CN204679894U - A kind of CMOS low temperature low noise discharge circuit - Google Patents

A kind of CMOS low temperature low noise discharge circuit Download PDF

Info

Publication number
CN204679894U
CN204679894U CN201520185762.3U CN201520185762U CN204679894U CN 204679894 U CN204679894 U CN 204679894U CN 201520185762 U CN201520185762 U CN 201520185762U CN 204679894 U CN204679894 U CN 204679894U
Authority
CN
China
Prior art keywords
amplifier
cmos
low temperature
pipe
adopts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201520185762.3U
Other languages
Chinese (zh)
Inventor
袁红辉
陈永平
陈世军
宋伟清
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Institute of Technical Physics of CAS
Original Assignee
Shanghai Institute of Technical Physics of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Institute of Technical Physics of CAS filed Critical Shanghai Institute of Technical Physics of CAS
Priority to CN201520185762.3U priority Critical patent/CN204679894U/en
Application granted granted Critical
Publication of CN204679894U publication Critical patent/CN204679894U/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/26Modifications of amplifiers to reduce influence of noise generated by amplifying elements
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/30Modifications of amplifiers to reduce influence of variations of temperature or supply voltage or other physical parameters
    • H03F1/301Modifications of amplifiers to reduce influence of variations of temperature or supply voltage or other physical parameters in MOSFET amplifiers
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/45Differential amplifiers
    • H03F3/45071Differential amplifiers with semiconductor devices only
    • H03F3/45076Differential amplifiers with semiconductor devices only characterised by the way of implementation of the active amplifying circuit in the differential amplifier
    • H03F3/45179Differential amplifiers with semiconductor devices only characterised by the way of implementation of the active amplifying circuit in the differential amplifier using MOSFET transistors as the active amplifying circuit
    • H03F3/45183Long tailed pairs
    • H03F3/45192Folded cascode stages
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/372Noise reduction and elimination in amplifier
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2203/00Indexing scheme relating to amplifiers with only discharge tubes or only semiconductor devices as amplifying elements covered by H03F3/00
    • H03F2203/45Indexing scheme relating to differential amplifiers
    • H03F2203/45054Indexing scheme relating to differential amplifiers the cascode stage of the cascode dif amp being a current mirror

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Amplifiers (AREA)

Abstract

The utility model discloses a kind of CMOS low temperature low noise discharge circuit, its bias circuit portion adopts multistage current mirror to overlap the mode of structure, the metal-oxide-semiconductor active pull-up that reference current benchmark adopts two diodes to connect generates, and makes the reference current of amplifier have good temperature characterisitic; Amplifier section adopts the folded cascode configuration of Differential Input, and one-level is amplified just can make the open-loop gain of amplifier be greater than 80dB, overcomes traditional secondary and amplifies the shortcoming that the miller-compensated electric capacity used easily causes vibration under low temperature 77K; The large pipe that Differential Input adopts breadth length ratio to be greater than 100 to pipe, improve with being conducive to cmos amplifier noiseproof feature, this differential operational amplifier can normally work between normal temperature and low temperature 77K, the reference amplifier module that can be used as the design of low temperature cmos circuit uses, both can be applied in photovoltaic infrared detector circuit, also can be applicable to LONG WAVE INFRARED optical waveguide detector circuit.

Description

A kind of CMOS low temperature low noise discharge circuit
Technical field
The utility model relates to a kind of CMOS discharge circuit, is specifically related to a kind of discharge circuit of CMOS low temperature low noise.
Background technology
In spacer remote sensing field, most infrared eye works all at low temperatures, and for improving the performance of system, reduce the extraneous interference introduced, require that detector is closely connected with circuit, the circuit namely designed also needs to work at low temperatures.At present, business-like circuit product all for normal temperature design, possibly cannot normally work at low temperatures.In order to improve the performance of system, the CMOS sensing circuit that can normally work under must designing low temperature, wherein in sensing circuit, nucleus module is CMOS differential operational amplifier, if have ripe low temperature CMOS differential operational amplifier module, will advantageously in the design of low temperature cmos circuit in future.
The Chinese patent CN 1588794A of the Cao Bisong that on March 2nd, 2005 authorizes etc., disclose a kind of radio frequency band low temperature low noise amplifier, this amplifier is the amplifier belonging to radio frequency arts, be mainly used in CDMA frequency range, what adopt is bipolar technology, do not adopt present stand CMOS, cannot be applied in the design of present main stream of CMOS circuit.
Summary of the invention
The purpose of this utility model is to provide a kind of CMOS differential operational amplifier standard module that can be applied in the design of low temperature cmos circuit, improves the design level of low temperature CMOS special IC.As shown in Figure 1, it comprises amplification circuit module and biasing circuit module to the amplifier section of this low temperature CMOS differential operational amplifier, wherein:
Described amplification circuit module adopts the amplifying circuit of the folded cascode configuration of Differential Input, wherein the Differential Input PMOS that adopts breadth length ratio to equal 100 to pipe;
Differential Input in described amplification circuit module is that 1500 μm/1.5 μm PMOS are formed by two breadth length ratios, with the pipe composition inputs of 72 41.7 μm/1.5 μm to pipe PM7, PM8, adopt interdigital transistor, ensure up and down with symmetrical, and in input, protection ring is used to the outside of pipe;
In described amplification circuit module, PM7, PM8, NM4, NM5 form the cascode structure of Differential Input, PM4, PM5 are the active load of difference output, NM6, NM7 provide current source to cascade, Bias1, Bias2, Bias3 are bias voltage port, its voltage is supplied by biasing circuit module, and In-, In+ are the positive-negative input end of differential operational amplifier;
Described biasing circuit module adopts multistage current mirror to overlap structure mode, and its reference current part adopts the active pull-up composition of diode connected mode; Described biasing circuit is made up of eight pipes, and NM3 and NM0 forms first order current mirror, and PM0 and PM1 forms second level current mirror, and NM6, NM7 of NM1 and amplifier section form current mirror, and the PM3 of PM0 and amplifier section forms current mirror; PM2, NM3 of adopting diode to connect form reference current source, be mirrored to NM0 produce a road electric current by NM3, then are mirrored to the other road electric current of PM1 generation by PM0.
PM7 and PM8 in the one-level folded cascode configuration of Differential Input is adopted to be that input is to pipe, PM7, PM8, NM4, NM5 form the cascode structure of Differential Input, PM4, PM5 are the active load of difference output, NM6, NM7 provide current source to cascade, Bias1, Bias2, Bias3 are bias voltage, and In-, In+ are the positive-negative input end of differential operational amplifier.The bias circuit portion of this low temperature CMOS differential operational amplifier as shown in Figure 2, wherein NM3 and NM0 forms first order current mirror, PM0 and PM1 forms second level current mirror, and NM6, NM7 of NM1 and amplifier section form current mirror, and the PM3 of PM0 and amplifier section forms current mirror.
The input pipe of this CMOS low temperature low noise differential operational amplifier adopts the large pipe of 1500 μm/1.5 μm, greatly reduces the equivalent input noise of amplifier; Circuit topological structure adopts one-level folded cascode configuration, without the need to using miller-compensated electric capacity, overcoming the miller-compensated at low temperatures capacitance variations of common two-stage amplifier and easily causing the shortcoming of circuit oscillation; The biasing circuit of cryogenic low noise amplifier adopts the mode of three class mirror-images, does not use polysilicon resistance to generate reference current, overcomes polysilicon resistance and varies with temperature the shortcoming causing circuit static operating point drift.This CMOS differential operational amplifier can normally work between normal temperature and low temperature 77K.This method for designing is suitable for the microelectronic technique of most micron order or submicron order.The reference amplifier module that this amplifier can be used as cmos circuit design uses, and namely can be applied in photovoltaic infrared detector circuit, also can be applicable to long-wave light-guide infrared eye circuit.
Advantage of the present utility model is as follows:
1. this CMOS low temperature low noise amplifier module employs cascode structure, and one-level amplifies the enlargement factor that just can reach more than 80dB, and supply-voltage rejection ratio is also higher, reduces the noise that power supply ripple is introduced.
2. this CMOS low temperature low noise amplifier module is less than 0.03pA/Hz for its equivalent inpnt current noise during infrared photovoltage detector circuit 1/2@1KHz.
3. this CMOS low temperature low noise amplifier module can normally work from normal temperature 300K to low temperature 77K, and the signal that not only can be applicable to photovoltaic and photoconduction infrared eye amplifies, and can also use as the standard operational amplifier module of other low temperature cmos circuit.
4. this CMOS low temperature low noise amplifier module adopts the micron of standard or sub-micron CMOS technology manufacture to form, and ensure that the repeatability of chip manufacturing.
5. this CMOS low temperature low noise amplifier module is without the need to using compensation electric capacity, overcomes common two-stage amplifier building-out capacitor and changes at low temperatures and easily cause the shortcoming of circuit oscillation.
Accompanying drawing explanation
Fig. 1 is CMOS low temperature low noise amplifier module amplification circuits structural drawing.
Fig. 2 is CMOS low temperature low noise amplifier module bias circuit portion structural drawing.
Fig. 3 is the symmetrical domain of CMOS low temperature low noise amplifier module input to pipe.
Fig. 4 is the simulation result figure of CMOS low temperature low noise amplifier open-loop gain.
Fig. 5 is that CMOS low temperature low noise amplifier module amplifying circuit is always schemed.
Embodiment
Below in conjunction with accompanying drawing, embodiment of the present utility model is described in further detail:
Embodiment 1
The total noise of this circuit determines primarily of input pipe PM7, PM8 pipe, and its equivalent input noise voltage computing formula is:
S v e ( f ) = 8 3 kT g m + K f C ox 2 WL 1 f (wherein g m = 2 K p W L I ds )
Section 1 is channel noise, and Section 2 is 1/f noise.
G mfor the mutual conductance of input pipe, be reduce overall noise, the size of input pipe W/L and the design of bias current extremely important.From above formula known increase g mcan channel noise be reduced, under the condition of area license, increase the W/L of input pipe, adopt 1500 μm/1.5 μm and increase g m, when drawing domain with the input of the pipe of 72 41.7 μm/1.5 μm composition to pipe PM7, PM8, and in input, protection ring is employed to the outside of pipe, is conducive to reducing inputting and the imbalance of pipe and extraneous crosstalk are come in noise.PMOS is less than the 1/f noise of NMOS, so input pipe PM7, PM8 select PMOS to reduce 1/f noise.Increase W × L in addition and also can reduce 1/f noise, under the condition that power consumption and area are permitted, other pipes also consider that low noise standard designs as far as possible.Electric current strengthens and threshold voltage V when the temperature decreases tincrease may make device work, so will take into full account when designing the W/L of each pipe.
The amplifier section of this low temperature low noise CMOS differential operational amplifier as shown in Figure 1, adopts the one-level folded cascode configuration of Differential Input.Wherein PM7 and PM8 is that input is to pipe, PM7, PM8, NM4, NM5 form the cascode structure of Differential Input, PM4, PM5 are the active load of difference output, NM6, NM7 provide current source to cascade, Bias1, Bias2, Bias3 are bias voltage, and In-, In+ are the positive-negative input end of differential operational amplifier.The pipe reference dimension of amplifier section is as shown in the table (unit is micron).
Pipe PM7、PM8 NM4、NM5 NM6、NM7 PM4、PM5 PM3
W/L 1500/1.5 120/10 120/10 10/10 200/10
Embodiment 2
The bias circuit portion of this low temperature low noise CMOS differential operational amplifier as shown in Figure 2, wherein NM3 and NM0 forms first order current mirror, PM0 and PM1 forms second level current mirror, and NM6, NM7 of NM1 and amplifier section form current mirror, and the PM3 of PM0 and amplifier section forms current mirror.
Biased part is made up of eight pipes altogether, PM2, NM3 of adopting diode to connect form reference current source, be mirrored to NM0 by NM3 and produce a road electric current, be mirrored to PM1 by PM0 again and produce an other road electric current, this current source does not use the passive resistance to very temperature sensitive, so this current source can normally work under normal temperature and low temperature, it is very strong that test result shows this current source temperature rejection ability, so whole low temperature CMOS differential operational amplifier chip operating temperature scope is very wide, can normally work from normal temperature 300K to low temperature 77K.
The pipe reference dimension of bias circuit portion is as shown in the table (unit is micron).
Pipe PM1、PM0、NM1 NM0、NM3、PM2 NM2 PM6
W/L 10/10 10/50 100/10 40/10
Embodiment 3
When drawing amplifier domain, all all adopts interdigital transistor to pipe, ensure up and down with symmetrical as far as possible, the input end imbalance at low temperatures of CMOS differential operational amplifier can be reduced like this, the particularly input pipe of differential amplifier, particularly important, in this circuit, because Differential Input to have employed the large pipe of 1500 μm/1.5 μm to pipe, in order to realize up and down with symmetrical, input pipe with the pipe composition of 72 41.7 μm/1.5 μm when drawing domain, as shown in Figure 3, this reduces the input imbalance of whole differential operational amplifier to a great extent, test result shows that the input offset voltage of this low temperature low noise CMOS differential operational amplifier is very little, be less than 1mV.
Embodiment 4
What this low temperature low noise CMOS differential operational amplifier module adopted is the Foldable cascade structure of Differential Input, one-level amplifies open-loop gain just more than 80dB, reach the enlargement factor that conventional secondary amplifies, as shown in Figure 4, its open-loop gain reaches 88dB to the gain simulation result of this differential operational amplifier.Conventional amplifiers uses secondary to amplify, and miller-compensated electric capacity need be used to increase phase margin, but causes amplifier oscillate, so conventional amplifiers easily vibrates at low temperatures because the change of miller-compensated electric capacity may cause the change of phase margin at low temperatures.What low temperature low noise CMOS amplifier of the present utility model adopted is that one-level is amplified, and do not use miller-compensated circuit, this structure overcomes the shortcoming that conventional two-stage amplifier easily causes vibration at low temperatures.Fig. 5 is total figure of CMOS low temperature low noise discharge circuit, and Bias1, Bias2, Bias3 of bias circuit portion are connected with Bias1, Bias2, Bias3 of amplification circuits, and In+, In-are positive and negative two input ends of discharge circuit.
This CMOS low temperature low noise discharge circuit can be used as amplifier module application at photovoltaic infrared detector cmos circuit and photoconduction infrared eye cmos circuit, through test, this CMOS low temperature low noise amplifier module is very low for its equivalent inpnt current noise during infrared photovoltage detector circuit, is less than 0.03pA/HZ 1/2@1KHz.
Because this low temperature low noise CMOS differential operational amplifier have employed folded cascode configuration, operating voltage range is comparatively large, normally can work, but need consider that the difference of operating voltage result in the difference of cell power consumption between ± 2.5 volts and ± 1.2 volts.
By specific embodiment, the utility model is illustrated above, but the utility model is not limited to these specific embodiments.It will be understood by those skilled in the art that and can also make various amendment, equivalent replacement, change etc. to the utility model, as long as these conversion do not deviate from spirit of the present utility model, all should within protection domain of the present utility model.

Claims (1)

1. a CMOS low temperature low noise discharge circuit, comprises amplification circuit module and biasing circuit module, it is characterized in that:
Described amplification circuit module adopts the amplifying circuit of the folded cascode configuration of Differential Input, wherein the Differential Input PMOS that adopts breadth length ratio to equal 100 to pipe;
Differential Input in described amplification circuit module is that 1500 μm/1.5 μm PMOS are formed by two breadth length ratios, with the pipe composition inputs of 72 41.7 μm/1.5 μm to pipe PM7, PM8, adopt interdigital transistor, ensure up and down with symmetrical, and in input, protection ring is used to the outside of pipe;
In described amplification circuit module, PM7, PM8, NM4, NM5 form the cascode structure of Differential Input, PM4, PM5 are the active load of difference output, NM6, NM7 provide current source to cascade, Bias1, Bias2, Bias3 are bias voltage port, its voltage is supplied by biasing circuit module, and In-, In+ are the positive-negative input end of differential operational amplifier;
Described biasing circuit module adopts multistage current mirror to overlap structure mode, and its reference current part adopts the active pull-up composition of diode connected mode; Described biasing circuit is made up of eight pipes, and NM3 and NM0 forms first order current mirror, and PM0 and PM1 forms second level current mirror, and NM6, NM7 of NM1 and amplifier section form current mirror, and the PM3 of PM0 and amplifier section forms current mirror; PM2, NM3 of adopting diode to connect form reference current source, be mirrored to NM0 produce a road electric current by NM3, then are mirrored to the other road electric current of PM1 generation by PM0.
CN201520185762.3U 2014-10-16 2015-03-31 A kind of CMOS low temperature low noise discharge circuit Expired - Fee Related CN204679894U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201520185762.3U CN204679894U (en) 2014-10-16 2015-03-31 A kind of CMOS low temperature low noise discharge circuit

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CN2014105465170 2014-10-16
CN201410546517.0A CN104362992A (en) 2014-10-16 2014-10-16 CMOS (Complementary Metal Oxide Semiconductor) low-temperature low-noise operational amplifier circuit
CN201520185762.3U CN204679894U (en) 2014-10-16 2015-03-31 A kind of CMOS low temperature low noise discharge circuit

Publications (1)

Publication Number Publication Date
CN204679894U true CN204679894U (en) 2015-09-30

Family

ID=52530225

Family Applications (3)

Application Number Title Priority Date Filing Date
CN201410546517.0A Pending CN104362992A (en) 2014-10-16 2014-10-16 CMOS (Complementary Metal Oxide Semiconductor) low-temperature low-noise operational amplifier circuit
CN201520185762.3U Expired - Fee Related CN204679894U (en) 2014-10-16 2015-03-31 A kind of CMOS low temperature low noise discharge circuit
CN201510145465.0A Pending CN104765399A (en) 2014-10-16 2015-03-31 CMOS low-temperature small-noise operation amplifying circuit

Family Applications Before (1)

Application Number Title Priority Date Filing Date
CN201410546517.0A Pending CN104362992A (en) 2014-10-16 2014-10-16 CMOS (Complementary Metal Oxide Semiconductor) low-temperature low-noise operational amplifier circuit

Family Applications After (1)

Application Number Title Priority Date Filing Date
CN201510145465.0A Pending CN104765399A (en) 2014-10-16 2015-03-31 CMOS low-temperature small-noise operation amplifying circuit

Country Status (1)

Country Link
CN (3) CN104362992A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104765399A (en) * 2014-10-16 2015-07-08 中国科学院上海技术物理研究所 CMOS low-temperature small-noise operation amplifying circuit
CN106788351A (en) * 2016-12-23 2017-05-31 长沙景嘉微电子股份有限公司 A kind of rail-to-rail reference voltage comparator tested with offset voltage and corrected
CN112636698A (en) * 2020-08-21 2021-04-09 苏州芯智瑞微电子有限公司 CMOS amplifier circuit, application of CMOS amplifier circuit in radio frequency identification and integrated circuit comprising CMOS amplifier circuit

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104980112B (en) * 2015-07-20 2018-03-06 西安电子科技大学 The circular form Folded-cascode amplifier of consumption high gain
CN105322897B (en) * 2015-09-30 2018-08-17 天津大学 Gain suppression type operational amplifier suitable for TFT-LCD driving circuits
CN105322899B (en) * 2015-09-30 2018-10-16 天津大学 Gain suppression type operational amplifier suitable for sigma delta modulator
CN105262448A (en) * 2015-10-09 2016-01-20 天津大学 Low-power high-slew-rate operational amplifier suitable for ultra-wide band microwave detection
CN105429601A (en) * 2015-11-27 2016-03-23 天津大学 High-slew rate PSRR enhanced single-stage amplifier suitable for power management
CN108957102B (en) * 2018-08-28 2024-03-08 长沙理工大学 Current detection circuit without operational amplifier
CN109540290A (en) * 2019-01-10 2019-03-29 中国科学院上海技术物理研究所 One kind four samples low noise cmos detector reading circuit
CN110413033B (en) * 2019-07-22 2021-09-21 贵州振华风光半导体股份有限公司 Bipolar process-based integrated circuit with ultra-low offset voltage
CN111244088B (en) * 2020-02-24 2022-09-16 苏州迅芯微电子有限公司 Layout structure of operational amplifier in pipelined analog-to-digital converter
CN112650345B (en) * 2020-12-23 2022-05-17 杭州晶华微电子股份有限公司 Semiconductor device with a plurality of semiconductor chips
CN113839630B (en) * 2021-09-13 2024-01-30 中国科学院上海微系统与信息技术研究所 Low-voltage differential amplifier capable of being used for ultralow temperature

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6600302B2 (en) * 2001-10-31 2003-07-29 Hewlett-Packard Development Company, L.P. Voltage stabilization circuit
CN100511082C (en) * 2007-01-16 2009-07-08 西安交通大学 Reference voltage module and temperature compensating method thereof
CN101241378B (en) * 2007-02-07 2010-08-18 中国科学院半导体研究所 Output adjustable band-gap reference source circuit
CN100545779C (en) * 2007-04-18 2009-09-30 中国科学院半导体研究所 High voltage bias PMOS current source circuit
US20090160557A1 (en) * 2007-12-20 2009-06-25 Infineon Technologies Ag Self-biased cascode current mirror
CN101285706A (en) * 2008-05-30 2008-10-15 中国科学院上海技术物理研究所 Differential input low-temperature infrared detector weak current amplifier
CN104362992A (en) * 2014-10-16 2015-02-18 中国科学院上海技术物理研究所 CMOS (Complementary Metal Oxide Semiconductor) low-temperature low-noise operational amplifier circuit

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104765399A (en) * 2014-10-16 2015-07-08 中国科学院上海技术物理研究所 CMOS low-temperature small-noise operation amplifying circuit
CN106788351A (en) * 2016-12-23 2017-05-31 长沙景嘉微电子股份有限公司 A kind of rail-to-rail reference voltage comparator tested with offset voltage and corrected
CN106788351B (en) * 2016-12-23 2020-06-12 长沙景嘉微电子股份有限公司 Rail-to-rail reference voltage comparator with offset voltage testing and correcting functions
CN112636698A (en) * 2020-08-21 2021-04-09 苏州芯智瑞微电子有限公司 CMOS amplifier circuit, application of CMOS amplifier circuit in radio frequency identification and integrated circuit comprising CMOS amplifier circuit

Also Published As

Publication number Publication date
CN104362992A (en) 2015-02-18
CN104765399A (en) 2015-07-08

Similar Documents

Publication Publication Date Title
CN204679894U (en) A kind of CMOS low temperature low noise discharge circuit
CN103219961B (en) The operation amplifier circuit that a kind of bandwidth is adjustable
CN106817099B (en) Amplifier for physiological potential signal detection
CN107370461B (en) Compensation structure applied to transimpedance amplifier
CN108776506A (en) A kind of low pressure difference linear voltage regulator of high stability
CN104393846A (en) Operational amplifier
CN103178789A (en) Low-temperature drift detuning self-calibration operational amplifier circuit and design method thereof
CN101839941B (en) Signal sensing amplifier
US8576007B2 (en) High speed amplifier
CN112702029B (en) CMOS power amplifier chip with on-chip integrated detection function
CN106160683A (en) Operational amplifier
CN104216455A (en) Low-power-consumption reference voltage source circuit for 4G (4th Generation) communications chip
CN110212866A (en) A kind of low-power consumption three-stage operational amplifier driving heavy load capacitor
CN101285706A (en) Differential input low-temperature infrared detector weak current amplifier
CN107071640B (en) Dual-voltage-domain driving operation circuit
CN104881071A (en) Low-power reference voltage source
CN103414441A (en) Open loop amplifier with stable output common-mode voltage
CN101588164B (en) Constant transconductance biasing circuit
Dong et al. A three-stage OTA with hybrid active miller enhanced compensation technique for large to heavy load applications
CN110350880A (en) A kind of Novel ultra wide band operational amplifier
CN115001408A (en) Novel three-stage operational amplifier indirect frequency compensation circuit
CN107592086A (en) A kind of high-gain superelevation operating rate amplifier circuit
CN110320953B (en) Output voltage adjustable reference voltage source
Della Sala et al. A body‐driven rail‐to‐rail 0.3 V operational transconductance amplifier exploiting current gain stages
Singh et al. Design and Performance analysis of Low power CMOS Op-Amp

Legal Events

Date Code Title Description
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20150930

Termination date: 20180331

CF01 Termination of patent right due to non-payment of annual fee