CN86102067A - 可逆式储氢用的改进的非晶态金属合金材料 - Google Patents

可逆式储氢用的改进的非晶态金属合金材料 Download PDF

Info

Publication number
CN86102067A
CN86102067A CN86102067.7A CN86102067A CN86102067A CN 86102067 A CN86102067 A CN 86102067A CN 86102067 A CN86102067 A CN 86102067A CN 86102067 A CN86102067 A CN 86102067A
Authority
CN
China
Prior art keywords
hydrogen storage
scope
hydrogen
component
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
CN86102067.7A
Other languages
English (en)
Other versions
CN1006377B (zh
Inventor
罗伯特·K·格拉塞利
迈克尔·A·坦霍弗
乔纳森·H·哈里斯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Standard Oil Co
Original Assignee
Standard Oil Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Standard Oil Co filed Critical Standard Oil Co
Publication of CN86102067A publication Critical patent/CN86102067A/zh
Publication of CN1006377B publication Critical patent/CN1006377B/zh
Expired legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/0005Reversible uptake of hydrogen by an appropriate medium, i.e. based on physical or chemical sorption phenomena or on reversible chemical reactions, e.g. for hydrogen storage purposes ; Reversible gettering of hydrogen; Reversible uptake of hydrogen by electrodes
    • C01B3/001Reversible uptake of hydrogen by an appropriate medium, i.e. based on physical or chemical sorption phenomena or on reversible chemical reactions, e.g. for hydrogen storage purposes ; Reversible gettering of hydrogen; Reversible uptake of hydrogen by electrodes characterised by the uptaking medium; Treatment thereof
    • C01B3/0031Intermetallic compounds; Metal alloys; Treatment thereof
    • C01B3/0047Intermetallic compounds; Metal alloys; Treatment thereof containing a rare earth metal; Treatment thereof
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C14/00Alloys based on titanium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/002Making metallic powder or suspensions thereof amorphous or microcrystalline
    • B22F9/004Making metallic powder or suspensions thereof amorphous or microcrystalline by diffusion, e.g. solid state reaction
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/0005Reversible uptake of hydrogen by an appropriate medium, i.e. based on physical or chemical sorption phenomena or on reversible chemical reactions, e.g. for hydrogen storage purposes ; Reversible gettering of hydrogen; Reversible uptake of hydrogen by electrodes
    • C01B3/001Reversible uptake of hydrogen by an appropriate medium, i.e. based on physical or chemical sorption phenomena or on reversible chemical reactions, e.g. for hydrogen storage purposes ; Reversible gettering of hydrogen; Reversible uptake of hydrogen by electrodes characterised by the uptaking medium; Treatment thereof
    • C01B3/0031Intermetallic compounds; Metal alloys; Treatment thereof
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/0005Reversible uptake of hydrogen by an appropriate medium, i.e. based on physical or chemical sorption phenomena or on reversible chemical reactions, e.g. for hydrogen storage purposes ; Reversible gettering of hydrogen; Reversible uptake of hydrogen by electrodes
    • C01B3/001Reversible uptake of hydrogen by an appropriate medium, i.e. based on physical or chemical sorption phenomena or on reversible chemical reactions, e.g. for hydrogen storage purposes ; Reversible gettering of hydrogen; Reversible uptake of hydrogen by electrodes characterised by the uptaking medium; Treatment thereof
    • C01B3/0031Intermetallic compounds; Metal alloys; Treatment thereof
    • C01B3/0047Intermetallic compounds; Metal alloys; Treatment thereof containing a rare earth metal; Treatment thereof
    • C01B3/0052Intermetallic compounds; Metal alloys; Treatment thereof containing a rare earth metal; Treatment thereof also containing titanium
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/0005Reversible uptake of hydrogen by an appropriate medium, i.e. based on physical or chemical sorption phenomena or on reversible chemical reactions, e.g. for hydrogen storage purposes ; Reversible gettering of hydrogen; Reversible uptake of hydrogen by electrodes
    • C01B3/001Reversible uptake of hydrogen by an appropriate medium, i.e. based on physical or chemical sorption phenomena or on reversible chemical reactions, e.g. for hydrogen storage purposes ; Reversible gettering of hydrogen; Reversible uptake of hydrogen by electrodes characterised by the uptaking medium; Treatment thereof
    • C01B3/0031Intermetallic compounds; Metal alloys; Treatment thereof
    • C01B3/0047Intermetallic compounds; Metal alloys; Treatment thereof containing a rare earth metal; Treatment thereof
    • C01B3/0057Intermetallic compounds; Metal alloys; Treatment thereof containing a rare earth metal; Treatment thereof also containing nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C45/00Amorphous alloys
    • C22C45/10Amorphous alloys with molybdenum, tungsten, niobium, tantalum, titanium, or zirconium or Hf as the major constituent
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S420/00Alloys or metallic compositions
    • Y10S420/90Hydrogen storage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12458All metal or with adjacent metals having composition, density, or hardness gradient
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12771Transition metal-base component
    • Y10T428/12806Refractory [Group IVB, VB, or VIB] metal-base component
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12771Transition metal-base component
    • Y10T428/12861Group VIII or IB metal-base component
    • Y10T428/12875Platinum group metal-base component
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12771Transition metal-base component
    • Y10T428/12861Group VIII or IB metal-base component
    • Y10T428/12944Ni-base component

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Combustion & Propulsion (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Metallurgy (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Hydrogen, Water And Hydrids (AREA)
  • Powder Metallurgy (AREA)

Abstract

能可逆储氢新型材料如式AaMbM′c的非晶态合金,其中:A至少为Ag、Au、Hg、Pd和Pt中之一;M至少为Pb、Ru、Cu、Cr、Mo、Si、W、Ni、Al、Sn、Co、Fe、Zn、Cd、Ga和Mn中之一;M′至少为Ca、Mg、Ti、Y、Zr、Hf、Nb、V、Ta和稀土元素中之一;a的范围是0.08;b的范围是0~约0.70;c的范围是约0.08~约0.95;其特征是:1)A的主要部分位于该材料表面,和/或2)上述起吸或放氢的活性表层作用的材料与主体储存材料一起组成可逆储氢材料。

Description

本发明涉及可逆式储氢用的、改进了的非晶态金属合金组成和组织。这些组成能够有效地循环储存和释放较大量的氢,而不脆化、钝化或腐蚀。
近期,由于矿物燃料的不足,促使人们更多地考虑另一些能源在经济上的可行性,这类方案之一是燃烧氢的经济性。在所有化学物质中,单位重量氢的能量密度最高。现已制定了很多这种元素经济设计方案,但这种技术还不能左右世界经济这种戏剧性变化。然而,氢是技术上颇有吸引力的燃烧源和储备能源。氢燃烧的主要副产品是水,基本无污染,而且可由容易供应和取之不尽的原料制得。
众所周知,虽然氢能以压缩气体或低温液体储存,但是为了把氢作为一种储存能源而广泛应用,需要另外一种密集度较低的和更方便的方法。人们知道,一些金属和金属合金在它们的晶格中能够可逆地储存氢。通过将金属或金属合金暴露在巨大的氢压力下可以利用它们的这个特性,方法是用氢充满金属或金属合金,其后改变温度或压力,再从充满氢的金属或金属合金中回收储存的氢。
某些合金可逆式储存氢的这个特性也适于电化环境。适于作储氢材料的金属或金属合金,可以产生相对于一个适当的反向电极的阴极偏离,并通过还原溶液中的氢核充氢。所研究的用于电化学储氢的金属合金体系包括LaNi5基合金、TiMn基合金、FeTi基合金和Mg基合金。尽管一些这类晶态材料能储存大量氢,但当这些晶态材料用过几个储氢的储-放周期后,易于产生相分离、氢脆和表面氧化。相分离发生在经氢循环的晶态合金中,其中合金组份在整个合金中被分隔开并能在其中移位。在LaNi5型合金中,镧移到合金表面并可能迅速氧化。
随着氢被吸收和解吸,在晶态合金中发生氢脆化,氢的储存从合金表面向内部进行,随着氢原子破裂,进入金属基体原子的间隙,然后使晶格膨胀。由于内应力,可能使金属或金属合金产生缺陷和裂纹,严重地降低其强度,并使之脆化。如果使储氢材料暴露在有氧化剂诸如CO2,H2O,KOH,空气或氧存在的氧化条件下,表面就可能发生氧化。表面氧化阻碍了氢气渗透,减少了氢气吸收量和降低了对氢的吸收速度。此外,这些晶态材料一般也不能承受在电化反应中可能存在的腐蚀气氛。
最近,已报道了能够可逆储氢的非晶态金属合金材料。由于非晶态合金材料将机械、化学和电学性能极好地结合在一起,因此越来越引起人们的关注。非晶态合金材料具有各种性能,其中包括高硬度和高强度、韧性、高软磁性和铁电性,极高的耐腐蚀和耐磨性,异常的合金组成,及高度的抗辐射损伤性。非晶态金属合金材料所拥有这种独特的多种性能可能是由于非晶态材料紊乱的原子结构保证了材料的化学成份的均匀,不会使其缺陷扩大,而这些缺陷会限制晶态材料的性能,这是人们所知道的。
Maeland等人在稀有金属杂志74卷279-285页(1980年)上,以《金属玻璃合金的氢化物》为题,对TiCu和ZrCu非晶态金属合金系统进行了研究,并与相应的晶态金属间化合物的吸收性能作了比较。在相似的温度和压力条件下,非晶态金属合金材料能够比它们相应组成的晶态材料吸收更多的氢。Maeland等人的研究仅限于在氢气气氛下吸收气态氢。在申请人的共同未决专利申请案:USSN717,429号中所公开的用于可逆式储氢的新型非晶态金属组成列于此供参考。该公开的申请阐明了包含通式为AaMbM′c的非晶态金属合金的可逆式储氢材料,其中
A是从Ag、Au、Hg、Pd和Pt中选出的至少一种金属;
M是从Pb、Ru、Cu、Cr、Mo、Si、W、Ni、Al、Sn、Co、Fe、Zn、Cd、Ga和Mn中选出的至少一种金属;
a的范围是约0.005~约0.80;
b的范围是约0.05~约0.70;
c的范围是约0.08~约0.95;
这些非晶态材料不受相分离或氢脆化影响,而且上述非晶态材料的储氢能力为每个合金分子中储存约0.35~超过1.1的氢原子,而且在重复充氢和放氢周期以后,也不显示任何明显表面钝化或腐蚀的痕迹,然而,这些材料的A组份是这些非晶态合金的必要组份,它在合金中的原子比约为50%~80%,这个百分比为约10%~约50%为好,这个百分比约50%~40%为最好。虽然这些合金的性质对于可逆式储氢是理想的,但是广泛地使用这些组分成本太高,特别是A组份的成本太高。
因此,可以看到,在应用非晶态金属合金来发展氢作燃料和储备能源方面,特别是在利用电化学可逆式储氢方面,仍然存在着研究新的重大技术的势头。在这方面需要的是具有大量可逆式储氢能力的经济的非晶态金属合金材料。这种非晶态金属合金不能有明显的相分离或氢脆化,也不能易于产生表面氧化或腐蚀。
因此本发明目的之一是提供经济的能够可逆式储氢的改进型非晶态金属合金的组成和结构。
本发明的另一目的是提供经济的、能够以循环方式可逆地储氢的、不会发生合金变脆或相分离的非晶态金属合金的组成和结构。
本发明还有一目的是提供能够以循环的方式可逆储氢而不引起表面氧化或腐蚀的、经济的非晶态金属合金组成和结构。
本发明的这些目的和另一些目的,对于通晓技术的人参照本发明下面的介绍和附属权利要求将会很清楚。
本发明旨在提供包含通式为AaMbM′c的非晶态金属合金的可逆式储氢材料,其中:
A是从Ag、Au、Hg、Pb和Pt中选出的至少一种金属;
M是从Pb、Ru、Cu、Cr、Mo、Si、W、Ni、Al、Sn、Co、Fe、Zn、Cd、Ga和Mn中选出的至少一种金属;
M′是从Ca、Mg、Ti、Y、Zr、Hf、Nb、V、Ta和稀土元素中选出的至少一种金属;其中a的范围是0~约0.80;
b的范围是0~约0.70;
c的范围是约0.08~约0.95;
本材料特征在于合金A组份的大部分位于材料表面。
本发明还涉及具有活性吸收氢表面层和主体储氢材料的可逆式储氢结构,活性表面层包含由通式为AaMbM′c的非晶态金属合金,其中:
A是从Ag、Au、Hg、Pd和Pt中所选的至少一种金属;
M是从Pb、Ru、Cu、Mo、Cr、Si、W、Ni、Al、Sn、Co、Fe、Zn、Cd、Ga和Mn中所选的至少一种金属;
M′是从由Ca、Mg、Ti、Y、Zr、Hf、Nb、V、Ta和稀土元素中所选的至少一种金属;其中a的范围是约0.005~约0.80
b的范围是0~约0.70
c的范围是约0.08~约0.95,而主体储氢材料包括一种可逆式的储氢材料。
在通式AaMbM′c中,较好的选择为A是Pd,Pt或它们的组合物,而M是由Mn、Ru、Fe、Cu、Ni、Cr、Mo、Al、W中所选的一种元素和它们的组合物为好;最好的选择M是从Mn、Cu、Ni、Fe、Mo、Cr、W中所选的一种元素和它们的组合物,而M′是Ti、Mg、Ta或它们的组合物。所谓组合物的意思是上述所列元素的混合物和/或合金。
当A组份集中在材料表面时,a的范围从大于0~约0.5,b的范围从约0.1~约0.5,c的范围从约0.2~0.85为好。a的范围从约0.001~约0.2,b的范围从约0.2~约0.4,c的范围从约0.3~约0.8最好。
这里所介绍的组成和结构是利用分级的或分层的储氢组成为特征的,该组成包括一吸收和解吸氢的活性表面和一储氢内部主体。
这里讨论的非晶态金属合金基本是非晶态的,所谓“基本”的意思是,正如X射线衍射分析表明的,非晶态金属合金至少有50%是非晶态的。正如X射线衍射分析表明的,非晶态金属合金至少有50%是非晶态的。正如X射线衍射分析表明的,这种金属合金至少有80%是非晶态的更好,最好是约100%为非晶态。所用的“非晶态金属合金”这个词是指含非晶态金属的合金,此合金也可包含非金属元素。
储氢,特别是电化学储氢,包括表面电化学和主体间隙储氢两种现象。活性氢吸收表面也起吸收氢和主体储存氢原子间的界面的作用,活性表面的电化学电势建立一段电位差,通过这段电位差,在充电和放电期间电子被加速。
作为界面的活性表面必须在充电期间将原子氢有效地供给主体并在材料中保持这些氢直至放电为止。在金属表面,电荷转移反应(H++e-=H)是很快的,而再化合反应(2H(基体中)→H2(气))很慢,这种金属表面是理想的活性吸氢表面。这些性质的结合可增加以原子氢进入主体中氢的数量并减少气体氢在溶液中的损失量。正如P.K.Subnamanyan在1981年,由Plenum出版的,《电化学综合论文集》中发表的《金属中氢的电化学状态》指出的那样,下列金属的电荷转移动力学比其再化合动力学要快:Ti、Nb、Mo、Ta、W、Cu、Al、Au、Bi、Rh、Ir、Pt、Pd和Ag。
主体材料的作用是尽可能可逆地多储存氢原子并保持吸收氢的有效表层稳定。尽管形成氢化物的生成热为微量负值的一些纯金属如Pd或Ni,能可逆地储存少量的氢,但大量的氢是储存在适当的金属合金中。一般合金成份的选择是能使氢化物的生成热为正的和负的材料之间达到平衡。这样氢可以处于金属合金晶格的间隙部位。合金成份的平衡是重要的,因为它决定氢所处的势井的深度,并且这样可控制氢从一个间隙位扩散到另一间隙位的动力学。
选择主体储氢合金成份的第二个考虑是力学的稳定性。由于氢进入金属合金的晶格内,储存大量氢的许多金属合金变得极脆。
在某些应用中,如当储氢材料是用粉末压成的时,缺乏力学的完整性可能不是关键问题。然而,当活性储氢合金用作涂层或一种独立的薄膜时,如果储氢材料必须有力学的完整性的话,必须选择不产生脆性的合金。
在本发明的一个实施例中,上面讨论过的USSN717,429共同未决专利中所阐明的非晶态金属合金材料是这样分级的;材料中A组份的基本部分是处在非晶态金属合金的表面。“基本”的含义为A组份至少有50%位于非晶态材料的表面。A组份至少有70%位于非晶态材料的表面更好,A组份约1000%位于该表面最好。“在该表面”是指将A组份安置在合金组织的表面或接近于该表面,这个表面将与供合金所吸收的氢接触。于是“在该表面上”包含在合金组织中的任何位置,在这些位置,A组份可以活性地吸收氢使之进入合金和/或活性地解吸氢使之离开合金。这样本成份中的A组份将起高效界面材料的作用,具有快速的电荷转移动力学并允许较少的再化合反应发生。非晶态金属合金材料的内部主要包括高效储氢材料的合金元素M和M′。由于A组份能集中在非晶态金属合金材料表面,因此它可最有效地用于储氢。A组份以Pd,Pt或它们的组合物为好。按照本发明,现在可以使用很少量较贵的A组份,制取具有以前在USSN717,429专利中所阐述的AaMbM′c成份的储氢能力,同时,也具有力学的稳定性,抗氧化和耐腐蚀性的有效的可逆储氢材料。这种改进大大减低了具有这种组成的材料成本,增加了使用它们的灵活性并扩大了这类储氢材料的应用潜力。
本发明的第二个实施例包括一个具有通式为AaMbMc′非晶态金属合金组成的活性表层,其中:
A是从Ag、Au、Hg、Pd和Pt中所选的至少一种金属;
M是从Pb、Ru、Cu、Cr、Mo、Si、W、Ni、Al、Su、Co、Fe、Zn、Cd、Ga和Mn中所选的至少一种金属;
M是从Ca、Ma、Ti、Y、Zr、Hf、Nb、V、Ta和稀土金属元素中所选的至少一种金属;
a的范围是约0.005~约0.80;
b的范围是0~约0.70;
c的范围是约0.08~约0.95。
这层表面层与第二种材料,即与可逆式主体储氢材料紧密接触。
在该实施例中,a、b、c范围分别为约0.01~约0.75;约0.1~约0.5和约0.2~约0.85更好。a、b和c范围分别为约0.2~约0.7,约0.2~约0.4和约0.3~约0.8最好。
主体储氢材料可包括任何已知储氢材料,如被用作活性层的非晶态金属合金材料,其它已知的可以可逆式储氢的非晶态金属合金以及已知的可以可逆式储氢的晶体材料。用作这种主体储氢材料的材料在其组成中不需包括A组份。主体储氢层可由哪些是高效储氢材料但不能抵抗表面钝化或腐蚀的材料组成,因为活性表面层保护主体储氢材料免于受有害环境条件的影响,如氧化和腐蚀条件。如果主体储氢材料不需力学稳定性时,它也可由易于相分离和氢脆材料组成,因为这些特征不足以影响这种主体晶格的储氢效率。
本发明的组成和结构可以是粉末或固体。包括粉末材料在内的材料是属于本发明的范畴,该材料中所预定的组成和结构包括具有上述通式AaMbMc′的各种非晶态储氢颗粒,且组成的A组份集中在各颗粒的表面。包含一可逆式储氢材料芯,及在芯上涂有这里所描述的、很适于作活性表层的、通式为AaMbMc′非晶态储氢材料在内的粉末材料,也是属于本发明的范畴。
再者,符合本发明的结构可以包括主体储氢材料的填充颗粒,这些颗粒上包覆以这里所述的非晶态储氢材料的活性层或涂层。
本发明的范围还包括具有通式为AaMbMc′的非晶态金属合金的固体结构,其中合金的A组份集中在结构的活性表面上,其结构的芯部为任何可逆式储氢材料,然后再在该材料的活性表面的外面涂上这里所描述的非晶态储氢材料。对将上述AaMbMc′非晶态金属合金材料沉积在基体上的储氢结构也作了预测。非晶态储氢金属合金组成中,在它的活性表面上可集中含有A组分,合金组成中还可在非晶态金属合金材料和基体之间安放另一些可逆储氢材料。
这些材料和结构可用任何制作这样材料的标准技术制备。对于制作非晶态金属合金,可利用物理和化学法来制取该组成,诸如电子束沉积,离子注入,化学还原,热分解,离子束沉积,离子镀,液体急冷,固态扩散,射频和直流溅镀。将一种或多种方法结合使用,有利于生产上述复合结构。将组成中的A组份集中在非晶态金属合金表面的过程是,先生产所需的无A组份的金属合金材料,然后将A组份沉积在形成的材料的表面上,并将该结构退火以形成理想的非晶态金属合金。
这种方法的一实例是在一非晶态金属合金材料表面环境中浸渍无A组份的所需合金组成的薄膜或粉末,在这里,A组份是稀释的并能沉积在薄膜或粉末上,如含有A的化合物的溶液,这种方法可用于在非晶态金属合金材料表面上生产极薄的、均匀分散的、集中的A组分。一旦A组份或含A的化合物存在于合金薄膜或粉末上,然后薄膜或粉末就可进行热处理以形成需要的非晶态金属合金材料,热处理的温度要低于非晶态金属合金的结晶温度。
为保证以上阐明的非晶态金属合金材料理想的储氢性能,要将这些材料放置在合金温度未达到或超过其结晶温度的环境中。
在以上阐明的成份中含有另一些杂质元素时,预期不会严重地影响这些材料可逆储氢的能力。因此,预计微量杂质如O、N、C、S、Se、Te、B、P、Ge、Sb、As和Ar不会严重地损害这些材料的制备及性能。
下述例子可说明在本发明中所描述的组成和结构的储氢能力。显然,列举的这些例子应理解为,只是为说明本发明的目的,而不是以任何方式来限制本发明。
实例1
这个例子说明符合本发明的这种分级结构形式,其中所需的非晶态金属合金的A组份集中在合金的表面,其过程为:先将材料中的M和M′组份沉积在基体上,然后将A组份沉积于其上,最后将这种结构退火以形成所需的非晶态金属合金材料。
将约4,000埃厚的Ni40Ti60层真空溅镀在Ti基体上。此后,不破坏真空,将约1500埃的钯蒸发在Ni40Ti6层上,然后将该结构在约300℃下进行热处理约12小时。这样获得的结构包括Ni40Ti60主体储氢层、钯的浓度为0~约0.80的Pd-Ni-Ti分级非晶态材料,以及过量的晶态钯。
利用该结构作为电解槽中与氢氧化镍反向电极相对的电极。电解质为氢氧化钾。氢电极为约1毫安电流反复充电直至电解槽电压稳定为止,然后以0.1毫安放电。电极进行20次充电和放电。然后根据测定的电荷密度计算每单位重量的电荷(毫安-小时/克)和每单位体积的电荷(毫安-小时/厘米3)从而计算出氢电极的效率。可知该电极的电荷密度为约217毫安-小时/克和1697毫安-小时/厘米3
实例2
本例子说明构成显于主体储氢材料之上具有活性氢吸收表面的可逆式储氢结构的构成。活性储氢层是AaMc′的形式。
在真空中,在T1基体上溅镀一层。约6.000埃厚,近似组成为Fe40Ti60的非晶态合金层。保持真空,将约790埃厚的Pd40Ti60非晶态金属溅镀在Fe40Ti60层上。
然后使用本结构作为电解槽中的储氢电极,电解槽内有2个当量浓度的H3PO4电解液和石墨反向电极。储氢电极的活性表面积约为1.5厘米2。氢电极以约1毫安电流充电至电压稳定,然后在以约0.1mA的电流放电。根据电荷密度计算氢电极的效率,并得到单位重量的电荷约为143毫安-小时/克和每单位体积的电荷约为875毫安-小时/厘米3
实例3
本例说明按以上所述取制一种材料的工艺,其中A组份是极少的。
将40微米厚的Ni64Hf36非晶态急冷薄片在1%氟化氢水溶液中酸洗约1分钟,然后浸在含氯化钯的稀释水溶液中10秒钟。含氯化钯溶液是在每升水中加浓HCl约40毫升和氯化钯1克。在浸酸过程中,少量的钯沉积于Ni64Hf36薄片上。然后在真空中将薄片在约275℃中热处理约48小时,所获得的材料是其近似组成为Pd 0.001Ni64Hf64的非晶态材料。
该材料用作电解槽中的储氢电极,储氢电极的活性表面积约为1.5厘米2。电解槽中也可用氢氧化镍反向电极和氢氧化钾电解质。在进行充放电约60个周期以后,根据电荷密度计算氢电极的效率,并得到按每单位重量电荷计为54毫安-小时/克和按每单位体积电荷计为645毫安-小时/厘米3
以上所述的非晶态金属合金材料的可逆式储氢能力提供了以前所未达到的经济上可行的储氢能力,抗氧化及稳定性,这表明储氢及它的附带技术和应用取得了重大进展。
因此,可以相信,在不违背这里公开和描述的本发明的精神实质的情况下,确定和控制上述阐明的任何变量都是容易的。况且本发明的范围应包括属于所附权利要求范围的全部改进的和变化。
尽管以上例举了几个晶态金属合金材料组成,但对本领域的熟练技术人员而言,不难估计,对属于上述组成范围内的很适于作可逆式储氢的其它非晶态金属合金,也可以用来作为代用。
应当理解,上述例子仅是为本领域的熟练技术人员提供评价本发明的几个代表性实例,这些实例不应视为是对本发明范围的任何限制,因为本发明使用的非晶态金属合金成份和它们分级和/或分层结构都可在全部公开说明书的范围内变化,上述举例说明的合金,无论是其中的A、M或M′组份还是这些组份在合金中的相对数量,都不能解释为是对本发明的限制。
勘误表
CPCH866138
Figure 86102067_IMG1

Claims (18)

1、一种可逆式储氢材料,主要包括通式为AaMbM c的非晶态金属合金;其中:
A是从Ag、Au、Hg、Pd和Pt中所选的至少一种金属;
M是从Pb、Ru、Cu、Cr、Mo、Si、W、Ni、Al、Sn、Co、Fe、Zn、Cd、Ga和Mn中所选的至少一种金属;
M′是从C、Mg、Ti、Y、Zr、Hf、Nb、V、Ta和稀土金属中所选的至少一种金属;
a的范围是大于0~约0.08;
b的范围是0~约0.70;
c的范围约是0.08~约0.95。
该材料的特征为:上述合金中的A组份的主要部份位于上述材料的表面。
2、按照权利要求1的可逆储氢材料,其中A是Pd、Pt或它们的组合。
3、按照权利要求1的可逆式储氢材料,其中M是从Mn、Ru、Fe、Cu、Ni、Cr、Mo、Al和W中所选出的至少一种金属。
4、按照权利要求1的可逆式储氢材料,其中M′是Ti、Mg、Ta或它们的组合。
5、按照权利要求1的可逆式储氢材料,其中a的范围是大于0~0.5;b的范围是约0.1~约0.5;c的范围是约0.2~约0.85。
6、按照权利要求1的可逆式储氢材料,其中a的范围为约0.001~0.2;b的范围为约0.2~约0.4;而c的范围为约0.3~约0.8。
7、按照权利要求1的可逆式储氢材料,其中所述的A组份至少有50%位于上述材料表面。
8、按照权利要求1的可逆式储氢材料,其中所述A组份至少有75%位于上述材料表面。
9、符合权利要求1的可逆式储氢材料,其中所述A组份约100%位于所述材料表面。
10、具有一活性吸收氢表层和一主体储氢材料的可逆式储氢结构,活性表层由通式为AaMbM′c的非晶态金属合金组成,其中:
A是从Ag、Au、Hg、Pd和Pt中所选出的至少一种金属;
M是从Pb、Ru、Cu、Cr、Mo、Si、W、Ni、Al、Sn、Co、Fe、Zn、Cd、Ga和Mn组中所选的至少一种金属;
M′是从Ca、Mg、Ti、Y、Zr、Hf、Nb、V、Ta和稀土元素中所选的至少一种金属;
a的范围为约0.005~0.80;
b的范围为0~0.70;
c的范围为约0.08~0.95;而这种主体储氢材料含有一种可逆储氢材料。
11、按照权利要求10的可逆式储氢结构,其中所述主体储存材料包括一种能可逆储氢的非晶态材料。
12、按照权利要求10的可逆式储氢结构,其中所述主体储存材料包括一种能可逆储氢的晶体材料。
13、一种含有通式为AaMbMo′的非晶态金属合金的可逆式储氢材料的形成方法,通式中:
A是从Ag、Au、Hg、Pd和Pt中所选的至少一种金属;
M是从Pb、Ru、Cu、Cr、Mo、Si、W、Ni、Al、Su、Co、Fe、Zn、Cd、Ga和Mn中所选的至少一种金属;
M′是从Ca、Mg、Ti、Y、Zr、Hf、Nb、V、Ta和稀土元素中所选的至少一种金属;
a的范围是大于0~约0.80;
b的范围是0~约0.70;
c的范围是约0.08~约0.95;
并且,其中A组份的主要部份位于所述材料的表面,该方法包括:
a)将所述M和M′组份形成一定的形材;
b)将上述形材置于一环境中,其中所述的形材被暴露在含A的化合物中,并且使含A的化合物沉积在上述形材上;
c)在低于非晶态金属合金结晶的温度下,将所述形材进行热处理,以形成上述合金。
14、按照权利要求13的方法,其中在a步骤中形成上述M和M′组份的形材是在基体上形成的。
15、按照权利要求13的方法,其中,上述M和M′组份的形材是薄膜。
16、按照权利要求13的方法,其中,上述M和M′组份的形状是粉末。
17、按照权利要求13的方法,其中,上述M和M′组份的形态是非晶态。
18、按照权利要求13的方法,其中,b步骤所述的环境是含有A组份的化合物的溶液。
CN86102067A 1985-03-29 1986-03-28 可逆式储氢用的改进的非晶态金属合金材料 Expired CN1006377B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US06/717,428 US4728580A (en) 1985-03-29 1985-03-29 Amorphous metal alloy compositions for reversible hydrogen storage
US717,428 1985-03-29

Publications (2)

Publication Number Publication Date
CN86102067A true CN86102067A (zh) 1986-10-15
CN1006377B CN1006377B (zh) 1990-01-10

Family

ID=24881992

Family Applications (1)

Application Number Title Priority Date Filing Date
CN86102067A Expired CN1006377B (zh) 1985-03-29 1986-03-28 可逆式储氢用的改进的非晶态金属合金材料

Country Status (17)

Country Link
US (1) US4728580A (zh)
EP (1) EP0198599B1 (zh)
JP (1) JPS61270352A (zh)
KR (1) KR860007394A (zh)
CN (1) CN1006377B (zh)
AU (1) AU578520B2 (zh)
BR (1) BR8601379A (zh)
CA (1) CA1273826A (zh)
DE (1) DE3664314D1 (zh)
ES (1) ES8705927A1 (zh)
HK (1) HK8590A (zh)
IL (1) IL78106A (zh)
IN (1) IN167301B (zh)
NO (1) NO164919C (zh)
PH (1) PH24124A (zh)
PT (1) PT82287B (zh)
ZA (1) ZA862084B (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100420624C (zh) * 2004-02-17 2008-09-24 爱发科股份有限公司 氢分离-精制用多相合金及其制造方法与氢分离-精制用金属膜及其制造方法
CN102583238A (zh) * 2010-12-30 2012-07-18 福特全球技术公司 储氢材料
CN104404297A (zh) * 2014-11-04 2015-03-11 无锡贺邦金属制品有限公司 一种具有抗过敏功能的首饰用合金材料
CN104762568A (zh) * 2015-04-09 2015-07-08 中信戴卡股份有限公司 一种铝合金细化剂材料及其制备方法
CN104831102A (zh) * 2015-04-09 2015-08-12 中信戴卡股份有限公司 铝合金细化剂,其制造方法及用途
CN104862515A (zh) * 2015-04-09 2015-08-26 中信戴卡股份有限公司 铝合金细化剂,其制造方法及用途

Families Citing this family (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1273827A (en) * 1985-03-29 1990-09-11 Michael A. Tenhover Energy storage devices and amorphous metal alloy electrodes for use in alkaline environments
CA1273828A (en) * 1985-04-01 1990-09-11 Michael A. Tenhover Energy storage devices and amorphous alloy electrodes for use in acid environments
US5314676A (en) * 1986-04-22 1994-05-24 Studiengesellschaft Kohle Mbh Intermetallic compounds hydrides
US4865663A (en) * 1987-03-20 1989-09-12 Armada Corporation High temperature shape memory alloys
USRE34588E (en) * 1987-11-17 1994-04-19 Hong; Kuochih Hydrogen storage hydride electrode materials
US4849205A (en) * 1987-11-17 1989-07-18 Kuochih Hong Hydrogen storage hydride electrode materials
US4859413A (en) * 1987-12-04 1989-08-22 The Standard Oil Company Compositionally graded amorphous metal alloys and process for the synthesis of same
RU2082237C1 (ru) * 1990-03-19 1997-06-20 Асахи Касеи Когио Кабусики Кайся Композиция
JP2677721B2 (ja) * 1991-05-15 1997-11-17 功二 橋本 高耐食アモルファス合金
US5236789A (en) * 1991-07-01 1993-08-17 Olin Corporation Palladium alloys having utility in electrical applications
US5139891A (en) * 1991-07-01 1992-08-18 Olin Corporation Palladium alloys having utility in electrical applications
US5290371A (en) * 1992-10-28 1994-03-01 The J. M. Ney Company Dental alloy and restoration made therewith
US5560752A (en) * 1994-08-17 1996-10-01 Lucent Technologies Inc. Process for activation of metal hydrides
US5593514A (en) * 1994-12-01 1997-01-14 Northeastern University Amorphous metal alloys rich in noble metals prepared by rapid solidification processing
CA2206252A1 (en) * 1994-12-22 1996-06-27 Lu Ming Magnesium mechanical alloys for thermal hydrogen storage
US5520753A (en) * 1994-12-30 1996-05-28 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration PDTI metal alloy as a hydrogen or hydrocarbon sensitive metal
DE69612972T2 (de) * 1995-02-02 2002-04-04 Hydro-Quebec, Montreal Nanokristallines material auf mg-basis und dessen verwendung zum transport und zum speichern von wasserstoff
US5849113A (en) * 1996-09-27 1998-12-15 The Foundation: The Research Institute Of Electric And Magnetic Alloys Electrical resistant alloy having a high temperature coefficient of resistance
GB9708873D0 (en) * 1997-05-01 1997-06-25 Johnson Matthey Plc Improved hydrogen storage material
KR100328136B1 (ko) * 2000-03-21 2002-03-12 채창근 내식성 및 내마모성이 우수한 은합금의 제조방법
JP3720250B2 (ja) * 2000-09-26 2005-11-24 独立行政法人科学技術振興機構 高水素吸蔵合金とその製造方法
US7108933B2 (en) * 2002-02-28 2006-09-19 Intel Corporation Thermally efficient hydrogen storage system
US20030234010A1 (en) * 2002-06-25 2003-12-25 Redmond Scott D. Methods and apparatus for converting internal combustion engine (ICE) vehicles to hydrogen fuel
US7169489B2 (en) * 2002-03-15 2007-01-30 Fuelsell Technologies, Inc. Hydrogen storage, distribution, and recovery system
US7011768B2 (en) * 2002-07-10 2006-03-14 Fuelsell Technologies, Inc. Methods for hydrogen storage using doped alanate compositions
US20040065171A1 (en) * 2002-10-02 2004-04-08 Hearley Andrew K. Soild-state hydrogen storage systems
US20070169852A1 (en) * 2003-04-07 2007-07-26 Akihisa Inoue Hydrogen storage alloy material and process for producing the same
ATE466964T1 (de) 2004-10-15 2010-05-15 Liquidmetal Technologies Inc Glasbildende amorphe legierungen auf au-basis
CN100386465C (zh) * 2006-03-03 2008-05-07 清华大学 一种高延韧性二元块体非晶合金及其制备方法
US9440850B2 (en) * 2008-11-17 2016-09-13 Southwest Research Institute Carbon material for hydrogen storage
DE102016008074A1 (de) * 2016-06-30 2018-01-04 Universität des Saarlandes Massivglasbildende Weißgoldlegierung
CN107245663A (zh) * 2017-06-02 2017-10-13 太仓市龙华塑胶有限公司 一种模具用钢材料
US11371108B2 (en) 2019-02-14 2022-06-28 Glassimetal Technology, Inc. Tough iron-based glasses with high glass forming ability and high thermal stability

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55130801A (en) * 1979-02-15 1980-10-11 Hill Eugene Farrell Separation of hydrogen which use coating titaniummzirconium alloy
JPS55152143A (en) * 1979-05-16 1980-11-27 Toyo Soda Mfg Co Ltd Amorphous alloy electrode material for electrolysis
JPS5791736A (en) * 1980-11-29 1982-06-08 Daido Steel Co Ltd Hydrogen occluding material
ZA832570B (en) * 1982-04-28 1984-01-25 Energy Conversion Devices Inc Improved rechargeable battery and electrode used therein
US4431561A (en) * 1982-04-28 1984-02-14 Energy Conversion Devices, Inc. Hydrogen storage materials and method of making same
US4489049A (en) * 1982-06-09 1984-12-18 The United States Of America As Represented By The Secretary Of The Navy Solid state hydrogen pumping and storage material
CA1240363A (en) * 1983-10-28 1988-08-09 John E. Keem Electrodes made with disordered active material and method of making the same
IL78108A0 (en) * 1985-03-29 1986-07-31 Standard Oil Co Ohio Amorphous metal alloy compositions for reversible hydrogen storage
CA1273828A (en) * 1985-04-01 1990-09-11 Michael A. Tenhover Energy storage devices and amorphous alloy electrodes for use in acid environments
US4585617A (en) * 1985-07-03 1986-04-29 The Standard Oil Company Amorphous metal alloy compositions and synthesis of same by solid state incorporation/reduction reactions

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100420624C (zh) * 2004-02-17 2008-09-24 爱发科股份有限公司 氢分离-精制用多相合金及其制造方法与氢分离-精制用金属膜及其制造方法
CN102583238A (zh) * 2010-12-30 2012-07-18 福特全球技术公司 储氢材料
CN102583238B (zh) * 2010-12-30 2015-06-10 福特全球技术公司 储氢材料
CN104404297A (zh) * 2014-11-04 2015-03-11 无锡贺邦金属制品有限公司 一种具有抗过敏功能的首饰用合金材料
CN104762568A (zh) * 2015-04-09 2015-07-08 中信戴卡股份有限公司 一种铝合金细化剂材料及其制备方法
CN104831102A (zh) * 2015-04-09 2015-08-12 中信戴卡股份有限公司 铝合金细化剂,其制造方法及用途
CN104862515A (zh) * 2015-04-09 2015-08-26 中信戴卡股份有限公司 铝合金细化剂,其制造方法及用途

Also Published As

Publication number Publication date
AU5488086A (en) 1986-10-02
AU578520B2 (en) 1988-10-27
CN1006377B (zh) 1990-01-10
CA1273826A (en) 1990-09-11
NO164919B (no) 1990-08-20
JPS61270352A (ja) 1986-11-29
KR860007394A (ko) 1986-10-10
ZA862084B (en) 1986-11-26
BR8601379A (pt) 1986-12-02
IL78106A0 (en) 1986-07-31
ES553363A0 (es) 1987-05-16
NO164919C (no) 1990-11-28
HK8590A (en) 1990-02-09
DE3664314D1 (en) 1989-08-17
PT82287A (en) 1986-04-01
EP0198599A1 (en) 1986-10-22
ES8705927A1 (es) 1987-05-16
EP0198599B1 (en) 1989-07-12
IN167301B (zh) 1990-10-06
NO861192L (no) 1986-09-30
PH24124A (en) 1990-03-05
US4728580A (en) 1988-03-01
IL78106A (en) 1989-09-10
PT82287B (pt) 1988-02-17

Similar Documents

Publication Publication Date Title
CN86102067A (zh) 可逆式储氢用的改进的非晶态金属合金材料
CN101257117B (zh) 一种燃料电池用双极板及其表面氮铬薄膜制备方法
CN1145232C (zh) 贮氢材料
CN86102078A (zh) 储能装置和用于酸性环境中的非晶态金属合金电极
US4902579A (en) Amorphous metal alloy compositions for reversible hydrogen storage
CN1172388C (zh) 以锌为负极的二次电池的泡沫金属集流体及其制备方法
JPS5929377A (ja) 燃料電池陽極
Zhang et al. Approaches to construct high-performance Mg–air batteries: from mechanism to materials design
CN111403735A (zh) 钠离子二次电池正极材料及其制备方法及应用
CN117410437B (zh) 一种锑基电极及其制备方法和应用
CN100346509C (zh) 一种表面沉积有镍硼合金的储氢合金及其制备方法
CN86102056A (zh) 可逆储氢用的非晶态金属合金材料
CN103894602B (zh) 一种提高稀土镁基储氢合金循环寿命的表面处理方法
US4814002A (en) Method of forming amorphous metal alloy compositions for reversible hydrogen storage
CN1028882C (zh) 新型储氢合金电极材料
CN1045999C (zh) 用于碱性电池的锌粉
Jakśić Towards the reversible electrode for hydrogen evolution in industrially important electrochemical processes
CN1974812A (zh) Ab3.5型负极储氢材料的制备方法及其制得的材料和用途
CN1114232C (zh) 碱性蓄电池用的吸氢合金与该合金制成的碱性蓄电池
CN86102099A (zh) 储能装置和用于碱性环境的非晶态金属合金电极
CN1175507C (zh) 碱性蓄电池用电极及其制造方法和碱性蓄电池
CN113346045A (zh) 一种由复合sei层改性的锂金属阳极及其制备方法
CN110380045A (zh) 一种镁合金阳极材料及其制备方法和应用、镁空气电池
Pang et al. Microstructures and corrosion resistance of PbCaSnAl-M (M= Mg, Sr, Ba) grid alloys
Rijith SYNTHESIS, CHARACTERISATION AND APPLICATION OF A NOVEL FeO-TiO2-GO MIXED OXIDE COMPOSITE CATALYST FOR HYDROGEN EVOLUTION REACTIONS

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C13 Decision
GR02 Examined patent application
C14 Grant of patent or utility model
GR01 Patent grant
C19 Lapse of patent right due to non-payment of the annual fee
CF01 Termination of patent right due to non-payment of annual fee