-axis gyroscope
US10209072B2 (en) 2010-04-30 2019-02-19 Snaptrack Inc. Stacked lateral overlap transducer (SLOT) based three-axis accelerometer
US9032796B2 (en) 2010-04-30 2015-05-19 Qualcomm Mems Technologies, Inc. Stacked lateral overlap transducer (SLOT) based three-axis accelerometer
US9459099B2 (en) 2010-04-30 2016-10-04 Qualcomm Mems Technologies, Inc. Micromachined piezoelectric x-axis gyroscope
US9605965B2 (en) 2010-04-30 2017-03-28 Snaptrack, Inc. Micromachined piezoelectric x-axis gyroscope
US9021880B2 (en) 2010-04-30 2015-05-05 Qualcomm Mems Technologies, Inc. Micromachined piezoelectric three-axis gyroscope and stacked lateral overlap transducer (slot) based three-axis accelerometer
WO2011136969A1 (en) * 2010-04-30 2011-11-03 Qualcomm Mems Technologies, Inc. Micromachined piezoelectric z-axis gyroscope
US8584522B2 (en) 2010-04-30 2013-11-19 Qualcomm Mems Technologies, Inc. Micromachined piezoelectric x-axis gyroscope
US8516887B2 (en) 2010-04-30 2013-08-27 Qualcomm Mems Technologies, Inc. Micromachined piezoelectric z-axis gyroscope
US8516886B2 (en) 2010-04-30 2013-08-27 Qualcomm Mems Technologies, Inc. Micromachined piezoelectric X-Axis gyroscope
US9151611B2 (en) 2011-12-28 2015-10-06 Maxim Integrated Products, Inc. Micro rate of rotation sensor and method for operating a micro rate of rotation sensor
DE102011057081A1 (de) * 2011-12-28 2013-07-04 Maxim Integrated Products, Inc. Mikro-Drehratensensor und Verfahren zum Betreiben eines Mikro-Drehratensensors
US9784580B2 (en) 2011-12-28 2017-10-10 Hanking Electronics Ltd. Micro rate of rotation sensor and method for operating a micro rate of rotation sensor
EP3696501A1 (de) * 2019-02-15 2020-08-19 Murata Manufacturing Co., Ltd. Ausgeglichenes mehrachsiges gyroskop
CN111578922A (zh) * 2019-02-15 2020-08-25 株式会社村田制作所 平衡多轴陀螺仪
US11060866B2 (en) 2019-02-15 2021-07-13 Murata Manufacturing Co., Ltd. Balanced multiaxis gyroscope
CN111578922B (zh) * 2019-02-15 2023-07-21 株式会社村田制作所 平衡多轴陀螺仪

Also Published As

Publication number Publication date
US8429970B2 (en) 2013-04-30
EP2294359B1 (de) 2017-08-02
CA2729111C (en) 2017-03-21
WO2009156485A1 (de) 2009-12-30
CN102077054A (zh) 2011-05-25
EP2294359A1 (de) 2011-03-16
JP2011525976A (ja) 2011-09-29
JP5560451B2 (ja) 2014-07-30
CA2729111A1 (en) 2009-12-30
KR101665021B1 (ko) 2016-10-11
US20110094301A1 (en) 2011-04-28
KR20110036741A (ko) 2011-04-08
CN102077054B (zh) 2013-05-29

Similar Documents

Publication Publication Date Title
EP2294359B1 (de) Mikro-gyroskop
DE102009001248A1 (de) MEMS-Gyroskop zur Ermittlung von Rotationsbewegungen um eine x-, y- oder z-Achse
DE102011057081A1 (de) Mikro-Drehratensensor und Verfahren zum Betreiben eines Mikro-Drehratensensors
EP2475960B1 (de) Doppelaxialer, schockrobuster, drehratensensor mit ineinanderliegenden, linear schwingenden seismischen elementen
DE102009002066A1 (de) Verfahren zum Erfassen von Beschleunigungen und Drehraten sowie MEMS-Sensor
EP2435788B1 (de) Mikro-gyroskop zur ermittlung von rotationsbewegungen um mindestens eine von drei senkrecht aufeinanderstehenden raumachsen
DE102011057032B4 (de) Mikro-Gyroskop und Verfahren zum Betreiben eines Mikro-Gyroskops
DE102012219511A1 (de) Mikromechanische Struktur
DE102011056971A1 (de) Mikromechanischer Coriolis-Drehratensensor
DE60033635T2 (de) Stimmgabelumdrehungsmesser
DE102008042369B4 (de) Koppelstruktur für eine Drehratensensorvorrichtung, Drehratensensorvorrichtung und Herstellungsverfahren
DE102009027897A1 (de) Mikromechanischer Drehratensensor
DE112011103124T5 (de) Biegelager zum Verringern von Quadratur für mitschwingende mikromechanische Vorrichtungen
DE102009002702A1 (de) Mikromechanischer Sensor
EP2401579B1 (de) Mikro-elektro-mechanischer sensor
DE102008001863A1 (de) Beschleunigungssensor mit umgreifender seismischer Masse
DE102015117094A1 (de) MEMS-Drehratensensor
EP2997329A1 (de) Drehratensensor und verfahren zum betrieb eines drehratensensors
EP3377855B1 (de) Mikromechanischer drehratensensor und verfahren zu dessen herstellung
WO2018189249A1 (de) Verfahren und eine vorrichtung zur messung von rotorblattbewegungen eines fluggerätes
DE4431232C2 (de) Integrierbares Feder-Masse-System
DE102016216938A1 (de) Mikrospiegelvorrichtung und Verfahren zum Betreiben einer Mikrospiegelvorrichtung
DE102018208326A1 (de) Drehratensensor mit einem, eine Haupterstreckungsebene aufweisenden Substrat und mindestens einem Massenschwinger
DE102015107254A1 (de) Stoßfestes integriertes mehrachsiges Gyroskop
EP2957862B1 (de) Sensorvorrichtung und verfahren zum betreiben einer sensorvorrichtung

Legal Events

Date Code Title Description
OM8 Search report available as to paragraph 43 lit. 1 sentence 1 patent law
R082 Change of representative

Representative=s name: CANZLER & BERGMEIER PATENTANWAELTE, 85055 INGOLSTA

Representative=s name: CANZLER & BERGMEIER PATENTANWAELTE, DE

R081 Change of applicant/patentee

Owner name: HANKING ELECTRONICS, LTD, SOLON, US

Free format text: FORMER OWNER: SENSORDYNAMICS AG, LEBRING, AT

Effective date: 20111214

Owner name: HANKING ELECTRONICS, LTD., SOLON, US

Free format text: FORMER OWNER: SENSORDYNAMICS AG, LEBRING, AT

Effective date: 20111214

Owner name: MAXIM INTEGRATED GMBH, AT

Free format text: FORMER OWNER: SENSORDYNAMICS AG, LEBRING, AT

Effective date: 20111214

R082 Change of representative

Representative=s name: PATENTANWAELTE CANZLER & BERGMEIER PARTNERSCHA, DE

Effective date: 20111214

Representative=s name: CANZLER & BERGMEIER PATENTANWAELTE, DE

Effective date: 20111214

R081 Change of applicant/patentee

Owner name: HANKING ELECTRONICS, LTD, SOLON, US

Free format text: FORMER OWNER: SENSORDYNAMICS GMBH, GRAZ, AT

Effective date: 20120510

Owner name: HANKING ELECTRONICS, LTD., SOLON, US

Free format text: FORMER OWNER: SENSORDYNAMICS GMBH, GRAZ, AT

Effective date: 20120510

Owner name: MAXIM INTEGRATED GMBH, AT

Free format text: FORMER OWNER: SENSORDYNAMICS GMBH, GRAZ, AT

Effective date: 20120510

R082 Change of representative

Representative=s name: PATENTANWAELTE CANZLER & BERGMEIER PARTNERSCHA, DE

Effective date: 20120510

Representative=s name: CANZLER & BERGMEIER PATENTANWAELTE, DE

Effective date: 20120510

R012 Request for examination validly filed
R081 Change of applicant/patentee

Owner name: HANKING ELECTRONICS, LTD, SOLON, US

Free format text: FORMER OWNER: MAXIM INTEGRATED GMBH, LEBRING, AT

Owner name: HANKING ELECTRONICS, LTD., SOLON, US

Free format text: FORMER OWNER: MAXIM INTEGRATED GMBH, LEBRING, AT

R082 Change of representative

Representative=s name: PATENTANWAELTE CANZLER & BERGMEIER PARTNERSCHA, DE

R119 Application deemed withdrawn, or ip right lapsed, due to non-payment of renewal fee