WO2020181497A1 - 双腔dfb激光器芯片、光发射组件、光模块及光网络装置 - Google Patents

双腔dfb激光器芯片、光发射组件、光模块及光网络装置 Download PDF

Info

Publication number
WO2020181497A1
WO2020181497A1 PCT/CN2019/077864 CN2019077864W WO2020181497A1 WO 2020181497 A1 WO2020181497 A1 WO 2020181497A1 CN 2019077864 W CN2019077864 W CN 2019077864W WO 2020181497 A1 WO2020181497 A1 WO 2020181497A1
Authority
WO
WIPO (PCT)
Prior art keywords
grating
dfb laser
dual
laser chip
cavity
Prior art date
Application number
PCT/CN2019/077864
Other languages
English (en)
French (fr)
Inventor
黄利新
任正良
王泽林
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CN201980093475.0A priority Critical patent/CN113508502B/zh
Priority to PCT/CN2019/077864 priority patent/WO2020181497A1/zh
Publication of WO2020181497A1 publication Critical patent/WO2020181497A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/12Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region the resonator having a periodic structure, e.g. in distributed feedback [DFB] lasers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/40Arrangement of two or more semiconductor lasers, not provided for in groups H01S5/02 - H01S5/30

Definitions

  • This application relates to the field of laser technology, and in particular to a dual-cavity DFB laser chip, light emitting component, optical module, and optical network device.
  • the distributed feedback (DFB) laser chip is the core device in the optical fiber communication system.
  • the optical communication system realizes the transformation from electrical signal to optical signal through the DFB laser chip. Because the manufacturing process of DFB laser chips is very complicated and restricted by factors such as equipment accuracy and process parameters, the yield of DFB laser chips is relatively low. Therefore, the research on the yield of DFB laser chips is of great significance.
  • two DFB lasers ie, dual-cavity DFB laser chips
  • the two DFB lasers are used as one laser chip for cleavage during cleavage.
  • DFB lasers with better performance are selected for packaging.
  • the error of the cleaving process in related technologies is usually between 5 ⁇ m-20 ⁇ m, and the grating period of the dual-cavity DFB laser chip is usually less than 300nm, resulting in the cleavage end face obtained when the dual-cavity DFB laser chip is cleaved within the grating period Randomly distributed, therefore, the end face phases of the cleavage end faces corresponding to the two DFB lasers in the dual-cavity DFB laser chip are randomly changed, and the two DFB lasers in the dual-cavity DFB laser chip are affected by the end face phase are the same As a result, when any DFB laser in the dual-cavity DFB laser chip does not meet the performance requirements, the other DFB laser still does not meet the performance requirements, so that the yield rate of the dual-cavity DFB laser chip provided by the related technology is low.
  • This application provides a dual-cavity DFB laser chip, light emitting component, optical module, and optical network device, which are used to solve the technical problem of low yield of dual-cavity DFB laser chip in related technologies.
  • the present application provides a dual-cavity DFB laser chip, including: a chip base assembly, a first grating and a second grating disposed above the chip base assembly, the first grating and the second grating The gratings are arranged at intervals in the extending direction;
  • the first grating includes a plurality of first etched regions and a plurality of first non-etched regions, and the first etched regions and the first non-etched regions are sequentially along a direction perpendicular to the extending direction of the grating Alternate setting
  • the second grating includes a plurality of second etched regions and a plurality of second non-etched regions, the second etched regions and the second non-etched regions are alternately arranged in a direction perpendicular to the extending direction of the grating ;
  • the first grating and the second grating are arranged at intervals along the extending direction of the grating above the chip base assembly. There is a relative displacement between the orthographic projection of any first etched area of the first grating along the grating extending direction and the orthographic projection of any second etched area of the second grating along the grating extending direction, so that the first grating There is a phase difference between the first grating and the second grating, and the cleaved end faces formed by the cleavage of the first grating and the second grating have different phases.
  • the side mode of the DFB laser corresponding to the first grating and the DFB laser corresponding to the second grating Suppression ratio and slope efficiency will have obvious differences.
  • the relative displacement is 20 nm to 200 nm.
  • the phase difference between the phases of the cleaved end faces formed by the cleavage of the first grating and the second grating is 0.1 ⁇ to ⁇ .
  • the phase difference is 0.5 ⁇ .
  • the dual cavity DFB laser chip further includes:
  • the first electrode layer is respectively provided.
  • the dual cavity DFB laser chip is a ridge waveguide structure laser or a buried waveguide structure laser.
  • a high-reflection film is provided on the first cleavage end surface of the dual-cavity DFB laser chip
  • An antireflection film is provided on the second cleavage end surface of the dual cavity DFB laser chip.
  • a high-reflection film is provided on the first cleavage end surface of the dual-cavity DFB laser chip, and an antireflection film is provided on the second cleavage end surface, thereby improving the light extraction efficiency of the DFB laser.
  • the first grating and the second grating are first-order gratings or second-order gratings.
  • the chip base assembly is sequentially provided with at least one of a second electrode layer, a substrate layer, a lower separation confinement layer, an active region, and an upper separation confinement layer from bottom to top.
  • the periods of the first grating and the second grating are the same.
  • the present application provides a light emitting component including: a dual-cavity DFB laser chip as in any implementation manner of the first aspect.
  • the present application provides an optical module, including: a light emitting component as in any implementation manner of the above second aspect.
  • the present application provides an optical network device, including: an optical module as in any implementation manner of the third aspect.
  • the optical network device is an optical network unit ONU or an optical line terminal OLT.
  • FIG. 1A is a schematic diagram of a grating structure provided by an embodiment of the application.
  • FIG. 1B is a schematic diagram of orthographic projection provided by an embodiment of this application.
  • 1C is a schematic structural diagram of a dual-cavity DFB laser chip provided by an embodiment of the application.
  • FIG. 2 is a schematic structural diagram of a dual-cavity DFB laser chip provided by another embodiment of the application.
  • FIG. 3 is a schematic structural diagram of a dual-cavity DFB laser chip provided by another embodiment of the application.
  • 4A is a schematic cross-sectional structure diagram of a dual-cavity DFB laser chip provided by another embodiment of the application;
  • FIG. 4B is a schematic top view of the structure of the dual cavity DFB laser chip shown in FIG. 4A;
  • FIG. 5A is a schematic diagram of the influence of the random end face phase of a dual-cavity DFB laser chip provided by the related art on the slope efficiency;
  • 5B is a schematic diagram of the influence of the random end face phase of the non-phase-changing dual-cavity DFB laser chip provided by the related technology on the SMSR;
  • 6A is a schematic diagram of the influence of the random end face phase of the variable phase dual cavity DFB laser chip on the slope efficiency according to an embodiment of the application;
  • FIG. 6B is a schematic diagram of the influence of the random end face phase of the variable-phase dual-cavity DFB laser chip on the SMSR provided by an embodiment of the application.
  • the dual cavity DFB laser chip in the embodiment of the present application may include, but is not limited to: a ridge waveguide structure laser or a buried waveguide structure laser.
  • the first grating and the second grating involved in the embodiments of the present application may be first-order gratings or second-order gratings, of course, they may also be other types of gratings, which are not limited in the embodiments of the present application.
  • Any grating (for example, the first grating or the second grating) involved in the embodiments of the present application may include several etched areas and non-etched areas, where the extension directions of any etched area or non-etched area are parallel to each other, and several etched areas The etched area and the non-etched area are arranged overlapping in the direction perpendicular to the extension direction of any etched area or non-etched area, or along the direction perpendicular to the extension direction of any etched area or non-etched area, any phase A non-etched area is provided between two adjacent etched areas, or along a direction perpendicular to the extension direction of any etched area or non-etched area, between any two adjacent non-etched areas An etched area.
  • FIG. 1A is a schematic diagram of a grating structure provided by an embodiment of the application.
  • the grating may include an etched area 1a, a non-etched area 1b, an etched area 2a, a non-etched area 2b, and an etched area 3a.
  • the non-etched area 3b where the etched area 1a, the non-etched area 1b, the etched area 2a, the non-etched area 2b, the etched area 3a and the non-etched area 3b extend directions F1 parallel to each other, the etching The area 1a, the non-etched area 1b, the etched area 2a, the non-etched area 2b, the etched area 3a, and the non-etched area 3b are sequentially overlapped and arranged along a direction F2 perpendicular to the extending direction F1.
  • the grating extension direction of any grating involved in the embodiment of the present application refers to the extension direction of any etched area or non-etched area in the grating, such as the extension direction F1 in FIG. 1A.
  • FIG. 1B is a schematic diagram of an orthographic projection provided by an embodiment of the application. As shown in FIG. 1B, the etched area 2a of the grating is projected perpendicularly to the projection T of the projection surface Y along the parallel projection line X of the extending direction F1 of the grating.
  • the side-mode suppression ratio (SMSR) involved in the embodiments of the present application is a parameter that quantitatively describes a single longitudinal mode. For example, when the working current of the laser is the threshold current plus 20mA, the SMSR is greater than 40dB, it means that the laser is single longitudinal mode lasing.
  • At least one item (layer) refers to one item (layer) or multiple items (layers)
  • multiple item (layer) refers to two items (layers) or more than two items (layers).
  • “And/or” describes the association relationship of the associated objects, indicating that there can be three relationships, for example, A and/or B, which can mean: A alone exists, A and B exist at the same time, and B exists alone, where A, B can be singular or plural.
  • the character “/” generally indicates that the associated objects are in an “or” relationship.
  • the following at least one item (layer)” or similar expressions refers to any combination of these items (layers), including any combination of single items (layers) or plural items (layers).
  • at least one of a, b, or c (layer) can represent: a, b, c, ab, ac, bc, or abc, where a, b, and c can be single or multiple .
  • DFB laser chip for example, including but not limited to at least one of the following: deposition, grating production, ridge, opening window, production of metal electrode, thinning, deposition of back electrode, cleavage, testing, packaging, etc.
  • the yield of DFB laser chips is relatively low. Therefore, the research on the yield of DFB laser chips is of great significance.
  • two DFB lasers that is, dual-cavity DFB laser chips
  • the two DFB lasers are treated as one laser chip during cleavage.
  • the DFB laser with better performance was selected for packaging. It can be seen that only when the two DFB lasers in the dual-cavity DFB laser chip do not meet the performance requirements at the same time, the laser chip will be judged as bad.
  • the error of the cleaving process in the related technology is usually between 5 ⁇ m-20 ⁇ m, and the grating period of the dual-cavity DFB laser chip is usually less than 300nm, resulting in the cleavage end face obtained when the dual-cavity DFB laser chip is cleaved within the grating period Randomly distributed, therefore, the end face phases of the cleavage end faces corresponding to the two DFB lasers in the dual-cavity DFB laser chip are randomly changed, and the two DFB lasers in the dual-cavity DFB laser chip are affected by the end face phase are the same As a result, when any DFB laser in the dual-cavity DFB laser chip does not meet the performance requirements, the other DFB laser still does not meet the performance requirements, so that the yield rate of the dual-cavity DFB laser chip provided by the related technology is low.
  • the first grating and the second grating are arranged at intervals along the extending direction of the grating above the chip base component. There is a relative displacement between the orthographic projection of any first etched area of the first grating along the grating extending direction and the orthographic projection of any second etched area of the second grating along the grating extending direction, so that the first grating There is a phase difference between the first grating and the second grating, and the cleaved end faces formed by the cleavage of the first grating and the second grating have different phases.
  • the side mode of the DFB laser corresponding to the first grating and the DFB laser corresponding to the second grating Suppression ratio and slope efficiency will have obvious differences.
  • FIG. 1C is a schematic structural diagram of a dual-cavity DFB laser chip provided by an embodiment of the application.
  • the dual cavity DFB laser chip of the embodiment of the present application may include: a chip base assembly A, a first grating B and a second grating C disposed above the chip base assembly A, wherein the first grating B and the second grating The two gratings C are used to realize film selection to ensure the laser single longitudinal mode operation.
  • the grating period ⁇ of the first grating B and the second grating C may be the same.
  • the first grating B and the second grating C are arranged at intervals along the extending direction of the first grating B or the second grating C, or along the extending direction of the first grating B or the second grating C, the first grating B There is a certain distance L1 between the second grating C and the first grating B, and the grating extending direction of the second grating C is the same. It should be noted that the separation distance L1 between the first grating B and the second grating C can be set according to actual needs, for example, the separation distance L1 can be 1 um to 50 um.
  • the first grating B may include several first etched areas B1 and several first non-etched areas B2.
  • the first etched areas B1 and the first non-etched areas B2 are along the grating extending direction perpendicular to the first grating B
  • the direction F2 of F1 is alternately arranged in turn, or along the direction F2 perpendicular to the grating extension direction F1 of the first grating B, a first non-etched area B2 is provided between any two adjacent first etched areas B1, Or along the direction F2 perpendicular to the grating extension direction F1 of the first grating B, a first etched area B1 is provided between any two adjacent first non-etched areas B2.
  • the second grating C includes a plurality of second etched regions C1 and a plurality of second non-etched regions C2.
  • the second etched regions C1 and the second non-etched regions C2 are along the grating extension direction F1 perpendicular to the second grating C
  • the directions F2 are alternately arranged in turn, or along the direction F2 perpendicular to the grating extension direction F1 of the second grating C, a second non-etched area C2 is provided between any two adjacent second etched areas C1, or Along the direction F2 perpendicular to the grating extension direction F1 of the second grating C, a second etched region C1 is provided between any two adjacent second non-etched regions C2.
  • the orthographic projection of any first etching area B1 and the orthographic projection of any second etching area C1 do not coincide with each other, so that the first grating B and the second grating C There is a phase difference between them. Since there is a phase difference between the first grating B and the second grating C, and the cleavage direction is parallel to the grating extension direction of the first grating B or the second grating C, the first grating B undergoes the cleavage formed by the cleavage End-face phase Different from the end face phase of the cleavage end face formed by the cleavage of the second grating C
  • the phase difference between the phases of the cleaved end faces formed by the cleavage of the first grating B and the second grating C It can be equal to 2 ⁇ ( ⁇ L/ ⁇ ); where ⁇ L represents the above-mentioned relative displacement, and ⁇ represents the period of the first grating B and the second grating C; of course, the above-mentioned phase difference
  • Other variants or equivalent formulas equal to the above 2 ⁇ ( ⁇ L/ ⁇ ) may also be used, which is not limited in the embodiments of the present application. It can be seen that by adjusting the relative displacement ⁇ L between the first grating B and the second grating C in the embodiment of the present application, the end-face phase difference adjustment of [0, 2 ⁇ ] can be achieved.
  • the phase difference between the phases of the cleaved end faces formed by the cleavage of the first grating B and the second grating C It can be from 0.1 ⁇ to ⁇ (including 0.1 ⁇ , ⁇ , and any value between 0.1 ⁇ and ⁇ ).
  • the end face phase of the cleavage end face formed by the first grating B after cleavage The end face phase of the cleavage end face formed by the cleavage of the second grating C Phase difference It can be 0.5 ⁇ , or the end face phase of the cleavage end face formed by the second grating C after cleavage
  • the relative displacement ⁇ L involved in the embodiments of the present application may be less than or equal to the period of the first grating B and the second grating C, for example, the relative displacement ⁇ L may be 20nm to 200nm (including 20nm, 200nm, and 20nm and 200nm Any value between). It should be noted that the relative displacement ⁇ L can also be set according to the DFB laser structure and the grating structure.
  • phase change of the cleavage end face will affect the side mode suppression ratio and slope efficiency of the DFB laser, and then affect the yield of the dual cavity DFB laser chip.
  • the phases of the two cleavage end faces formed by the cleavage of the first grating B and the second grating C are different, the edges of the DFB laser corresponding to the first grating B and the DFB laser corresponding to the second grating C Both the mode rejection ratio and the slope efficiency will have obvious differences.
  • the first grating and the second grating are arranged at intervals along the extending direction of the grating above the chip base assembly, wherein the first grating includes a plurality of first etching regions and a plurality of first non- The etching area, the first etching area and the first non-etching area are arranged alternately along the direction perpendicular to the extending direction of the grating; the second grating includes several second etching areas and several second non-etching areas, the second etching area The etched area and the second non-etched area are alternately arranged in a direction perpendicular to the extending direction of the grating.
  • FIG. 2 is a schematic structural diagram of a dual-cavity DFB laser chip provided by another embodiment of the application.
  • the embodiment of the present application introduces the layer structure on the foregoing first grating and second grating in the dual cavity DFB laser chip.
  • the dual cavity DFB laser chip may further include: a first ridge structure D located on the first grating B, and a second ridge structure E located on the second grating C.
  • the first ridge structure D and the second ridge structure E may be separated by a predetermined distance L2. It should be noted that the separation distance between the first ridge structure D and the second ridge structure E in FIG. 2 refers to: between the central axis of the first ridge structure D and the central axis of the second ridge structure E the distance.
  • the waveguide width of the waveguide corresponding to the first ridge structure D and the waveguide corresponding to the second ridge structure E in the embodiment of the present application may be the same.
  • the top surfaces of the first ridge structure D and the second ridge structure E may also be respectively provided with a first electrode layer F for powering the laser.
  • the ridge portion G in the top surface of the first ridge structure D and the ridge portion G in the top surface of the second ridge structure E are directly provided with the first electrode layer F, and the first ridge structure
  • An electrical isolation layer H is also provided between the top surface of D and the second ridge structure E except for the ridge portion G and the first electrode layer F to limit the current injection channel so that current can only pass through The ridge part G is transmitted.
  • first ridge structure D and the second ridge structure E in FIG. 2 are only schematic structures, and other ridge structures may also be used, which are not limited in the embodiment of the present application.
  • FIG. 3 is a schematic structural diagram of a dual cavity DFB laser chip provided by another embodiment of the application.
  • the embodiment of the present application introduces the foregoing chip base assembly A.
  • the chip base assembly A provided by the embodiment of the present application may be sequentially provided with a second electrode layer I, a substrate layer J, a lower separation confinement layer K, an active region L, and an upper separation confinement layer M from bottom to top;
  • a second electrode layer I may be sequentially provided with a second electrode layer I, a substrate layer J, a lower separation confinement layer K, an active region L, and an upper separation confinement layer M from bottom to top;
  • other layers may also be included, which are not limited in the embodiment of the present application.
  • the second electrode I is used to power up the laser, so that a current channel is finally formed between the first electrode F and the second electrode I.
  • the substrate layer J is the base layer of each layer structure in the dual-cavity DFB laser chip, and other layer structures in the dual-cavity DFB laser chip except the substrate layer are obtained by epitaxial growth based on the substrate layer.
  • the lower separation confinement layer K and the upper separation confinement layer M are used to expand the optical field distribution of the laser, so as to reduce the optical field intensity of the quantum well region, thereby reducing the thermal effect of the laser, and at the same time can enhance the confinement effect on electrons , So that more carriers (electrons and holes) recombine in the active region L to generate photons.
  • the active region L is used to realize the recombination of carriers (electrons and holes) to generate photons.
  • FIG. 4A is a schematic cross-sectional structure diagram of a dual-cavity DFB laser chip provided by another embodiment of the application
  • FIG. 4B is a schematic top view structure of the dual-cavity DFB laser chip shown in FIG. 4A.
  • the embodiment of the present application introduces the dual cavity DFB laser chip in combination with the layer structure above and below the first grating and the second grating.
  • the dual-cavity DFB laser chip may include, from bottom to top, a second electrode layer I, a substrate layer J, a lower separation confinement layer K, an active region L, and an upper separation confinement layer M.
  • the grating layer including the first grating B and the second grating C), the contact layer N (for making a good ohmic contact between the semiconductor material and the first electrode layer F), the electrical isolation layer H and the first electrode layer F.
  • the first ridge structure D and the second ridge structure E formed by the contact layer N, the electrical isolation layer H, and the first electrode layer F may be separated by a predetermined distance L2
  • the waveguide width corresponding to the first ridge structure D and the waveguide width corresponding to the second ridge structure E are both W
  • the waveguide cavity length corresponding to the first ridge structure D is the same as the waveguide cavity length corresponding to the second ridge structure E The same length.
  • first cleavage end surface of the dual cavity DFB laser chip is also provided with a high reflection (HR) film
  • the second cleavage end surface of the dual cavity DFB laser chip is also provided with antireflection (AR).
  • HR high reflection
  • AR antireflection
  • each cleavage end face of the dual-cavity DFB laser chip (for example, the first cleavage end face or the second cleavage end face described above) includes the first grating B and the second grating C formed on the same side after cleavage. Cleavage the end face.
  • the first grating B and the second grating C with a period of ⁇ are arranged on the upper separation confinement layer M with a distance L1 along the extending direction of the grating (for example, the x-axis direction), wherein, There is a relative displacement ⁇ L between the orthographic projection of any first etched area of the first grating B along the grating extending direction and the orthographic projection of any second etched area of the second grating C along the grating extending direction, so that There is a phase difference between the first grating B and the second grating C.
  • the end face phase of the cleavage end face formed by the first grating B is Different from the end face phase of the cleavage end face formed by the cleavage of the second grating C
  • the DFB laser corresponding to the first grating B and the DFB laser corresponding to the second grating C in the dual-cavity DFB laser chip provided in this embodiment have phase changes. Therefore, the DFB laser corresponding to the first grating B and the first The side mode suppression ratio and slope efficiency of the DFB laser corresponding to the two gratings C will have obvious differences. There is always a DFB laser's side mode suppression ratio and slope efficiency performance indicators that meet the performance requirements, so that the better performance DFB can be selected when packaging The laser is packaged, thereby further improving the yield of dual-cavity DFB laser chips.
  • the non-phase-variable dual-cavity DFB laser chip provided by the related technology and the phase-variable dual-cavity DFB laser chip provided by the embodiments of the application meet the following conditions: the laser cavity length is 250 ⁇ m, the lasing wavelength is 1270 nm, and the grating type is uniform For the grating, the grating period is 196nm, the grating coupling coefficient is 90/cm, and the standard threshold for slope efficiency is set to 0.4mW/mA. When the laser's working current is the threshold current plus 20mA, the SMSR is set to 40dB.
  • the relative displacement ⁇ L between the first grating and the second grating in the phase-variable dual-cavity DFB laser chip provided by the embodiment of the present application is set to 49nm, so that the first grating and the second grating are formed by cleavage End face phase difference between two cleavage end faces Is a difference of 0.5 ⁇ .
  • the end face phases of the cleavage end faces corresponding to the two DFB lasers are exactly the same, and the end face phase has the same effect on the performance of the two DFB lasers, resulting in the DFB laser chip
  • the other DFB laser still does not meet the performance requirements.
  • Fig. 5A is a schematic diagram of the influence of the random end face phase of the non-phase-changing dual-cavity DFB laser chip provided by the related technology on the slope efficiency
  • Fig. 5B is the influence of the random end-face phase of the non-changing phase dual-cavity DFB laser chip provided by the related technology on the SMSR Schematic diagram.
  • the end face phase is 0.5 ⁇
  • the slope efficiency of the two DFB lasers are both less than 0.4mW/mA, which does not meet the performance index
  • Fig. 5B when the end face phase is 1.5 ⁇ , the SMSR of the two DFB lasers are both less than 40dB, which does not meet the performance index.
  • the first grating and the second grating are cleavaged. There is an end face phase difference between the two cleavage end faces formed Therefore, when any DFB laser in the DFB laser chip does not meet the performance requirements, the other DFB laser can often meet the index requirements.
  • FIG. 6A is a schematic diagram of the influence of the random end face phase of the variable phase dual cavity DFB laser chip provided by an embodiment of the application on the slope efficiency
  • FIG. 6B is a random end face phase pair of the variable phase dual cavity DFB laser chip provided by an embodiment of the application Schematic diagram of the impact of SMSR.
  • the slope efficiency of the DFB laser represented by the dot at the end face phase of 0.5 ⁇ is lower than 0.4mW/mA (that is, the index requirement is not met), but the DFB laser represented by the triangle has the end face phase
  • the slope efficiency at 0.5 ⁇ is greater than 0.4mW/mA (that is, it meets the index requirements).
  • the dual-cavity DFB laser provided by the embodiment of the present application is provided by arranging two sets of gratings parallel to each other, with the same period, and relative displacement on a single dual-cavity DFB laser chip size, wherein the two sets of gratings are formed by cleavage
  • the phases of the cleavage end faces are different, so that two DFB lasers with different end face phases can be fabricated on a single dual-cavity laser chip size. Since different end-face phases have different effects on the side mode suppression ratio and slope efficiency of DFB lasers, when the performance of one DFB laser does not meet the index requirements, another DFB laser can often meet the index requirements. It can be seen that the sensitivity of the dual-cavity DFB laser chip to the end face phase can be effectively reduced, and the yield of the dual-cavity DFB laser chip can be improved.
  • the grating coupling coefficients of the two DFB lasers in the dual-cavity DFB laser provided in the embodiment of the present application are the same, and the light exit direction is perpendicular to the cleaved end surface, it is also convenient for coupling and packaging.
  • the embodiments of the present application also provide a light emitting component, including a dual-cavity DFB laser chip, where the dual-cavity DFB laser chip can adopt the structure of the dual-cavity DFB laser chip provided in the above-mentioned embodiments of the present application, and its implementation principles and technical effects are similar , I won’t repeat it here.
  • the embodiments of the present application also provide an optical module, including a light emitting component, where the light emitting component may adopt the structure of the light emitting component provided in the foregoing embodiment of the present application, and the implementation principles and technical effects are similar, and will not be repeated here.
  • An embodiment of the present application also provides an optical network device, including an optical module, where the optical module may adopt the structure of the optical module provided in the above-mentioned embodiment of the present application, and its implementation principles and technical effects are similar, and will not be repeated here.
  • the optical network device may be an optical network unit (ONU) or an optical line terminal (optical line terminate, OLT).
  • ONU optical network unit
  • OLT optical line terminate

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Semiconductor Lasers (AREA)

Abstract

本申请提供一种双腔DFB激光器芯片、光发射组件、光模块及光网络装置,在芯片基底组件上方沿光栅延伸方向间隔设置第一光栅和第二光栅。第一光栅的任意一个第一刻蚀区的沿光栅延伸方向的正投影与第二光栅的任意一个第二刻蚀区的沿光栅延伸方向的正投影之间具有相对位移,以使得第一光栅与第二光栅之间具有相位差,且第一光栅和第二光栅经过解理所形成的解理端面相位不同,因此,第一光栅对应的DFB激光器与第二光栅对应的DFB激光器的边模抑制比和斜率效率都会产生明显差异,总有一个DFB激光器的边模抑制比和斜率效率等性能指标满足性能要求,以便在封装时选择性能更优越的DFB激光器进行封装,提高了双腔DFB激光器芯片的成品率。

Description

双腔DFB激光器芯片、光发射组件、光模块及光网络装置 技术领域
本申请涉及激光器技术领域,尤其涉及一种双腔DFB激光器芯片、光发射组件、光模块及光网络装置。
背景技术
随着进入信息时代,人们对信息的需求快速增长,促使光纤通信系统的数据速率和数据容量急剧增加。分布反馈(distributed feedback,DFB)激光器芯片是光纤通信系统中的核心器件,光通信系统通过DFB激光器芯片实现了电信号到光信号的转变。由于DFB激光器芯片的制作过程非常复杂且受到设备精度和工艺参数等因素的限制,DFB激光器芯片的成品率比较低,因此,对DFB激光器芯片成品率的研究具有十分重要的意义。
相关技术中通过在同一个激光器芯片尺寸上同时制作两个DFB激光器(即双腔DFB激光器芯片),在解理时将这两个DFB激光器作为一个激光器芯片进行解理,在测试完两个DFB激光器后,挑选出性能更优越的DFB激光器进行封装。
通常情况下,相关技术中解理工艺的误差通常在5μm-20μm之间,而双腔DFB激光器芯片的光栅周期通常小于300nm,导致解理双腔DFB激光器芯片时得到的解理端面是在光栅周期内随机分布的,因此,双腔DFB激光器芯片中的两个DFB激光器对应的解理端面的端面相位是随机变化的,并且双腔DFB激光器芯片中的两个DFB激光器受端面相位的影响是一致的,导致在双腔DFB激光器芯片中的任一个DFB激光器不满足性能要求时,另一个DFB激光器也仍然不满足性能要求,使得相关技术提供的双腔DFB激光器芯片的成品率较低。
发明内容
本申请提供一种双腔DFB激光器芯片、光发射组件、光模块及光网络装置,用于解决相关技术中双腔DFB激光器芯片成品率较低的技术问题。
第一方面,本申请提供一种双腔DFB激光器芯片,包括:芯片基底组件,设置于所述芯片基底组件上方的第一光栅和第二光栅,所述第一光栅和所述第二光栅沿光栅延伸方向间隔设置;
其中,所述第一光栅包括若干第一刻蚀区和若干第一非刻蚀区,所述第一刻蚀区和所述第一非刻蚀区沿垂直于所述光栅延伸方向的方向依次交替设置;
所述第二光栅包括若干第二刻蚀区和若干第二非刻蚀区,所述第二刻蚀区和所述第二非刻蚀区沿垂直于所述光栅延伸方向的方向依次交替设置;
任意一个第一刻蚀区的沿所述光栅延伸方向的正投影与任意一个第二刻蚀区的沿所 述光栅延伸方向的正投影之间具有相对位移,以使得所述第一光栅与所述第二光栅之间具有相位差,且所述第一光栅和所述第二光栅经过解理所形成的解理端面相位不同。
本申请实施例中,通过在芯片基底组件上方沿光栅延伸方向间隔设置第一光栅和第二光栅。第一光栅的任意一个第一刻蚀区的沿光栅延伸方向的正投影与第二光栅的任意一个第二刻蚀区的沿光栅延伸方向的正投影之间具有相对位移,以使得第一光栅与第二光栅之间具有相位差,且第一光栅和第二光栅经过解理所形成的解理端面相位不同,因此,第一光栅对应的DFB激光器与第二光栅对应的DFB激光器的边模抑制比和斜率效率都会产生明显差异,总有一个DFB激光器的边模抑制比和斜率效率等性能指标满足要求,以便在封装时选择性能更优越的DFB激光器进行封装,从而提高了双腔DFB激光器芯片的成品率。
在一种可能的实现方式中,该相对位移为20nm至200nm。
在一种可能的实现方式中,所述第一光栅和所述第二光栅经过解理所形成的解理端面相位之间的相位差为0.1π至π。
在一种可能的实现方式中,所述相位差为0.5π。
在一种可能的实现方式中,所述双腔DFB激光器芯片还包括:
位于所述第一光栅上的第一脊形结构,以及位于所述第二光栅上的第二脊形结构;其中,所述第一脊形结构和所述第二脊形结构的顶面上分别设置有第一电极层。
在一种可能的实现方式中,所述双腔DFB激光器芯片为脊型波导结构激光器或者掩埋波导结构激光器。
在一种可能的实现方式中,所述双腔DFB激光器芯片的第一解理端面上设置有高反膜;
所述双腔DFB激光器芯片的第二解理端面上设置有增透膜。
本实现方式中,通过在双腔DFB激光器芯片的第一解理端面上设置有高反膜,以及在第二解理端面上设置有增透膜,从而可以提高DFB激光器的出光效率。
在一种可能的实现方式中,所述第一光栅和所述第二光栅为一阶光栅或者二阶光栅。
在一种可能的实现方式中,所述芯片基底组件由下向上依次设置有第二电极层、衬底层、下分离限制层、有源区和上分离限制层中的至少一层。
在一种可能的实现方式中,所述第一光栅和所述第二光栅的周期相同。
第二方面,本申请提供一种光发射组件,包括:如上述第一方面的任一实现方式的双腔DFB激光器芯片。
第三方面,本申请提供一种光模块,包括:如上述第二方面的任一实现方式的光发射组件。
第四方面,本申请提供一种光网络装置,包括:如上述第三方面的任一实现方式的光模块。
在一种可能的实现方式中,所述光网络装置为光网络单元ONU或光线路终端OLT。
附图说明
图1A为本申请实施例提供的光栅结构示意图;
图1B为本申请实施例提供的正投影示意图;
图1C为本申请一实施例提供的双腔DFB激光器芯片的结构示意图;
图2为本申请另一实施例提供的双腔DFB激光器芯片的结构示意图;
图3为本申请另一实施例提供的双腔DFB激光器芯片的结构示意图;
图4A为本申请另一实施例提供的双腔DFB激光器芯片的截面结构示意图;
图4B为图4A所示双腔DFB激光器芯片的俯视结构示意图;
图5A为相关技术提供的非变相位的双腔DFB激光器芯片的随机端面相位对斜率效率影响的示意图;
图5B为相关技术提供的非变相位的双腔DFB激光器芯片的随机端面相位对SMSR影响的示意图;
图6A为本申请实施例提供的变相位的双腔DFB激光器芯片的随机端面相位对斜率效率影响的示意图;
图6B为本申请实施例提供的变相位的双腔DFB激光器芯片的随机端面相位对SMSR影响的示意图。
具体实施方式
首先,对本申请实施例所涉及的部分词汇进行介绍。
示例性地,本申请实施例中的双腔DFB激光器芯片可以包括但不限于:脊型波导结构激光器或者掩埋波导结构激光器。
本申请实施例中涉及的第一光栅和第二光栅可以为一阶光栅或者二阶光栅,当然还可以为其它类型的光栅,本申请实施例中对此并不作限制。
本申请实施例中涉及的任意光栅(例如第一光栅或者第二光栅)可以包括若干刻蚀区和非刻蚀区,其中,任意刻蚀区或非刻蚀区的延伸方向相互平行,若干刻蚀区和非刻蚀区沿垂直于任意刻蚀区或非刻蚀区的延伸方向的方向依次交叠设置,或者沿垂直于任意刻蚀区或非刻蚀区的延伸方向的方向,任意相邻的两个刻蚀区之间设置有一个非刻蚀区,或者沿垂直于任意刻蚀区或非刻蚀区的延伸方向的方向,任意相邻的两个非刻蚀区之间设置有一个刻蚀区。
例如,图1A为本申请实施例提供的光栅结构示意图,如图1A所示,光栅可以包括刻蚀区1a、非刻蚀区1b、刻蚀区2a、非刻蚀区2b、刻蚀区3a和非刻蚀区3b,其中,刻蚀区1a、非刻蚀区1b、刻蚀区2a、非刻蚀区2b、刻蚀区3a和非刻蚀区3b的延伸方向F1相互平行,刻蚀区1a、非刻蚀区1b、刻蚀区2a、非刻蚀区2b、刻蚀区3a和非刻蚀区3b沿垂直于延伸方向F1的方向F2依次交叠设置。
本申请实施例中涉及的任意光栅的光栅延伸方向是指该光栅中的任意刻蚀区或非刻蚀区的延伸方向,例如图1A中的延伸方向F1。
本申请实施例中涉及的任意光栅的任意一个刻蚀区沿该光栅的光栅延伸方向的正投影是指沿光栅延伸方向的平行投射线将该刻蚀区垂直投射到投影面的投影。例如,图1B为本申请实施例提供的正投影示意图,如图1B所示,光栅的刻蚀区2a沿光栅延伸方向F1的平行投射线X垂直投射到投影面Y的投影T。
本申请实施例中涉及的边模抑制比(side-mode suppression ratio,SMSR)为定量描述单纵模的参数。例如,当激光器的工作电流为阈值电流加20mA时的SMSR大于40dB,则表示激光器是单纵模激射的。
本申请实施例中的编号“第一”以及“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序,不应对本申请实施例构成任何限定。
本申请实施例中的“至少一项(层)”是指一项(层)或者多项(层),“多项(层)”是指两项(层)或两项(层)以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B的情况,其中A,B可以是单数或者复数。字符“/”一般表示前后关联对象是一种“或”的关系。“以下至少一项(层)”或其类似表达,是指的这些项(层)中的任意组合,包括单项(层)或复数项(层)的任意组合。例如,a,b,或c中的至少一项(层),可以表示:a,b,c,a-b,a-c,b-c,或a-b-c,其中a,b,c可以是单个,也可以是多个。
考虑到DFB激光器芯片的制作过程(例如包括但不限于以下至少一项:沉积、光栅制作、刻脊、开窗口、制作金属电极、减薄、沉积背面电极、解理、测试、封装等)非常复杂且受到设备精度和工艺参数等因素的限制,DFB激光器芯片的成品率比较低,因此,对DFB激光器芯片成品率的研究具有十分重要的意义。
为了提升激光器芯片的成品率,相关技术中通过在同一个激光器芯片尺寸上同时制作两个DFB激光器(即双腔DFB激光器芯片),在解理时将这两个DFB激光器作为一个激光器芯片进行解理,在测试完两个DFB激光器后,挑选出性能更优越的DFB激光器进行封装。由此可见,只有当双腔DFB激光器芯片中的两个DFB激光器同时不满足性能要求时,该颗激光器芯片才会被判别为不良。
通常情况下,相关技术中解理工艺的误差通常在5μm-20μm之间,而双腔DFB激光器芯片的光栅周期通常小于300nm,导致解理双腔DFB激光器芯片时得到的解理端面是在光栅周期内随机分布的,因此,双腔DFB激光器芯片中的两个DFB激光器对应的解理端面的端面相位是随机变化的,并且双腔DFB激光器芯片中的两个DFB激光器受端面相位的影响是一致的,导致在双腔DFB激光器芯片中的任一个DFB激光器不满足性能要求时,另一个DFB激光器也仍然不满足性能要求,使得相关技术提供的双腔DFB激光器芯片的成品率较低。
本申请实施例中提供的双腔DFB激光器芯片、光发射组件、光模块及光网络装置,通过在芯片基底组件上方沿光栅延伸方向间隔设置第一光栅和第二光栅。第一光栅的任意一个第一刻蚀区的沿光栅延伸方向的正投影与第二光栅的任意一个第二刻蚀区的沿光栅延伸方向的正投影之间具有相对位移,以使得第一光栅与第二光栅之间具有相位差,且第一光栅和第二光栅经过解理所形成的解理端面相位不同,因此,第一光栅对应的DFB激光器与第二光栅对应的DFB激光器的边模抑制比和斜率效率都会产生明显差异,总有一个DFB激光器的边模抑制比和斜率效率等性能指标满足性能要求,可以有效降低双腔DFB激光器芯片对解理端面相位的敏感程度,从而解决了相关技术中双腔DFB激光器芯片成品率较低的技术问题。
下面以具体地实施例对本申请的技术方案以及本申请的技术方案如何解决上述技术问题进行详细说明。下面这几个具体的实施例可以相互结合,对于相同或相似的概念或过程可能在某些实施例中不再赘述。
图1C为本申请一实施例提供的双腔DFB激光器芯片的结构示意图。如图1C所示,本申请实施例的双腔DFB激光器芯片可以包括:芯片基底组件A,设置在芯片基底组件A 上方的第一光栅B和第二光栅C,其中,第一光栅B和第二光栅C用于实现选膜,以保证激光器单纵模工作。示例性地,第一光栅B和第二光栅C的光栅周期Λ可以相同。
其中,第一光栅B和第二光栅C沿第一光栅B或第二光栅C的光栅延伸方向上间隔设置,或者沿第一光栅B或第二光栅C的光栅延伸方向上,第一光栅B与第二光栅C之间间隔有一定距离L1;其中,第一光栅B和第二光栅C的光栅延伸方向相同。需要说明的是,第一光栅B与第二光栅C之间的间隔距离L1可以根据实际需要进行设置,例如间隔距离L1可以为1um至50um。
其中,第一光栅B可以包括若干第一刻蚀区B1和若干第一非刻蚀区B2,第一刻蚀区B1和第一非刻蚀区B2沿垂直于第一光栅B的光栅延伸方向F1的方向F2依次交替设置,或者沿垂直于第一光栅B的光栅延伸方向F1的方向F2,任意相邻的两个第一刻蚀区B1之间设置有一个第一非刻蚀区B2,或者沿垂直于第一光栅B的光栅延伸方向F1的方向F2,任意相邻的两个第一非刻蚀区B2之间设置有一个第一刻蚀区B1。
其中,第二光栅C包括若干第二刻蚀区C1和若干第二非刻蚀区C2,第二刻蚀区C1和第二非刻蚀区C2沿垂直于第二光栅C的光栅延伸方向F1的方向F2依次交替设置,或者沿垂直于第二光栅C的光栅延伸方向F1的方向F2,任意相邻的两个第二刻蚀区C1之间设置有一个第二非刻蚀区C2,或者沿垂直于第二光栅C的光栅延伸方向F1的方向F2,任意相邻的两个第二非刻蚀区C2之间设置有一个第二刻蚀区C1。
本申请实施例中,任意一个第一刻蚀区B1的沿光栅延伸方向F1的正投影与任意一个第二刻蚀区C1的沿光栅延伸方向F1的正投影之间具有相对位移ΔL(相当于沿光栅延伸方向F1的投射线将该第一刻蚀区B1垂直投射到投影面的投影,与沿光栅延伸方向F1的投射线将该第二刻蚀区C1垂直投射到投影面的投影之间的相对位移),或者沿光栅延伸方向F1,任意一个第一刻蚀区B1的正投影与任意一个第二刻蚀区C1的正投影互不重合,以使得第一光栅B与第二光栅C之间具有相位差。由于第一光栅B与第二光栅C之间具有相位差,且解理方向与第一光栅B或第二光栅C的光栅延伸方向平行,因此,第一光栅B经过解理所形成的解理端面的端面相位
Figure PCTCN2019077864-appb-000001
不同与第二光栅C经过解理所形成的解理端面的端面相位
Figure PCTCN2019077864-appb-000002
示例性地,第一光栅B和第二光栅C经过解理所形成的解理端面相位之间的相位差
Figure PCTCN2019077864-appb-000003
可以等于2π(ΔL/Λ);其中,ΔL代表上述相对位移,Λ代表第一光栅B和第二光栅C的周期;当然,上述相位差
Figure PCTCN2019077864-appb-000004
还可以等于上述2π(ΔL/Λ)的其它变形或等效式子,本申请实施例中对此并不作限制。可见,本申请实施例中通过调节第一光栅B与第二光栅C之间的相对位移ΔL,便可以实现[0,2π]的端面相位差调节。
示例性地,第一光栅B和第二光栅C经过解理所形成的解理端面相位之间的相位差
Figure PCTCN2019077864-appb-000005
可以为0.1π至π(包括0.1π、π,以及0.1π与π之间的任意数值)。例如,第一光栅B经过解理所形成的解理端面的端面相位
Figure PCTCN2019077864-appb-000006
与第二光栅C经过解理所形成的解理端面的端面相位
Figure PCTCN2019077864-appb-000007
之间的相位差
Figure PCTCN2019077864-appb-000008
可以为0.5π,或者,第二光栅C经过解理所形成的解理端面的端面相位
Figure PCTCN2019077864-appb-000009
与第一光栅B经过解理所形成的解理端面的端面相位
Figure PCTCN2019077864-appb-000010
之间的相位差
Figure PCTCN2019077864-appb-000011
可以为0.5π。
示例性地,本申请实施例中涉及的相对位移ΔL可以小于或等于第一光栅B和第二光栅C的周期,例如,相对位移ΔL可以为20nm至200nm(包括20nm、200nm,以及20nm 与200nm之间的任意数值)。需要说明的是,相对位移ΔL还可以根据DFB激光器结构和光栅结构进行设置。
考虑到解理端面相位的变化会影响DFB激光器的边模抑制比和斜率效率,进而影响双腔DFB激光器芯片的成品率。本实施例中,由于第一光栅B和第二光栅C经过解理所形成的两个解理端面相位不同,因此,第一光栅B对应的DFB激光器与第二光栅C对应的DFB激光器的边模抑制比和斜率效率都会产生明显差异,总有一个DFB激光器的边模抑制比和斜率效率等性能指标满足性能要求,以便在封装时选择性能更优越的DFB激光器进行封装,从而进一步提高了双腔DFB激光器芯片的成品率。
本申请实施例提供的双腔DFB激光器芯片中,通过在芯片基底组件上方沿光栅延伸方向间隔设置第一光栅和第二光栅,其中,第一光栅包括若干第一刻蚀区和若干第一非刻蚀区,第一刻蚀区和第一非刻蚀区沿垂直于光栅延伸方向的方向依次交替设置;第二光栅包括若干第二刻蚀区和若干第二非刻蚀区,第二刻蚀区和第二非刻蚀区沿垂直于光栅延伸方向的方向依次交替设置。任意一个第一刻蚀区的沿光栅延伸方向的正投影与任意一个第二刻蚀区的沿光栅延伸方向的正投影之间具有相对位移,以使得第一光栅与第二光栅之间具有相位差,且第一光栅和第二光栅经过解理所形成的解理端面相位不同,因此,第一光栅对应的DFB激光器与第二光栅对应的DFB激光器的边模抑制比和斜率效率都会产生明显差异,总有一个DFB激光器的边模抑制比和斜率效率等性能指标满足性能要求,以便在封装时选择性能更优越的DFB激光器进行封装,从而提高了双腔DFB激光器芯片的成品率。
图2为本申请另一实施例提供的双腔DFB激光器芯片的结构示意图。在上述实施例的基础上,本申请实施例对双腔DFB激光器芯片中位于上述第一光栅和第二光栅上的层结构进行介绍。
如图2所示,本申请实施例提供的双腔DFB激光器芯片还可以包括:位于第一光栅B上的第一脊形结构D,以及位于第二光栅C上的第二脊形结构E。其中,第一脊形结构D与第二脊形结构E之间可以间隔预设距离L2。需要说明的是,图2中第一脊形结构D与第二脊形结构E之间的间隔距离是指:第一脊形结构D的中心轴线与第二脊形结构E的中心轴线之间的距离。
示例性地,本申请实施例中的第一脊形结构D所对应的波导与第二脊形结构E所对应的波导的波导宽度可以相同。
进一步地,第一脊形结构D和第二脊形结构E的顶面上分别还可以设置有用于给激光器加电的第一电极层F。可选地,第一脊形结构D顶面中的脊面部分G和第二脊形结构E顶面中的脊面部分G上都直接设置有第一电极层F,且第一脊形结构D和第二脊形结构E的顶面中除脊面部分G之外的其它部分上与第一电极层F之间还设置有电隔离层H以限定电流注入通道,从而使得电流只能通过脊面部分G进行传输。
需要说明的是,图2中的第一脊形结构D和第二脊形结构E仅为示意性结构,还可以采用其它脊形结构,本申请实施例中对此并不作限制。
图3为本申请另一实施例提供的双腔DFB激光器芯片的结构示意图。在上述实施例的 基础上,本申请实施例对上述芯片基底组件A进行介绍。
如图3所示,本申请实施例提供的芯片基底组件A由下向上可以依次设置有第二电极层I、衬底层J、下分离限制层K、有源区L和上分离限制层M;当然还可以包括其它层,本申请实施例中对此并不作限制。
示例性地,第二电极I用于给激光器加电,使得最终在第一电极F和第二电极I之间形成电流通道。
示例性地,衬底层J是双腔DFB激光器芯片中各层结构的基础层,双腔DFB激光器芯片中除衬底层之外的其它层结构是以该衬底层为依托进行外延生长得到的。
示例性地,下分离限制层K和上分离限制层M,用于扩大激光器的光场分布,以降低量子阱区域的光场强度,进而减小激光器的热效应,同时可以增强对电子的限制作用,以便于更多的载流子(电子和空穴)在有源区L复合产生光子。
示例性地,有源区L用于实现载流子(电子和空穴)复合产生光子。
图4A为本申请另一实施例提供的双腔DFB激光器芯片的截面结构示意图,图4B为图4A所示双腔DFB激光器芯片的俯视结构示意图。在上述实施例的基础上,本申请实施例结合第一光栅和第二光栅上下的层结构对双腔DFB激光器芯片进行介绍。
如图4A所示,本申请实施例提供的双腔DFB激光器芯片由下向上可以依次包括:第二电极层I、衬底层J、下分离限制层K、有源区L、上分离限制层M、光栅层(包括第一光栅B和第二光栅C)、接触层N(用于使得半导体材料与第一电极层F形成良好的欧姆接触)、电隔离层H和第一电极层F。
示例性地,结合图4A和图4B所示,接触层N、电隔离层H和第一电极层F所形成的第一脊形结构D与第二脊形结构E之间可以间隔预设距离L2,第一脊形结构D对应的波导宽度与第二脊形结构E对应的波导宽度都为W,且第一脊形结构D对应的波导腔长与第二脊形结构E对应的波导腔长相同。
进一步地,双腔DFB激光器芯片的第一解理端面上还设置有高反(high reflection,HR)膜,双腔DFB激光器芯片的第二解理端面上还设置有增透(antireflection,AR)膜,还可以有效地提高激光器的出光效率。
需要说明的是,双腔DFB激光器芯片的每个解理端面(例如上述第一解理端面或第二解理端面)包括第一光栅B和第二光栅C经过解理在同一侧所形成的解理端面。
示例性地,结合图4A和图4B所示,周期为Λ的第一光栅B和第二光栅C沿光栅延伸方向(例如x轴方向)间隔距离L1设置在上分离限制层M上,其中,第一光栅B的任意一个第一刻蚀区的沿光栅延伸方向的正投影与第二光栅C的任意一个第二刻蚀区的沿光栅延伸方向的正投影之间具有相对位移ΔL,以使得第一光栅B与第二光栅C之间具有相位差。例如,假设第一光栅B和第二光栅C为一阶光栅,则DFB激光器的激射波长λ可以根据第一光栅B和第二光栅C的周期Λ以及有效折射率n eff确定,如λ=2n effΛ,因此两个DFB激光器的激射波长相同。
本实施例中,由于第一光栅B与第二光栅C之间具有相位差,且解理方向与光栅延伸方向平行,因此,第一光栅B经过解理所形成的解理端面的端面相位
Figure PCTCN2019077864-appb-000012
不同与第二光栅C经过解理所形成的解理端面的端面相位
Figure PCTCN2019077864-appb-000013
可见,本实施例中提供的双腔DFB激光器 芯片中的第一光栅B对应的DFB激光器与第二光栅C对应的DFB激光器上实现了相位变化,因此,第一光栅B对应的DFB激光器与第二光栅C对应的DFB激光器的边模抑制比和斜率效率都会产生明显差异,总有一个DFB激光器的边模抑制比和斜率效率等性能指标满足性能要求,以便在封装时选择性能更优越的DFB激光器进行封装,从而进一步提高了双腔DFB激光器芯片的成品率。
为了展示本申请实施例提供的变相位的双腔DFB激光器芯片相对于相关技术提供的非变相位的双腔DFB激光器芯片的优势,本申请实施例下述部分进行举例说明。
假设相关技术提供的非变相位的双腔DFB激光器芯片和本申请实施例提供的变相位的双腔DFB激光器芯片都满足如下条件:激光器腔长为250μm,激射波长为1270nm,光栅类型为均匀光栅,光栅周期为196nm,光栅耦合系数为90/cm,斜率效率的合格标准阈值设定为0.4mW/mA,当激光器的工作电流为阈值电流加20mA时的SMSR定为40dB。另外,本申请实施例提供的变相位的双腔DFB激光器芯片中的第一光栅与第二光栅之间的相对位移ΔL设定为49nm,使得第一光栅和第二光栅经过解理所形成的两个解理端面之间的端面相位差
Figure PCTCN2019077864-appb-000014
为0.5π的差值。
相对于相关技术提供的非变相位的双腔DFB激光器芯片,两个DFB激光器对应的解理端面的端面相位完全相同,端面相位对两个DFB激光器性能的影响也完全相同,导致在DFB激光器芯片中的任一个DFB激光器不满足性能要求时,另一个DFB激光器也仍然不满足性能要求。
图5A为相关技术提供的非变相位的双腔DFB激光器芯片的随机端面相位对斜率效率影响的示意图,图5B为相关技术提供的非变相位的双腔DFB激光器芯片的随机端面相位对SMSR影响的示意图。如图5A所示,当端面相位为0.5π时,两个DFB激光器的斜率效率都小于0.4mW/mA,不满足性能指标。如图5B所示,当端面相位为1.5π时,两个DFB激光器的SMSR都小于40dB,不满足性能指标。可见,在相关技术提供的非变相位的双腔DFB激光器芯片中的任一个DFB激光器不满足性能要求时,另一个DFB激光器也仍然不满足性能要求,使得相关技术提供的非变相位的双腔DFB激光器芯片的成品率较低。
由于不同的端面相位对DFB激光器边模抑制比和斜率效率等性能的影响是不同的,本申请实施例提供的变相位的双腔DFB激光器芯片中,第一光栅和第二光栅经过解理所形成的两个解理端面之间具有端面相位差
Figure PCTCN2019077864-appb-000015
因此,当DFB激光器芯片中的任一个DFB激光器不满足性能要求时,另一个DFB激光器往往可以满足指标要求。
图6A为本申请实施例提供的变相位的双腔DFB激光器芯片的随机端面相位对斜率效率影响的示意图,图6B为本申请实施例提供的变相位的双腔DFB激光器芯片的随机端面相位对SMSR影响的示意图。如图6A所示,当圆点所代表的DFB激光器在端面相位为0.5π时的斜率效率低于0.4mW/mA(即不满足指标要求)时,但三角形所代表的DFB激光器在端面相位为0.5π时的斜率效率大于0.4mW/mA(即满足指标要求)。如图6B所示,当三角形所代表的DFB激光器在端面相位为π时的SMSR低于40dB(即不满足指标要求)时,但圆点所代表的DFB激光器在端面相位为π时的SMSR大于40dB(即满足指标要求)。可见,当本申请实施例提供的变相位的双腔DFB激光器芯片中的任一个DFB激光器不满 足性能要求时,另一个DFB激光器往往可以满足指标要求,消除了端面相位对激光器芯片成品率的影响。
综上所述,本申请实施例提供的双腔DFB激光器通过在单个双腔DFB激光器芯片尺寸上设置相互平行、周期相同且具有相对位移的两组光栅,其中,两组光栅经解理所形成的解理端面相位不同,使得最终在单个双腔激光芯片尺寸上可以制作出两个具有不同的端面相位的DFB激光器。由于不同的端面相位对DFB激光器边模抑制比和斜率效率等性能的影响是不同的,当一个DFB激光器的性能不满足指标要求时,另一个DFB的激光器往往可以满足指标要求。可见,可以有效降低双腔DFB激光器芯片对端面相位的敏感程度,提高了双腔DFB激光器芯片的成品率。
另外,由于本申请实施例提供的双腔DFB激光器中的两个DFB激光器的光栅耦合系数相同,出光方向与解理端面垂直,因此,还便于耦合封装。
本申请实施例还提供一种光发射组件,包括双腔DFB激光器芯片,其中,双腔DFB激光器芯片可以采用本申请上述实施例提供的双腔DFB激光器芯片的结构,其实现原理和技术效果类似,此处不再赘述。
本申请实施例还提供一种光模块,包括光发射组件,其中,光发射组件可以采用本申请上述实施例提供的光发射组件的结构,其实现原理和技术效果类似,此处不再赘述。
本申请实施例还提供一种光网络装置,包括光模块,其中,光模块可以采用本申请上述实施例提供的光模块的结构,其实现原理和技术效果类似,此处不再赘述。
示例性地,光网络装置可以为光网络单元(optical network unit,ONU),或者光线路终端(optical line terminate,OLT)。
以上所述,仅为本申请实施例的具体实施方式,但本申请实施例的保护范围并不局限于此,任何在本申请实施例揭露的技术范围内的变化或替换,都应涵盖在本申请实施例的保护范围之内。因此,本申请实施例的保护范围应以所述权利要求的保护范围为准。

Claims (14)

  1. 一种双腔DFB激光器芯片,其特征在于,包括:芯片基底组件,设置于所述芯片基底组件上方的第一光栅和第二光栅,所述第一光栅和所述第二光栅沿光栅延伸方向间隔设置;
    其中,所述第一光栅包括若干第一刻蚀区和若干第一非刻蚀区,所述第一刻蚀区和所述第一非刻蚀区沿垂直于所述光栅延伸方向的方向依次交替设置;
    所述第二光栅包括若干第二刻蚀区和若干第二非刻蚀区,所述第二刻蚀区和所述第二非刻蚀区沿垂直于所述光栅延伸方向的方向依次交替设置;
    任意一个第一刻蚀区的沿所述光栅延伸方向的正投影与任意一个第二刻蚀区的沿所述光栅延伸方向的正投影之间具有相对位移,以使得所述第一光栅与所述第二光栅之间具有相位差,且所述第一光栅和所述第二光栅经过解理所形成的解理端面相位不同。
  2. 根据权利要求1所述的双腔DFB激光器芯片,其特征在于,所述相对位移为20nm至200nm。
  3. 根据权利要求1或2所述的双腔DFB激光器芯片,其特征在于,所述第一光栅和所述第二光栅经过解理所形成的解理端面相位之间的相位差为0.1π至π。
  4. 根据权利要求3所述的双腔DFB激光器芯片,其特征在于,所述相位差为0.5π。
  5. 根据权利要求1-4中任一项所述的双腔DFB激光器芯片,其特征在于,还包括:
    位于所述第一光栅上的第一脊形结构,以及位于所述第二光栅上的第二脊形结构;其中,所述第一脊形结构和所述第二脊形结构的顶面上分别设置有第一电极层。
  6. 根据权利要求1-5中任一项所述的双腔DFB激光器芯片,其特征在于,所述双腔DFB激光器芯片为脊型波导结构激光器或者掩埋波导结构激光器。
  7. 根据权利要求1-6中任一项所述的双腔DFB激光器芯片,其特征在于,所述双腔DFB激光器芯片的第一解理端面上设置有高反膜;
    所述双腔DFB激光器芯片的第二解理端面上设置有增透膜。
  8. 根据权利要求1-7中任一项所述的双腔DFB激光器芯片,其特征在于,所述第一光栅和所述第二光栅为一阶光栅或者二阶光栅。
  9. 根据权利要求1-8所述的双腔DFB激光器芯片,其特征在于,所述芯片基底组件由下向上依次设置有第二电极层、衬底层、下分离限制层、有源区和上分离限制层中的至少一层。
  10. 根据权利要求1至9任一项所述的双腔DFB激光器芯片,其特征在于,所述第一光栅和所述第二光栅的周期相同。
  11. 一种光发射组件,其特征在于,包括:如权利要求1-10中任一项所述的双腔DFB激光器芯片。
  12. 一种光模块,其特征在于,包括:如权利要求11所述的光发射组件。
  13. 一种光网络装置,其特征在于,包括:如权利要求12所述的光模块。
  14. 根据权利要求13所述的光网络装置,其特征在于,所述光网络装置为光网络单元ONU或光线路终端OLT。
PCT/CN2019/077864 2019-03-12 2019-03-12 双腔dfb激光器芯片、光发射组件、光模块及光网络装置 WO2020181497A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201980093475.0A CN113508502B (zh) 2019-03-12 2019-03-12 双腔dfb激光器芯片、光发射组件、光模块及光网络装置
PCT/CN2019/077864 WO2020181497A1 (zh) 2019-03-12 2019-03-12 双腔dfb激光器芯片、光发射组件、光模块及光网络装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/077864 WO2020181497A1 (zh) 2019-03-12 2019-03-12 双腔dfb激光器芯片、光发射组件、光模块及光网络装置

Publications (1)

Publication Number Publication Date
WO2020181497A1 true WO2020181497A1 (zh) 2020-09-17

Family

ID=72427716

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/077864 WO2020181497A1 (zh) 2019-03-12 2019-03-12 双腔dfb激光器芯片、光发射组件、光模块及光网络装置

Country Status (2)

Country Link
CN (1) CN113508502B (zh)
WO (1) WO2020181497A1 (zh)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103715607A (zh) * 2013-12-19 2014-04-09 中国科学院半导体研究所 一种可调谐衬底发射量子级联激光器阵列器件
CN105140779A (zh) * 2015-09-07 2015-12-09 南京大学 基于重构-等效啁啾技术的备份型半导体激光器

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6878565B2 (en) * 2002-10-28 2005-04-12 Finisar Corporation Process for improving yield of DFB lasers
CN101803133B (zh) * 2007-09-11 2013-02-27 宾奥普迪克斯股份有限公司 多腔刻蚀端面dfb激光器
CN107275925A (zh) * 2017-07-31 2017-10-20 青岛海信宽带多媒体技术有限公司 激光芯片及其制备方法、光模块

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103715607A (zh) * 2013-12-19 2014-04-09 中国科学院半导体研究所 一种可调谐衬底发射量子级联激光器阵列器件
CN105140779A (zh) * 2015-09-07 2015-12-09 南京大学 基于重构-等效啁啾技术的备份型半导体激光器

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ZHENG, JUNSHOU ET AL.: "An Equivalent-stepped-index-coupled DFB Semiconductor Laser and Laser Array Realized by Stepping the Duty Cycle of the Sampled Bragg Grating", OPTICS & LASER TECHNOLOGY, vol. 67, 10 October 2014 (2014-10-10), pages 38 - 43, XP055732844, ISSN: 0030-3992 *

Also Published As

Publication number Publication date
CN113508502B (zh) 2022-12-30
CN113508502A (zh) 2021-10-15

Similar Documents

Publication Publication Date Title
JP3613348B2 (ja) 半導体発光素子およびその製造方法
JP6258414B2 (ja) 端面発光エッチングファセットレーザ
US8419956B2 (en) Surface emitting photonic device
JP2015519008A (ja) ビーム形状の改良を伴うレーザ
US6850550B2 (en) Complex coupling MQW semiconductor laser
JP4445292B2 (ja) 半導体発光素子
JP2002353559A (ja) 半導体レーザ及びその製造方法
US20040013144A1 (en) Complex-coupled distributed feedback semiconductor laser device
CN111129945B (zh) 整片制作省隔离器边发射激光器芯片的方法
JP2008166371A (ja) 光半導体素子及びその製造方法
JP2010165759A (ja) 集積光デバイスの製造方法
JP4984514B2 (ja) 半導体発光素子および該半導体発光素子の製造方法
US20030017662A1 (en) High power single mode laser and method of fabrication
WO2020181497A1 (zh) 双腔dfb激光器芯片、光发射组件、光模块及光网络装置
JP2950302B2 (ja) 半導体レーザ
US20020080835A1 (en) Semiconductor laser and method of production thereof
TW201917966A (zh) 分散式回饋雷射的結構與製法
JP2010045256A (ja) 半導体レーザ及び半導体レーザの製造方法
CN104078842A (zh) 光学器件以及光学模块
JP2003218462A (ja) 分布帰還型半導体レーザ装置
JPH03268379A (ja) 半導体レーザ・チップおよびその製造方法
JP2002057405A (ja) 半導体レーザ装置及びその製造方法
JPH1056200A (ja) 発光ダイオードおよびその製造方法
CN112636166B (zh) 一种可调谐单纵模激光器及其制备方法
JP2024501749A (ja) 量子井戸構造、チップ加工方法及びチップ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19919220

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19919220

Country of ref document: EP

Kind code of ref document: A1