CN104765399A - CMOS low-temperature small-noise operation amplifying circuit - Google Patents
CMOS low-temperature small-noise operation amplifying circuit Download PDFInfo
- Publication number
- CN104765399A CN104765399A CN201510145465.0A CN201510145465A CN104765399A CN 104765399 A CN104765399 A CN 104765399A CN 201510145465 A CN201510145465 A CN 201510145465A CN 104765399 A CN104765399 A CN 104765399A
- Authority
- CN
- China
- Prior art keywords
- low
- temperature
- cmos
- operational amplifier
- differential
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000001681 protective effect Effects 0.000 claims description 3
- 238000010276 construction Methods 0.000 claims description 2
- 230000003321 amplification Effects 0.000 abstract description 12
- 238000003199 nucleic acid amplification method Methods 0.000 abstract description 12
- 239000003990 capacitor Substances 0.000 abstract description 6
- 238000000034 method Methods 0.000 abstract description 6
- 230000010355 oscillation Effects 0.000 abstract description 6
- 238000010586 diagram Methods 0.000 description 4
- 238000012360 testing method Methods 0.000 description 3
- 230000009286 beneficial effect Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 2
- 229920005591 polysilicon Polymers 0.000 description 2
- 238000004088 simulation Methods 0.000 description 2
- 238000004364 calculation method Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000004377 microelectronic Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F1/00—Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
- H03F1/26—Modifications of amplifiers to reduce influence of noise generated by amplifying elements
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F1/00—Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
- H03F1/30—Modifications of amplifiers to reduce influence of variations of temperature or supply voltage or other physical parameters
- H03F1/301—Modifications of amplifiers to reduce influence of variations of temperature or supply voltage or other physical parameters in MOSFET amplifiers
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F3/00—Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
- H03F3/45—Differential amplifiers
- H03F3/45071—Differential amplifiers with semiconductor devices only
- H03F3/45076—Differential amplifiers with semiconductor devices only characterised by the way of implementation of the active amplifying circuit in the differential amplifier
- H03F3/45179—Differential amplifiers with semiconductor devices only characterised by the way of implementation of the active amplifying circuit in the differential amplifier using MOSFET transistors as the active amplifying circuit
- H03F3/45183—Long tailed pairs
- H03F3/45192—Folded cascode stages
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F2200/00—Indexing scheme relating to amplifiers
- H03F2200/372—Noise reduction and elimination in amplifier
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F2203/00—Indexing scheme relating to amplifiers with only discharge tubes or only semiconductor devices as amplifying elements covered by H03F3/00
- H03F2203/45—Indexing scheme relating to differential amplifiers
- H03F2203/45054—Indexing scheme relating to differential amplifiers the cascode stage of the cascode dif amp being a current mirror
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Amplifiers (AREA)
Abstract
本发明公开了一种CMOS低温低噪声运放电路,其偏置电路部分采用多级电流镜套构的方式,参考电流基准采用两个二极管连接的MOS管有源电阻生成,使放大器的参考电流具有较好的温度特性;放大部分采用差分输入的折叠共源共栅结构,一级放大就能使放大器的开环增益大于80dB,克服了传统的二级放大使用的米勒补偿电容在低温77K下容易引起振荡的缺点;差分输入对管采用宽长比大于100的大管子,有利于CMOS放大器噪声性能地提高,该差分运算放大器在常温和低温77K之间都能正常工作,可作为低温CMOS电路设计的标准放大器模块使用,既可以应用在光伏红外探测器电路,也可应用在长波红外光导探测器电路。
The invention discloses a CMOS low-temperature and low-noise operational amplifier circuit. The bias circuit part adopts the method of multi-stage current mirror sleeve structure, and the reference current reference is generated by using two diode-connected MOS tube active resistances, so that the reference current of the amplifier It has good temperature characteristics; the amplification part adopts a folded cascode structure with differential input, and the open-loop gain of the amplifier can be greater than 80dB when the first-stage amplification is used, which overcomes the Miller compensation capacitor used in the traditional second-stage amplification at a low temperature of 77K The shortcoming that it is easy to cause oscillation; the differential input pair tube adopts a large tube with a width-to-length ratio greater than 100, which is conducive to improving the noise performance of the CMOS amplifier. The differential operational amplifier can work normally between room temperature and low temperature 77K, and can be used as a low-temperature CMOS The standard amplifier module of the circuit design is used, which can be applied not only in the photovoltaic infrared detector circuit, but also in the long-wave infrared photoconductive detector circuit.
Description
技术领域technical field
本发明涉及一种CMOS运放电路,具体涉及一种CMOS低温低噪声的运放电路。The invention relates to a CMOS operational amplifier circuit, in particular to a CMOS low-temperature and low-noise operational amplifier circuit.
背景技术Background technique
在航天遥感领域中,大部分的红外探测器都在低温下工作,为提高系统的性能,减少外界引入的干扰,要求探测器与电路近距离连接,即设计的电路也需在低温下工作。目前,商业化的电路产品都是针对常温设计的,在低温下可能无法正常工作。为了提高系统的性能,必须设计低温下能正常工作的CMOS读出电路,其中读出电路中核心模块是CMOS差分运算放大器,如果具有成熟的低温CMOS差分运算放大器模块,将会更加有利于将来低温CMOS电路的设计。In the field of aerospace remote sensing, most infrared detectors work at low temperature. In order to improve the performance of the system and reduce the interference introduced by the outside world, it is required that the detector be connected to the circuit in close proximity, that is, the designed circuit also needs to work at low temperature. Currently, commercialized circuit products are designed for room temperature and may not work properly at low temperatures. In order to improve the performance of the system, it is necessary to design a CMOS readout circuit that can work normally at low temperature. The core module in the readout circuit is a CMOS differential operational amplifier. If there is a mature low-temperature CMOS differential operational amplifier module, it will be more beneficial to the low temperature in the future. CMOS circuit design.
2005年3月2日授权的曹必松等的中国专利CN 1588794A,公布了一种射频频段低温低噪声放大器,该放大器是属于射频技术领域的放大器,主要应用于CDMA频段,采用的是双极型工艺,没有采用现在的常规CMOS工艺,无法应用到现在的主流CMOS电路的设计中。The Chinese patent CN 1588794A of Cao Bisong et al., authorized on March 2, 2005, announced a low-temperature low-noise amplifier in the radio frequency band. The amplifier belongs to the field of radio frequency technology and is mainly used in the CDMA band. , without using the current conventional CMOS process, it cannot be applied to the design of the current mainstream CMOS circuits.
发明内容Contents of the invention
本发明的目的在于提供一种能应用在低温CMOS电路设计中的CMOS差分运算放大器标准模块,提高低温CMOS专用集成电路的设计水平。该低温CMOS差分运算放大器的放大部分如图1所示,它包括放大电路模块和偏置电路模块,其中:The purpose of the present invention is to provide a CMOS differential operational amplifier standard module that can be applied in low-temperature CMOS circuit design, so as to improve the design level of low-temperature CMOS application-specific integrated circuits. The amplified part of the low-temperature CMOS differential operational amplifier is shown in Figure 1, which includes an amplifying circuit module and a biasing circuit module, wherein:
所述放大电路模块采用差分输入的折叠共源共栅结构的放大电路,其中差分输入对管采用宽长比等于100的PMOS管;The amplifying circuit module adopts an amplifying circuit of a folded cascode structure with differential input, wherein the differential input pair tube adopts a PMOS tube with a width-to-length ratio equal to 100;
所述放大电路模块中的差分输入由两个宽长比为1500μm/1.5μm PMOS管构成,用72个41.7μm/1.5μm的管子组成输入对管PM7、PM8,采用叉指晶体管,保证上下和左右对称,且在输入对管的外面使用保护环;The differential input in the amplifying circuit module is composed of two PMOS tubes with a width-to-length ratio of 1500 μm/1.5 μm, and 72 41.7 μm/1.5 μm tubes are used to form the input pair PM7 and PM8, and interdigitated transistors are used to ensure the up and down and Left and right symmetrical, and a protective ring is used outside the input pair tube;
所述的放大电路模块中,PM7、PM8、NM4、NM5构成差分输入的共源共栅结构,PM4、PM5为差分输出的有源负载,NM6、NM7给共源共栅提供电流源,Bias1、Bias2、Bias3为偏置电压端口,其电压由偏置电路模块供应,In-、In+为差分运算放大器的正负输入端;In the described amplifying circuit module, PM7, PM8, NM4, NM5 form the cascode structure of differential input, PM4, PM5 are the active loads of differential output, NM6, NM7 provide current source for cascode, Bias1, Bias2 and Bias3 are bias voltage ports, the voltage of which is supplied by the bias circuit module, and In- and In+ are the positive and negative input terminals of the differential operational amplifier;
所述的偏置电路模块采用多级电流镜套构方式,其基准电流部分采用二极管连接方式的有源电阻组成;所述的偏置电路由八个管子构成,NM3与NM0构成第一级电流镜,PM0与PM1构成第二级电流镜,NM1与放大部分的NM6、NM7构成电流镜,PM0与放大部分的PM3构成电流镜;采用二级管连接的PM2、NM3形成基准电流源,由NM3镜像到NM0产生一路电流,再由PM0镜像到PM1产生另外一路电流。The bias circuit module adopts a multi-level current mirror construction method, and its reference current part is composed of active resistors connected by diodes; the bias circuit is composed of eight tubes, and NM3 and NM0 form the first stage current PM0 and PM1 form a second-stage current mirror, NM1 and NM6 and NM7 of the enlarged part form a current mirror, PM0 and PM3 of the enlarged part form a current mirror; PM2 and NM3 connected by diodes form a reference current source, and NM3 Mirrored to NM0 to generate one current, and then mirrored from PM0 to PM1 to generate another current.
采用差分输入的一级折叠共源共栅结构中PM7和PM8是输入对管,PM7、PM8、NM4、NM5构成差分输入的共源共栅结构,PM4、PM5为差分输出的有源负载,NM6、NM7给共源共栅提供电流源,Bias1、Bias2、Bias3为偏置电压,In-、In+为差分运算放大器的正负输入端。该低温CMOS差分运算放大器的偏置电路部分如图2所示,其中NM3与NM0构成第一级电流镜,PM0与PM1构成第二级电流镜,NM1与放大部分的NM6、NM7构成电流镜,PM0与放大部分的PM3构成电流镜。In the first-stage folded cascode structure with differential input, PM7 and PM8 are input pair tubes, PM7, PM8, NM4, and NM5 form a cascode structure with differential input, PM4, PM5 are active loads for differential output, and NM6 , NM7 provides a current source for the cascode, Bias1, Bias2, Bias3 are bias voltages, In-, In+ are the positive and negative input terminals of the differential operational amplifier. The bias circuit part of the low-temperature CMOS differential operational amplifier is shown in Figure 2, where NM3 and NM0 constitute the first-stage current mirror, PM0 and PM1 constitute the second-stage current mirror, and NM1 and NM6 and NM7 of the amplification part constitute the current mirror. PM0 and PM3 of the enlarged part form a current mirror.
该CMOS低温低噪声差分运算放大器的输入管采用1500μm/1.5μm的大管子,大大降低了放大器的等效输入噪声;电路拓扑结构采用一级折叠共源共栅结构,无需使用米勒补偿电容,克服了普通的两级放大器在低温下米勒补偿电容变化而容易导致电路振荡的缺点;低温放大器的偏置电路采用三级镜像的方式,没有使用多晶硅电阻来生成参考电流,克服了多晶硅电阻随温度变化导致电路静态工作点漂移的缺点。该CMOS差分运算放大器在常温和低温77K之间都能正常工作。此设计方法适合于大部分的微米级或亚微米级的微电子工艺。该运放可作为CMOS电路设计的标准放大器模块使用,即可以应用在光伏红外探测器电路,也可应用在长波光导红外探测器电路。The input tube of this CMOS low-temperature low-noise differential operational amplifier adopts a large tube of 1500μm/1.5μm, which greatly reduces the equivalent input noise of the amplifier; the circuit topology adopts a one-stage folded cascode structure, without using Miller compensation capacitors, It overcomes the shortcoming of ordinary two-stage amplifiers that easily cause circuit oscillation due to the change of Miller compensation capacitance at low temperature; the bias circuit of the low-temperature amplifier adopts a three-stage mirror image method, and does not use polysilicon resistors to generate reference currents, which overcomes polysilicon resistors. Disadvantages of temperature changes causing the static operating point of the circuit to drift. This CMOS differential operational amplifier can work well between room temperature and low temperature 77K. This design method is suitable for most micron or submicron microelectronic processes. The operational amplifier can be used as a standard amplifier module designed for CMOS circuits, which can be applied to photovoltaic infrared detector circuits and long-wave photoconductive infrared detector circuits.
本发明的优点如下:The advantages of the present invention are as follows:
1.该CMOS低温低噪声运放模块使用了共源共栅结构,一级放大就能达到80dB以上的放大倍数,电源电压抑制比也比较高,减小了电源纹波引入的噪声。1. The CMOS low-temperature and low-noise operational amplifier module uses a cascode structure, and the amplification factor of more than 80dB can be achieved in one stage of amplification. The power supply voltage rejection ratio is also relatively high, which reduces the noise introduced by power supply ripple.
2.该CMOS低温低噪声运放模块用于红外光伏探测器电路时其等效输入电流噪声小于0.03pA/Hz1/21KHz。2. When the CMOS low-temperature and low-noise operational amplifier module is used in an infrared photovoltaic detector circuit, its equivalent input current noise is less than 0.03pA/Hz 1/2 1KHz.
3.该CMOS低温低噪声运放模块从常温300K到低温77K都能正常工作,不仅可应用于光伏和光导红外探测器的信号放大,还可以作为其它低温CMOS电路的标准运算放大器模块使用。3. The CMOS low-temperature low-noise operational amplifier module can work normally from room temperature 300K to low temperature 77K. It can not only be applied to the signal amplification of photovoltaic and photoconductive infrared detectors, but also can be used as a standard operational amplifier module for other low-temperature CMOS circuits.
4.该CMOS低温低噪声运放模块采用标准的微米或亚微米CMOS工艺制造而成,保证了芯片制造的可重复性。4. The CMOS low-temperature and low-noise operational amplifier module is manufactured by standard micron or submicron CMOS technology, which ensures the repeatability of chip manufacturing.
5.该CMOS低温低噪声运放模块无需使用补偿电容,克服了普通的两级放大器补偿电容在低温下变化而容易导致电路振荡的缺点。5. The CMOS low-temperature and low-noise operational amplifier module does not need to use compensation capacitors, which overcomes the disadvantage that the compensation capacitors of ordinary two-stage amplifiers change at low temperatures and easily cause circuit oscillation.
附图说明Description of drawings
图1为CMOS低温低噪声运放模块放大电路部分结构图。Figure 1 is a partial structural diagram of the amplifier circuit of the CMOS low-temperature and low-noise operational amplifier module.
图2为CMOS低温低噪声运放模块偏置电路部分结构图。Figure 2 is a partial structure diagram of the bias circuit of the CMOS low-temperature and low-noise operational amplifier module.
图3为CMOS低温低噪声运放模块输入对管的对称版图。Figure 3 is a symmetrical layout of the input pair tube of the CMOS low-temperature and low-noise operational amplifier module.
图4为CMOS低温低噪声运放开环增益的仿真结果图。Figure 4 is a simulation result graph of the open-loop gain of a CMOS low-temperature and low-noise op amp.
图5为CMOS低温低噪声运放模块放大电路总图。Figure 5 is a general diagram of the amplifying circuit of the CMOS low-temperature and low-noise operational amplifier module.
具体实施方式Detailed ways
下面结合附图对本发明的具体实施方式作进一步的详细说明:The specific embodiment of the present invention is described in further detail below in conjunction with accompanying drawing:
实施例1Example 1
此电路总的噪声主要由输入管PM7、PM8管决定,其等效输入噪声电压计算公式为:The total noise of this circuit is mainly determined by the input tubes PM7 and PM8, and the equivalent input noise voltage calculation formula is:
第一项为沟道热噪声,第二项为1/f噪声。The first term is channel thermal noise and the second term is 1/f noise.
gm为输入管的跨导,为减小总噪声,输入管W/L的大小及偏置电流的设计非常重要。从以上公式可知增大gm可以减小沟道热噪声,在面积许可的条件下,增大输入管的W/L,采用1500μm/1.5μm来增大gm,在画版图时用72个41.7μm/1.5μm的管子组成输入对管PM7、PM8,且在输入对管的外面使用了保护环,有利于减少输入对管的失调及外界串扰进来噪声。PMOS比NMOS的1/f噪声小,所以输入管PM7、PM8选PMOS减小了1/f噪声。另外增大W×L也可以减小1/f噪声,在功耗和面积许可的条件下,其他管子也尽可能考虑低噪声标准来设计。当温度降低时电流加大以及域值电压VT增加可能会使器件无法工作,所以在设计每个管子的W/L时要充分考虑。g m is the transconductance of the input tube. In order to reduce the total noise, the size of the input tube W/L and the design of the bias current are very important. It can be seen from the above formula that increasing g m can reduce channel thermal noise. Under the condition of area permitting, increase the W/L of the input tube, use 1500μm/1.5μm to increase g m , and use 72 when drawing the layout The 41.7μm/1.5μm tubes form the input pair tubes PM7 and PM8, and a protective ring is used outside the input pair tubes, which is beneficial to reduce the input pair tube imbalance and external crosstalk noise. The 1/f noise of PMOS is smaller than that of NMOS, so the input tubes PM7 and PM8 choose PMOS to reduce the 1/f noise. In addition, increasing W×L can also reduce 1/f noise. Under the conditions of power consumption and area permitting, other tubes should also be designed with low noise standards in mind as much as possible. When the temperature decreases, the increase of the current and the increase of the threshold voltage V T may make the device unable to work, so it must be fully considered when designing the W/L of each tube.
该低温低噪声CMOS差分运算放大器的放大部分如图1所示,采用差分输入的一级折叠共源共栅结构。其中PM7和PM8是输入对管,PM7、PM8、NM4、NM5构成差分输入的共源共栅结构,PM4、PM5为差分输出的有源负载,NM6、NM7给共源共栅提供电流源,Bias1、Bias2、Bias3为偏置电压,In-、In+为差分运算放大器的正负输入端。放大部分的管子参考尺寸如下表所示(单位为微米)。The amplified part of the low-temperature low-noise CMOS differential operational amplifier is shown in Figure 1, which adopts a one-stage folded cascode structure with differential input. Among them, PM7 and PM8 are input pair tubes, PM7, PM8, NM4, and NM5 form a cascode structure of differential input, PM4, PM5 are active loads of differential output, NM6, NM7 provide current source for cascode, Bias1 , Bias2, Bias3 are bias voltages, In-, In+ are the positive and negative input terminals of the differential operational amplifier. The tube reference size of the enlarged part is shown in the table below (in microns).
实施例2Example 2
该低温低噪声CMOS差分运算放大器的偏置电路部分如图2所示,其中NM3与NM0构成第一级电流镜,PM0与PM1构成第二级电流镜,NM1与放大部分的NM6、NM7构成电流镜,PM0与放大部分的PM3构成电流镜。The bias circuit part of this low-temperature low-noise CMOS differential operational amplifier is shown in Figure 2, where NM3 and NM0 constitute the first-stage current mirror, PM0 and PM1 constitute the second-stage current mirror, and NM1 and NM6 and NM7 of the amplifying part constitute the current mirror. Mirror, PM0 and PM3 of the enlarged part constitute a current mirror.
偏置部分共由八个管子构成,采用二级管连接的PM2、NM3形成基准电流源,由NM3镜像到NM0产生一路电流,再由PM0镜像到PM1产生另外一路电流,该电流源没有使用对温度特别敏感的无源电阻,所以该电流源在常温和低温下都能正常工作,测试结果显示该电流源温度抑制能力很强,所以整个低温CMOS差分运算放大器芯片工作温度范围很宽,从常温300K到低温77K都能正常工作。The bias part is composed of eight tubes. PM2 and NM3 connected by diodes form a reference current source. NM3 is mirrored to NM0 to generate one current, and then PM0 is mirrored to PM1 to generate another current. This current source does not use the pair Passive resistors that are particularly sensitive to temperature, so the current source can work normally at room temperature and low temperature. The test results show that the current source has a strong temperature suppression ability, so the entire low-temperature CMOS differential operational amplifier chip has a wide operating temperature range, from room temperature to It can work normally from 300K to low temperature 77K.
偏置电路部分的管子参考尺寸如下表所示(单位为微米)。The tube reference size of the bias circuit part is shown in the table below (unit is micron).
实施例3Example 3
在画放大器版图时,所有的对管都采用叉指晶体管,尽量保证上下和左右对称,这样可以减小CMOS差分运算放大器在低温下的输入端失调,特别是差分放大器的输入管,尤为重要,在本电路中,由于差分输入对管采用了1500μm/1.5μm的大管子,为了实现上下和左右对称,在画版图时用72个41.7μm/1.5μm的管子组成输入对管,如图3所示,这在很大程度上减小了整个差分运算放大器的输入失调,测试结果表明该低温低噪声CMOS差分运算放大器的输入失调电压很小,小于1mV。When drawing the layout of the amplifier, all pairs of tubes use interdigitated transistors, and try to ensure up-down and left-right symmetry, which can reduce the input offset of the CMOS differential operational amplifier at low temperature, especially the input tube of the differential amplifier, which is particularly important. In this circuit, since the differential input pair tube uses a large tube of 1500μm/1.5μm, in order to achieve up-down and left-right symmetry, 72 41.7μm/1.5μm tubes are used to form the input pair tube when drawing the layout, as shown in Figure 3 It is shown that this greatly reduces the input offset of the entire differential operational amplifier, and the test results show that the input offset voltage of the low-temperature low-noise CMOS differential operational amplifier is very small, less than 1mV.
实施例4Example 4
该低温低噪声CMOS差分运算放大器模块采用的是差分输入的折叠式共源共栅结构,一级放大开环增益就超过80dB,达到了常规二级放大的放大倍数,该差分运算放大器的增益仿真结果如图4所示,其开环增益达到88dB。常规放大器使用二级放大,需使用米勒补偿电容来增加相位裕度,但在低温下由于米勒补偿电容的变化可能导致相位裕度的改变而引起放大器振荡,所以常规放大器在低温下容易振荡。本发明的低温低噪声CMOS运放采用的是一级放大,没有使用米勒补偿电路,该结构克服了常规两级放大器在低温下容易引起振荡的缺点。图5为CMOS低温低噪声运放电路的总图,偏置电路部分的Bias1、Bias2、Bias3与放大电路部分的Bias1、Bias2、Bias3是相连的,In+、In-是运放电路的正负两个输入端。The low-temperature and low-noise CMOS differential operational amplifier module adopts a folded cascode structure with differential input. The open-loop gain of the first-stage amplification exceeds 80dB, reaching the amplification factor of the conventional two-stage amplification. The gain simulation of the differential operational amplifier The result is shown in Fig. 4, and its open-loop gain reaches 88dB. Conventional amplifiers use two-stage amplification and need to use Miller compensation capacitors to increase the phase margin. However, at low temperatures, changes in the phase margin may cause amplifier oscillations due to changes in Miller compensation capacitors, so conventional amplifiers are prone to oscillation at low temperatures. . The low-temperature and low-noise CMOS operational amplifier of the present invention adopts one-stage amplification without using a Miller compensation circuit, and this structure overcomes the shortcoming that conventional two-stage amplifiers easily cause oscillation at low temperature. Figure 5 is a general diagram of the CMOS low-temperature and low-noise operational amplifier circuit. Bias1, Bias2, and Bias3 in the bias circuit part are connected to Bias1, Bias2, and Bias3 in the amplifier circuit part. In+ and In- are the positive and negative terminals of the operational amplifier circuit. input terminal.
该CMOS低温低噪声运放电路可作为运放模块应用在光伏红外探测器CMOS电路和光导红外探测器CMOS电路,经过测试,该CMOS低温低噪声运放模块用于红外光伏探测器电路时其等效输入电流噪声很低,小于0.03pA/HZ1/21KHz。The CMOS low-temperature and low-noise operational amplifier circuit can be used as an operational amplifier module in the photovoltaic infrared detector CMOS circuit and the photoconductive infrared detector CMOS circuit. After testing, the CMOS low-temperature and low-noise operational amplifier module is equivalent to the infrared photovoltaic detector circuit. The effective input current noise is very low, less than 0.03pA/HZ 1/2 1KHz.
由于该低温低噪声CMOS差分运算放大器采用了折叠共源共栅结构,工作电压范围较大,在±2.5伏和±1.2伏之间都能正常工作,但需考虑工作电压的不同导致了单元功耗的不同。Since the low-temperature and low-noise CMOS differential operational amplifier adopts a folded cascode structure, the operating voltage range is large, and it can work normally between ±2.5 volts and ±1.2 volts, but it is necessary to consider that the difference in operating voltage causes the unit power consumption is different.
以上通过具体的实施例对本发明进行了说明,但本发明并不限于这些具体的实施例。本领域技术人员应该明白,还可以对本发明做各种修改、等同替换、变化等等,这些变换只要未背离本发明的精神,都应在本发明的保护范围之内。The present invention has been described above through specific examples, but the present invention is not limited to these specific examples. Those skilled in the art should understand that various modifications, equivalent replacements, changes, etc. can also be made to the present invention. As long as these changes do not deviate from the spirit of the present invention, they should all be within the protection scope of the present invention.
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510145465.0A CN104765399A (en) | 2014-10-16 | 2015-03-31 | CMOS low-temperature small-noise operation amplifying circuit |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410546517.0A CN104362992A (en) | 2014-10-16 | 2014-10-16 | CMOS (Complementary Metal Oxide Semiconductor) low-temperature low-noise operational amplifier circuit |
CN2014105465170 | 2014-10-16 | ||
CN201510145465.0A CN104765399A (en) | 2014-10-16 | 2015-03-31 | CMOS low-temperature small-noise operation amplifying circuit |
Publications (1)
Publication Number | Publication Date |
---|---|
CN104765399A true CN104765399A (en) | 2015-07-08 |
Family
ID=52530225
Family Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201410546517.0A Pending CN104362992A (en) | 2014-10-16 | 2014-10-16 | CMOS (Complementary Metal Oxide Semiconductor) low-temperature low-noise operational amplifier circuit |
CN201520185762.3U Expired - Fee Related CN204679894U (en) | 2014-10-16 | 2015-03-31 | A kind of CMOS low temperature low noise discharge circuit |
CN201510145465.0A Pending CN104765399A (en) | 2014-10-16 | 2015-03-31 | CMOS low-temperature small-noise operation amplifying circuit |
Family Applications Before (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201410546517.0A Pending CN104362992A (en) | 2014-10-16 | 2014-10-16 | CMOS (Complementary Metal Oxide Semiconductor) low-temperature low-noise operational amplifier circuit |
CN201520185762.3U Expired - Fee Related CN204679894U (en) | 2014-10-16 | 2015-03-31 | A kind of CMOS low temperature low noise discharge circuit |
Country Status (1)
Country | Link |
---|---|
CN (3) | CN104362992A (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109540290A (en) * | 2019-01-10 | 2019-03-29 | 中国科学院上海技术物理研究所 | One kind four samples low noise cmos detector reading circuit |
CN111244088A (en) * | 2020-02-24 | 2020-06-05 | 苏州迅芯微电子有限公司 | Layout structure of operational amplifier in pipelined analog-to-digital converter |
CN112650345A (en) * | 2020-12-23 | 2021-04-13 | 杭州晶华微电子股份有限公司 | Semiconductor device with a plurality of semiconductor chips |
CN113839630A (en) * | 2021-09-13 | 2021-12-24 | 中国科学院上海微系统与信息技术研究所 | A low-voltage differential amplifier for ultra-low temperature |
CN114301403A (en) * | 2021-12-31 | 2022-04-08 | 中国科学院上海微系统与信息技术研究所 | A low temperature amplifier circuit |
CN118838466A (en) * | 2024-09-20 | 2024-10-25 | 芯聚威科技(成都)有限公司 | Anti-interference and fast-established reference voltage buffer circuit |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104362992A (en) * | 2014-10-16 | 2015-02-18 | 中国科学院上海技术物理研究所 | CMOS (Complementary Metal Oxide Semiconductor) low-temperature low-noise operational amplifier circuit |
CN104980112B (en) * | 2015-07-20 | 2018-03-06 | 西安电子科技大学 | The circular form Folded-cascode amplifier of consumption high gain |
CN105322897B (en) * | 2015-09-30 | 2018-08-17 | 天津大学 | Gain suppression type operational amplifier suitable for TFT-LCD driving circuits |
CN105322899B (en) * | 2015-09-30 | 2018-10-16 | 天津大学 | Gain suppression type operational amplifier suitable for sigma delta modulator |
CN105262448A (en) * | 2015-10-09 | 2016-01-20 | 天津大学 | Low-power high-slew-rate operational amplifier suitable for ultra-wide band microwave detection |
CN105429601A (en) * | 2015-11-27 | 2016-03-23 | 天津大学 | High Slew Rate PSRR Enhanced Single Stage Amplifier for Power Management |
CN106788351B (en) * | 2016-12-23 | 2020-06-12 | 长沙景嘉微电子股份有限公司 | Rail-to-rail reference voltage comparator with offset voltage testing and correcting functions |
CN108957102B (en) * | 2018-08-28 | 2024-03-08 | 长沙理工大学 | Current detection circuit without operational amplifier |
CN110413033B (en) * | 2019-07-22 | 2021-09-21 | 贵州振华风光半导体股份有限公司 | Bipolar process-based integrated circuit with ultra-low offset voltage |
CN112636698A (en) * | 2020-08-21 | 2021-04-09 | 苏州芯智瑞微电子有限公司 | CMOS amplifier circuit, application of CMOS amplifier circuit in radio frequency identification and integrated circuit comprising CMOS amplifier circuit |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20030080720A1 (en) * | 2001-10-31 | 2003-05-01 | Ghozeil Adam L. | Voltage stabilization circuit |
CN101030085A (en) * | 2007-01-16 | 2007-09-05 | 西安交通大学 | Reference voltage module and its temperature compensating method |
CN101241378A (en) * | 2007-02-07 | 2008-08-13 | 中国科学院半导体研究所 | Output adjustable bandgap reference source circuit |
CN101285706A (en) * | 2008-05-30 | 2008-10-15 | 中国科学院上海技术物理研究所 | A Weak Current Amplifier for Low Temperature Infrared Detector with Differential Input |
CN101290526A (en) * | 2007-04-18 | 2008-10-22 | 中国科学院半导体研究所 | High Voltage Bias PMOS Current Source Circuit |
US20090160557A1 (en) * | 2007-12-20 | 2009-06-25 | Infineon Technologies Ag | Self-biased cascode current mirror |
CN204679894U (en) * | 2014-10-16 | 2015-09-30 | 中国科学院上海技术物理研究所 | A kind of CMOS low temperature low noise discharge circuit |
-
2014
- 2014-10-16 CN CN201410546517.0A patent/CN104362992A/en active Pending
-
2015
- 2015-03-31 CN CN201520185762.3U patent/CN204679894U/en not_active Expired - Fee Related
- 2015-03-31 CN CN201510145465.0A patent/CN104765399A/en active Pending
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20030080720A1 (en) * | 2001-10-31 | 2003-05-01 | Ghozeil Adam L. | Voltage stabilization circuit |
CN101030085A (en) * | 2007-01-16 | 2007-09-05 | 西安交通大学 | Reference voltage module and its temperature compensating method |
CN101241378A (en) * | 2007-02-07 | 2008-08-13 | 中国科学院半导体研究所 | Output adjustable bandgap reference source circuit |
CN101290526A (en) * | 2007-04-18 | 2008-10-22 | 中国科学院半导体研究所 | High Voltage Bias PMOS Current Source Circuit |
US20090160557A1 (en) * | 2007-12-20 | 2009-06-25 | Infineon Technologies Ag | Self-biased cascode current mirror |
CN101285706A (en) * | 2008-05-30 | 2008-10-15 | 中国科学院上海技术物理研究所 | A Weak Current Amplifier for Low Temperature Infrared Detector with Differential Input |
CN204679894U (en) * | 2014-10-16 | 2015-09-30 | 中国科学院上海技术物理研究所 | A kind of CMOS low temperature low noise discharge circuit |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109540290A (en) * | 2019-01-10 | 2019-03-29 | 中国科学院上海技术物理研究所 | One kind four samples low noise cmos detector reading circuit |
CN111244088A (en) * | 2020-02-24 | 2020-06-05 | 苏州迅芯微电子有限公司 | Layout structure of operational amplifier in pipelined analog-to-digital converter |
CN111244088B (en) * | 2020-02-24 | 2022-09-16 | 苏州迅芯微电子有限公司 | Layout structure of operational amplifier in pipelined analog-to-digital converter |
CN112650345A (en) * | 2020-12-23 | 2021-04-13 | 杭州晶华微电子股份有限公司 | Semiconductor device with a plurality of semiconductor chips |
CN112650345B (en) * | 2020-12-23 | 2022-05-17 | 杭州晶华微电子股份有限公司 | Semiconductor device with a plurality of semiconductor chips |
CN113839630A (en) * | 2021-09-13 | 2021-12-24 | 中国科学院上海微系统与信息技术研究所 | A low-voltage differential amplifier for ultra-low temperature |
CN113839630B (en) * | 2021-09-13 | 2024-01-30 | 中国科学院上海微系统与信息技术研究所 | Low-voltage differential amplifier capable of being used for ultralow temperature |
CN114301403A (en) * | 2021-12-31 | 2022-04-08 | 中国科学院上海微系统与信息技术研究所 | A low temperature amplifier circuit |
CN114301403B (en) * | 2021-12-31 | 2025-01-21 | 中国科学院上海微系统与信息技术研究所 | A low temperature amplifier circuit |
CN118838466A (en) * | 2024-09-20 | 2024-10-25 | 芯聚威科技(成都)有限公司 | Anti-interference and fast-established reference voltage buffer circuit |
CN118838466B (en) * | 2024-09-20 | 2024-11-29 | 芯聚威科技(成都)有限公司 | A reference voltage buffer circuit with anti-interference and fast settling |
Also Published As
Publication number | Publication date |
---|---|
CN204679894U (en) | 2015-09-30 |
CN104362992A (en) | 2015-02-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN204679894U (en) | A kind of CMOS low temperature low noise discharge circuit | |
CN101470459B (en) | Low-voltage low-power-consumption CMOS voltage reference circuit | |
CN104503528B (en) | A Low Noise Bandgap Reference Circuit with Reduced Offset Effect | |
CN103219961B (en) | Bandwidth-adjustable operational amplifier circuit | |
CN105022441B (en) | A Temperature-Independent Current Reference Source for Integrated Circuits | |
CN100383691C (en) | Reference Current Source with Low Temperature Coefficient and Low Supply Voltage Coefficient | |
CN106160683B (en) | Operational amplifier | |
CN112653319B (en) | A receiver circuit of an isolated drive circuit | |
WO2021248267A1 (en) | Voltage reference circuit with high power supply ripple rejection | |
CN106549639A (en) | A kind of gain-adaptive error amplifier | |
CN202261165U (en) | Annular voltage-controlled oscillator | |
Qian et al. | A high gain and high CMRR instrumentation amplifier for biomedical applications | |
EP4362327A1 (en) | Bias circuit and power amplifier | |
CN112825476B (en) | Operational amplifier | |
CN101285706A (en) | A Weak Current Amplifier for Low Temperature Infrared Detector with Differential Input | |
CN104216458B (en) | A kind of temperature curvature complimentary reference source | |
CN104253590A (en) | Fully differential operational amplifier module circuit, analog-to-digital converter and readout circuit | |
Sansen | Analog design procedures for channel lengths down to 20 nm | |
CN102253681A (en) | Temperature compensation current source completely compatible to standard CMOS (Complementary Metal Oxide Semiconductor) process | |
CN104104229B (en) | A kind of quiescent current control device | |
CN106953610A (en) | A Rail-to-Rail Operational Amplifier Introducing Negative Resistance Input Tube Structure | |
CN102394582A (en) | Substrate drive low voltage operational amplifier circuit | |
CN109445507B (en) | Band-gap reference circuit with high power supply rejection ratio in wide frequency | |
CN106921349B (en) | Amplifier based on inverter structure | |
CN115001408A (en) | Novel three-stage operational amplifier indirect frequency compensation circuit |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
EXSB | Decision made by sipo to initiate substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C02 | Deemed withdrawal of patent application after publication (patent law 2001) | ||
WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20150708 |