CN1914328B - 属于埃希氏菌属的产l-苏氨酸细菌以及生产l-苏氨酸的方法 - Google Patents
属于埃希氏菌属的产l-苏氨酸细菌以及生产l-苏氨酸的方法 Download PDFInfo
- Publication number
- CN1914328B CN1914328B CN2004800358213A CN200480035821A CN1914328B CN 1914328 B CN1914328 B CN 1914328B CN 2004800358213 A CN2004800358213 A CN 2004800358213A CN 200480035821 A CN200480035821 A CN 200480035821A CN 1914328 B CN1914328 B CN 1914328B
- Authority
- CN
- China
- Prior art keywords
- gene
- threonine
- aspartate
- leu
- gly
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/0004—Oxidoreductases (1.)
- C12N9/0008—Oxidoreductases (1.) acting on the aldehyde or oxo group of donors (1.2)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12P—FERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
- C12P13/00—Preparation of nitrogen-containing organic compounds
- C12P13/04—Alpha- or beta- amino acids
- C12P13/08—Lysine; Diaminopimelic acid; Threonine; Valine
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Health & Medical Sciences (AREA)
- Zoology (AREA)
- Wood Science & Technology (AREA)
- Genetics & Genomics (AREA)
- Bioinformatics & Cheminformatics (AREA)
- General Health & Medical Sciences (AREA)
- Biochemistry (AREA)
- General Engineering & Computer Science (AREA)
- Microbiology (AREA)
- Biotechnology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Medicinal Chemistry (AREA)
- Molecular Biology (AREA)
- Biomedical Technology (AREA)
- Preparation Of Compounds By Using Micro-Organisms (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
Abstract
公开了一种使用属于埃希氏菌属的细菌生产L-苏氨酸的方法,其中所述细菌已受到修饰以增强天冬氨酸-β-半醛脱氢酶的活性。
Description
技术领域
本发明涉及通过发酵生产L-氨基酸的方法,更具体地涉及有助于这种发酵的源自大肠杆菌(Escherichia coli)的基因。所述基因可以用来提高L-氨基酸生产,具体地,例如,用来提高L-苏氨酸的生产。
背景技术
传统上,L-氨基酸是通过利用获自天然来源的微生物菌株或其突变体的发酵方法进行工业生产的,这些菌株受到修饰以提高L-氨基酸的产量。
已经报道过许多提高L-氨基酸产量的技术,包括用重组DNA转化微生物(例如参见美国专利号4,278,765)。其它提高产量的技术包括提高涉及氨基酸生物合成的酶的活性和/或使所得的L-氨基酸的反馈抑制的靶酶脱敏(例如参见WO95/16042或美国专利4,346,170;5,661,012和6,040,160)。
可用于发酵生产L-苏氨酸的菌株是已知的,其中,某些菌株中涉及L-苏氨酸生物合成的酶的活性提高(美国专利5,175,107;5,661,012;5,705,371;5,939,307;EP0219027),某些菌株耐受化学药物如L-苏氨酸及其类似物(WO0114525A1,EP301572A2,US5,376,538),某些菌株中受产物L-氨基酸或其副产物的反馈抑制的靶酶被脱敏(美国专利5,175,107;5,661,012),某些菌株中苏氨酸降解酶失活(美国专利5,939,307;6,297,031)。
已知的产苏氨酸菌株VKPM B-3996(美国专利5,175,107和5,705,371)是目前已知的最好的产苏氨酸菌。为了构建菌株VKPM B-3996,将下述几种突变和质粒导入亲本大肠杆菌K-12(VKPM B-7)。突变体thrA基因(突变thrA442)编码耐受苏氨酸的反馈抑制的天冬氨酸激酶高丝氨酸脱氢酶I。突变体ilvA基因(突变ilvA442)编码活性降低的苏氨酸脱氨酶,其导致异亮氨酸生物合成的速率降低并且导致异亮氨酸饥饿的渗漏(leaky)表型。在包含ilvA442突变的细菌中,thrABC操纵子的转录不被异亮氨酸所抑制,因此对于苏氨酸生产非常有效。tdh基因的失活导致苏氨酸降解被阻止。将蔗糖同化作用的遗传决定子(scrKYABR基因)转移给所述菌株。为了提高控制苏
氨酸生物合成的基因的表达,将含有突变体苏氨酸操纵子thrA442BC的质粒pVIC40导入中间菌株TDH6。该菌株发酵期间积聚的L-苏氨酸的量可以高达85g/l。
本发明人获得了相对于大肠杆菌K-12的突变体thrR(本文称作rhtA23),其在基本培养基中具有对高浓度苏氨酸或高丝氨酸的耐受性(resistance)(Astaurova,O.B.等,Appl.Bioch.And Microbiol.,21,611-616(1985))。在分别产生L-苏氨酸(SU专利号974817)、高丝氨酸和谷氨酸(Astaurova,O.B.等,Appl.Bioch.And Microbiol.,27,556-561,1991,EP1013765A)的大肠杆菌菌株例如菌株VKPM B-3996中,上述突变导致这些氨基酸产量的提高。另外,本发明人揭示rhtA基因存在于大肠杆菌染色体18min上,邻近编码谷氨酰胺转送系统组分的glnHPQ操纵子,并且所述rhtA基因与位于pexB和ompX基因之间的ORF1(ybiF基因,在GenBank登录号AAA218541,gi:440181中的第764-1651位)相同。表达ORF1编码的蛋白的单元已被命名为rhtA(rht:耐受高丝氨酸和苏氨酸)基因。另外,本发明人发现rhtA23突变是相对于ATG起始密码子-1位上的A-G取代(ABSTRACTS of 17th International Congress of Biochemistry and MolecularBiology in conjugation with 1997Annual Meeting of the American Society forBiochemistry and Molecular Biology,San Francisco,California August 24-29,1997,abstract No.457,EP1013765A)。
在苏氨酸生物合成主流途径的优化条件下,可以通过向产苏氨酸菌株补充递增量的苏氨酸远源前体(distant precursor),如天冬氨酸,来进一步改良该产苏氨酸菌株。
已知天冬氨酸(aspartate)是天冬氨酸家族氨基酸(苏氨酸,甲硫氨酸,赖氨酸)以及二氨基庚二酸(diaminopimelate)(参与组成细菌细胞壁的一种化合物)合成的碳的供体。这些合成都要经历一条具有若干分枝点和极其敏感的调控方案的复杂途径,在分枝点上(天冬氨酸,天冬氨酸半醛,高丝氨酸)存在着同工酶,其种数与从这一生物合成步骤所衍生的氨基酸一样多。由thrABC操纵子的一部分编码的天冬氨酸激酶高丝氨酸脱氢酶I促成苏氨酸生物合成的第一和第三个反应。苏氨酸和异亮氨酸调节天冬氨酸激酶高丝氨酸脱氢酶I的表达,并且苏氨酸还抑制催化上述两个反应的活性
(Escherichia coli and Salmonella,Second Edition,Editor in Chief:F.C.Neidhardt,ASM Press,Washington D.C.,1996)。
asd基因编码天冬氨酸-β-半醛脱氢酶(Asd;EC 1.2.1.11),其是赖氨酸,甲硫氨酸,苏氨酸和二氨基庚二酸生物合成途径的关键酶。天冬氨酸-β-半醛脱氢酶伴随着NADP的还原可逆地将L-天冬氨酰-4-P转变成L-天冬氨酸半醛。美国专利6,040,160公开了asd基因扩增对于大肠杆菌菌株的L-赖氨酸(属于天冬氨酸家族)生产的影响。EP0219027A公开了天冬氨酸-β-半醛脱氢酶可以用于棒状杆菌(coryneform bacteria)的L-赖氨酸,L-苏氨酸和L-异亮氨酸的生产。
不过,到目前为止,尚无利用具有增强的天冬氨酸-β-半醛脱氢酶活性的属于埃希氏菌属的细菌来生产L-苏氨酸的报道。
发明概述
本发明的一个目的是提高产L-苏氨酸菌株的产率以及提供一种利用这些菌株生产L-苏氨酸的方法。
上述目的已经通过克隆在低拷贝载体上的编码天冬氨酸-β-半醛脱氢酶的asd基因可提高L-苏氨酸生产这一发现而得以实现。由此,本发明已告完成。
本发明的一个目的是提供属于埃希氏菌属的产L-苏氨酸细菌,其中所述细菌已经受到修饰以增强天冬氨酸-β-半醛脱氢酶的活性。
本发明的另一目的是提供上述的细菌,其中通过提高天冬氨酸-β-半醛脱氢酶基因的表达而增强天冬氨酸-β-半醛脱氢酶的活性。
本发明的另一目的是提供上述的细菌,其中通过增加天冬氨酸-β-半醛脱氢酶基因的拷贝数或修饰所述基因的表达控制序列来提高基因表达,从而增强天冬氨酸-β-半醛脱氢酶的活性。
本发明的另一目的是提供如上所述的细菌,其中通过用包含所述基因的载体转化所述细菌来增加所述拷贝数。
本发明的另一目的是提供如上所述的细菌,其中天冬氨酸-β-半醛脱氢酶基因源自属于埃希氏菌属的细菌。
本发明的另一目的是提供如上所述的细菌,其中所述天冬氨酸-β-半醛脱氢酶基因编码选自下列的蛋白质:
(A)含有SEQ ID NO:2所示的氨基酸序列的蛋白质;和(B)含有在SEQ ID NO:2所示的氨基酸序列中包含了一个或几个氨基酸的删除、取代、插入或添加的氨基酸序列,并具有天冬氨酸-β-半醛脱氢酶的活性的蛋白质。
本发明的另一目的是提供如上所述的细菌,其中所述天冬氨酸-β-半醛脱氢酶基因包含选自下列的DNA:
(a)包含SEQ ID NO:1中核苷酸1-1101的核苷酸序列的DNA;和
(b)可在严格条件下与SEQ ID NO:1中核苷酸1-1101的核苷酸序列或与由该核苷酸序列制备的探针杂交,并且编码具有天冬氨酸-β-半醛脱氢酶活性的蛋白质的DNA。
本发明的又一目的是提供如上所述的细菌,其中所述严格条件包括在60℃及1x SSC和0.1%SDS的盐浓度下洗涤15分钟的条件。
本发明的又一目的是提供如上所述的细菌,其中所述细菌已被进一步修饰以提高一种或多种选自下列的基因的表达:
-突变体thrA基因,其编码天冬氨酸激酶高丝氨酸脱氢酶I,且其耐受苏氨酸的反馈抑制;
-编码高丝氨酸激酶的thrB基因;
-编码苏氨酸合酶的thrC基因;和
-编码推定的跨膜蛋白的rhtA基因。
本发明的又一目的是提供如上所述的细菌,其中所述细菌已被修饰以提高所述突变体thrA基因,所述thrB基因,所述thrC基因和所述rhtA基因的表达。
本发明的又一目的是提供生产L-苏氨酸的方法,包括在培养基中培养如上所述的细菌以引起L-苏氨酸在培养基中的积聚,并且从培养基中收集L-苏氨酸。
优选实施方案的描述
在本发明中,“产L-苏氨酸细菌”指一种细菌,当其在培养基中培养时可以引起L-苏氨酸在培养基中积聚。可以通过选育来赋予或提高这种产L-苏氨酸的能力。本文所用的短语“产L-苏氨酸细菌”还指一种细菌,其与大肠杆菌野生型或亲本菌株例如大肠杆菌K-12菌株相比,能产生更多的L-苏氨酸并引起L-苏氨酸在培养基中以更高的量积聚。
短语“属于埃希氏菌属的细菌”指按照微生物领域技术人员已知的分类法而归类在埃希氏菌属中的细菌。本发明中用到的属于埃希氏菌属的微生物包括但不限于大肠杆菌(E.coli)。
可以用于本发明的属于埃希氏菌属的微生物并无特别限制,但例如由Neidhardt,F.C.等描述的细菌(大肠杆菌和鼠伤寒沙门菌(Salmonellatyphimurium),American Society for Microbiology,Washington D.C.,1208,表1)当为本发明所包括。
短语“天冬氨酸-β-半醛脱氢酶的活性”指在磷酸或砷酸存在的情况下催化NADP可逆的底物依赖型还原的活性。天冬氨酸-β-半醛脱氢酶的活性可以通过如Preiss,J.等(Curr.Microbiol.,7:263-268(1982))所述的方法进行测量。
短语“受到修饰以提高天冬氨酸-β-半醛脱氢酶的活性”指平均每个细胞的活性高于未修饰的菌株,如野生型菌株。此类修饰的例子包括提高平均每个细胞的天冬氨酸-β-半醛脱氢酶分子的数目,提高平均每个天冬氨酸-β-半醛脱氢酶分子的比活性等等。另外,可以用作比较的野生型菌株包括例如大肠杆菌K-12。天冬氨酸-β-半醛脱氢酶细胞内活性的提高将引起培养基中L-苏氨酸积聚的量提高。
通过增强编码天冬氨酸-β-半醛脱氢酶的基因的表达可以实现细菌细胞中天冬氨酸-β-半醛脱氢酶活性的增强。源自属于埃希氏菌属的细菌的任何基因,以及源自其它细菌,如棒状杆菌的任何基因,都可以用作天冬氨酸-β-半醛脱氢酶基因。在这些之中,优选属于埃希氏菌属的细菌的基因。
作为编码大肠杆菌天冬氨酸-β-半醛脱氢酶的基因,asd基因已经得以阐明(GenBank登录号NC_000913.1,gi:16131307的序列中第3572511-3571408位核苷酸)。因此,利用基于该基因核苷酸序列制备的引物通过PCR(聚合酶链式反应;参照White,T.J.等,Trends Genet.,5,185(1989))可以获得asd基因。以类似的方式可以获得其它微生物的编码天冬氨酸-β-半醛脱氢酶的基因。
源自大肠杆菌的asd基因可以体现为例如编码下列蛋白质(A)或(B)的DNA:
(A)具有SEQ ID NO:2中所示氨基酸序列的蛋白质;或
(B)具有在SEQ ID NO:2所示氨基酸序列中包含了一个或几个氨基酸
的删除、取代、插入或添加的氨基酸序列的蛋白质。
“几个”氨基酸的数目根据蛋白质三维结构中氨基酸残基的位置或种类而不同。它可以是2-30,优选2-15,对于蛋白质(A)更优选2-5。在对于所述蛋白质的功能非关键性的蛋白质区域中可以发生氨基酸的删除、取代、插入或添加。这是因为一些氨基酸彼此具有高度同源性从而三维结构或活性不受这种变化影响。因此,在保持天冬氨酸-β-半醛脱氢酶的活性的前提下,蛋白质变异体(B)可以是相对于SEQ ID NO:2中所示天冬氨酸-β-半醛脱氢酶完整氨基酸序列具有不低于70%,优选不低于80%,更优选不低于90%,最优选不低于95%同源性的任一变异体。两种氨基酸序列之间的同源性可以利用公知的方法确定,例如计算机程序BLAST 2.0,其计算三种参数:分值、同一性和相似性。
一个或几个氨基酸的取代、删除、插入或添加应当是保守性突变以维持活性。代表性的保守性突变是保守性取代。保守性取代的例子包括Ser或Thr对Ala的取代,Gln,His或Lys对Arg的取代,Glu,Gln,Lys,His或Asp对Asn的取代,Asn,Glu或Gln对Asp的取代,Ser或Ala对Cys的取代,Asn,Glu,Lys,His,Asp或Arg对Gln的取代,Asn,Gln,Lys或Asp对Glu的取代,Pro对Gly的取代,Asn,Lys,Gln,Arg或Tyr对His的取代,Leu,Met,Val或Phe对Ile的取代,Ile,Met,Val或Phe对Leu的取代,Asn,Glu,Gin,His或Arg对Lys的取代,Ile,Leu,Val或Phe对Met的取代,Trp,Tyr,Met,Ile或Leu对Phe的取代,Thr或Ala对Ser的取代,Ser或Ala对Thr的取代,Phe或Tyr对Trp的取代,His,Phe或Trp对Tyr的取代,和Met,Ile或Leu对Val的取代。
编码与上述天冬氨酸-β-半醛脱氢酶基本上相同的蛋白质的DNA可以通过例如修饰编码天冬氨酸-β-半醛脱氢酶(SEQ ID NO:1)的DNA的核苷酸序列而获得,例如,通过定点诱变使在特定位点上的一个或几个氨基酸残基包括(involve)删除、取代、插入或添加。如上所述修饰的DNA可以通过常规已知的突变处理获得。这些处理包括用羟胺处理编码本发明蛋白质的DNA,或用紫外光辐照或诸如N-甲基-N’-硝基-N-亚硝基胍或亚硝酸的试剂对包含所述DNA的细菌进行处理。
编码与天冬氨酸-β-半醛脱氢酶基本上相同的蛋白质的DNA可以通过在合适的细胞中表达具有上述突变的DNA并考察任何表达产物的活性而获
得。编码与天冬氨酸-β-半醛脱氢酶基本上相同的蛋白质的DNA还可以通过从编码天冬氨酸-β-半醛脱氢酶的突变体DNA或从包含突变体的细胞中分离DNA而获得,其可以在严格条件下与核苷酸序列中包含有例如SEQ IDNO:1中所示核苷酸序列的探针杂交,并且编码具有天冬氨酸-β-半醛脱氢酶活性的蛋白质。“严格条件”这里指这样的条件,在该条件下形成所谓的特异性杂交体,并且不形成非特异性杂交体。这种条件难以用数值来清楚地表达。不过,例如,可以以下面的条件为例来说明严格条件:在此条件下,具有高度同源性的DNA,例如具有不小于50%同源性的DNA,可以彼此杂交;但是同源性低于上述值的DNA则不能彼此杂交。或者,严格条件也可以以下面的条件为例来说明:在此条件下,DNA能够在等同于DNA印迹杂交(Southern hybridization)中普通洗涤条件的盐浓度,即1x SSC,0.1%SDS,优选0.1x SSC,0.1%SDS的盐浓度下,于60℃杂交。洗涤的持续时间取决于用于印迹杂交的膜的类型,而且按照惯例由生产商推荐。例如,推荐的在严格条件下洗涤HybondTM N+尼龙膜(Amersham)的持续时间为15分钟。
还可以将SEQ ID NO:1核苷酸序列的部分序列用作探针。探针可以利用基于SEQ ID NO:1核苷酸序列的引物,并包含SEQ ID NO:1核苷酸序列的DNA片段作为模板,通过PCR来制备。当使用大约300bp长度的DNA片段作为探针时,洗涤的杂交条件包括,例如,50℃,2x SSC和0.1%SDS。
如上所述的核苷酸的取代、删除、插入或添加还包括天然存在的突变(突变体或变异体),这些突变可以归因于,例如,含有天冬氨酸-β-半醛脱氢酶的细菌的种内或属内的多样性。
“用编码蛋白质的DNA转化细菌”指通过例如常规方法将DNA导入细菌中。这种DNA的转化将导致编码本发明蛋白质的基因表达的提高,并且将增强细菌细胞中所述蛋白质的活性。
增强基因表达的方法包括提高基因拷贝数。将基因导入能够在属于埃希氏菌属的细菌中发挥作用的载体中可提高该基因的拷贝数。优选地使用低拷贝载体。低拷贝载体的例子包括但不限于pSC101,pMW118,pMW119等等。术语“低拷贝载体”是用于指拷贝数最高为5拷贝每细胞的载体。转化的方法包括迄今已报道的任何已知方法。例如,对于大肠杆菌K-12可以利用已经报道的一种通过氯化钙处理受体细胞而提高细胞对于DNA的通透
性的方法(Mandel,M.和Higa,A.,J.Mol.Biol.,53,159(1970))。
基因表达的增强还可以通过例如同源重组,Mu整合(Mu integration)等方法,将多拷贝的基因导入细菌染色体中而实现。例如,一次Mu整合允许最多将基因3个拷贝导入细菌染色体中。
基因表达的增强还可以通过将本发明的DNA置于强启动子的控制下而实现。例如,已知的lac启动子,trp启动子,trc启动子,以及λ噬菌体的PR,和PL启动子都是强启动子。可以将强启动子的使用与基因拷贝的增加结合起来。
或者,可以通过例如向启动子中导入突变以提高位于该启动子下游基因的转录水平,从而增强启动子的作用。另外已知,发生在核糖体结合位点(RBS)和起始密码子之间的间隔区中,特别是起始密码子紧邻上游的序列中的几个核苷酸的取代,可深刻地影响mRNA的可翻译性。例如已经发现,根据起始密码子之前三个核苷酸的性质不同,表达水平变化范围可达20倍(Gold等,Annu.Rev.Microbiol.,35,365-403,1981;Hui等,EMBO J.,3,623-629,1984)。已经证明,rhtA23突变是在相对ATG起始密码子的-1位置上的A-G取代(ABSTRACTS of 17th International Congress of Biochemistryand Molecular Biology in conjugation with 1997 Annual Meeting of theAmerican Society for Biochemistry and Molecular Biology,San Francisco,California August 24-29,1997,abstract No.457)。由此可能暗示,rhtA23突变将增强rhtA基因表达,并因此提高对于苏氨酸,高丝氨酸和其它一些转运出细胞的物质的耐受性。
另外,还可以向细菌染色体上天冬氨酸-β-半醛脱氢酶基因的启动子区中导入核苷酸取代,从而增强启动子功能。改变表达控制序列可以通过例如与使用温度敏感型质粒的基因置换相同的方式来进行,如在国际公开号WO00/18935和日本专利公开号1-215280中所公开的。
提高天冬氨酸-β-半醛脱氢酶基因的拷贝数还可以通过将多拷贝的天冬氨酸-β-半醛脱氢酶基因导入细菌的染色体DNA中而实现。为了将多拷贝的天冬氨酸-β-半醛脱氢酶基因导入细菌染色体中,使用在染色体DNA中具有多个拷贝的序列进行同源重组,以该序列在染色体DNA中的拷贝为同源重组的靶序列。在染色体DNA中具有多个拷贝的序列包括但不限于重复DNA,或存在于转座元件末端的反向重复序列。另外,如美国专利号
5,595,889所公开的,可以将天冬氨酸-β-半醛脱氢酶基因并入转座子中,并使该转座子得以被转移以便将该基因的多个拷贝导入染色体DNA中。
质粒DNA的制备方法包括但不限于DNA的消化和连接,转化,选择寡核苷酸作为引物等等,或其它本领域技术人员公知的方法。这些方法,已在例如Sambrook,J.,Fritsch,E.F.,和Maniatis,T.,“Molecular CloningA Laboratory Manual,Second Edition”,Cold Spring Harbor LaboratoryPress(1989)中得以描述。
可以通过将上述DNA导入具有固有的产L-苏氨酸能力的细菌中而获得本发明的细菌。或者,可以通过赋予已经包含上述DNA的细菌以产L-苏氨酸的能力而获得本发明的细菌。
本发明的所包括的亲本菌株的例子包括但不限于属于埃希氏菌属的产L-苏氨酸细菌如大肠杆菌菌株TDH-6/pVIC40(VKPM B-3996)(美国专利5,175,107,美国专利5,705,371),大肠杆菌菌株NRRL-21593(美国专利5,939,307),大肠杆菌菌株FERM BP-3756(美国专利5,474,918),大肠杆菌菌株FERM BP-3519和FERM BP-3520(美国专利5,376,538),大肠杆菌菌株MG442(Gusyatiner等,Genetika(俄文),14,947-956(1978)),大肠杆菌菌株VL643和VL2055(EP1149911A)等等。
菌株TDH-6是thrC基因缺陷的,并且是蔗糖同化性的(sucroseassimilative),而ilvA基因具有渗漏突变。此菌株在rhtA基因中具有突变,此突变赋予对于高浓度苏氨酸或高丝氨酸的耐受性。菌株B-3996含有质粒pVIC40,该质粒是通过将包括编码天冬氨酸激酶高丝氨酸脱氢酶I的突变体thrA基因的thrA*BC操纵子插入到源于RSF1010的载体中而获得的,所述天冬氨酸激酶高丝氨酸脱氢酶I已经基本上对苏氨酸引起的反馈抑制脱敏。菌株B-3996于1987年11月19日保藏于全联盟抗生素科学中心(All-Union Scientific Center of Antibiotics)(Nagatinskaya Street3-A,113105Moscow,Russian Federation),保藏号RIA1867。该菌株还于1987年4月7日保藏于俄罗斯国立工业微生物保藏中心(VKPM)(Dorozhny proezd.1,Moscow 113545,Russian Federation),保藏号B-3996。
优选地,本发明的细菌受到进一步修饰以增强下列基因中的一种或多种以及asd基因的表达:
-编码耐受由苏氨酸引起的反馈抑制的天冬氨酸激酶高丝氨酸脱氢酶I的突变体thrA基因;
-编码高丝氨酸激酶的thrB基因;
-编码苏氨酸合酶的thrC基因;
本发明的另一个优选的实施方案是这样的细菌,其除了asd基因被增强之外,还受到修饰以增强编码推定的跨膜蛋白的rhtA基因。本发明的最优选的实施方案是受到修饰以提高asd基因,突变体thrA基因,thrB基因,thrC基因和rhtA基因的表达的细菌。
本发明的生产L-苏氨酸的方法包括在培养基中培养本发明的细菌,使L-苏氨酸得以在培养基中积聚,并且从培养基中收集L-苏氨酸的步骤。
在本发明中,培养以及从培养基中收集并纯化L-苏氨酸可以通过类似于常规发酵方法的方式进行,在所述常规发酵方法中利用微生物生产L-苏氨酸。
用于培养的培养基可以是合成的也可以是天然培养基,只要是所述培养基包括碳源,氮源和矿物质,必要时还包括适量的微生物生长所需的营养成分。所述碳源可以包括多种糖类如葡萄糖和蔗糖,以及多种有机酸。根据所选微生物的同化方式,可以使用醇类,包括乙醇和甘油。用作所述氮源的有:各种铵盐如氨和硫酸铵,其它的氮化合物如胺(amine),天然氮源如蛋白胨,大豆水解物,和经过消化的发酵微生物。用作所述矿物质的有:磷酸二氢钾(potassium monophosphate),硫酸镁,氯化钠,硫酸亚铁,硫酸锰,氯化钙等等。用作所述维生素的有:硫胺素,酵母提取物等等。必要时,培养基中可以加入其它营养成分。例如,如果微生物生长需要异亮氨酸(异亮氨酸营养缺陷型),可以将足量的异亮氨酸加到培养基中。
优选在有氧条件下进行培养,例如振荡培养和通气搅拌培养,培养温度为20-40℃,优选30-38℃。培养物的pH通常在5和9之间,优选在6.5和7.2之间。可以用氨,碳酸钙,多种酸,多种碱和缓冲液调节培养物的pH。通常,1-5天的培养可导致L-苏氨酸在液体培养基中的积聚。
培养后,可以通过离心或膜过滤将固体如细胞从液体培养基中移除,随后收集L-苏氨酸并通过离子交换,浓缩和结晶方法进行纯化。
实施例
下面将参照下列非限制性实施例对本发明进行更加具体地阐释。
实施例1:asd基因从大肠杆菌中克隆入pM载体
从获自俄罗斯国立工业微生物保藏中心(VKPM)(Dorozhny proezd.1,Moscow 113545,Russian Federation)的大肠杆菌菌株(K12Mu cts62Mud5005)(VKPM B-6804)的染色体DNA中克隆asd基因。首先,诱导大肠杆菌菌株(K12Mu cts62Mud5005)(VKPM B-6804)中的小Mu噬菌体。随后,使用所获得的一组(the set)包含部分染色体的质粒pMud5005的衍生物转化asd菌株SH 309。获自俄罗斯国立工业微生物保藏中心(VKPM)(Dorozhnyproezd.1,Moscow 113545,Russian Federation)的菌株SH 309(VKPMB-3899)具有下列表型:F-araD139rpsL150deoCl ptsF25relAl feb5301rbsRugpA704::Tn10Del(argF-lac)U169Del(mal-asd)TetR StrR。asd-菌株SH309不能在L-培养基(L-medium)上生长,且其生长需要二氨基庚二酸(diaminopimelinic acid)(DAPA)。在L-培养基上选择具有质粒pMud5005-asd的SH 309asd+克隆。分离质粒pMud5005-asd并将含有asd基因的BamHI-PstIDNA片段(1646bp)再克隆入pMW119,所述pMW119事先已被修饰使得启动子Plac为启动子PR所取代。由此构建了含有受启动子PR控制的asd基因的质粒pMW-asd。质粒pMW-asd与质粒pVIC40(复制子pRSF1010)相容,因此两种质粒pVIC40和pMW-asd可以同时保持在细菌中。
将pMW-asd质粒导入抗链霉素的产苏氨酸大肠杆菌菌株B-3996中。由此获得菌株B-3996(pMW-asd)。
实施例2.asd基因扩增对苏氨酸生长的影响
两种大肠杆菌菌株B-3996和B-3996(pMW-asd)都在含有链霉素(100μg/ml)和氨苄青霉素(100μg/ml)的L-琼脂(L-agar)平板上于37℃生长18-24小时。将菌株于旋转振荡器上(250rpm)32℃下在盛有2ml含4%蔗糖的L-肉汤培养基(L-broth medium)的20×200mm试管中生长18小时以获得种子培养物。随后,用0.1ml(5%)种子培养物接种发酵培养基。发酵在20×200mm试管中于2ml基本发酵培养基中进行。在32℃,250rpm振荡条件下使细胞生长24小时。
培养后,通过薄层层析测定培养基中L-苏氨酸的积聚量。用流动相:propan-2-ol∶丙酮∶水∶25%氨水=25∶25∶7∶6(v/v)在Sorbfil平板上展开,(StockCompany Sorbopolymer,Krasnodar,Russia)。用茚三酮的丙酮溶液(2%)作为显色剂。结果在表1中给出。
发酵培养基的组成(g/l)如下:
蔗糖 40.0
(NH4)2SO4 10.0
KH2PO4 1.0
MgSO4·7H2O 0.4
FeSO4·7H2O 0.02
MnSO4·5H2O 0.02
盐酸硫胺素 0.0002
酵母提取物 1.0
CaCO3 20.0
L-异亮氨酸 0.05
将蔗糖和硫酸镁单独灭菌。于180℃对CaCO3进行干热灭菌2小时。将pH调节至7.0。灭菌后将抗生素加入培养基中。
尽管已经参照其优选的实施方案对发明进行了详细描述,对于本领域技术人员来说显而易见可以进行各种变化,采用各种等同方案,而不背离本发明的范围。本文引入上述各个文件的全文以供参考。
表1.
工业实用性
可以有效地生产L-苏氨酸。
序列表
<110>味之素株式会社(Ajinomoto Co.,Inc.)
<120>属于埃希氏菌属的产L-苏氨酸细菌以及生产L-苏氨酸的方法
<130>C2540PC4231
<150>RU 2003135292
<151>2003-12-05
<150>US 60/586,222
<151>2004-07-09
<160>2
<210>1
<211>1104
<212>DNA
<213>大肠杆菌(Escherichia coli)
<220>
<221>CDS
<222>(1)..(1104)
<400>1
atg aaa aat gtt ggt ttt atc ggc tgg cgc ggt atg gtc ggc tcc gtt 48
Met Lys Asn Val Gly Phe Ile Gly Trp Arg Gly Met Val Gly Ser Val
1 5 10 15
ctc atg caa cgc atg gtt gaa gag cgc gac ttc gac gcc att cgc cct 96
Leu Met Gln Arg Met Val Glu Glu Arg Asp Phe Asp Ala Ile Arg Pro
20 25 30
gtc ttc ttt tct act tct cag ctt ggc cag gct gcg ccg tct ttt ggc 144
Val Phe Phe Ser Thr Ser Gln Leu Gly Gln Ala Ala Pro Ser Phe Gly
35 40 45
gga acc act ggc aca ctt cag gat gcc ttt gat ctg gag gcg cta aag 192
Gly Thr Thr Gly Thr Leu Gln Asp Ala Phe Asp Leu Glu Ala Leu Lys
50 55 60
gcc ctc gat atc att gtg acc tgt cag ggc ggc gat tat acc aac gaa 240
Ala Leu Asp Ile Ile Val Thr Cys Gln Gly Gly Asp Tyr Thr Asn Glu
65 70 75 80
atc tat cca aag ctt cgt gaa agc gga tgg caa ggt tac tgg att gac 288
Ile Tyr Pro Lys Leu Arg Glu Ser Gly Trp Gln Gly Tyr Trp Ile Asp
85 90 95
gca gca tcg tct ctg cgc atg aaa gat gac gcc atc atc att ctt gac 336
Ala Ala Ser Ser Leu Arg Met Lys Asp Asp Ala Ile Ile Ile Leu Asp
100 105 110
ccc gtc aat cag gac gtc att acc gac gga tta aat aat ggc atc agg 384
Pro Val Asn Gln Asp Val Ile Thr Asp Gly Leu Asn Asn Gly Ile Arg
115 120 125
act ttt gtt ggc ggt aac tgt acc gta agc ctg atg ttg atg tcg ttg 432
Thr Phe Val Gly Gly Asn Cys Thr Val Ser Leu Met Leu Met Ser Leu
130 135 140
ggt ggt tta ttc gcc aat gat ctt gtt gat tgg gtg tcc gtt gca acc 480
Gly Gly Leu Phe Ala Asn Asp Leu Val Asp Trp Val Ser Val Ala Thr
145 150 155 160
tac cag gcc gct tcc ggc ggt ggt gcg cga cat atg cgt gag tta tta 528
Tyr Gln Ala Ala Ser Gly Gly Gly Ala Arg His Met Arg Glu Leu Leu
165 170 175
acc cag atg ggc cat ctg tat ggc cat gtg gca gat gaa ctc gcg acc 576
Thr Gln Met Gly His Leu Tyr Gly His Val Ala Asp Glu Leu Ala Thr
180 185 190
ccg tcc tct gct att ctc gat atc gaa cgc aaa gtc aca acc tta acc 624
Pro Ser Ser Ala Ile Leu Asp Ile Glu Arg Lys Val Thr Thr Leu Thr
195 200 205
cgt agc ggt gag ctg ccg gtg gat aac ttt ggc gtg ccg ctg gcg ggt 672
Arg Ser Gly Glu Leu Pro Val Asp Asn Phe Gly Val Pro Leu Ala Gly
210 215 220
agc ctg att ccg tgg atc gac aaa cag ctc gat aac ggt cag agc cgc 720
Ser Leu Ile Pro Trp Ile Asp Lys Gln Leu Asp Asn Gly Gln Ser Arg
225 230 235 240
gaa gag tgg aaa ggg cag gcg gaa acc aac aag atc ctc aac aca tct 768
Glu Glu Trp Lys Gly Gln Ala Glu Thr Asn Lys Ile Leu Asn Thr Ser
245 250 255
tcc gta att ccg gta gat ggt tta tgt gtg cgt gtc ggg gca ttg cgc 816
Ser Val Ile Pro Val Asp Gly Leu Cys Val Arg Val Gly Ala Leu Arg
260 265 270
tgc cac agc cag gca ttc act att aaa ttg aaa aaa gat gtg tct att 864
Cys His Ser Gln Ala Phe Thr Ile Lys Leu Lys Lys Asp Val Ser Ile
275 280 285
ccg acc gtg gaa gaa ctg ctg gct gcg cac aat ccg tgg gcg aaa gtc 912
Pro Thr Val Glu Glu Leu Leu Ala Ala His Asn Pro Trp Ala Lys Val
290 295 300
gtt ccg aac gat cgg gaa atc act atg cgt gag cta acc cca gct gcc 960
Val Pro Asn Asp Arg Glu Ile Thr Met Arg Glu Leu Thr Pro Ala Ala
305 310 315 320
gtt acc ggc acg ctg acc acg ccg gta ggc cgc ctg cgt aag ctg aat 1008
Val Thr Gly Thr Leu Thr Thr Pro Val Gly Arg Leu Arg Lys Leu Asn
325 330 335
atg gga cca gag ttc ctg tca gcc ttt acc gtg ggc gac cag ctg ctg 1056
Met Gly Pro Glu Phe Leu Ser Ala Phe Thr Val Gly Asp Gln Leu Leu
340 345 350
tgg ggg gcc gcg gag ccg ctg cgt cgg atg ctt cgt caa ctg gcg taa 1104
Trp Gly Ala Ala Glu Pro Leu Arg Arg Met Leu Arg Gln Leu Ala
355 360 365
<210>2
<211>367
<212>PRT
<213>大肠杆菌(Escherichia coli)
<400>2
Met Lys Asn Val Gly Phe Ile Gly Trp Arg Gly Met Val Gly Ser Val
1 5 10 15
Leu Met Gln Arg Met Val Glu Glu Arg Asp Phe Asp Ala Ile Arg Pro
20 25 30
Val Phe Phe Ser Thr Ser Gln Leu Gly Gln Ala Ala Pro Ser Phe Gly
35 40 45
Gly Thr Thr Gly Thr Leu Gln Asp Ala Phe Asp Leu Glu Ala Leu Lys
50 55 60
Ala Leu Asp Ile Ile Val Thr Cys Gln Gly Gly Asp Tyr Thr Asn Glu
65 70 75 80
Ile Tyr Pro Lys Leu Arg Glu Ser Gly Trp Gln Gly Tyr Trp Ile Asp
85 90 95
Ala Ala Ser Ser Leu Arg Met Lys Asp Asp Ala Ile Ile Ile Leu Asp
100 105 110
Pro Val Asn Gln Asp Val Ile Thr Asp Gly Leu Asn Asn Gly Ile Arg
115 120 125
Thr Phe Val Gly Gly Asn Cys Thr Val Ser Leu Met Leu Met Ser Leu
130 135 140
Gly Gly Leu Phe Ala Asn Asp Leu Val Asp Trp Val Ser Val Ala Thr
145 150 155 160
Tyr Gln Ala Ala Ser Gly Gly Gly Ala Arg His Met Arg Glu Leu Leu
165 170 175
Thr Gln Met Gly His Leu Tyr Gly His Val Ala Asp Glu Leu Ala Thr
180 185 190
Pro Ser Ser Ala Ile Leu Asp Ile Glu Arg Lys Val Thr Thr Leu Thr
195 200 205
Arg Ser Gly Glu Leu Pro Val Asp Asn Phe Gly Val Pro Leu Ala Gly
210 215 220
Ser Leu Ile Pro Trp Ile Asp Lys Gln Leu Asp Asn Gly Gln Ser Arg
225 230 235 240
Glu Glu Trp Lys Gly Gln Ala Glu Thr Asn Lys Ile Leu Asn Thr Ser
245 250 255
Ser Val Ile Pro Val Asp Gly Leu Cys Val Arg Val Gly Ala Leu Arg
260 265 270
Cys His Ser Gln Ala Phe Thr Ile Lys Leu Lys Lys Asp Val Ser Ile
275 280 285
Pro Thr Val Glu Glu Leu Leu Ala Ala His Asn Pro Trp Ala Lys Val
290 295 300
Val Pro Asn Asp Arg Glu Ile Thr Met Arg Glu Leu Thr Pro Ala Ala
305 310 315 320
Val Thr Gly Thr Leu Thr Thr Pro Val Gly Arg Leu Arg Lys Leu Asn
325 330 335
Met Gly Pro Glu Phe Leu Ser Ala Phe Thr Val Gly Asp Gln Leu Leu
340 345 350
Trp Gly Ala Ala Glu Pro Leu Arg Arg Met Leu Arg Gln Leu Ala
355 360 365
Claims (4)
1.一种产生L-苏氨酸的方法,其包括:
在培养基中培养大肠杆菌以使L-苏氨酸在所述培养基中积累,其中所述大肠杆菌已受到修饰以增加天冬氨酸-β-半醛脱氢酶的活性;和从所述培养基中收集L-苏氨酸,其中所述大肠杆菌已进一步受到修饰以与未修饰的细菌相比增强突变thrA基因、thrB基因、thrC基因和rhtA基因的表达,所述突变thrA基因编码天冬氨酸激酶高丝氨酸脱氢酶I且其耐受苏氨酸的反馈抑制,所述thrB基因编码高丝氨酸激酶,所述thrC基因编码苏氨酸合酶,所述rhtA基因编码推定的跨膜蛋白,
其中通过增加编码由SEQ ID NO:2的氨基酸序列组成的蛋白质的天冬氨酸-β-半醛脱氢酶基因的表达而使所述天冬氨酸-β-半醛脱氢酶的活性与未修饰的细菌相比增加。
2.根据权利要求1的方法,其中通过增加天冬氨酸-β-半醛脱氢酶基因的拷贝数或将所述基因置于强启动子的控制下,从而增强天冬氨酸-β-半醛脱氢酶的所述活性。
3.根据权利要求2的方法,其中通过用包含所述基因的载体转化所述大肠杆菌来增加拷贝数。
4.根据权利要求1的方法,其中所述天冬氨酸-β-半醛脱氢酶基因包含由SEQ ID NO:1中核苷酸1-1101的核苷酸序列组成的DNA。
Applications Claiming Priority (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2003135292/13A RU2275424C2 (ru) | 2003-12-05 | 2003-12-05 | Способ получения l-треонина с использованием бактерий, принадлежащих к роду escherichia |
RU2003135292 | 2003-12-05 | ||
US58622204P | 2004-07-09 | 2004-07-09 | |
US60/586,222 | 2004-07-09 | ||
PCT/JP2004/018436 WO2005054490A1 (en) | 2003-12-05 | 2004-12-03 | L-threonine producing bacterium belonging to the genus escherichia and method for producing l-threonine |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201210151630XA Division CN102816804A (zh) | 2003-12-05 | 2004-12-03 | 属于埃希氏菌属的产l-苏氨酸细菌以及生产l-苏氨酸的方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN1914328A CN1914328A (zh) | 2007-02-14 |
CN1914328B true CN1914328B (zh) | 2012-07-04 |
Family
ID=35824220
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201210151630XA Pending CN102816804A (zh) | 2003-12-05 | 2004-12-03 | 属于埃希氏菌属的产l-苏氨酸细菌以及生产l-苏氨酸的方法 |
CN2004800358213A Active CN1914328B (zh) | 2003-12-05 | 2004-12-03 | 属于埃希氏菌属的产l-苏氨酸细菌以及生产l-苏氨酸的方法 |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201210151630XA Pending CN102816804A (zh) | 2003-12-05 | 2004-12-03 | 属于埃希氏菌属的产l-苏氨酸细菌以及生产l-苏氨酸的方法 |
Country Status (5)
Country | Link |
---|---|
US (1) | US7186531B2 (zh) |
CN (2) | CN102816804A (zh) |
ES (1) | ES2392825T3 (zh) |
RU (1) | RU2275424C2 (zh) |
ZA (1) | ZA200604819B (zh) |
Families Citing this family (44)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2212447C2 (ru) * | 2000-04-26 | 2003-09-20 | Закрытое акционерное общество "Научно-исследовательский институт Аджиномото-Генетика" | Штамм escherichia coli - продуцент аминокислоты (варианты) и способ получения аминокислот (варианты) |
RU2229513C2 (ru) * | 2001-11-23 | 2004-05-27 | Закрытое акционерное общество "Научно-исследовательский институт Аджиномото-Генетика" | Способ получения l-аминокислот, штамм escherichia coli - продуцент l-аминокислоты (варианты) |
RU2273666C2 (ru) * | 2003-02-26 | 2006-04-10 | Закрытое акционерное общество "Научно-исследовательский институт Аджиномото-Генетика" | Способ получения l-аминокислот методом ферментации смеси глюкозы и пентоз |
RU2276687C2 (ru) * | 2003-07-16 | 2006-05-20 | Закрытое акционерное общество "Научно-исследовательский институт Аджиномото-Генетика" | Бактерия, принадлежащая к роду escherichia, - продуцент l-гистидина и способ получения l-гистидина |
US20050176033A1 (en) | 2003-11-10 | 2005-08-11 | Klyachko Elena V. | Mutant phosphoribosylpyrophosphate synthetase and method for producing L-histidine |
EP1733038B1 (en) * | 2004-03-31 | 2015-06-03 | Ajinomoto Co., Inc. | Method for producing purine nucleosides and nucleotides by fermentation using bacterium belonging to the genus bacillus or escherichia |
RU2004124226A (ru) | 2004-08-10 | 2006-01-27 | Закрытое акционерное общество "Научно-исследовательский институт Аджиномото-Генетика" (ЗАО АГРИ) (RU) | Использование фосфокетолазы для продукции полезных метаболитов |
US7915018B2 (en) | 2004-10-22 | 2011-03-29 | Ajinomoto Co., Inc. | Method for producing L-amino acids using bacteria of the Enterobacteriaceae family |
RU2004137198A (ru) * | 2004-12-21 | 2006-06-10 | Закрытое акционерное общество "Научно-исследовательский институт Аджиномото-Генетика" (ЗАО АГРИ) (RU) | СПОСОБ ПОЛУЧЕНИЯ L-АМИНОКИСЛОТ С ИСПОЛЬЗОВАНИЕМ БАКТЕРИИ СЕМЕЙСТВА Enterobacteriaceae, В КОТОРОЙ ИНАКТИВИРОВАН ГЕН yafA |
RU2004137719A (ru) * | 2004-12-23 | 2006-06-10 | Закрытое акционерное общество "Научно-исследовательский институт Аджиномото-Генетика" (ЗАО АГРИ) (RU) | Способ получения l-аминокислот с использованием бактерий семейства enterobacteriaceae |
US7422880B2 (en) * | 2005-01-19 | 2008-09-09 | Ajinomoto Co., Inc. | Method for producing an l-amino acid using a bacterium of the enterobacteriaceae family having a pathway of glycogen biosynthesis disrupted |
ATE417119T1 (de) * | 2005-02-18 | 2008-12-15 | Ajinomoto Kk | Verfahren zur herstellung einer nichtaromatischen l-aminosäure unter verwendung eines bakteriums der familie enterobacteriaceae mit abgeschwächter expression des csra-gens |
EP1848810A1 (en) * | 2005-02-18 | 2007-10-31 | Ajinomoto Co., Inc. | A method for producing an l-amino acid using a bacterium of the enterobacteriaceae family having expression of the bola gene attenuated |
WO2006088235A1 (en) | 2005-02-18 | 2006-08-24 | Ajinomoto Co., Inc. | A method for producing an l-amino acid using a bacterium of the enterobacteriaceae family |
US7723097B2 (en) * | 2005-03-11 | 2010-05-25 | Archer-Daniels-Midland Company | Escherichia coli strains that over-produce L-threonine and processes for their production |
ATE420969T1 (de) * | 2005-08-09 | 2009-01-15 | Ajinomoto Kk | Verfahren zur herstellung einer l-aminosäure unter verwendung eines bakteriums der familie enterobacteriaceae mit abgeschwächter expression des ybiv-gens |
JP2009118740A (ja) * | 2006-03-03 | 2009-06-04 | Ajinomoto Co Inc | L−アミノ酸の製造法 |
EP2351830B1 (en) * | 2006-03-23 | 2014-04-23 | Ajinomoto Co., Inc. | A method for producing an L-amino acid using bacterium of the Enterobacteriaceae family with attenuated expression of a gene coding for small RNA |
WO2007119890A1 (en) * | 2006-04-18 | 2007-10-25 | Ajinomoto Co., Inc. | A METHOD FOR PRODUCING AN L-AMINO ACID USING A BACTERIUM OF THE ENTEROBACTERIACEAE FAMILY WITH ATTENUATED EXPRESSION OF THE sfmACDFH-fimZ CLUSTER OR THE fimZ GENE |
JP2009165355A (ja) | 2006-04-28 | 2009-07-30 | Ajinomoto Co Inc | L−アミノ酸を生産する微生物及びl−アミノ酸の製造法 |
EP2035569A1 (en) * | 2006-06-01 | 2009-03-18 | Ajinomoto Co., Inc. | A method for producing an l-amino acid using a bacterium of the enterobacteriaceae family with attenuated expression of the rcsa gene |
RU2337961C2 (ru) * | 2006-07-04 | 2008-11-10 | Закрытое акционерное общество "Научно-исследовательский институт Аджиномото-Генетика" (ЗАО АГРИ) | СПОСОБ ПОЛУЧЕНИЯ L-ТРЕОНИНА С ИСПОЛЬЗОВАНИЕМ БАКТЕРИИ, ПРИНАДЛЕЖАЩЕЙ К РОДУ Escherichia, В КОТОРОЙ ИНАКТИВИРОВАН ОПЕРОН rspAB |
JP5407858B2 (ja) * | 2006-07-19 | 2014-02-05 | 味の素株式会社 | 腸内細菌科の細菌を用いたl−アミノ酸の製造方法 |
KR20080010905A (ko) * | 2006-07-28 | 2008-01-31 | 씨제이 주식회사 | L-쓰레오닌 생합성 경로의 속도제한 단계를 담당하는효소의 활성이 강화된 l-쓰레오닌 생산 미생물 및 이를이용한 l-쓰레오닌 생산 방법 |
WO2008044614A1 (en) | 2006-09-28 | 2008-04-17 | Ajinomoto Co., Inc. | Method for producing 4-hydroxy-l-isoleucine |
JP2010017081A (ja) * | 2006-10-10 | 2010-01-28 | Ajinomoto Co Inc | L−アミノ酸の製造法 |
KR100864673B1 (ko) * | 2006-11-27 | 2008-10-23 | 씨제이제일제당 (주) | 비용매를 이용하여 쓰레오닌 생산 미생물의 발효액으로부터쓰레오닌을 회수하는 방법 |
WO2008072761A2 (en) * | 2006-12-11 | 2008-06-19 | Ajinomoto Co., Inc. | Method for producing an l-amino acid |
RU2006143864A (ru) * | 2006-12-12 | 2008-06-20 | Закрытое акционерное общество "Научно-исследовательский институт Аджиномото-Генетика" (ЗАО АГРИ) (RU) | СПОСОБ ПОЛУЧЕНИЯ L-АМИНОКИСЛОТ С ИСПОЛЬЗОВАНИЕМ БАКТЕРИИ СЕМЕЙСТВА ENTEROBACTERIACEAE, В КОТОРОЙ ОСЛАБЛЕНА ЭКСПРЕССИЯ ГЕНОВ cynT, cynS, cynX, ИЛИ cynR, ИЛИ ИХ КОМБИНАЦИИ |
RU2006145712A (ru) * | 2006-12-22 | 2008-06-27 | Закрытое акционерное общество "Научно-исследовательский институт Аджиномото-Генетика" (ЗАО АГРИ) (RU) | Способ получения l-аминокислот методом ферментации с использованием бактерий, обладающих повышенной способностью к утилизации глицерина |
JP2010110217A (ja) | 2007-02-22 | 2010-05-20 | Ajinomoto Co Inc | L−アミノ酸生産菌及びl−アミノ酸の製造法 |
JP5217780B2 (ja) * | 2008-02-08 | 2013-06-19 | 味の素株式会社 | L−アミノ酸を生産する微生物及びl−アミノ酸の製造法 |
JP2012029565A (ja) | 2008-11-27 | 2012-02-16 | Ajinomoto Co Inc | L−アミノ酸の製造法 |
RU2460793C2 (ru) * | 2010-01-15 | 2012-09-10 | Закрытое акционерное общество "Научно-исследовательский институт "Аджиномото-Генетика" (ЗАО АГРИ) | Способ получения l-аминокислот с использованием бактерий семейства enterobacteriaceae |
EP2363489A1 (en) | 2010-03-03 | 2011-09-07 | Technische Universität Hamburg-Harburg | Enzyme Aspartokinase III having a reduced L-lysine feedback inhibition |
EP2374873A1 (en) | 2010-04-08 | 2011-10-12 | Technische Universität Hamburg-Harburg | Modified aspartate kinase from corynebacterium and its application for amino acid production |
BR112013010268B1 (pt) * | 2010-10-28 | 2020-09-08 | Adisseo France S.A.S. | Método de produção de ácido 2,4-dihidroxibutírico (2,4-dhb), malato quinase e seu uso, malato semialdeído desidrogenase e seu uso, dhb desidrogenase, sequência de ácido nucleico isolado, gene quimérico, vetor de expressão, microorganismo hospedeiro, processo de produção de 2,4-dhb, uso de uma metilbutiraldeído redutase ou de uma semialdeído succínico redutase |
EP2495317A1 (en) | 2011-03-01 | 2012-09-05 | Technische Universität Hamburg-Harburg | Modified phosphoenolpyruvate carboxylase from Corynebacterium glutamicum and uses thereof |
RU2011134436A (ru) | 2011-08-18 | 2013-10-27 | Закрытое акционерное общество "Научно-исследовательский институт Аджиномото-Генетика" (ЗАО "АГРИ") | Способ получения l-аминокислоты с использованием бактерии семейства enterobacteriaceae, обладающей повышенной экспрессией генов каскада образования флагелл и клеточной подвижности |
WO2013134625A1 (en) * | 2012-03-08 | 2013-09-12 | Novus International Inc. | Recombinant bacterium for l-homoserine production |
JP6835725B2 (ja) * | 2015-01-27 | 2021-02-24 | シスバイオ エ・ペー・エスCysBio ApS | L−セリンに対して改善された耐性を有する遺伝子組換え微生物 |
WO2019011946A1 (en) * | 2017-07-11 | 2019-01-17 | Adisseo France S.A.S. | YEAST PRODUCING THREONINE |
CN109554322B (zh) * | 2018-12-03 | 2020-08-04 | 江南大学 | 一种高产l-苏氨酸的重组大肠杆菌及其构建方法 |
CN110592084B (zh) * | 2019-08-28 | 2023-07-28 | 内蒙古伊品生物科技有限公司 | 一种rhtA基因启动子改造的重组菌株及其构建方法与应用 |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0219027A2 (en) * | 1985-10-04 | 1987-04-22 | Kyowa Hakko Kogyo Co., Ltd. | Process for producing amino acids |
US5175107A (en) * | 1988-10-25 | 1992-12-29 | Ajinomoto Co., Inc. | Bacterial strain of escherichia coli bkiim b-3996 as the producer of l-threonine |
Family Cites Families (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3823451C2 (de) | 1988-07-11 | 1997-02-20 | Forschungszentrum Juelich Gmbh | Rekombinante DNA, damit transformierte Mikrooganismen und Verwendung dieser Mikroorganismen zur Herstellung von L-Lysin mit Hilfe dieser Mikroorganismen |
US5705371A (en) * | 1990-06-12 | 1998-01-06 | Ajinomoto Co., Inc. | Bacterial strain of escherichia coli BKIIM B-3996 as the producer of L-threonine |
US5976843A (en) * | 1992-04-22 | 1999-11-02 | Ajinomoto Co., Inc. | Bacterial strain of Escherichia coli BKIIM B-3996 as the producer of L-threonine |
JPH07155184A (ja) * | 1993-12-08 | 1995-06-20 | Ajinomoto Co Inc | 発酵法によるl−リジンの製造法 |
US5939307A (en) * | 1996-07-30 | 1999-08-17 | The Archer-Daniels-Midland Company | Strains of Escherichia coli, methods of preparing the same and use thereof in fermentation processes for l-threonine production |
RU2148642C1 (ru) * | 1998-12-23 | 2000-05-10 | ЗАО "Научно-исследовательский институт АДЖИНОМОТО-Генетика" (ЗАО "АГРИ") | Фрагмент днк rhtc, кодирующий синтез белка rhtc, придающего повышенную устойчивость к l-треонину бактериям escherichia coli, и способ получения l-аминокислоты |
AU3674500A (en) * | 1999-04-09 | 2000-11-14 | Ajinomoto Co., Inc. | L-amino acid-producing bacteria and process for producing l-amino acid |
RU2212447C2 (ru) * | 2000-04-26 | 2003-09-20 | Закрытое акционерное общество "Научно-исследовательский институт Аджиномото-Генетика" | Штамм escherichia coli - продуцент аминокислоты (варианты) и способ получения аминокислот (варианты) |
RU2229513C2 (ru) * | 2001-11-23 | 2004-05-27 | Закрытое акционерное общество "Научно-исследовательский институт Аджиномото-Генетика" | Способ получения l-аминокислот, штамм escherichia coli - продуцент l-аминокислоты (варианты) |
RU2244007C2 (ru) * | 2002-02-27 | 2005-01-10 | Закрытое акционерное общество "Научно-исследовательский институт Аджиномото-Генетика" | Способ получения l-треонина, штамм escherichia coli - продуцент треонина (варианты) |
RU2245919C2 (ru) * | 2002-09-06 | 2005-02-10 | Закрытое акционерное общество "Научно-исследовательский институт Аджиномото-Генетика" | Способ получения l-аминокислоты, штамм escherichia coli tdh7δ mlc::cat/pprt614-продуцент l-треонина |
RU2273666C2 (ru) * | 2003-02-26 | 2006-04-10 | Закрытое акционерное общество "Научно-исследовательский институт Аджиномото-Генетика" | Способ получения l-аминокислот методом ферментации смеси глюкозы и пентоз |
KR20060018868A (ko) | 2003-05-30 | 2006-03-02 | 마이크로비아 인코포레이티드 | 아미노산 생산 방법 및 아미노산 생산용 조성물 |
-
2003
- 2003-12-05 RU RU2003135292/13A patent/RU2275424C2/ru active
-
2004
- 2004-12-03 CN CN201210151630XA patent/CN102816804A/zh active Pending
- 2004-12-03 US US11/002,072 patent/US7186531B2/en active Active
- 2004-12-03 ES ES04801656T patent/ES2392825T3/es active Active
- 2004-12-03 ZA ZA200604819A patent/ZA200604819B/en unknown
- 2004-12-03 CN CN2004800358213A patent/CN1914328B/zh active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0219027A2 (en) * | 1985-10-04 | 1987-04-22 | Kyowa Hakko Kogyo Co., Ltd. | Process for producing amino acids |
US5175107A (en) * | 1988-10-25 | 1992-12-29 | Ajinomoto Co., Inc. | Bacterial strain of escherichia coli bkiim b-3996 as the producer of l-threonine |
Non-Patent Citations (2)
Title |
---|
Catherine Haziza 等.Nucleotide sequence of the asd gene of Escherichiacoli:absence of a typical attenuation signal.The EMBO Journal1 3.1982,1(3),第382页. |
Catherine Haziza 等.Nucleotide sequence of the asd gene of Escherichiacoli:absence of a typical attenuation signal.The EMBO Journal1 3.1982,1(3),第382页. * |
Also Published As
Publication number | Publication date |
---|---|
RU2003135292A (ru) | 2005-05-27 |
CN102816804A (zh) | 2012-12-12 |
RU2275424C2 (ru) | 2006-04-27 |
ES2392825T3 (es) | 2012-12-14 |
US7186531B2 (en) | 2007-03-06 |
ZA200604819B (en) | 2007-10-31 |
CN1914328A (zh) | 2007-02-14 |
US20050124048A1 (en) | 2005-06-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN1914328B (zh) | 属于埃希氏菌属的产l-苏氨酸细菌以及生产l-苏氨酸的方法 | |
CN1330763C (zh) | 使用属于埃希氏菌属的细菌生产l-苏氨酸的方法 | |
EP1720993B1 (en) | Method for producing l-threonine using bacteria belonging to the genus escherichia | |
CN103635578A (zh) | 编码甘油醛3-磷酸脱氢酶的gap基因的启动子的变体 | |
SK10202000A3 (sk) | Koryneformn baktrie produkujce l-lyzn a spsob vroby lyznu | |
SK287997B6 (sk) | Isolated gene of Corynebacterium glutamicum, recombinant coryneform bacteria and process for preparation of L-lysine or L-threonine | |
KR101117513B1 (ko) | 에스케리치아 속에 속하는 l-트레오닌 생산 세균 및l-트레오닌의 생산 방법 | |
SK3742000A3 (en) | Process for the fermentative preparation of l-amino acids using coryneform bacteria | |
CN1293184C (zh) | 生产l-亮氨酸的方法 | |
SK7662000A3 (en) | Method for the fermentative preparation of l-amino acids employing coryneform bacteria | |
SK16192001A3 (sk) | Spôsob fermentačnej prípravy L-aminokyselín pomocou zosilnenia génu tkt | |
US20030109014A1 (en) | Process for the fermentative preparation of L-amino acids with amplification of the tkt gene | |
CN1997747B (zh) | 使用属于埃希氏菌属的细菌产生l-苏氨酸的方法 | |
CN101597588A (zh) | 通过埃希氏菌属细菌生产l-氨基酸的方法 | |
MXPA06006334A (en) | L-threonine producing bacterium belonging to the genus escherichia and method for producing l-threonine |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant |