DE102007000611A1 - Kratzfeste und dehnbare Korrosionsschutzschicht für Leichtmetallsubstrate - Google Patents

Kratzfeste und dehnbare Korrosionsschutzschicht für Leichtmetallsubstrate Download PDF

Info

Publication number
DE102007000611A1
DE102007000611A1 DE200710000611 DE102007000611A DE102007000611A1 DE 102007000611 A1 DE102007000611 A1 DE 102007000611A1 DE 200710000611 DE200710000611 DE 200710000611 DE 102007000611 A DE102007000611 A DE 102007000611A DE 102007000611 A1 DE102007000611 A1 DE 102007000611A1
Authority
DE
Germany
Prior art keywords
plasma
coating
light metal
metal substrate
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
DE200710000611
Other languages
English (en)
Inventor
Dirk Salz
Klaus-Dieter Vissing
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV
Aalberts Surface Technologies GmbH Landsberg am Lech
Original Assignee
Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV
Starnberger Beschichtungen GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV, Starnberger Beschichtungen GmbH filed Critical Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV
Priority to DE200710000611 priority Critical patent/DE102007000611A1/de
Priority to US12/740,022 priority patent/US20120003483A1/en
Priority to EP20080844614 priority patent/EP2203258B1/de
Priority to PCT/EP2008/064826 priority patent/WO2009056635A2/de
Publication of DE102007000611A1 publication Critical patent/DE102007000611A1/de
Ceased legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D1/00Processes for applying liquids or other fluent materials
    • B05D1/62Plasma-deposition of organic layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D2202/00Metallic substrate
    • B05D2202/20Metallic substrate based on light metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • B05D3/14Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by electrical means
    • B05D3/141Plasma treatment
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31652Of asbestos
    • Y10T428/31663As siloxane, silicone or silane

Abstract

Die vorliegende Erfindung betrifft ein Verfahren zum Beschichten der Oberfläche eines Leichtmetallsubstrates, mit folgenden Schritten: A. Bereitstellen des Leichtmetallsubstrates und gegebenenfalls Säubern der zu beschichtenden Substratoberfläche, B. Beschichten der gegebenenfalls in Schritt A gesäuberten Substratoberfläche in einem Plasmapolymerisationsreaktor mittels Plasmapolymerisation, wobei - in Schritt B als Precursor(en) für das Plasma eine oder mehrere siliciumorganische sowie (a) keine weiteren oder (b) weitere Verbindungen eingesetzt werden und in Schritt B das Leichtmetallsubstrat im Plasmapolymerisationsreaktor so angeordnet wird, dass es (i) sich zwischen der Zone, in der das Plasma gebildet wird, und der Kathode befindet oder (ii) als Kathode wirkt, dadurch gekennzeichnet, dass das Verfahren so geführt wird, dass die durch das Verfahren hergestellte Beschichtung - einen durch Messung mittels XPS bestimmbaren Anteil von Kohlenstoff von 5 bis 20 Atom-%, vorzugsweise 10 bis 15 Atom-%, bezogen auf die Gesamtzahl der in der Beschichtung enthaltenen Kohlenstoff-, Silicium- und Sauerstoffatome, - einen nach ASTM D 1925 Gelbindex (Yellow Index) von 3,vorzugsweise <= 2,5 und - eine mittels Nanoindentation zu messende Härte im Bereich von 2,5 bis 6 GPa, vorzugsweise 3,1 bis 6 GPa aufweist.

Description

  • Die Erfindung betrifft ein Verfahren zum Beschichten der Oberfläche eines Leichtmetallsubstrates, insbesondere Aluminium und Magnesium mit einer Schicht, die sich durch eine vorteilhafte Kombination von Kratzfestigkeit, Dehnbarkeit und Korrosionsschutzwirkung auszeichnet, sowie beschichtete Leichtmetallsubstrate.
  • Unbehandelte Oberflächen von Gegenständen (beispielsweise Halbzeuge) aus Leichtmetallen, insbesondere aus Aluminium (einschließlich Aluminiumlegierungen) oder Magnesium (einschließlich Magnesiumlegierungen) weisen insbesondere in bestimmten Medien, wie z. B. Laugen oder Säuren, eine starke Korrosionsanfälligkeit auf. Zudem ist ihre mechanische Stabilität vergleichsweise gering. Daher werden insbesondere Aluminiumoberflächen (ggf. durch eine chemische, elektrochemische oder mechanische Vorbehandlung veredelt) häufig durch Eloxieren (Eloxal-Verfahren, anodische Oxidation, Anodisation) behandelt. Hierdurch wird die oberste Schicht des Metalls kontrolliert in eine Oxidschicht umgewandelt. Entsprechende eloxierte Oberflächen verfügen aufgrund der Transparenz der erzeugten Oxidschicht über einen metallischen Glanz und sind gegenüber nichtbehandelten Oberflächen in gewisser Weise gegen Korrosion und Verkratzen geschützt. Eloxalschichten besitzen typischerweise eine offenporige Oberflächenstruktur. In die Poren können optional Farbstoffe eingelagert werden. Häufig werden die Öffnungen der Eloxalporen durch Verdichten verschlossen. Hierzu wird üblicherweise Aluminiumoxidhydrat in der Pore gebildet, was den Korrosionsschutz und die Langlebigkeit verbessert. Eloxalschichten bilden einen integralen Bestandteil des Aluminiums und blättern bzw. platzen daher nicht ab.
  • Nachteilig an Eloxalschichten ist jedoch ihre geringe Dehnbarkeit. Typisch ist eine Rissdehnung (crack-onset-strain, Dehnung bis Mikroriss) von etwa 0,4%, die somit schlechter ist als bei unbehandelten Aluminium. Dies bedeutet bei der Verarbeitung von entsprechenden Bauteilen aus Aluminium bzw. Aluminiumlegierungen (Aluminiumsubstraten), beispielsweise im Fall von Automobilzierleisten, eine starke Einschränkung. Bereits eine leichte Biegung, etwa aufgrund eines Festhaltens einer mindestens 1 m langen Zierleiste an nur einem Ende, verursacht Haarrisse in einer Eloxalschicht. Solche Risse treten auch regelmäßig auf, wenn ein solches Bauteil aus Arbeitshöhe auf den Boden fällt. Haarrisse beobachtet man auch bei einer Erwärmung auf über ca. 100°C, wie sie regelmäßig etwa beim Schweißen oder Warmbiegen auftritt. Bei einem solchen Temperaturanstieg verändert sich das Materialgefüge, was beim Eloxieren sichtbar werden und zu undekorativem Aussehen führen kann. An den Stellen, an denen Haarrisse verlaufen, versagt insbesondere die Korrosionsschutzwirkung der Eloxalschicht.
  • Weiterhin wird zwar durch das Eloxieren die Korrosionsbeständigkeit der Oberfläche eines Aluminiumsubstrates gegenüber dem unbehandelten Aluminiumsubstrat verbessert, jedoch ist sie nicht für alle Anwendungsgebiete ausreichend. Insbesondere gegen den Angriff von starken Basen (pH etwa 13,5 oder höher) schützen Eloxalschichten nur unzureichend. Dies hat dazu geführt, dass Eloxaloberflächen in einigen technischen Anwendungsbereichen wie z. B. der Automobilindustrie nicht mehr das aktuelle Anforderungsprofil erfüllen. Die Kratzfestigkeit einer Eloxaloberfläche ist zwar gegenüber der Oberfläche eines unbehandelten Aluminiumsubstrates erhöht, jedoch nicht in einem für alle Anwendungsgebiete ausreichenden Maße (z. B. nicht für Zierleisten, Abdeckungen, Lampen, Beschläge und Maschinenteile der Lebensmittelverarbeitung).
  • Ein Beispiel für eine vielfältige Oberflächenbeanspruchung, der eine durch ein Eloxalverfahren behandelte Oberfläche oftmals nicht gewachsen ist, ist wiederum im Automobilbereich zu finden, und zwar etwa im Fall von Aluminiumfelgen. Sollen derartige Felgen, um ihren metallischen Glanz zu erhalten, nach einer Politur nicht lackiert werden so ist ein Verfahren zum Erzeugen von Beschichtungen notwendig, welche das optische Erscheinungsbild kaum oder nicht verändern, einen guten Korrosionsschutz bieten, bei mechanischer Druck- und Zugbeanspruchung nicht zur Rissbildung neigen, eine hohe Kratzfestigkeit aufweisen, bei lokaler Zerstörung nicht unterwandert werden, gegenüber Laugen und Reinigungsmittel möglichst unempfindlich sind, die Oberfläche gut nachbilden sowie eine hohe Temperaturbeständigkeit und gegebenenfalls ein schmutzabweisendes Oberflächenverhalten aufweisen, so dass sich z. B. kein Bremsstaub festsetzen kann.
  • Aufgabe der vorliegenden Erfindung war es, ein Verfahren anzugeben, mit dem auf einem Aluminiumsubstrat eine Schutzschicht erzeugt werden kann, die einige oder alle der oben beschriebenen Nachteile von Eloxalschichten nicht oder zumindest nur in verringertem Ausmaß aufweist. Insbesondere sollte eine solche Schicht eine verbesserte Rissdehnung aufweisen. Weiterhin ist eine verbesserte chemische Stabilität gegenüber alkalischen Medien sowie generell eine verbesserte Korrosionsschutzwirkung im Vergleich zu Eloxalschichten erstrebenswert. Weiterhin sollte eine solche Schicht eine im Vergleich zu Eloxalschichten verbesserte Kratzfestigkeit besitzen und in einem wirtschaftlich vorteilhaften Prozess, insbesondere mit einer verhältnismäßig hohen Geschwindigkeit, hergestellt werden können.
  • Überraschenderweise hat sich gezeigt, dass diese Aufgabe gelöst wird durch ein Verfahren zum Beschichten der Oberfläche eines Leichtmetallsubstrates, mit folgenden Schritten:
    • A. Bereitstellen des Leichtmetallsubstrates und gegebenenfalls Säubern der zu beschichtenden Substratoberfläche,
    • B. Beschichten der gegebenenfalls in Schritt A gesäuberten Substratoberfläche in einem Plasmapolymerisationsreaktor mittels Plasmapolymerisation, wobei
    • – in Schritt B als Precursor(en) für das Plasma eine oder mehrere siliciumorganische sowie (a) keine weiteren oder (b) weitere Verbindungen eingesetzt werden und
    • – in Schritt B das Leichtmetallsubstrat im Plasmapolymerisationsreaktor so angeordnet wird, dass es (i) sich zwischen der Zone, in der das Plasma gebildet wird, und der Kathode befindet oder (ii) als Kathode wirkt,
    dadurch gekennzeichnet, dass das Verfahren so geführt wird, dass die durch das Verfahren hergestellte Beschichtung
    • – einen durch Messung mittels XPS bestimmbaren Anteil von Kohlenstoff von 5 bis 20 Atom-%, vorzugsweise 10 bis 15 Atom-%, bezogen auf die Gesamtzahl der in der Beschichtung enthaltenen Kohlenstoff-, Silicium- und Sauerstoffatome,
    • – einen nach ASTM D 1925 bestimmten Gelbindex (Yellow Index) von ≤ 3, vorzugsweise ≤ 2,5 und
    • – eine mittels Nanoindentation zu messende Härte im Bereich von 2,5 bis 6 GPa, vorzugsweise 3,1 bis 6 GPa
    aufweist.
  • Leichtmetall im Sinne der vorliegenden Erfindung ist ein metallischer Werkstoff mit einer speziellen Dichte von maximal 4,5 g/cm3. Dazu gehören insbesondere Magnesium, Aluminium, Beryllium und Titan sowie deren Legierungen. Bevorzugte Leichtmetallsubstrate sind Magnesiumsubstrate und insbesondere Aluminiumsubstrate.
  • Eine nach dem erfindungsgemäßen Verfahren hergestellte Beschichtung zeichnet sich durch eine bisher unbekannte vorteilhafte Kombination von Eigenschaften aus, die bislang als nicht miteinander vereinbar betrachtet wurden, nämlich gute Kratz- und Korrosionsfestigkeit bei hoher Dehnbarkeit (Rissdehnung vorzugsweise größer oder gleich 1%, insbesondere größer oder gleich 1,5%). Zudem können durch das erfindungsgemäße Verfahren auch eine gute Substrathaftung, gute optische Transparenz im sichtbaren Bereich und/oder eine hohe Schichtdickenhomogenität erreicht werden.
  • Beschichtungen mit einem Gelbindex von 2,5 oder darunter weisen in der Regel keine für das menschliche Auge feststellbare Gelbfärbung auf. Bei Beschichtungen, die als Ersatz für Eloxalschichten vorgesehen sind, ist jedoch auch eine minimale Gelbfärbung wie bei einem Gelbindex im Bereich von über 2,5 bis 3 tolerierbar. Der Gelbindex wird weiterhin wesentlich von dem Anteil an Si-H-Bindungen in der mit dem erfindungsgemäßen Verfahren hergestellten Beschichtung bestimmt, der wie weiter unten ausgeführt für das Erzielen von günstigen Bereichen von Härte und Elastizität und damit für das Erreichen der vorteilhaften Eigenschaftskombination entscheidend ist.
  • Eine weitere wichtige Kenngröße ist der Kohlenstoffanteil in der mit dem erfindungsgemäßen Verfahren hergestellten Beschichtung, der durch den Anteil an organischen Gruppen beeinflusst wird. Dieser wiederum ist ebenso wichtig für die Härte und Elastizität der Beschichtung, die ebenfalls für das Erreichen der vorteilhaften Eigenschaftskombination erwünscht ist. Durch eine hohe Elastizität der Beschichtung kann diese z. B. zusammen mit dem beschichteten Gegenstand gedehnt werden, ohne dass es zu einer Rissbildung kommt. Bei sehr hoher Elastizität der Beschichtung kann das Substrat sogar plastisch verformt werden, ohne dass die Beschichtung geschädigt wird. Hierdurch werden Umformprozesse des beschichteten Materials in gewissem Rahmen möglich.
  • Bei den durch das erfindungsgemäße Verfahren herstellbaren Beschichtungen sind im Vergleich zu den für Aluminium typischen Eloxalschichten die Kratzfestigkeit, die Rissdehnung und die Korrosionsschutzeigenschaften verbessert. Die Kratzfestigkeit der Schichten ist in vielen Fällen vergleichbar mit der von Glasoberflächen. Es stellte sich erstaunlicherweise heraus, dass es durch Einsatz des erfindungsgemäßen (trockenchemischen) Verfahrens möglich ist, gänzlich auf das (nasschemische) Eloxieren zu verzichten. Dies ist vorteilhaft, da das Eloxieren wegen des hohen Energieeinsatzes ein teures und aus Umweltgesichtspunkten problematisches Verfahren ist. Zudem stellt das erfindungsgemäße Verfahren geringere Ansprüche an die Qualität des Aluminiumsubstrats, da es nicht notwendig ist, Material in Eloxalqualität einzusetzen. Es kann jedoch auch eine Eloxaloberfläche beschichtet werden, was insbesondere im Fall von gefärbten Eloxalschichten wünschenswert sein kann. Hierbei werden insbesondere die Kratzfestigkeit und die Korrosionsschutzeigenschaften verbessert. Zudem können an der Beschichtungsoberfläche schmutzabweisende (niederenergetische) Oberflächeneigenschaften eingestellt werden. Die erzielbare Schichteigenschaftsfunktion ist nicht nur als Eloxalersatz von Interesse, sondern auch für die generelle Beschichtung von Leichtmetallen.
  • Aus der DE 197 48 240 A1 ist ein Verfahren zur korrosionsfesten Beschichtung von Metallsubstraten, insbesondere aus Aluminium oder Aluminiumlegierungen, mittels Plasmapolymerisation bekannt. Als Precursor(en) wird wenigstens eine kohlenwasserstoff- oder siliciumorganische Verbindung eingesetzt. In der DE 197 48 240 A1 finden sich keine Angaben zum Anteil der Kohlenstoffatome in den hergestellten plasmapolymeren Beschichtungen oder zu deren Gelbindex. Die dort offenbarten Schichten schützen die Oberfläche gut vor Korrosion, ohne sie optisch zu verändern. Eine Einschränkung ist jedoch ihre geringe Kratzfestigkeit. Das dort offenbarte Verfahren ist aufgrund der geringen Abscheideraten nicht geeignet, wirtschaftlich höhere Schichtdicken herzustellen, wie sie für Kratzschutz-Beschichtungen notwendig sind. Außerdem stellt es sehr hohe Anforderungen an die Oberflächenrauhigkeit des Substrates.
  • In der WO 03/002269 A2 sind Artikel, umfassend ein Substrat und eine flächig mit dem Substrat verbundene plasmapolymere, O, C und Si umfassende Beschichtung offenbart, in der die Stoffmengenverhältnisse von O zu Si und C zu Si jeweils in bestimmten Bereichen liegen und die sich leicht reinigen lässt. Die dort offenbarten Beschichtungen besitzen jedoch mit mindestens 25 Atom-% einen höheren Kohlenstoffanteil als die durch das erfindungsgemäße Verfahren herstellbaren Beschichtungen und weisen nicht die oben genannte Kombination von günstigen Eigenschaften auf. Auch ist nichts über den einzustellenden Gelbindex gesagt.
  • Domingues et al. (2002) Electrochimica Acta 47, 2253–2258 offenbart eine Aluminiumlegierung mit einer plasmapolymeren Beschichtung, die einen gewissen Korrosionsschutz bewirkt (nachgewiesen durch elektrochemische Impedanzspektroskopie). Der offenbarten Beschichtung fehlt jedoch insbesondere die gute Kratzfestigkeit und die hohe Dehnbarkeit, wie sie der erfindungsgemäßen Beschichtung zu eigen sind. Weiterhin zeichnet sie sich durch eine hohe Wasseraufnahme aus, vergleichbar mit der von organischen Beschichtungen. Domingues et al. enthält keine Informationen hinsichtlich einer Gelbfärbung oder hinsichtlich des Kohlenstoffanteiles. Aufgrund der Verfahrensführung (Verhältnis der Gasflüsse von Sauerstoff zum siliciumorganischen Precursor etwa 23:1; Näheres zum Einfluss dieser Parameter s. unten) hat die in Domingues et al. offenbarte Beschichtung einen geringeren Kohlenstoffanteil als die durch das erfindungsgemäße Verfahren hergestellte Beschichtung.
  • In der EP 0 748 259 B1 sind Beschichtungen für weiche Substrate offenbart. Es ist nicht offenbart, dass die Beschichtungen geeignet sein könnten, um Aluminiumsubstrate vor Korrosion zu schützen. Die in der EP 0 748 259 B1 offenbarten Beschichtungen, die einen Gelbindex von ≤ 3 aufweisen, haben jedoch eine Nanoindentations-Härte von unter 2,5 GPa.
  • Ferner wird keine Lehre gegeben die Menge an nicht stoiöchiometrischem Silizium und damit die Bildung von Si-H zu kontrollieren, um besonders harte (gut vernetzte), dehnfähige Schichten bei geringer Gelbfärbung zu erzeugen. Die optimierte Vernetzung sorgt für ein optimiertes Korrosionsschutzverhalten.
  • Dickschichtverfahren, z. B. der Auftrag von Lacken oder Sol-Gel-Beschichtungen, können zwar die notwendige Korrosionsbeständigkeit erzielen, jedoch verändern sie das optische Erscheinungsbild. Dieser Effekt wird im Fall von Unregelmäßigkeiten wie etwa bei mechanischer Beschädigung oder mangelnder Haftung der Dickschichten noch verstärkt.
  • Das erfindungsgemäße Verfahren ist in der Lage, den Bedarf an einem preiswerten Verfahren zum Erzeugen einer Dünnschicht zu decken, welche die Oberflächenfarbe des Aluminiums nicht verändert (keine Eigenfarbe und somit im sichtbaren Bereich eine hinreichend hohe Transmission besitzt), welche die Oberflächenstruktur (z. B. poliert, geschliffen, mattiert) nachbildet, so dass kein „Lackglanz" entsteht, welche neben einer hohen Korrosionsstabilität eine hohe mechanische Widerstandsfähigkeit (Kratzfestigkeit, Dehnbarkeit) besitzt und welche auch bei komplexen Geometrien eine hohe Schichtdickengleichmäßigkeit aufweist.
  • Durch Variation von Verfahrensparametern lassen sich die Schichteigenschaften in weiten Grenzen wie im Folgenden beschrieben einstellen.
  • Eine Erhöhung des Self-Bias erhöht hierbei die Härte der Schicht, ihre optische Absorption im sichtbaren Bereich (und damit den Gelbindex) und ihre Korrosionsschutzwirkung.
  • Durch Einstellung der Härte der durch das erfindungsgemäße Verfahren herstellbaren Beschichtungen ist es dem Fachmann möglich, hinsichtlich der Kratzfestigkeit der Beschichtung ein Optimum zu erzielen: Ist die Härte zu gering, so ist die abgeschiedene plasmapolymere Schicht nicht genügend kratzfest. Bei zu großer Härte nimmt die Kratzfestigkeit jedoch ebenfalls ab, da die Schicht dann zu spröde wird. Allgemein wird die Kratzfestigkeit der Schicht durch die geeignete Auswahl von Schichtdicke und -zusammensetzung bestimmt. Bevorzugt ist ein erfindungsgemäßes Verfahren, das so geführt wird, dass die durch das Verfahren hergestellte Beschichtung eine Bleistifthärte von 4 H oder höher aufweist, bestimmt nach ASTM D 3362. Die Messung der Härte mittels Nanoindentation ist im Beispiel 2 erläutert.
  • Bei der Einstellung des Self-Bias ist auch die Zusammensetzung des Gasgemisches zu berücksichtigen, aus dem das Plasma erzeugt wird. So ist etwa bei einer hohen Molekülmasse eines Precursors im Allgemeinen ein niedrigerer Self-Bias zu wählen als bei einer geringen. Je leichter sich ein Precursor ionisieren lässt, desto geringer muss die Plasmaleistung sein, um einen bestimmten Self-Bias zu erreichen. Bei einer hohen elektrischen Leitfähigkeit des Plasmas wird eine geringe Plasmaleistung benötigt, um einen vorgegebenen Self-Bias zu erzielen.
  • Bevorzugt ist ein erfindungsgemäßes Verfahren, wobei während Schritt B eine Regelung erfolgt, so dass der Self-Bias im Bereich von 50 bis 1000 V, vorzugsweise im Bereich von 100 bis 400 V, bevorzugt im Bereich von 100 bis 300 V, liegt.
  • Der Self-Bias kann z. B. bei gleichbleibender Plasmaleistung verringert werden, indem die Plasmaanregungsfrequenz erhöht wird.
  • Eine Erhöhung des Self-Bias bewirkt auch eine Verbesserung der Schichtdickenhomogenität. So konnte in eigenen Versuchen etwa festgestellt werden, dass sich auf einem runden Substrat mit einem Durchmesser von 10 cm die maximale Schichtdicke von der minimalen Schichtdicke bei 100 V Self-Bias um den Faktor 1,1 unterscheiden kann, während dieser Faktor bei 200 V Self-Bias 1,005 betragen kann.
  • Im erfindungsgemäßen Verfahren wird in Schritt B das Leichtmetallsubstrat im Plasmapolymerisationsreaktor so angeordnet, dass es sich entweder (i) zwischen der Zone, in der das Plasma gebildet wird, und der Kathode befindet oder (ii) als Kathode wirkt. Alternative (ii) ist hierbei bevorzugt. Als Kathode wirkt das Substrat dann, wenn es in direktem elektrisch leitenden Kontakt zu dem Teil der Kathode steht, der vom Leichtmetallsubstrat unterscheidbar ist oder wenn es sich in einem hinreichend kleinen Abstand dazu befindet. Hierdurch wird das Erzielen einer hohen Abscheiderate der positiv geladenen Ionen des Plasmas, die zur negativ geladenen Kathode hingezogen werden, erleichtert. Wenn das Substrat selbst als Kathode wirkt, wird die Wucht besonders erhöht, mit der die positiv geladenen Ionen auf die Oberfläche prallen. Dadurch verändert sich der Aufbau der Schicht in Richtung eines geringeren Anteils an organischen (in der Regel vorwiegend aus C und H bestehenden) Gruppen und eines dementsprechend höheren Anteils an Si und O. Der gleiche Effekt tritt auch auf (gegebenenfalls verringert), wenn das Substrat zwar nicht als Kathode wirkt, aber in der Beschleunigungsbahn der Kationen angeordnet ist.
  • Ohne durch eine bestimmte Theorie festgelegt sein zu wollen, wird davon ausgegangen, dass eine erhöhte Wucht wie etwa durch ein verstärktes Ionenbombardement das Abschlagen von organischen Gruppen sowohl in den schichtbildenden Ionen als auch in der entstehenden Beschichtung erleichtert, wobei die abgespaltenen Gruppen eine geringe Wahrscheinlichkeit besitzen, in die Schicht eingebaut zu werden. Außerdem wird durch die Wucht der aufprallenden Ionen die innere Spannung (Eigenspannungen) der Schicht herabgesetzt, was die Dehnung bis Mikroriss der Schicht erhöht. Zur Messung der Dehnung bis Mikroriss (Rissdehnung) vergleiche Beispiel 1.
  • Die gleichen Beobachtungen (höhere Abscheiderate, geringerer Anteil organischer Gruppen, geringere innere Spannung, höhere Rissdehnung) werden gemacht, wenn der Self-Bias erhöht wird. Aus diesem Grund können harte Beschichtungen eine höhere Rissdehnung als weiche aufweisen. Bei sehr niedrigem Self-Bias fehlt eine ausreichende Wucht (Impact), die die Beschichtung entspannt, was zu weichen (z. B. durch Nanoindentation zu messende Härte von 1 GPa) und gleichzeitig rissempfindlichen Beschichtungen führen kann.
  • Wird allerdings der Self-Bias über einen vorteilhaften Bereich (siehe dazu auch oben) hinaus erhöht, so entstehen Beschichtungen, die einen zu geringen Anteil an organischen Gruppen und einen zu hohen Anteil von Si-H-Bindungen (siehe dazu auch unten) enthalten, wodurch sie zu hart und zu spröde werden und ihre Kratzfestigkeit abnimmt. Anzustreben ist somit ein Optimum im Hinblick auf die Härte und Elastizität der durch das erfindungsgemäße Verfahren hergestellten Beschichtung bei einem akzeptablen Gelbindex (siehe dazu auch unten).
  • Eine Erhöhung des Self-Bias bewirkt in der entstehenden Schicht einerseits den Abbau von Eigenspannungen und damit einen die Rissdehnung erhöhenden Effekt, andererseits eine Erhöhung der Härte und des Elastizitätsmoduls und damit einen die Rissdehnung verringernden Effekt. Dadurch, dass sich zwei gegenläufige Effekte teilweise aufheben, gibt es ein Optimum der Rissdehnung in Abhängigkeit vom Self-Bias, so dass eine hervorragende Kombination von jeweils verhältnismäßig hoher Härte und hoher Rissbildung erzeugt werden kann.
  • Zusätzlich führt eine Erhöhung des Self-Bias zu einer erhöhten Abscheiderate und einer verbesserten Korrosionsbeständigkeit in der resultierenden Schicht.
  • Es handelt sich bei den mit dem erfindungsgemäßen Verfahren erzeugbaren Schichten um organisch modifizierte SiO2-Gerüste. Die organischen Anteile lassen sich im IR-Spektrum durch Banden bei bei ca. 2950 cm–1 und bei ca. 1275 cm–1 nachweisen. Zudem können sie durch Messung der Oberflächenenergie mit Testtinten nachgewiesen werden können. Je höher der Anteil organischer Gruppen, desto geringer ist die Oberflächenenergie. Daher ist die Oberflächenenergie umso größer, je höher der Self-Bias eingestellt wird.
  • Im Stand der Technik ist das Anordnen des Substrats in einer Weise, dass es als Kathode wirkt, im Allgemeinen nicht bevorzugt, da dies die Gefahr des Ausbildens undefinierbarer siliciumorganischer Schichten auf dem Substrat birgt und dem Wunsch nach einem relativ hohen Anteil organischer Gruppen in der Schicht entgegenläuft. Die organische Modifikation erhöht die Flexibilität und Elastizität der erzeugten Schicht. Zudem setzt sie ihre Eigenspannungen (innere Spannung) herab, wodurch die Rissdehnung der Schicht erhöht wird.
  • Vorzugsweise wird in einem erfindungsgemäßen Verfahren während Schritt B des Self-Bias auf dem Substrat eingestellt. Die Abhängigkeit der Abscheiderate und der Schichteigenschaften vom Self-Bias wurde bereits erläutert. Wird der Self-Bias direkt auf dem Substrat und somit auf dem zu beschichtenden Gegenstand eingestellt, so erleichtert dies das Erzielen einer Schicht mit den gewünschten genau definierten Eigenschaften.
  • Vorzugsweise erfolgt in einem erfindungsgemäßen Verfahren während Schritt B eine Regelung, so dass der Self-Bias konstant ist. Hierdurch kann der Aufbau der Schicht genau kontrolliert werden. Vorteile eines möglichst konstanten Self-Bias sind ein homogener Schichtaufbau und eine einfache Prozessübertragung auf verschiedenartige Substrate oder eine Mehrzahl von Substraten. Vorzugsweise wird während Schritt B direkt der Self-Bias geregelt. Wird die Plasmaleistung geregelt, so wird in der Regel der Self-Bias nicht völlig konstant sein, sondern um einen bestimmten Wert fluktuieren. In einem solchen Fall ist es bevorzugt, wenn die Gesamtschwankungsbreite des Self-Bias maximal 5% des zeitlichen Mittelwertes ist, vorzugsweise maximal 3%.
  • Besonders bevorzugt ist ein erfindungsgemäßes Verfahren (insbesondere in Kombination mit einem oder mehreren Merkmalen eines anderen als bevorzugt oder besonders bevorzugt beschriebenen Verfahrens), wobei während Schritt B eine Regelung erfolgt, so dass der Self-Bias auf dem Substrat im Bereich von 50 bis 1000 V, vorzugsweise im Bereich von 100 bis 400 V, weiter bevorzugt im Bereich von 100 bis 300 V, liegt, insbesondere so, dass der Self-Bias konstant ist.
  • Bevorzugt ist ein erfindungsgemäßes Verfahren, wobei sich in Schritt B das Leichtmetallsubstrat in räumlichem Kontakt befindet mit (i) der Kathode oder (ii) einem Teil der Kathode, der vom Leichtmetallsubstrat unterscheidbar ist. Alternative (ii) bezieht sich im Gegensatz zur Alternative (i) auf den Fall, dass das Substrat selbst als Kathode wirkt. Durch das Herstellen eines räumlichen Kontaktes wird die Anordnung des Substrats im Plasmapolymerisationsreaktor erleichtert.
  • Eine Erhöhung des Zuflusses des oder der siliciumorganischen Precursoren für das Plasma, (im Verhältnis zu gegebenenfalls ebenfalls zufließendem O2 insbesondere unter Konstanthalten des Gesamtzuflusses) bewirkt im Allgemeinen eine Erniedrigung der Härte, eine Erhöhung der Absorption im sichtbaren Bereich (Erhöhung des Gelbindex), eine Verschlechterung der Korrosionsschutzwirkung und eine Verbesserung der Rissdehnung.
  • Bei einer hohen Anzahl von Si-H-Bindungen in einer erfindungsgemäßen Schicht kann im UV/Vis-Spektrum eine erhöhte Absorption von Licht des ultravioletten und blauen Spektralbereichs festgestellt werden. Diese führt zu einer unerwünschten Gelbfärbung (Erhöhung des Gelbindex). Es ist daher wünschenswert, den Anteil an Si-H-Bindungen nicht zu groß werden zu lassen. Eine Verringerung des Self-Bias verhindert die Ausbildung von Si-H-Bindungen in der Beschichtung. Ebenfalls inhibieren lässt sich die Ausbildung von Si-H-Bindungen durch eine geeignete Auswahl der Menge und/oder Art an Precursor(en). Dies wird in der Regel durch eine Verringerung des Zuflusses an siliciumorganischen Precursoren erreicht, die darüber hinaus auch den Anteil an organischen Gruppen in der Beschichtung reduziert. Das Auftreten von Si-H-Bindungen lässt sich auch im IR-Spektrum (2150 bis 2250 cm–1) nachweisen.
  • Die Ausbildung von Si-H-Bindungen in der Beschichtung wird ebenfalls verringert, wenn dem Plasma eine hinreichende Menge an Sauerstoff zugeführt wird, was darüber hinaus auch den Anteil an organischen Gruppen in der Beschichtung reduziert. Bevorzugt ist ein erfindungsgemäßes Verfahren, wobei in Schritt B dem Plasma Sauerstoff (in Form von O2) zugeführt wird und vorzugsweise alle dem Plasma in Schritt B zugeführten Stoffe vor Eintritt in den Plasmapolymerisationsreaktor gasförmig sind. Eine Verfahrensführung in der Art, dass die dem Plasma zugeführten Stoffe nicht nur unter den Bedingungen des Plasmas, sondern bereits vor dem Eintritt in den Reaktor gasförmig sind, erleichtert die genaue Abstimmung der Dosierung der Stoffe.
  • Eine Erhöhung des Sauerstoffzuflusses führt zu einer Erhöhung der Härte, einer Verringerung der Absorption im sichtbaren Bereich (Verringerung des Gelbindex), zu einer Verbesserung der Korrosionsschutzwirkung, zu einer Verringerung der Anteile von organischen Gruppen in der Beschichtung und zu einer Erniedrigung der Rissdehnung.
  • In einem bevorzugten erfindungsgemäßen Verfahren wird dem Plasma Sauerstoff (O2) zugeführt, sind alle dem Plasma in Schritt B zugeführten Stoffe vor Eintritt in den Plasmapolymerisationsreaktor gasförmig und liegt das Verhältnis der dem Plasma in Schritt B zugeführten Gasflüsse von Sauerstoff und weiteren Precursor(en) (insbesondere siliziumorganischer Precursoren) im Bereich von 1:1 bis 6:1, vorzugsweise 3:1 bis 5:1. In diesem Bereich ist es erfindungsgemäß besonders einfach, den gewünschten Anteil von Kohlenstoff in der durch das Verfahren hergestellten Beschichtung einzustellen und die gewünschten Eigenschaften der Beschichtung zu erzielen.
  • Erhält man bei einem gegebenen Parametersatz eine gelbe Beschichtung, so kann der O2-Fluss erhöht werden. Alternativ kann der Zufluss an dem oder den siliciumorganischen Precursoren oder der Self-Bias verringert werden. Ist die Beschichtung zu hart und damit zu spröde, so kann die Self-Bias reduziert bzw. der Zufluss an dem oder den siliciumorganischen Precursoren erhöht werden.
  • Bevorzugt ist ein erfindungsgemäßes Verfahren, insbesondere in einer der als bevorzugt bezeichneten Ausgestaltungen, wobei in Schritt B als Precursor(en) für das Plasma ein oder mehrere Siloxane, gegebenenfalls Sauerstoff (O2) sowie vorzugsweise keine weiteren Verbindungen eingesetzt werden. Siloxane, insbesondere Hexamethyldisiloxan (HMDSO), haben sich als besonders geeignete Precursoren erwiesen, um ein erfindungsgemäßes Verfahren zu führen, mit dem Beschichtungen mit der vorteilhaften Eigenschaftskombination hergestellt werden können. Vorzugsweise wird in einem erfindungsgemäßen Verfahren in Schritt B als Precursor(en) für das Plasma HMDSO, gegebenenfalls Sauerstoff sowie vorzugsweise keine weitere Verbindung eingesetzt. Eine Erhöhung des Zuflusses an HMDSO im Verhältnis zu Sauerstoff bewirkt u. a. eine Erniedrigung der Härte, eine Erhöhung der Absorption im sichtbaren Bereich und eine Verschlechterung der Korrosionsschutzwirkung.
  • Besonders bevorzugt ist ein erfindungsgemäßes Verfahren, in dem in Schritt B dem Plasma Sauerstoff zugeführt wird, alle dem Plasma in Schritt B zugeführten Stoffe vor Eintritt in den Plasmapolymerisationsreaktor gasförmig sind, das Verhältnis der dem Plasma in Schritt B zugeführten Gasflüsse von Sauerstoff und weiteren Precursor(en) im Bereich von 1:1 bis 6:1 liegt und als Precursor(en) für das Plasma HMDSO, Sauerstoff sowie insbesondere keine weitere Verbindung eingesetzt wird.
  • Vorzugsweise wird bei dem erfindungsgemäßen Verfahren die Plasmapolymerisation bei einer Temperatur von weniger als 200°C, bevorzugt weniger als 180°C und/oder einem Druck von weniger als 1 mbar, bevorzugt im Bereich von 10–3 bis 10–1 mbar durchgeführt. Falls der Druck während der Abscheidung zu hoch ist, kann eine unerwünschte Pulverbildung des abgeschiedenen Materials auftreten. Bei einer Temperatur größer als 180°C wird das Aluminium zunehmend weicher, da sich das Kristallgefüge ändert. Bei einem Druck kleiner als 10–3 mbar kann das Plasma nicht mehr gezündet werden.
  • Vorzugsweise wird in einem erfindungsgemäßen Verfahren Schritt B bis zu einer Dicke der abgeschiedenen Beschichtung von größer oder gleich 2 μm, bevorzugt größer oder gleich 4 μm durchgeführt. Eine höhere Dicke erhöht die Kratzschutzwirkung einer gegebenen Beschichtung.
  • Bevorzugt ist ein erfindungsgemäßes Verfahren, wobei in Schritt B die Abscheiderate auf einen Wert von größer oder gleich 0,2 μm/min, vorzugsweise größer oder gleich 0,3 μm/min, eingestellt wird. Es kann beispielsweise ein Wert von 0,5 μm/min gewählt werden. Hohe Abscheideraten erhöhen zum einen die Wirtschaftlichkeit des erfindungsgemäßen Verfahrens und erleichtern zudem die Einstellung der gewünschten Schichteigenschaften.
  • Vorzugsweise ist in einem erfindungsgemäßen Verfahren das Leichtmetallsubstrat ein Aluminiumsubstrat, ausgewählt aus der Gruppe von Substraten bestehend aus: Aluminium oder Aluminiumlegierung mit gereinigter, unbeschichteter Oberfläche; Aluminium oder Aluminiumlegierung mit oberflächlicher Oxidschicht; anodisierte(s) (eloxierte(s)) Aluminium oder Aluminiumlegierung mit gefärbter oder ungefärbter, verdichteter oder unverdichteter Oxidschicht. Das Aluminium oder die Aluminiumlegierung mit gereinigter, unbeschichteter Oberfläche ist optional mechanisch und/oder elektrisch geglänzt und/oder glanzgebeizt bzw. durch eine chemische, elektrochemische oder mechanische Vorbehandlung veredelt, beispielsweise glanzgebeizt, elektropoliert oder poliert. Darüber hinaus können auch andere Leichtmetalle, wie z. B. Magnesium und seine Legierungen als Substrate bevorzugt sein. Auch derartige Substrate können vor der erfindungsgemäßen Beschichtung durch Glättungs-, oder Konversionsverfahren modifiziert worden sein.
  • Es ist vorteilhaft, das erfindungsgemäße Verfahren so zu führen, dass in Schritt A die zu beschichtende Substratoberfläche mittels eines Plasmas gereinigt wird. Eine solche Plasmareinigung verbessert die Schichthaftung. Vorzugsweise wird im erfindungsgemäßen Verfahren in Schritt A dem Plasma zur Durchführung der Plasmareinigung ein Gas oder Gasgemisch zugesetzt, wobei das Gas oder Gasgemisch ausgewählt ist aus der Gruppe bestehend aus: Argon, Argon-Wasserstoff-Gemisch, Sauerstoff.
  • In manchen Fällen ist es vorteilhaft, das erfindungsgemäße Verfahren so zu führen, dass im Anschluss an Schritt B innerhalb des Plasmapolymerisationsreaktors nicht fragmentierte siliciumorganische Verbindungen vorliegen, die sich mit reaktiven Stellen an der Oberfläche der Beschichtung unter Ausbildung einer hydrophoben Oberfläche umsetzen. Dies kann dadurch erreicht werden, dass der oder die unfragmentierten siliciumorganischen Precursoren nach dem Ausschalten der Plasmaquelle zunächst im Reaktor belassen werden und so die Gelegenheit bekommen, mit den Oberflächenradikalen der Plasmapolymerschicht zu reagieren. Hierdurch lassen sich Schichten erzeugen, die besonders einfach zu reinigen sind. Die Ausbildung einer oberflächennahen hydrophoben Schicht kann mittels XPS nachgewiesen werden. Bei einer solchen Verfahrensführung enthält eine mit dem erfindungsgemäßen Verfahren hergestellte Schicht vorzugsweise in den oberen (vom Substrat abgewandten) 5 nm einen Kohlenstoffanteil von 40–55 Atom-%, einen Siliciumanteil von 15–25 Atom-% und einen Sauerstoffanteil von 20–35 Atom-%, bezogen auf die Gesamtzahl der in der Beschichtung enthaltenen Si-, C- und O-Atome. Dem Fachmann ist dabei klar, dass dieser oberflächliche Bereich erst nach Durchführung der erfindungswesentlichen Schritte aufgebracht wird.
  • Im erfindungsgemäßen Verfahren wird das Plasma vorzugsweise mittels Hochfrequenz (HF) erzeugt. Plasmen, die z. B. mittels Mittelfrequenz erzeugt werden, führen häufig zu Beschichtungen, die zu spröde sind.
  • Für ein ganz besonders bevorzugtes erfindungsgemäßes Verfahren gilt:
    • – in Schritt B wird dem Plasma Sauerstoff zugeführt;
    • – alle dem Plasma in Schritt B zugeführten Stoffe sind vor Eintritt in den Plasmapolymerisationsreaktor gasförmig;
    • – das Verhältnis der dem Plasma in Schritt B zugeführten Gasflüsse von Sauerstoff und weiteren Precursor(en) im Bereich von 1:1 bis 6:1;
    • – während Schritt B erfolgt eine Regelung, so dass der Self-Bias auf dem Substrat im Bereich von 100 bis 400 V liegt, vorzugsweise so, dass der Self-Bias konstant ist;
    • – als Precursor(en) für das Plasma wird Hexamethyldisiloxan (HMDSO), Sauerstoff und vorzugsweise keine weitere Verbindung eingesetzt;
    • – in Schritt B befindet sich das Leichtmetallsubstrat in räumlichem Kontakt mit einem Teil der Kathode, der vom Leichtmetallsubstrat unterscheidbar ist;
    • – die Plasmapolymerisation wird bei einer Temperatur von weniger als 200°C und einem Druck im Bereich von 10–3 bis 10–1 mbar durchgeführt;
    • – in Schritt B wird die Abscheiderate auf einen Wert von größer oder gleich 0,2 μm/min eingestellt;
    • – Schritt B wird bis zu einer Dicke der abgeschiedenen Beschichtung von größer oder gleich 2 μm durchgeführt;
    • – das Leichtmetallsubstrat ist ein Aluminiumsubstrat, ausgewählt aus der Gruppe von Substraten bestehend aus: Aluminium oder Aluminiumlegierung mit gereinigter, unbeschichteter Oberfläche; Aluminium oder Aluminiumlegierung mit oberflächlicher Oxidschicht; anodisierte(s) Aluminium oder Aluminiumlegierung mit gefärbter oder ungefärbter, verdichteter oder unverdichteter Oxidschicht,
    • – oder das Leichtmetallsubstrat ist ein Magnesiumsubstrat, ausgewählt aus der Gruppe von Substraten bestehend aus: Magnesium oder Magnesiumlegierung mit gereinigter, unbeschichteter Oberfläche; Magnesium oder Magnesiumlegierung mit oberflächlicher Oxidschicht.
    • – in Schritt A wird die zu beschichtende Substratoberfläche mittels eines Plasmas gereinigt, wobei dem Plasma zur Durchführung der Plasmareinigung ein Gas oder Gasgemisch zugesetzt wird, das ausgewählt ist aus der Gruppe bestehend aus: Argon, Argon-Wasserstoff-Gemisch, Sauerstoff;
    • – das Plasma wird mittels Hochfrequenz erzeugt.
  • Gemäß einem weiteren Aspekt betrifft die vorliegende Erfindung auch ein beschichtetes Leichtmetallsubstrat, bevorzugt ein Magnesium- oder ein Aluminiumsubstrat, herstellbar nach dem erfindungsgemäßen Verfahren, vorzugsweise in einer der vorstehend als bevorzugt bezeichneten Ausgestaltungen.
  • Vorzugsweise weist bei einem erfindungsgemäßen beschichteten Leichtmetallsubstrat die Beschichtung durch Messung mittels XPS bestimmbare Anteile von 5 bis 30 Atom-%, bevorzugt 10 bis 25 Atom-% Silicium und 30 bis 70 Atom-%, bevorzugt 40 bis 60 Atom-% Sauerstoff auf, bezogen auf die Gesamtzahl der in der Beschichtung enthaltenen Kohlenstoff-, Silicium- und Sauerstoffatome. In diesen Atomprozent-Bereichen ist die Einstellung der gewünschten Eigenschaftskombination besonders gut möglich. Die Abhängigkeit der Anteile an Kohlenstoff, Silicium und Sauerstoff von der Anordnung des Substrats und vom Self-Bias wurde bereits oben erläutert. Zudem können diese Anteile durch Wahl geeigneter Precursoren beeinflusst werden.
  • Bei einem bevorzugten erfindungsgemäßen beschichteten Leichtmetallsubstrat weist ein von der Beschichtung aufgenommenes IR-Spektrum eine oder mehrere, vorzugsweise alle der folgenden Banden (Peaks) mit einem jeweiligen Maximum in den folgenden Bereichen auf: C-H-Valenzschwingung im Bereich von 2950 bis 2970 cm–1, Si-H-Schwingung im Bereich von 2150 bis 2250 cm–1, Si-CH2-Si-Schwingung im Bereich von 1350 bis 1370 cm–1, Si-CH3-Deformationschwingung im Bereich von 1250 bis 1280 cm–1 und Si-O-Schwingung bei größer oder gleich 1150 cm–1.
  • Die Lage des Maximums der Si-O-Si-Schwingung gibt Aufschluss über den Vernetzungsgrad der Schicht. Je höher seine Wellenzahl, desto höher der Vernetzungsgrad. Schichten, bei denen dieses Maximum bei größer oder gleich 1200 cm–1, vorzugsweise größer oder gleich 1250 cm–1 liegt, haben einen hohen Vernetzungsgrad, während etwa Antihaftschichten mit diesem Maximum bei typischerweise ca. 1100 cm–1 einen geringen Vernetzungsgrad besitzen.
  • Eine nachweisbare Si-CH2-Si-Schwingungsbande zeigt an, dass zusätzlich zu Si-O-Si-Verknüpfungen, Si-CH2-Si-Verknüpfungen in der Beschichtung vorhanden sind. Ein solches Material weist regelmäßig eine erhöhte Flexibilität und Elastizität auf.
  • Zur Charakterisierung der Beschichtung kann das Verhältnis der Intensität der Si-H-Bande zur Intensität der Si-CH3-Bande dienen. Beschichtungen, bei denen dieses Verhältnis kleiner oder gleich ca. 0,2 ist, sind farblos. Bei einem Verhältnis von größer als ca. 0,3 sind die Beschichtungen gelblich. Bevorzugt ist ein erfindungsgemäßes beschichtetes Leichtmetallsubstrat, wobei in einem von der Beschichtung aufgenommenen IR-Spektrum das Verhältnis der Intensität der Si-H-Bande zur Intensität der Si-CH3-Bande kleiner oder gleich 0,3, vorzugsweise kleiner oder gleich 0,2 ist.
  • Bevorzugt ist ein erfindungsgemäßes beschichtetes Leichtmetallsubstrat, wobei die Beschichtung eine Absorptionskonstante k300nm von kleiner oder gleich 0,05 und/oder eine Absorptionskonstante k400nm von kleiner oder gleich 0,01 aufweist. Der Zusammenhang der Anzahl von Si-H-Bindungen, welche eine Lichtabsorption im ultravioletten und blauen Bereich hervorrufen, mit dem Self-Bias, einer Sauerstoffzufuhr zum Plasma und der Menge und Art an Precursor(en) wurde bereits oben erläutert.
  • Vorzugsweise weist die Beschichtung eines erfindungsgemäßen beschichteten Leichtmetallsubstrats eine Oberflächenenergie im Bereich von 20 bis 40 mN/m, bevorzugt 25 bis 35 mN/m auf. Die Oberflächenenergie wird wie oben ausgeführt durch die Anteile an organischen Gruppen und somit durch den Betrag des Self-Bias bestimmt.
  • Wie bereits ausgeführt, können die Korrosionsschutzeigenschaften der Beschichtung durch z. B. Einstellung des Self-Bias, der Zuflüsse an dem oder den siliciumorganischen Precursoren und an Sauerstoff eingestellt werden. Vorzugsweise weist ein erfindungsgemäßes beschichtetes Leichtmetallsubstrat nach einem 15-minütigen korrosiven Angriff von NaOH bei pH 14 und 30°C keine mit bloßem Auge sichtbaren Korrosionsspuren auf.
  • Wie oben ausgeführt, wird die Rissdehnung u. a. durch die Einstellung des Self-Bias bestimmt. Bei einem bevorzugten erfindungsgemäßen Leichtmetallsubstrat weist die Beschichtung eine Dehnung bis Mikroriss (Rissdehnung) von größer oder gleich 1%, vorzugsweise größer oder gleich 1,5% auf.
  • Der Self-Bias beeinflusst die Schichtdickenhomogenität in der oben genannten Weise. Im Fall von größeren Reaktoren sind jedoch auch die Gasflüsse von großer Bedeutung. Hierunter sind beispielsweise solche Reaktoren zu verstehen, bei denen die Reaktorkammer (Rezipient) 2 m3 oder größer ist. Die Schichtdickenhomogenität u. a. wird durch die auf dem Substrat erzeugten elektrischen Felder definiert, d. h. eine hohe Feldstärke bedeutet eine hohe Abscheiderate. Homogenität ist nur dann zu erzielen, wenn die elektrische Feldstärke auf dem Substrat überall weitgehend gleich ist. Allgemein gilt: Die Schichtdickenhomogenität auf dem beliebigen dreidimensionalen Substrat gehorcht der Laplace-Gleichung, die die Lösung für die elektrische Feldstärke auf dem Substrat angibt. Vorzugsweise unterscheidet sich in einem erfindungsgemäßen beschichteten Leichtmetallsubstrat die maximale Schichtdicke von der minimalen Schichtdicke um den Faktor 1,1 oder geringer.
  • Gemäß einem weiteren Aspekt betrifft die vorliegende Erfindung auch die Verwendung einer durch ein erfindungsgemäßes Verfahren herstellbaren Beschichtung (insbesondere in einer als bevorzugt gekennzeichneten Ausgestaltung) als Ersatz für eine Eloxalschicht.
  • Weitere Aspekte der vorliegenden Erfindung ergeben sich aus den nachfolgenden Beispielen, den Zeichnungen und den Ansprüchen.
  • Beispiele:
  • Beispiel 1: XPS
  • XPS-Messungen (ESCA-Messungen) wurden mit dem Spektrometer KRATOS AXIS Ultra der Firma Kratos Analytical durchgeführt. Die Kalibrierung des Messgerätes wurde so vorgenommen, dass der aliphatische Anteil des C 1 s Peaks bei 285,00 eV liegt. Aufgrund von Aufladungseffekten wird es in der Regel notwendig sein, die Energieachse ohne weitere Modifikation auf diesen Fixwert zu verschieben. Die Analysekammer war mit einer Röntgenquelle für monochromatisierte Al Kα-Strahlung, einer Elektronenquelle als Neutralisator und einem Quadrupolmassenspektrometer ausgerüstet. Weiterhin verfügte die Anlage über eine magnetische Linse, welche die Photoelektronen über einen Eintrittsschlitz in einen Halbkugelanalysator fokussierte. Während der Messung zeigte die Oberflächennormale auf den Eintrittsschlitz des Halbkugelanalysators. Die Passenergie betrug bei der Bestimmung der Stoffmengenverhältnisse jeweils 160 eV. Bei der Bestimmung der Peak-Parameter betrug die Passenergie jeweils 20 eV.
  • Die genannten Messbedingungen sind bevorzugt, um eine weitgehende Unabhängigkeit vom Spektrometertyp zu ermöglichen und um erfindungsgemäße plasmapolymere Produkte zu identifizieren.
  • Als Referenzmaterial wurde das Polydimethylsiloxan Silikonöl DMS-T23E der Firma Gelest Inc. (Morrisville, USA) verwendet. Dieses trimethylsiloxy-terminierte Silikonöl besitzt eine kinematische Viskosität von 350 mm2/s (±10%) und eine Dichte von 0,970 g/mL bei 25°C sowie ein mittleres Molekulargewicht von ca. 13 650 g/mol. Das ausgewählte Material zeichnet sich durch einen extrem geringen Anteil an verdampfbaren Bestandteilen aus: nach 24 Stunden bei 125°C und 10–5 Torr Vakuum wurden weniger als 0,01% flüchtige Anteile nachgewiesen (nach ASTM-E595-85 und NASA SP-R0022A). Es wurde mit Hilfe eines Spin-Coating-Prozesses als 40 bzw. 50 nm dicke Schicht auf einen Siliziumwafer aufgetragen; dabei wurde als Lösemittel Hexamethyldisiloxan verwendet.
  • Mit der oben beschriebenen Vorgehensweise ergibt sich für das Silkonöl DMS-T23E folgende atomare Zusammensetzung. Die Bindungsenergien der Elektronen sind ebenfalls aufgeführt.
    Element Si O C
    Konzentration [Atom-%] 24,76 25,40 49,84
    Bindungsenergie [eV] 102,39 532,04 285,00
    Tabelle 1: Chemische Zusammensetzung und Bindungsenergie von Silikonöl DMS-T23E
  • Beispiel 2: Messung der Härte mittels Nanoindentation
  • Die Nanoindentationshärte einer Probe wurde mit Hilfe eines Berkovich-Indenter (Hersteller: Hysitron Inc. Minneapolis, USA) bestimmt. Die Kalibrierung und Auswertung geschah nach dem etablierten Verfahren von Oliver & Pharr (J. Mater. Res. 7, 1564 (1992)). Die Maschinensteifigkeit und die Flächenfunktion des Indenters wurden vor der Messung kalibriert. Bei der Indentation wurde das „multiple partial unloading"-Verfahren (Schiffmann & Küster, Z. Metallkunde 95, 311 (2004)) benutzt, um tiefenabhängige Härtewerte zu erhalten und so einen Substrateinfluss ausschließen zu können.
  • Beispiel 3: Dehnung bis Mikroriss
  • Ein 0,5 mm dünnes und 10 cm langes beschichtetes Aluminiumblech wird solange gedehnt, bis optisch Risse sichtbar werden. Die Rissdehnungsgrenze ist gleich dem Quotienten aus Längenänderung zur Gesamtlänge des Aluminiums.
  • Beispiel 4: IR-Spektroskopie und Bestimmung des Intensitätsverhältnisses zweier Banden im IR-Spektrum
  • Die Messungen wurden mit einem IFS 66/S IR-Spektrometer der Firma Bruker durchgeführt. Als Verfahren wurde die IRRAS-Technik eingesetzt, mit deren Hilfe auch dünnste Beschichtungen vermessen werden können. Die Spektren wurden im Wellenzahlbereich von 700 bis 4000 cm–1 aufgenommen. Als Substratmaterial wurden kleine Plättchen von sehr sauberem und besonders ebenem Aluminium verwendet. Der Einfallswinkel des IR-Lichts betrug bei der Messung 50°. Während sich die Probe im IR-Spektrometer befand, wurde die Probenkammer fortwährend mit trockener Luft gespült. Das Spektrum unter solchen Bedingungen aufgenommen, dass der Wasserdampfgehalt in der Probenkammer so klein war, dass im IR-Spektrum keine Rotationsbanden des Wassers zu erkennen waren. Als Referenz wurde ein unbeschichtetes Aluminiumplättchen verwendet.
  • Das Intensitätsverhältnis zweier Banden (Peaks) wird wie folgt bestimmt: Die Basislinie (Baseline) im Bereich eines Peaks wird durch die beiden Minima definiert, die das Maximum der Bande einschließen und entspricht der Strecke zwischen ihnen. Es wird vorausgesetzt, dass die Absorptionsbanden gaußförmig sind. Die Intensität einer Bande entspricht der Fläche zwischen Basislinie und Messkurve, begrenzt durch die beiden Minima, die das Maximum einschließen, und kann vom Fachmann nach bekannten Methoden einfach ermittelt werden. Die Bestimmung des Intensitätsverhältnisses zweier Banden erfolgt durch Bilden des Quotienten ihrer Intensitäten. Grundvoraussetzung für den Vergleich zweier Proben ist hierbei, dass die Beschichtungen die gleiche Dicke aufweisen und dass der Einfallswinkel nicht verändert wird.
  • Ausführungsbeispiele 1 bis 4
  • Eine eloxierte Aluminium-Zierleiste als Substrat wird zusätzlich mit einer transparenten, dehnfähigen kratz- und korrosionsfesten Beschichtung versehen.
  • Das Substrat wird auf oder in unmittelbarer Nähe der mit HF (13,56 MHz) betriebenen Kathode (Fläche ca. 15 × 15 cm) befestigt, so dass das Substrat selbst als Kathode wirkt. Nachdem der rechteckige Niederdruck-Reaktor mit einem Volumen von ca. 360 l und einer installierten Nennsaugleistung von 4500 m3/h auf einen Druck kleiner als 0.02 mbar evakuiert worden ist, wird Sauerstoff mit einem Fluss von 280 sccm in den Reaktor eingelassen. Mit Hilfe einer Hochfrequenzplasmaentladung (13.56 MHz) wird auf dem Substrat eine Self-Bias-Spannung von 250 V eingestellt. Unter diesen Bedingungen läuft ein Sputterätzprozess ab, bei dem insbesondere organische Verunreinigungen effizient abgebaut werden. Dieser Schritt als Schritts A des erfindungsgemäßen Verfahrens hat eine Dauer von 5 min. Auf die vorgereinigte Substratoberfläche wird nun in Schritt B des erfindungsgemäßen Verfahrens die Plasmabeschichtung abgeschieden. Hierzu wird Hexamethyldisiloxan (HMDSO) mit einem Fluss von 66 sccm und Sauerstoff mit einem Fluss von 280 sccm in den Reaktor eingelassen. Die Self-Bias Spannung wird so geregelt, dass sich ein Wert von 100 V, 250 V, 300 V bzw. 400 V einstellt. Nach einer Beschichtungszeit von 20 min hat sich eine ca. 4 μm dicke Schicht auf dem Substrat abgeschieden, die die Kratzfestigkeit und die Korrosionsschutzwirkung gegenüber alkalischen Medien stark verbessert: Ein korrosiver Angriff von NaOH (pH 14, 5 min, 30°C) ruft keine mit bloßem Auge sichtbaren Korrosionsspuren hervor. Insbesondere die Beschichtungen 1 bis 3 (siehe Tabelle 2) sind im sichtbaren und UVA-Bereich transparent. Dies spiegelt sich in der sehr geringen Absorptionskonstante k bei 300 bzw. 400 nm wider. Die Absorptionskonstanten wurden aus den ellipsometrischen Daten entsprechend dem Manual des WVASE32 Spektrometer der Firma J. A. Woolam Co, Inc. berechnet.
    Self-Bias n250nm n300nm n400nm k250nm k300nm k400nm
    1 100 V 1,58 1,52 1,50 0,015 0,00 0
    2 250 V 1,62 1,58 1,54 0,040 0,01 0
    3 300 V 1,85 1,76 1,58 0,110 0,06 0.01
    4 400 V 2,20 1,93 1,85 0,210 0,12 0.03
    Tabelle 2: Optische Konstanten der Beschichtung bei der Variation der BIAS-Spannung.
  • Ausführungsbeispiel 5
  • Ein nicht-eloxiertes Aluminiumsubstrat wurde durch Plasmapolymerisation unter den in den Ausführungsbeispiel 2 (66 sccm HMDSO und 280 sccm O2, Self-Bias = 250 V) aufgeführten Verfahrensparametern behandelt. Die Beschichtung erwies sich kratzfester als eine verdichtete Eloxalbeschichtung mit ca. 8 μm Schichtdicke, jedoch wurde eine wesentlich höhere Rissdehnung (größer als 2%) als bei einer Eloxalbeschichtung beobachtet.
  • Um die Kratzfestigkeit auf dem Aluminiumsubstrat zu bestimmen, wurde ein Excentergerät (Fa. Starnberger) verwendet. Hierbei wurde mit einem Filzplättchen, das mit einem 1 kg schweren Gewicht belastet worden ist, eine ca. 8 μm dicke Eloxaloberfläche (nicht erfindungsgemäß), eine ca. 500 nm dicke, nach einem Verfahren des Stands der Technik hergestellte plasmapolymere Beschichtung (nicht erfindungsgemäß, exemplarisch hergestellt nach T. W. Jelinek, Oberflächenbehandlung von Aluminium, Eugen G. Leuze Verlag, Saulgau, 1996) und eine 4 μm dicke erfindungsgemäße plasmapolymere Beschichtung untersucht. Die Eloxaloberfläche war bereits nach ca. 300 Doppelhüben und die nicht erfindungsgemäße plasmapolymere Beschichtung nach etwa 500 Hüben optisch wahrnehmbar zerkratzt. Bei der erfindungsgemäßen plasmapolymeren Beschichtung konnten auch nach 10.000 Hüben keine optisch wahrnehmbaren Kratzer festgestellt werden.
  • Die guten Korrosionsschutzeigenschaften der erfindungsgemäßen mittels Plasmapolymerisation erzeugten Beschichtung gelten in sauren (20% Schwefelsäure, 45 min, 65°C) wie in basischen (NaOH, pH 14, 5 min, 30°C) Medien. Nach diesen Korrosionstests konnten keine sichtbaren Schäden bzw. an Beschichtungskanten keine Unterwanderung festgestellt werden.
  • Das Infrarot-Spektrum von dieser Beschichtung zeigt 1. Deutlich zu erkennen sind die CH-Valenzschwingungen bei 2966 cm–1, die Si-H-Schwingung bei 2238 cm–1, die Si-CH2-Si-Schwingung bei ca. 1360 cm–1, die Si-CH3 Deformationsschwingung bei 1273 cm–1, die Si-O-Schwingungen bei 1192 cm–1 bzw. 820 cm–1. Das Bandenverhältnis (gemäß Beispiel 4) zwischen Si-H und Si-CH3 beträgt ca. 1:5. Das IR-Spektrum zeigt einen kleinen Peak bei 1360 cm–1.
  • Diese Bande ist mit einer Si-CH2-Si-Schwingung korreliert. Zusätzlich zum Si-O-Si-Netzwerk liegt somit ein Si-CH2-Si-Netzwerk in der Beschichtung vor.
  • Die Härte der Beschichtung wurde gemäß Beispiel 2 bestimmt. Sie beträgt 3 GPa. Die Bleistifthärte beträgt 4 H.
  • Die Beschichtung ist in der Tiefe homogen. Die Anteile an Kohlenstoff betragen ca. 10%, an Silizium ca. 10%, an Wasserstoff ca. 30% und an Sauerstoff ca. 50%. Eine rasterelektronenmikroskopische Untersuchung der Bruchkante der Plasmapolymerschicht zeigt einerseits einen muschligen Bruch, wie er für spröde Materialien (Glas) bekannt ist und andererseits kleine treppenartige Brüche, wie sie eher für kristalline Materialien erwartet werden.
  • Ausführungsbeispiel 6
  • Das Experiment wird wie in Ausführungsbeispiel 5 durchgeführt, jedoch wurde zur Steigerung der Abscheiderate und somit zur Verkürzung der Prozesszeit ein Plasmagenerator verwendet, der mit einer Frequenz von 27.12 MHz oszilliert. Bei gleichen Gasflüssen (HMDSO: 66 sccm, O2: 280 sccm) und Self-BIAS-Spannung (250 V) wird die Abscheiderate um Faktor 1,5 erhöht. Die Beschichtungseigenschaften verändern sich nur unwesentlich und sind denen der Beschichtung aus Ausführungsbeispiel 5 sehr ähnlich.
  • Ausführungsbeispiel 7
  • Die Korrosionsschutzeigenschaften verschiedener auf technischem, gewalztem Aluminium 99.5 abgeschiedenen Beschichtungen wurden in saurem Medium (20% Schwefelsäure, 45 min, 65°C) überprüft. a) Variation des Self-Bias (HMDSO: 45 sccm, O2: 50 sccm)
    Self-Bias Schichtfarbe Korrosionsbeständigkeit Bandenverhältnis Si-H/Si-CH3
    50 V Farblos – – 0,00
    100 V Farblos 0,20
    150 V schwach gelb + 0,32
    300 V Gelb + + 0,61
    b) Variation des O2-Flusses (HMDSO: 45 sccm, Self-Bias: 300 V)
    O2-Fluss Schichtfarbe Korrosionsbeständigkeit Bandenverhältnis Si-H/Si-CH3
    0 sccm Gelb o 0,61
    50 sccm Gelb o 0,50
    100 sccm sehr schwach gelb + + 0,32
    150 sccm sehr schwach gelb + + 0,25
  • Die Korrosionsbeständigkeit wurde nach der folgenden qualitativen fünfstufigen Skala bewertet:
  • – –
    schneller, flächiger korrosiver Angriff
    flächiger, korrosiver Angriff
    o
    punktueller korrosiver Angriff
    +
    am Ende der Messzeit an wenigen Stellen punktueller korrosiver Angriff
    + +
    kein korrosiver Angriff
  • Es lässt sich der Kompromiss zwischen den Schichteigenschaften optimieren, wenn man eine Self-Bias-Spannung von ca. 250 V und ein Verhältnis von O2 zu HMDSO von ca. 3:1 oder größer wählt. Bei einem Verhältnis von O2 zu HMDSO von über 4:1, wie etwa in Ausführungsbeispiel 5, wird die Beschichtung vollkommen transparent.
  • Bei den oben unter a) und b) angegebenen Messreihen wurden zwei verschiedene Chargen von Aluminium 99.5 verwendet. Diese können sich hinsichtlich ihres Anteils an Metallen außer Aluminium (z. B. Mg, Cu) unterscheiden, was Unterschiede in der Korrosionsbeständigkeit zur Folge haben kann.
  • ZITATE ENTHALTEN IN DER BESCHREIBUNG
  • Diese Liste der vom Anmelder aufgeführten Dokumente wurde automatisiert erzeugt und ist ausschließlich zur besseren Information des Lesers aufgenommen. Die Liste ist nicht Bestandteil der deutschen Patent- bzw. Gebrauchsmusteranmeldung. Das DPMA übernimmt keinerlei Haftung für etwaige Fehler oder Auslassungen.
  • Zitierte Patentliteratur
    • - DE 19748240 A1 [0013, 0013]
    • - WO 03/002269 A2 [0014]
    • - EP 0748259 B1 [0016, 0016]
  • Zitierte Nicht-Patentliteratur
    • - Domingues et al. (2002) Electrochimica Acta 47, 2253–2258 [0015]
    • - Domingues et al [0015]
    • - Domingues et al [0015]
    • - Firma Gelest Inc. (Morrisville, USA) [0070]
    • - Hysitron Inc. Minneapolis, USA [0072]
    • - Oliver & Pharr (J. Mater. Res. 7, 1564 (1992) [0072]
    • - Schiffmann & Küster, Z. Metallkunde 95, 311 (2004) [0072]
    • - T. W. Jelinek, Oberflächenbehandlung von Aluminium, Eugen G. Leuze Verlag, Saulgau, 1996 [0079]

Claims (29)

  1. Verfahren zum Beschichten der Oberfläche eines Leichtmetallsubstrates, mit folgenden Schritten: A. Bereitstellen des Leichtmetallsubstrates und gegebenenfalls Säubern der zu beschichtenden Substratoberfläche, B. Beschichten der gegebenenfalls in Schritt A gesäuberten Substratoberfläche in einem Plasmapolymerisationsreaktor mittels Plasmapolymerisation, wobei – in Schritt B als Precursor(en) für das Plasma eine oder mehrere siliciumorganische sowie (a) keine weiteren oder (b) weitere Verbindungen eingesetzt werden und in Schritt B das Leichtmetallsubstrat im Plasmapolymerisationsreaktor so angeordnet wird, dass es (i) sich zwischen der Zone, in der das Plasma gebildet wird, und der Kathode befindet oder (ii) als Kathode wirkt, dadurch gekennzeichnet, dass das Verfahren so geführt wird, dass die durch das Verfahren hergestellte Beschichtung – einen durch Messung mittels XPS bestimmbaren Anteil von Kohlenstoff von 5 bis 20 Atom-%, vorzugsweise 10 bis 15 Atom-%, bezogen auf die Gesamtzahl der in der Beschichtung enthaltenen Kohlenstoff-, Silicium- und Sauerstoffatome, – einen nach ASTM D 1925 bestimmten Gelbindex (Yellow Index) von ≤ 3, vorzugsweise ≤ 2,5 und – eine mittels Nanoindentation zu messende Härte im Bereich von 2,5 bis 6 GPa, vorzugsweise 3,1 bis 6 GPa aufweist.
  2. Verfahren nach Anspruch 1, wobei das Leichtmetallsubstrat ein Aluminium- oder Magnesiumsubstrat ist.
  3. Verfahren nach Anspruch 1 oder 2, wobei das Verfahren so geführt wird, dass die durch das Verfahren hergestellte Beschichtung eine Bleistifthärte von 4 H oder höher aufweist.
  4. Verfahren nach einem der vorangehenden Ansprüche, wobei in Schritt B dem Plasma Sauerstoff zugeführt wird und vorzugsweise alle dem Plasma in Schritt B zugeführten Stoffe vor Eintritt in den Plasmapolymerisationsreaktor gasförmig sind.
  5. Verfahren nach Anspruch 4, wobei alle dem Plasma in Schritt B zugeführten Stoffe vor Eintritt in den Plasmapolymerisationsreaktor gasförmig sind und das Verhältnis der dem Plasma in Schritt B zugeführten Gasflüsse von Sauerstoff und weiteren Precursor(en) im Bereich von 1:1 bis 6:1, vorzugsweise 3:1 bis 5:1 liegt.
  6. Verfahren nach einem der vorangehenden Ansprüche, wobei in Schritt B als Precursor(en) für das Plasma ein oder mehrere Siloxane, gegebenenfalls Sauerstoff sowie vorzugsweise keine weiteren Verbindungen eingesetzt werden.
  7. Verfahren nach Anspruch 6, wobei in Schritt B als Precursor(en) für das Plasma Hexamethyldisiloxan (HMDSO), gegebenenfalls Sauerstoff sowie vorzugsweise keine weitere Verbindung eingesetzt wird.
  8. Verfahren nach einem der vorangehenden Ansprüche, wobei während Schritt B eine Regelung erfolgt, so dass der Self-Bias im Bereich von 50 bis 1000 V, vorzugsweise im Bereich von 100 bis 400 V, bevorzugt im Bereich von 100 bis 300 V, liegt.
  9. Verfahren nach einem der vorangehenden Ansprüche, wobei während Schritt B der Self-Bias auf dem Substrat eingestellt wird.
  10. Verfahren nach einem der vorangehenden Ansprüche, wobei während Schritt B eine Regelung erfolgt, so dass der Self-Bias konstant ist.
  11. Verfahren nach einem der vorangehenden Ansprüche, wobei sich in Schritt B das Leichtmetallsubstrat in räumlichem Kontakt befindet mit (i) der Kathode oder (ii) einem Teil der Kathode, der vom Aluminiumsubstrat unterscheidbar ist.
  12. Verfahren nach einem der vorangehenden Ansprüche, wobei die Plasmapolymerisation bei einer Temperatur von weniger als 200°C und/oder einem Druck von weniger als 1 mbar, vorzugsweise im Bereich von 10–3 bis 10–1 mbar durchgeführt wird.
  13. Verfahren nach einem der vorangehenden Ansprüche, wobei in Schritt B die Abscheiderate auf einen Wert von größer oder gleich 0,2 μm/min, vorzugsweise größer oder gleich 0,3 μm/min, eingestellt wird.
  14. Verfahren nach einem der vorangehenden Ansprüche, wobei Schritt B bis zu einer Dicke der abgeschiedenen Schicht von größer oder gleich 2 μm, vorzugsweise größer oder gleich 4 μm durchgeführt wird.
  15. Verfahren nach einem der vorangehenden Ansprüche, wobei das Leichtmetallsubstrat ein Aluminumsubstrat ist, ausgewählt aus der Gruppe von Substraten bestehend aus: Aluminium oder Aluminiumlegierung mit gereinigter, unbeschichteter Oberfläche; Aluminium oder Aluminiumlegierung mit oberflächlicher Oxidschicht; anodisierte(s) Aluminium oder Aluminiumlegierung mit gefärbter oder ungefärbter, verdichteter oder unverdichteter Oxidschicht oder ein Magnesiumsubstrat ist, ausgewählt aus der Gruppe von Substraten bestehend aus Magnesium oder Magnesiumlegierungen mit gereinigter, unbeschichteter Oberfläche, Magnesium oder Magnesiumlegierung mit oberflächlicher Oxidschicht.
  16. Verfahren nach einem der vorangehenden Ansprüche, wobei in Schritt A die zu beschichtende Substratoberfläche mittels eines Plasmas gereinigt wird.
  17. Verfahren nach Anspruch 16, wobei in Schritt A dem Plasma zur Durchführung der Plasmareinigung ein Gas oder Gasgemisch zugesetzt wird, wobei das Gas oder Gasgemisch ausgewählt ist aus der Gruppe bestehend aus: Argon, Argon-Wasserstoff-Gemisch, Sauerstoff.
  18. Verfahren nach einem der vorangehenden Ansprüche, wobei das Verfahren so geführt wird, dass im Anschluss an Schritt B innerhalb des Plasmapolymerisationsreaktors nicht fragmentierte siliciumorganische Verbindungen vorliegen, die sich mit reaktiven Stellen an der Oberfläche der Beschichtung unter Ausbildung einer hydrophoben Oberfläche umsetzen.
  19. Verfahren nach einem der vorangehenden Ansprüche, wobei das Plasma mittels Hochfrequenz erzeugt wird.
  20. Beschichtetes Leichtmetallsubstrat, herstellbar nach einem Verfahren gemäß einem der Ansprüche 1 bis 19.
  21. Beschichtetes Leichtmetallsubstrat nach Anspruch 20, wobei die Beschichtung durch Messung mittels XPS bestimmbare Anteile von 5 bis 30 Atom-%, bevorzugt 10 bis 25 Atom-% Silicium und 30 bis 70 Atom-%, bevorzugt 40 bis 60 Atom-% Sauerstoff aufweist, bezogen auf die Gesamtzahl der in der Beschichtung enthaltenen Kohlenstoff-, Silicium- und Sauerstoffatome.
  22. Beschichtetes Leichtmetallsubstrat nach Anspruch 20 oder 21, wobei ein von der Beschichtung aufgenommenes IR-Spektrum eine oder mehrere, vorzugsweise alle der folgenden Banden mit einem jeweiligen Maximum in den folgenden Bereichen aufweist: C-H-Valenzschwingung im Bereich von 2950 bis 2970 cm–1, Si-H-Schwingung im Bereich von 2150 bis 2250 cm–1, Si-CH2-Si-Schwingung im Bereich von 1350 bis 1370 cm–1, Si-CH3-Deformationschwingung im Bereich von 1250 bis 1280 cm–1 und Si-O-Schwingung bei größer oder gleich 1150 cm–1.
  23. Beschichtetes Leichtmetallsubstrat nach einem der Ansprüche 20 bis 22, wobei in einem von der Beschichtung aufgenommenen IR-Spektrum das Verhältnis der Intensität der Si-H-Bande zur Intensität der Si-CH3-Bande kleiner oder gleich 0,3, vorzugsweise kleiner oder gleich 0,2 ist.
  24. Beschichtetes Leichtmetallsubstrat nach einem der Ansprüche 20 bis 23, wobei die Beschichtung eine Absorptionskonstante k300nm von kleiner oder gleich 0,05 und/oder eine Absorptionskonstante k400nm von kleiner oder gleich 0,01 aufweist.
  25. Beschichtetes Leichtmetallsubstrat nach einem der Ansprüche 20 bis 24, wobei die Beschichtung eine Oberflächenenergie im Bereich von 20 bis 40 mN/m, vorzugsweise 25 bis 35 mN/m aufweist.
  26. Beschichtetes Leichtmetallsubstrat nach einem der Ansprüche 20 bis 25, das nach einem 15-minütigen korrosiven Angriff von NaOH bei pH 13,5 und 30°C keine mit bloßem Auge sichtbaren Korrosionsspuren aufweist.
  27. Beschichtetes Leichtmetallsubstrat nach einem der Ansprüche 20 bis 26, wobei die Beschichtung eine Dehnung bis Mikroriss von größer oder gleich 1%, vorzugsweise größer oder gleich 1,5% aufweist.
  28. Beschichtetes Leichtmetallsubstrat nach einem der Ansprüche 20 bis 27, wobei sich die maximale Schichtdicke von der minimalen Schichtdicke um den Faktor 1,1 oder geringer unterscheidet.
  29. Verwendung einer durch ein Verfahren nach einem der Ansprüche 1 bis 19 herstellbaren Beschichtung als Ersatz für eine Eloxalschicht.
DE200710000611 2007-10-31 2007-10-31 Kratzfeste und dehnbare Korrosionsschutzschicht für Leichtmetallsubstrate Ceased DE102007000611A1 (de)

Priority Applications (4)

Application Number Priority Date Filing Date Title
DE200710000611 DE102007000611A1 (de) 2007-10-31 2007-10-31 Kratzfeste und dehnbare Korrosionsschutzschicht für Leichtmetallsubstrate
US12/740,022 US20120003483A1 (en) 2007-10-31 2008-10-31 Scratch-resistant and expandable corrosion prevention layer for light metal substrates
EP20080844614 EP2203258B1 (de) 2007-10-31 2008-10-31 Kratzfeste und dehnbare korrosionsschutzschicht für leichtmetallsubstrate
PCT/EP2008/064826 WO2009056635A2 (de) 2007-10-31 2008-10-31 Kratzfeste und dehnbare korrosionsschutzschicht für leichtmetallsubstrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE200710000611 DE102007000611A1 (de) 2007-10-31 2007-10-31 Kratzfeste und dehnbare Korrosionsschutzschicht für Leichtmetallsubstrate

Publications (1)

Publication Number Publication Date
DE102007000611A1 true DE102007000611A1 (de) 2009-05-07

Family

ID=40512894

Family Applications (1)

Application Number Title Priority Date Filing Date
DE200710000611 Ceased DE102007000611A1 (de) 2007-10-31 2007-10-31 Kratzfeste und dehnbare Korrosionsschutzschicht für Leichtmetallsubstrate

Country Status (4)

Country Link
US (1) US20120003483A1 (de)
EP (1) EP2203258B1 (de)
DE (1) DE102007000611A1 (de)
WO (1) WO2009056635A2 (de)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009000699A1 (de) 2009-02-06 2010-08-12 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Kunststoffsubstrat, umfassend eine flexible, transparente Schutzschicht sowie Verfahren zur Herstellung eines solchen Kunststoffsubstrates
DE102009000821A1 (de) * 2009-02-12 2010-09-09 Surcoatec Gmbh Verfahren zum Aufbringen einer Beschichtung auf Werkstücke und/oder Werkstoffe aufweisend mindestens ein leicht oxidierbares Nichteisenmetall
DE102013219331B3 (de) * 2013-09-25 2015-03-19 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Plasmapolymerer Festkörper, insbesondere plasmapolymere Schicht, sowie deren Verwendung
DE102013219337B3 (de) * 2013-09-25 2015-04-02 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Plasmapolymerer Festkörper, insbesondere plasmapolymere Schicht, deren Herstellung sowie deren Verwendung als Korrosionsschutz
DE102014204937A1 (de) 2014-03-17 2015-09-17 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Verfahren zur Herstellung eines Polyurethanformteiles
DE102022110375A1 (de) 2022-04-28 2023-11-02 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung eingetragener Verein Schichtsystem, beschichtetes Substrat umfassend das Schichtsystem, Verfahren zum Beschichten der Oberfläche eines Substrats mit dem Schichtsystem sowie Verwendung des Schichtsystems

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009002780A1 (de) 2009-04-30 2010-11-11 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Metallsubstrate mit kratzfester und dehnbarer Korrosionsschutzschicht und Verfahren zu deren Herstellung
DE102009027768B4 (de) 2009-07-16 2015-02-19 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Dichtungsartikel
TWI565353B (zh) * 2012-10-19 2017-01-01 逢甲大學 可撓性電熱發熱體及其製作方法
US20160126509A1 (en) * 2013-06-04 2016-05-05 GM Global Technology Operations LLC Plasma coating for corrosion protection of light-metal components in battery fabrication
EP3127694B1 (de) * 2014-03-31 2023-08-16 KB Seiren, Ltd. Faserverstärktes verbundmaterial
DE102016214107A1 (de) * 2016-08-01 2018-02-01 Volkswagen Aktiengesellschaft Plasmareinigung von Druckguss-Strukturbauteilen für Kraftfahrzeuge und Herstellung eines Karosserie-Bauteilverbunds mit einem plasmagereinigten Druckguss-Strukturbauteil
DE102016214493A1 (de) 2016-08-04 2018-02-08 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Passives elektrisches Bauteil mit Beschichtung zur Verbesserung der Belastbarkeit
JP6441295B2 (ja) * 2016-12-26 2018-12-19 本田技研工業株式会社 接合構造体及びその製造方法
DE102018102416A1 (de) 2017-10-23 2019-04-25 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Verwendung einer kohlenstoffhaltigen Beschichtung zum Schutz eines passiven elektrischen Bauteils vor Angriff durch Ammoniak und Anlage, umfassend ein passives elektrisches Bauteil, das gegen Angriff von Ammoniak geschützt ist
CN111020505A (zh) * 2019-12-16 2020-04-17 上海交通大学 在镁合金表面用氩离子刻蚀制备高耐腐蚀Al薄膜的方法
US11512818B2 (en) 2020-07-10 2022-11-29 Junming Ding Multi-mode portable lighting device with novel battery charging unit

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19544498A1 (de) * 1994-12-10 1996-06-13 Antec Angewandte Neue Technolo Verfahren zur Herstellung einer farbgebenden Beschichtung
DE19748240A1 (de) 1997-10-31 1999-05-06 Fraunhofer Ges Forschung Verfahren zur korrosionsfesten Beschichtung von Metallsubstraten mittels Plasmapolymerisation
WO2003002269A2 (de) 2001-06-29 2003-01-09 Fraunhofer Gesellschaft zur Förderung der angewandten Forschung e.V. Artikel mit plasmapolymerer beschichtung und verfahren zu dessen herstellung
EP0748259B1 (de) 1994-03-03 2004-09-22 Morgan Advanced Ceramics, Inc. Hochabriebfeste, flexible beschichtungen für weiche substrate

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5846649A (en) * 1994-03-03 1998-12-08 Monsanto Company Highly durable and abrasion-resistant dielectric coatings for lenses
EP0752483A1 (de) * 1995-06-28 1997-01-08 ANTEC Angewandte Neue Technologien GmbH Verfahren zur Beschichtung von Gegenständen aus Metall oder Kunststoff
DE19523444A1 (de) * 1995-06-28 1997-01-02 Antec Angewandte Neue Technolo Verfahren zur Beschichtung von Kunststoffen oder ähnlichen weichen Werkstoffen
US5900289A (en) * 1995-11-29 1999-05-04 Antec Angewandte Neue Technologien Gmbh Method of producing a colorating coating
US20020032073A1 (en) * 1998-02-11 2002-03-14 Joseph J. Rogers Highly durable and abrasion resistant composite diamond-like carbon decorative coatings with controllable color for metal substrates
US6350539B1 (en) * 1999-10-25 2002-02-26 General Motors Corporation Composite gas distribution structure for fuel cell
US6746970B2 (en) * 2002-06-24 2004-06-08 Macronix International Co., Ltd. Method of forming a fluorocarbon polymer film on a substrate using a passivation layer
US7323116B2 (en) * 2004-09-27 2008-01-29 Lam Research Corporation Methods and apparatus for monitoring a process in a plasma processing system by measuring self-bias voltage
DE102004049111A1 (de) * 2004-10-07 2006-04-13 Leybold Optics Gmbh Verfahren zur Glanzbeschichtung von Substraten sowie glanzbeschichtetes Substrat
JP4692314B2 (ja) * 2006-02-14 2011-06-01 住友電気工業株式会社 半導体デバイスの製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0748259B1 (de) 1994-03-03 2004-09-22 Morgan Advanced Ceramics, Inc. Hochabriebfeste, flexible beschichtungen für weiche substrate
DE19544498A1 (de) * 1994-12-10 1996-06-13 Antec Angewandte Neue Technolo Verfahren zur Herstellung einer farbgebenden Beschichtung
DE19748240A1 (de) 1997-10-31 1999-05-06 Fraunhofer Ges Forschung Verfahren zur korrosionsfesten Beschichtung von Metallsubstraten mittels Plasmapolymerisation
WO2003002269A2 (de) 2001-06-29 2003-01-09 Fraunhofer Gesellschaft zur Förderung der angewandten Forschung e.V. Artikel mit plasmapolymerer beschichtung und verfahren zu dessen herstellung
DE10131156A1 (de) * 2001-06-29 2003-01-16 Fraunhofer Ges Forschung Arikel mit plasmapolymerer Beschichtung und Verfahren zu dessen Herstellung

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
Domingues et al. (2002) Electrochimica Acta 47, 2253-2258
Firma Gelest Inc. (Morrisville, USA)
Hysitron Inc. Minneapolis, USA
Oliver & Pharr (J. Mater. Res. 7, 1564 (1992)
Schiffmann & Küster, Z. Metallkunde 95, 311 (2004)
T. W. Jelinek, Oberflächenbehandlung von Aluminium, Eugen G. Leuze Verlag, Saulgau, 1996

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009000699A1 (de) 2009-02-06 2010-08-12 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Kunststoffsubstrat, umfassend eine flexible, transparente Schutzschicht sowie Verfahren zur Herstellung eines solchen Kunststoffsubstrates
WO2010089333A1 (de) 2009-02-06 2010-08-12 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Kunststoffsubstrat, umfassend eine flexible, transparente schutzschicht sowie verfahren zur herstellung eines solchen kunststoffsubstrates
DE102009000821A1 (de) * 2009-02-12 2010-09-09 Surcoatec Gmbh Verfahren zum Aufbringen einer Beschichtung auf Werkstücke und/oder Werkstoffe aufweisend mindestens ein leicht oxidierbares Nichteisenmetall
DE102009000821B4 (de) * 2009-02-12 2013-05-02 Surcoatec Ag Verfahren zum Aufbringen einer Beschichtung auf Werkstücke und/oder Werkstoffe aufweisend mindestens ein leicht oxidierbares Nichteisenmetall sowie Werkstück und/oder Werkstoff hergestellt nach dem Verfahren
DE102013219331B3 (de) * 2013-09-25 2015-03-19 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Plasmapolymerer Festkörper, insbesondere plasmapolymere Schicht, sowie deren Verwendung
DE102013219337B3 (de) * 2013-09-25 2015-04-02 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Plasmapolymerer Festkörper, insbesondere plasmapolymere Schicht, deren Herstellung sowie deren Verwendung als Korrosionsschutz
DE102014204937A1 (de) 2014-03-17 2015-09-17 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Verfahren zur Herstellung eines Polyurethanformteiles
DE102022110375A1 (de) 2022-04-28 2023-11-02 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung eingetragener Verein Schichtsystem, beschichtetes Substrat umfassend das Schichtsystem, Verfahren zum Beschichten der Oberfläche eines Substrats mit dem Schichtsystem sowie Verwendung des Schichtsystems

Also Published As

Publication number Publication date
EP2203258B1 (de) 2012-05-30
EP2203258A2 (de) 2010-07-07
US20120003483A1 (en) 2012-01-05
WO2009056635A2 (de) 2009-05-07
WO2009056635A3 (de) 2009-07-30

Similar Documents

Publication Publication Date Title
EP2203258B1 (de) Kratzfeste und dehnbare korrosionsschutzschicht für leichtmetallsubstrate
EP1870489B1 (de) Verfahren zur Herstellung eines korrosionsgeschützten und hochglänzenden Substrats
EP1432529B1 (de) Artikel mit plasmapolymerer beschichtung
EP2424683B2 (de) Metallsubstrate mit kratzfester und dehnbarer korrosionsschutzschicht und verfahren zu deren herstellung
EP2752504B1 (de) Verfahren zur Herstellung eines korrosionsgeschützten, glänzenden, metallisch beschichteten Substrats, das metallisch beschichtete Substrat sowie dessen Verwendung
EP2393613B1 (de) Kunststoffsubstrat, umfassend eine flexible, transparente schutzschicht sowie verfahren zur herstellung eines solchen kunststoffsubstrates
DE112006002987T5 (de) Aluminiumlegierungselement mit hervorragender Korrosionsbeständigkeit
DE102008054139A1 (de) Glas- oder Glaskeramik-Substrat mit Kratzschutzbeschichtung und Verfahren zu dessen Herstellung
DE102013219337B3 (de) Plasmapolymerer Festkörper, insbesondere plasmapolymere Schicht, deren Herstellung sowie deren Verwendung als Korrosionsschutz
EP3228727A2 (de) Verfahren zur herstellung beschichteter substrate, beschichtete substrate und deren verwendung
EP1129318B1 (de) Reflektor mit resistenter oberfläche
DE102014105939A1 (de) Verfahren zur Herstellung einer Entspiegelungsschicht auf einer Silikonoberfläche und optisches Element
DE2605902B2 (de) Mit einem fluorhaltigen Kunststoff beschichtetes Substrat aus Aluminium oder einer Aluminiumlegierung und Verfahren zu seiner Herstellung
DE1941140C3 (de) Mittel zum Überziehen einer Metalloberfläche
DE102017131085A1 (de) Plasmapolymerer Festkörper, insbesondere plasmapolymere Schicht mit Kohlenwasserstoffnetzwerkbildung, deren Verwendung sowie Verfahren zu deren Herstellung
WO2015044247A1 (de) Plasmapolymerer festkörper (insbesondere plasmapolymere schicht)
DE102016214493A1 (de) Passives elektrisches Bauteil mit Beschichtung zur Verbesserung der Belastbarkeit
WO2006131540A1 (de) Schmutzverbergende beschichtung
DE112012004783T5 (de) Verfahren zur Vorhersage des Marmorierungsgrades in Beschichtungszusammensetzungen durch Nassfarbenmessung
DE102009030810A1 (de) Beschichtung für einen optischen Reflektor
WO2014127890A1 (de) Dekorative, tiefschwarze beschichtung
EP1594629B1 (de) Verwendund eines Verfahrens zur Herstellung einer Mehrschichtbeschichtung zur Herstellung und/oder Reparatur einer Automobil(serien)lackierung
EP1218432A1 (de) Dünne, schmutzabweisende beschichtungen
DE102016103495A1 (de) Aushärtbare Beschichtungsmasse
DE102005040964A1 (de) Matte Zinkbeschichtung und Verfahren zur Abscheidung matter Zinkschichten

Legal Events

Date Code Title Description
OP8 Request for examination as to paragraph 44 patent law
8127 New person/name/address of the applicant

Owner name: IMPREGLON BESCHICHTUNGEN GMBH, 86899 LANDSBERG, DE

Owner name: FRAUNHOFER-GESELLSCHAFT ZUR FOERDERUNG DER ANG, DE

R002 Refusal decision in examination/registration proceedings
R003 Refusal decision now final

Effective date: 20130820