CN1875528B - 单纵模激光二极管 - Google Patents

单纵模激光二极管 Download PDF

Info

Publication number
CN1875528B
CN1875528B CN2004800318108A CN200480031810A CN1875528B CN 1875528 B CN1875528 B CN 1875528B CN 2004800318108 A CN2004800318108 A CN 2004800318108A CN 200480031810 A CN200480031810 A CN 200480031810A CN 1875528 B CN1875528 B CN 1875528B
Authority
CN
China
Prior art keywords
laser
perot
waveguide
length
filter element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN2004800318108A
Other languages
English (en)
Other versions
CN1875528A (zh
Inventor
A·A·贝法
K·姆罗
C·B·史塔加尔斯库
A·T·谢里默尔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Magnesium Microwave Technology Co ltd
Original Assignee
BinOptics LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BinOptics LLC filed Critical BinOptics LLC
Publication of CN1875528A publication Critical patent/CN1875528A/zh
Application granted granted Critical
Publication of CN1875528B publication Critical patent/CN1875528B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/06Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
    • H01S5/062Arrangements for controlling the laser output parameters, e.g. by operating on the active medium by varying the potential of the electrodes
    • H01S5/0625Arrangements for controlling the laser output parameters, e.g. by operating on the active medium by varying the potential of the electrodes in multi-section lasers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/1021Coupled cavities
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/14External cavity lasers
    • H01S5/141External cavity lasers using a wavelength selective device, e.g. a grating or etalon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/22Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/026Monolithically integrated components, e.g. waveguides, monitoring photo-detectors, drivers
    • H01S5/0262Photo-diodes, e.g. transceiver devices, bidirectional devices
    • H01S5/0264Photo-diodes, e.g. transceiver devices, bidirectional devices for monitoring the laser-output
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/06Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
    • H01S5/062Arrangements for controlling the laser output parameters, e.g. by operating on the active medium by varying the potential of the electrodes
    • H01S5/0625Arrangements for controlling the laser output parameters, e.g. by operating on the active medium by varying the potential of the electrodes in multi-section lasers
    • H01S5/06255Controlling the frequency of the radiation
    • H01S5/06256Controlling the frequency of the radiation with DBR-structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/06Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
    • H01S5/065Mode locking; Mode suppression; Mode selection ; Self pulsating
    • H01S5/0651Mode control
    • H01S5/0653Mode suppression, e.g. specific multimode
    • H01S5/0655Single transverse or lateral mode emission
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/1003Waveguide having a modified shape along the axis, e.g. branched, curved, tapered, voids
    • H01S5/1017Waveguide having a void for insertion of materials to change optical properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/1039Details on the cavity length
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/12Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region the resonator having a periodic structure, e.g. in distributed feedback [DFB] lasers
    • H01S5/125Distributed Bragg reflector [DBR] lasers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/34Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers
    • H01S5/343Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/34Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers
    • H01S5/343Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser
    • H01S5/34313Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser with a well layer having only As as V-compound, e.g. AlGaAs, InGaAs

Abstract

一种单模、蚀刻面为分布式布拉格反射激光器包括AlGaInAs/InP激光谐振腔,具有多个法布里-佩罗特元件前端镜组合,以及后端检测器。该前端镜组合元件和后端反射元件包括输入和输出蚀刻面,并且激光谐振腔是蚀刻脊形谐振腔,它们都通过两个步骤的光刻和CAIBE工艺从外延晶片形成的。

Description

单纵模激光二极管
相关申请
本申请要求于2003年9月3日提交的U.S.临时申请No.60/499,340的优先权,并且该申请通过引用结合在此。
技术领域
本发明一般涉及经改进的单纵模激光二极管以及生产该二极管的方法。
背景技术
具有高边模抑制比(SMSR)的单模激光器在许多应用,例如,光谱学、感测和光学通信中是一种关键的设备。迄今为止,所谓的分布反馈型(DFB)激光器、分布布拉格(Bragg)反射(DBR)激光器以及垂直谐振腔表面发射激光器(VCSEL)专用于这些应用中。但是,横向耦合的DBR激光器的制造以及嵌入异质结构的DFB激光器的制造却需要使用熟练的制造技术。用于DBR激光器的微米级以下电子束或聚焦离子束光刻工艺因为其串行性质而不适于大规模生产,且制造DFB激光器中波纹曲面所需的精细晶体再生长处理也使得它们不适用。这些复杂的工艺不可避免地造成生产这些激光器的低产量和高成本,因此,出现对更经济的、特别是用于高速发展的数据通信领域中的单模激光器的强烈需求。此外,由于VCSEL的谐振腔很短,所以不能提供高功率。
当前可用的设备还需要为正常工作而进行冷却,但提供散热装置的需要也会增加其总成本。因此,对无需冷却的SMSR激光器有强烈需求。众所周知的是:较之常规的InGaAsP/InP材料,由AlGaInAs/InP材料制成的激光二极管在约1550nm和1310nm的光纤通信波长中表现出较好的高温性能。但是,由于Al容易氧化,含Al材料使得前述使用的再生长制造工艺变得极为困难和不可靠。因此强烈需要一种兼用AlGaInAs/InP的新结构或新构造方法,以开发无需冷却的单模二极管。
在上世纪八十年代,人们将大量的精力投入到耦合谐振腔激光器的研制中,以实现单模操作;例如,参见IEEE期刊Quantum Electronics,QE-20,659页(1984)上Larry Coldren等人的文章。但是,在耦合谐振腔的方案中,模式区别不够强,且难以在调制下得到高SMSR。并且,在广泛的温度范围(0-85摄氏度)内保持无需冷却操作的高SMSR是不可能的。
发明内容
根据本发明,通过一种经济型制造工艺来提供具有高SMSR的新颖的、多部分的、耦合谐振腔单模激光二极管。这些激光器在广泛的温度范围内以及调制下可保持其高SMSR。这些激光器通过在外延晶片上使用既定的微电子制造工艺,诸如光刻和CAIBE来制造,这些工艺由于不需要晶体再生长,可简便地应用于类似于AlGaInAs/InP之类的含Al材料。
在本发明较佳实施例的一个示例中,通过在n型(100)InP晶片上依次形成n-INP镀层、n-AlGaInAs SCH(分别限制异质结构)层、AlGaInAs应变多量子阱活性层、p-AlGaInAs SCH层、p-InP镀层、以及重度掺杂p-InGaAs接触层来制造单模、晶面蚀刻的分布式布拉格反射激光器。例如,活性区域由6个受压应变量子阱和7个张力势垒所组成,并且量子阱的带隙约为1300nm。化学辅助离子束蚀刻(CAIBE)的两个步骤是使用通过光刻技术定型的SiO2掩模来实现。通过第一CAIBE步骤形成晶面,随后通过第二CAIBE步骤形成脊形波导。在脊形的顶部和晶片的底部形成有电极。脊形结构用聚酰亚胺平整,并形成结合片。晶面的厚度约为4μm,且脊形的高度约为1.8μm。脊形的宽度通常为3μm,并且脊形的两边都具有3μm的侧翼。
使用这种脊形波导结构,可获得超过100mA的稳定单横模操作。输出射束的垂直和水平方向的远场图通常分别为36和10度(FWHM半高宽)。监控光电二极管装在该结构的背面,但是不具有脊形结构。在其后端和前端,配置了法布里-佩罗特(Fabry-Perot)波导块以提供适当的滤波。该装置通电以使激光器工作,各前端波导块的间距用作分布式布拉格反射器,而各后端波导块用作DBR反射器。
前述的结构和制造方法为生产具有高SMSR的单模激光二极管提供了一种经济型解决方案。如此制造的设备是在广泛温度范围内稳定而无需冷却的单模激光器,并且由于该制造工艺不包括晶体再生长,它适合类似于AlGaInAs/InP的具有优良温度性能的含铝材料。
附图说明
从下面结合附图对较佳实施例的详细描述中,本发明的前述和其它目的、特征和优点将对本领域技术人员显而易见。在附图中:
图1是本发明一较佳实施例的三维示意图;
图2是图1实施例的侧视图;
图3示出图1设备的前端反射器的反射光谱;
图4是本发明第二实施例的侧视图;
图5是图1实施例在各种温度下的光电流曲线图;
图6是在60mA下观测到的图1实施例的激光光谱的温度相关性的图示;
图7是图1实施例的峰值波长和SMSR作为各种温度下电流的函数的图示;
图8是图4实施例的在各种温度下光对激光器电流曲线、和MPD电流对激光器电流曲线的图示;
图9是在60mA下观测到的图4实施例的激光光谱的温度相关性的图示;
图10是图4实施例的峰值波长和SMSR作为各种温度下电流的函数的图示;以及
图11是本发明第三实施例的侧视图。
具体实施例
现在对本发明进行更为详细的描述。图1示出由外延晶片12制成的单模激光器10的一个较佳实施例的三维示意图。
在根据该第一实施例所构建的设备中,晶片12用在n型(100)InP晶片30上依次形成的n-INP镀层14、n-ALGaInAs SCH(分别限制异质结构)层16、AlGaInAs应变多量子阱活性层18、p-AlGaInAs SCH层20、p-InP镀层22、以及重度掺杂p-InGaAs接触层24来制造。活性区域18由例如被10nm张力应变AlGaInAs势垒所分隔的六个6nm受压应变量子阱组成;并且量子阱的带隙约为1300nm。
激光器10通过化学辅助离子束蚀刻(CAIBE)的两个步骤在外延晶片12上形成,这两个步骤使用通过光刻技术以常规方式定型的SiO2掩模来实现。通过第一CAIBE步骤,多个块32和33(将要描述)沿着激光器10的纵向轴分别在其前端和后端上形成,然后通过第二CAIBE步骤,在层22中形成脊形波导34。金属电极36和38在脊形34的上表面40和晶片的下表面42上形成。所得到的脊形结构用聚酰亚胺来平整,并且在电极上形成有用于连接到合适的偏置源43的结合片。
在如上所述制造的激光器10的示例中,块32和33的厚度约为4μm,脊形34的高度约为1.8μm。脊形34的宽度w通常为3μm,并且脊形两边具有3μm宽的侧翼44。使用这种脊形波导结构,可获得超过100mA的稳定单横模操作。从激光器的前端52中发射出的输出射束50的垂直和水平方向的远场图通常分别为36和10度(FWHM)。在激光器的后端56装有监控光电二极管54,以检测激光器操作;通常该检测器不具备激光器的脊形结构。
如图1和2所示,激光器10用形成前端镜像组、或反射器的多个块32、以及形成后端或背端DBR反射器的至少一个块33来制造。在第一CAIBE步骤期间形成一些块,以产生N个法布里-佩罗特元件,诸如形成前端镜像组32的元件60、62、64和66,以及由块33所形成的后端反射元件68。如图2所示,每一前端反射元件60、62、64和66的长度都为L1,并且每一个都与相邻元件、以及激光器10的谐振腔部分70相隔空隙Lg1。后端反射器元件68的长度为L2,并且与谐振腔部分70和监控器54相隔空隙Lg2。主谐振腔部分是长度为La的单块式激光谐振腔,其中激光谐振腔的每一端由表面72和74的相应之一限定。元件60、62、64、66和68的每一端都类似地由相应端面限定,并且对长度为Ld的MPD或监控光电检测器54的输入由输入面76限定。来自单块式检测器54的输入面76的反射将改变后端反射器元件68的反射率。
由平行于激光器增益部分或主体70的源43对前端反射器32中的元件进行偏置,而单块式后端DBR元件不会进行偏置,而MPD进行反向偏置。
本发明的所有实施例都具有类似于图1所示的三维结构,但是每种设备都可通过一维参数来表征;即,前端法布里-佩罗特波导块的数量(N)和厚度(L1)及其间隙(Lg1),还有后端法布里-佩罗特(FP)波导块33的数量(M)和厚度(L2)及其间隙(Lg2),下面对其进行讨论。
如图2的本发明第一实施例的示意图中所示,在本发明一实现中的特定设备参数为N=4、L1=5.16μm、Lg1=1.31μm、M=1、L2=0.74μm、Lg2=0.98μm、La=200μm以及Ld=100μm。前端FP波导块32的元件60、62、64和66的间距或间隙设定为Lg1=λ,其中λ是由激光器10产生的光的波长。在该配置中,光在谐振腔70内由端面72和74进行部分反射。经由端面72从谐振腔前端出来的光穿过间距Lg1,部分地由元件60的输入面80反射,并部分地穿过该元件到达其输出面82,在该处它被部分反射,然后部分地传送到下一元件62的输入面84。类似地,光通过镜像组32每一元件的输入和输出面进行部分地反射和部分地传送,然后最终射出为射束50。
该设备的一个关键特征为:前端反射器元件60、62、64和66的间隙Lg1为mλ/2,其中在该配置中m为整数,间距为Λ1,从每一对跨过每个间隙彼此相对的面,诸如面72和80、面82和84等的反射光,都将出现异相并彼此抵消。由于该波导模式在每一间隙中具有衍射损失,所以抵消并非是完全的,导致两个面之间的间隙中对有效反射面90的净弱反射。在FP波导块中厚度为mλ/2的分布式间隙用作弱分布式布拉格反射器。当间隙Lg1基本上等于mλ/2或mλ/2±λ/10时,可以取得最佳的效果。
弱反射是形成窄带滤波器所必需的。实际上,由于材料指数n很高,半导体材料的面场反射率r=(n-1)/(n+1)是相当高的,通常约为0.5左右。在常规DBR配置中,长度为(2m+1)λ/4的间隙具有0.83的有效反射率,对应于两个半导体空气界面的相长反射作用。在该情形中,两个DBR元件足以构成一高反射器,但是反射光谱是低锐度的宽带。对于本设备,前端反射器32的间隙宽度为mλ/2且具有约为r/(1-r2)α(mλ/2)的有效反射率,其中α是描述间隙中波导模式的衍射损失的参数,α和有效反射率分别估计为0.20μm-1和0.20。
图3在92处示出用于计算由DBR32反射到激光器谐振腔、或增益部分70中的功率的一维散射矩阵模型。在该模型中,有效的模态折射率为3.3,并且衍射损失参数α为0.2μm-1。自由光谱范围(FSR)根据间距Λ1确定,并且锐度随着间隙数量而增加。使用R-Soft程序、基于实际外延层结构的两维有限差时间相关(FDTD)计算预测结果中的少量光谱变化,但基本特征却类似于散射矩阵分析。对于一个间隙的情形,对应于常规的耦合谐振腔激光器,锐度并不是很高,导致具有较差SMSR的激光器。这与多微谐振腔激光器很是不同,其中,每一部分都用厚度为(2j+1)λ/4的间隙进行光学隔离,其中j是整数。相应地,提供一种其自由光谱范围由间距的有效长度来限定的高锐度反射滤波器。基于该设计理念,由散射矩阵的模拟以及R-Soft基于FDTD(有限差时间域)的模拟程序来仔细地确定各设备参数。
图4是本发明第二实施例的一维示意图。在该实施例中,激光器100包括具有三个元件的前端反射器101、主谐振腔102、后端反射器104以及监控器106。根据该配置构建的设备的特定参数为N=3、L1=8.06μm、Lg=1.31μm、M=2、L2=4.08μm、Lg2=0.98μm、La=200μm以及Ld=100μm。在该设计中,前端反射器结构100的FSR为~28nm。因为增益峰值和谐振模式的温度相关性分别为0.5nm/C和0.1nm/C,因此使用这些参数,每隔70摄氏度就会出现跳到相邻滤波器峰值中的振荡模式跳变。这对于未经冷却的设备来说不够好,因为预期这种设备在0-85摄氏度范围内为单模操作。
因此,为了抑制振荡模式跳变,后端DBR反射器104被细致地设计成以使前端FP结构的相邻滤波器峰值上出现反射偏角。在该示例中,后端FP厚度选定为前端FP厚度的一半左右。
图5示出图1和2的实施例在20℃到90℃范围内的不同温度下的光-电流曲线110。根据该实施例的激光二极管示出了在20-80℃温度范围内的无弯曲操作。如图所示,20℃时的阈值电流为14mA,且斜度效率为0.12W/A,80℃时则分别为33mA和0.08W/A。阈值电流以及斜度效率的适度温度相关性归因于含Al应变量子阱。
图6示出在60mA处观测到的图1和2的4间隙设备的激光光谱的温度相关性曲线112。在20-80℃温度范围内,激光峰值用相同模式锁定。如图所示,激光峰值114随着温度上升以0.1nm/℃的速率朝着更长波长方向偏移,其中在20-80℃的整个温度范围内没有模式跳变。对于该示例中的材料,测量出增益峰值偏移为0.5nm/℃,它对应于60℃时温度偏移30mm。随着增益峰值朝向更长波长方向移动,当温度为80℃时,曲线开始显示出在1360nm、或者大约距离峰值50nm处116所示的下一DBR反射峰值存在的证据。在90℃时观测到40nm的峰值跳跃,如图中的118所示。
图7示出图1和2所示设备的峰值波长和SMSR作为在不同温度下电流的函数的曲线图120。除了高温和高电流区域之外,激光以相同的模式产生。除阈值附近之外还可获得高SMSR值(25-40dB)。
图8示出图4实施例在不同温度下的光-电流曲线122。该实施例中的激光二极管示出了在20-90℃温度范围内的无弯曲操作。阈值电流和斜度效率的适度温度相关性归因于含Al应变量子阱。
图9示出在50mA时观测到的图4实施例的激光光谱的温度相关性的曲线124。在20-90℃的整个温度范围内激光峰值用相同模式锁定。峰值波长偏移类似于相对应DFB激光器为0.1nm/℃。增益峰值偏移为0.5nm/℃。前端组合的8.06μmFP滤波器的自由光谱范围约为28nm。通过为后端DBR反射器设计合适的厚度来抑制相应的振荡模式跳变,在该情形中,反射器的厚度为4.08μm。
图10示出图4实施例的峰值波长和SMSR作为在不同温度下电流的函数的曲线126。在整个温度和电流范围内以相同的模式产生激光。除阈值附近之外还可取得高SMSR(25-40dB)。
图11示出130的本发明第三实施例,其中去除了激光谐振腔132的前端反射器组,并且后端反射组134包括四个高反射FP元件136、138、140和142,每一个长度L1约为8.2μm的元件形成一窄带组合FP滤波器。在组134和监控光电探测器144之间为长度L2等于4.1μm的窄FP滤波器元件146。滤波器元件之间的间隙Lg2的宽度为(2k+1)λ/4,其中k为整数,或者在该实施例中约为0.98μm。四分之一波长间隙提供了导致较高斜度效率的窄带、高反射滤波器。
虽然根据实施例对本发明进行了描述,但是在不背离本发明的真实精神和如以下权利要求限定的范围之内可做出各种修改和变化。

Claims (8)

1.一种用于具有波长λ的激光、光刻形成的组合式法布里-佩罗特光学波导滤波器,包括多个法布里-佩罗特波导滤波器元件,所述多个元件相互之间相膈具有mλ/2±λ/10长度的间隙,并且其中m是正整数。
2.如权利要求1所述的光刻形成的组合式法布里-佩罗特波导滤波器,其特征在于,所述法布里-佩罗特波导滤波器元件的每一个都具有相同的长度。
3.一种半导体二极管激光器,包括:
具有一个轴的激光波导;以及
光刻形成的组合式法布里-佩罗特光学滤波器位于在所述激光波导的前端的所述激光波导的轴上,所述滤波器具有多个法布里-佩罗特波导滤波器元件,所述多个法布里-佩罗特波导滤波器元件相互之间相隔具有m/2±λ/10长度的间隙,其中m是正整数,是所述激光器产生的光的波长。
4.如权利要求3所述的半导体二极管激光器,其特征在于,所述滤波器元件的每一个都具有在2-10μm的范围内的长度。
5.如权利要求3所述的半导体二极管激光器,还包括在所述波导后端的高DBR反射器,所述高DBR反射器的长度是所述激光器所产生光的波长的四分之一的整数倍,所述反射器包括与在所述波导的所述前端的所述组合式法布里-佩罗特滤波器的相邻反射峰值相一致的反射偏角。
6.一种光子结构,包括:
至少具有三个法布里-佩罗特波导滤波器元件的光刻形成的组合式法布里-佩罗特滤波器;
所述滤波器元件中的至少两个具有小于10μm的长度;以及
所述滤波器元件中的至少一个的长度为所述至少两个所述滤波器元件的长度的一半。
7.如权利要求6所述的光子结构,包括在波长λ发射的激光器谐振腔。
8.如权利要求7所述的光子结构,其特征在于,所述法布里-佩罗特波导滤波器元件相互之间相隔具有(2k+1)λ/4的长度的间隙,其中k是正整数。
CN2004800318108A 2003-09-03 2004-08-31 单纵模激光二极管 Expired - Fee Related CN1875528B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US49934003P 2003-09-03 2003-09-03
US60/499,340 2003-09-03
PCT/US2004/025601 WO2005025017A2 (en) 2003-09-03 2004-08-31 Single longitudinal mode laser diode

Publications (2)

Publication Number Publication Date
CN1875528A CN1875528A (zh) 2006-12-06
CN1875528B true CN1875528B (zh) 2010-09-29

Family

ID=34272803

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2004800318108A Expired - Fee Related CN1875528B (zh) 2003-09-03 2004-08-31 单纵模激光二极管

Country Status (4)

Country Link
US (2) US7835415B2 (zh)
EP (1) EP1668749A4 (zh)
CN (1) CN1875528B (zh)
WO (1) WO2005025017A2 (zh)

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7835415B2 (en) * 2003-09-03 2010-11-16 Binoptics Corporation Single longitudinal mode laser diode
EP1680843A4 (en) * 2003-10-20 2009-05-06 Binoptics Corp PHOTONIC EQUIPMENT WITH SURFACE EMISSION AND RECEPTION
EP1706894B1 (en) * 2004-01-20 2012-05-23 Binoptics Corporation Integrated photonic devices
DE602005024674D1 (de) * 2004-04-15 2010-12-23 Binoptics Corp Photonische integrierte bauelemente mit mehreren ebenen
US9425917B1 (en) * 2006-03-15 2016-08-23 Neophotonics Corporation High data rate long reach transceiver using wavelength multiplexed architecture
WO2007108117A1 (ja) * 2006-03-22 2007-09-27 Fujitsu Limited 光半導体素子
US8064493B2 (en) * 2009-06-12 2011-11-22 Binoptics Corporation Surface emitting photonic device
WO2012061166A1 (en) * 2010-10-25 2012-05-10 Binoptics Corporation Long semiconductor laser cavity in a compact chip
CN102097745B (zh) * 2011-01-14 2012-05-30 浙江大学 对称刻蚀槽反射形成布拉格光栅的波长可调谐激光器
CN102545045B (zh) * 2012-02-15 2013-03-13 浙江大学 一种基于深刻蚀槽的多段式fp腔单波长激光器
EP4228109A3 (en) 2012-05-08 2023-10-25 MACOM Technology Solutions Holdings, Inc. Lasers with beam-shape modification
CN102931581A (zh) * 2012-11-16 2013-02-13 浙江大学 一种基于长周期深刻蚀槽光栅的波长可调谐激光器
CN115241731A (zh) 2013-11-07 2022-10-25 镁可微波技术有限公司 具有光束形状和光束方向修改的激光器
JP2017022234A (ja) * 2015-07-09 2017-01-26 住友電気工業株式会社 量子カスケードレーザ
JP6485340B2 (ja) * 2015-12-09 2019-03-20 住友電気工業株式会社 量子カスケード半導体レーザを作製する方法、量子カスケード半導体レーザ
CN105552714A (zh) * 2016-01-15 2016-05-04 北京工业大学 一种带有DBR光栅结构的852nm窄线宽边发射激光器及其制备方法
ITUB20160994A1 (it) * 2016-02-23 2017-08-23 Prima Electro S P A Diodo laser a semiconduttore e procedimento per la sua realizzazione
FR3052562B1 (fr) 2016-06-10 2019-06-14 Commissariat A L'energie Atomique Et Aux Energies Alternatives Dispositif optique
DE102018111319A1 (de) * 2018-05-11 2019-11-14 Osram Opto Semiconductors Gmbh Optoelektronisches Halbleiterbauelement und Verfahren zur Herstellung eines optoelektronischen Halbleiterbauelements
CN113906640B (zh) * 2019-06-11 2023-10-10 三菱电机株式会社 半导体光集成元件及半导体光集成元件的制造方法
US11456577B2 (en) * 2020-07-28 2022-09-27 Raytheon Company Monolithic quantum cascade laser (QCL)/avalanche photodiode (APD) infrared transceiver
US11909175B2 (en) * 2021-01-13 2024-02-20 Apple Inc. Horizontal cavity surface-emitting laser (HCSEL) monolithically integrated with a photodetector

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6215592B1 (en) * 1998-03-19 2001-04-10 Ciena Corporation Fabry-perot optical filter and method of making the same
US6324192B1 (en) * 1995-09-29 2001-11-27 Coretek, Inc. Electrically tunable fabry-perot structure utilizing a deformable multi-layer mirror and method of making the same

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5150236A (en) * 1990-08-31 1992-09-22 Bell Communications Research, Inc. Tunable liquid crystal etalon filter
JPH04145414A (ja) * 1990-10-08 1992-05-19 Fujitsu Ltd 光導波路型波長フィルタ
GB2385944B (en) * 1999-03-05 2003-10-29 Nanovis Llc Optic fibre aperiodic Bragg grating
US6879619B1 (en) * 1999-07-27 2005-04-12 Intel Corporation Method and apparatus for filtering an optical beam
US6519065B1 (en) * 1999-11-05 2003-02-11 Jds Fitel Inc. Chromatic dispersion compensation device
US7209498B1 (en) * 2000-05-04 2007-04-24 Intel Corporation Method and apparatus for tuning a laser
US20020054614A1 (en) * 2000-11-07 2002-05-09 Hong Jin Wavelength discretely tunable semiconductor laser
KR100388499B1 (ko) * 2000-12-22 2003-06-25 한국전자통신연구원 가변광필터 및 그 가변광필터를 이용한 광통신 소자
US20020175334A1 (en) 2001-05-22 2002-11-28 Motorola, Inc. Optical data converter
US6870679B2 (en) * 2001-06-11 2005-03-22 Jds Uniphase Inc. Multi-pass configurations
US7268927B2 (en) * 2002-03-15 2007-09-11 Corning Incorporated Tunable optical filter array and method of use
US6850366B2 (en) * 2002-10-09 2005-02-01 Jds Uniphase Corporation Multi-cavity optical filter
US7061946B2 (en) * 2002-11-13 2006-06-13 Intel Corporation Intra-cavity etalon with asymmetric power transfer function
JP2006528353A (ja) * 2003-07-18 2006-12-14 ケミマジ コーポレーション 多重波長式作像用分光器のための方法および装置
US7835415B2 (en) * 2003-09-03 2010-11-16 Binoptics Corporation Single longitudinal mode laser diode
US8064493B2 (en) * 2009-06-12 2011-11-22 Binoptics Corporation Surface emitting photonic device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6324192B1 (en) * 1995-09-29 2001-11-27 Coretek, Inc. Electrically tunable fabry-perot structure utilizing a deformable multi-layer mirror and method of making the same
US6215592B1 (en) * 1998-03-19 2001-04-10 Ciena Corporation Fabry-perot optical filter and method of making the same

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Ki-Chul Shin et al..Low Threshold Current Density Operation of GaInAsP-InPLaser with Multiple Reflector Microcavities.IEEE PHOTONICS TECHNOLOGY LETTERS7 10.1995,7(10),全文.
Ki-Chul Shin et al..Low Threshold Current Density Operation of GaInAsP-InPLaser with Multiple Reflector Microcavities.IEEE PHOTONICS TECHNOLOGY LETTERS7 10.1995,7(10),全文. *

Also Published As

Publication number Publication date
EP1668749A4 (en) 2007-11-28
CN1875528A (zh) 2006-12-06
WO2005025017A2 (en) 2005-03-17
US7835415B2 (en) 2010-11-16
US20110032967A1 (en) 2011-02-10
EP1668749A2 (en) 2006-06-14
WO2005025017A3 (en) 2005-07-07
US20050147145A1 (en) 2005-07-07
US8160114B2 (en) 2012-04-17

Similar Documents

Publication Publication Date Title
CN1875528B (zh) 单纵模激光二极管
US7242699B2 (en) Wavelength tunable semiconductor laser apparatus
JP2011003591A (ja) 波長ロッカー集積型半導体レーザ素子
JP2009076942A (ja) 分布帰還型半導体レーザ、分布帰還型半導体レーザアレイ及び光モジュール
EP0125608A2 (en) Single longitudinal mode semiconductor laser
US7949020B2 (en) Semiconductor laser and optical integrated semiconductor device
JP2002299759A (ja) 半導体レーザ装置
JP2950302B2 (ja) 半導体レーザ
US7852897B2 (en) Semiconductor laser optical integrated semiconductor device
JP2006203100A (ja) 半導体レーザおよび光送信器モジュール
JP2003218462A (ja) 分布帰還型半導体レーザ装置
WO2005060058A1 (ja) 半導体レーザーおよびその製造方法
JP2002057405A (ja) 半導体レーザ装置及びその製造方法
CN113812049A (zh) 一种用于光子集成电路的分布式反馈激光器装置及其改进和制造方法
JP2000049417A (ja) 半導体発光素子およびその素子を組み込んだ半導体発光装置ならびにそれらの製造方法
JPH0147031B2 (zh)
JP6513412B2 (ja) 半導体光集積素子
WO2023135629A1 (ja) 半導体レーザおよびモジュール素子
JP5034572B2 (ja) 光源装置
JP2009016878A (ja) 半導体レーザ及びそれを用いた光モジュール
JPH04105386A (ja) 波長可変半導体レーザ
WO2020181497A1 (zh) 双腔dfb激光器芯片、光发射组件、光模块及光网络装置
JP2746262B2 (ja) 半導体レーザアレイの製造方法
JP2012059844A (ja) 半導体発光素子、及び半導体発光素子を作製する方法
JP2011205012A (ja) 半導体発光素子、半導体発光素子を作製する方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C56 Change in the name or address of the patentee
CP02 Change in the address of a patent holder

Address after: Massachusetts, USA

Patentee after: BINOPTICS Corp.

Address before: American New York

Patentee before: BINOPTICS Corp.

C56 Change in the name or address of the patentee
CP01 Change in the name or title of a patent holder

Address after: Massachusetts, USA

Patentee after: Bin O Purdy Kors LLC

Address before: Massachusetts, USA

Patentee before: BINOPTICS Corp.

C41 Transfer of patent application or patent right or utility model
C56 Change in the name or address of the patentee
CP01 Change in the name or title of a patent holder

Address after: Massachusetts, USA

Patentee after: MACOM Technology Solutions Holdings Ltd.

Address before: Massachusetts, USA

Patentee before: M/A-COM technology solutions Holdings Ltd.

TR01 Transfer of patent right

Effective date of registration: 20160829

Address after: Massachusetts, USA

Patentee after: M/A-COM technology solutions Holdings Ltd.

Address before: Massachusetts, USA

Patentee before: Bin O Purdy Kors LLC

C56 Change in the name or address of the patentee
CP01 Change in the name or title of a patent holder

Address after: Massachusetts, USA

Patentee after: Magnesium Microwave Technology Co.,Ltd.

Address before: Massachusetts, USA

Patentee before: MACOM Technology Solutions Holdings Ltd.

CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20100929

Termination date: 20190831

CF01 Termination of patent right due to non-payment of annual fee