JP5034572B2 - 光源装置 - Google Patents

光源装置 Download PDF

Info

Publication number
JP5034572B2
JP5034572B2 JP2007060742A JP2007060742A JP5034572B2 JP 5034572 B2 JP5034572 B2 JP 5034572B2 JP 2007060742 A JP2007060742 A JP 2007060742A JP 2007060742 A JP2007060742 A JP 2007060742A JP 5034572 B2 JP5034572 B2 JP 5034572B2
Authority
JP
Japan
Prior art keywords
optical waveguide
region
light source
optical
source device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007060742A
Other languages
English (en)
Other versions
JP2008227010A (ja
Inventor
友章 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP2007060742A priority Critical patent/JP5034572B2/ja
Publication of JP2008227010A publication Critical patent/JP2008227010A/ja
Application granted granted Critical
Publication of JP5034572B2 publication Critical patent/JP5034572B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、光源装置に関し、特に波長可変の光源装置に関する。
インターネットや映像配信等の広帯域マルチメディア通信サービスの爆発的な需要増加に伴って、幹線系やメトロ系ではより長距離大容量かつ高信頼な高密度波長多重光ファイバ通信システムの導入が、また加入者系においても光ファイバアクセスサービスの普及が急速に進んでいる。そうした光ファイバ通信システムでは、伝送路である光ファイバの敷設コスト低減や光ファイバ1本当たりの伝送帯域利用効率を高める観点から、複数の異なる波長の信号光を多重化して伝送する波長多重技術が広く用いられている。こうした波長多重光ファイバ伝送システムの光源には、半導体レーザダイオード(LD;Laser Diode)の共振器に回折格子を設けた分布帰還型半導体レーザダイオード(DFB−LD;Distributed Feedback Laser Diode)や分布ブラッグ反射型半導体レーザダイオード(DBR−LD;Distributed Bragg Reflector)のような単一軸モード発振する光源が波長チャンネル数だけ必要となる。その際、波長毎に異なる光源モジュールを用意するのではコストや在庫が膨大となるため、複数の異なる波長チャンネルを1つの光源素子でカバーできる波長可変光源の開発が期待されている。
こうした波長可変光源は、複数の異なるDFB−LDやDBR−LDをアレイ状に配置してその信号光出力を合波するもの(アレイ型)(例えば、特許文献1参照)と、利得媒質に外部鏡を組み合わせたもの(外部鏡型)(例えば、特許文献2及び特許文献3参照)に大別される。
特に、外部鏡型の波長可変光源は、広い波長範囲を1つの波長可変光源モジュールでカバーできる可能性があることから、近年開発が進められている。波長可変外部鏡としては、例えば、回折格子表面に塗布され透明ガラス電極で封入された液晶分子の電場による感受率変化を利用して回折波長を電気的に制御するもの(液晶ミラー型)(例えば、特許文献4参照)、導波路型リング光共振器の実効屈折率を熱的あるいは電気的に制御するもの(リング光共振器型)、及び、複数の反射ピーク波長を有する導波路型回折格子群(サンプルドグレーティング、あるいはスーパーストラクチャーグレーティング)を用いるもの(回折格子型)(例えば、特許文献5参照)などが提案されている。
特開2004−221267号公報 特開2005−150724号公報 特開2006−19514号公報 特開2003−133637号公報 特開平6−69586号公報
アレイ型の波長可変光源は、発振波長の安定性などに優れる一方、合波する波長チャンネル数の増加とともに、光合波器の大型化、合波損失の増加、波長チャンネル間ばらつき、アレイ状に配列した素子の膨大な発熱、隣接素子の発熱による発振波長や光出力への影響(相互熱干渉)、及びこの相互熱干渉による素子配置の制約などの課題が存在し、波長チャンネル数の拡張性に限界がある。
液晶ミラー型の波長可変光源においては、液晶分子が高温下で変質して反射波長可変外部鏡としての光学特性や信頼性に影響が及ぶおそれがあり、光素子を気密封止モジュール内へ実装する際に欠かせない加熱工程などに制約が生じる。リング光共振器型の波長可変光源においては、ドライエッチング加工面の損傷や散乱等による損失が懸念されるうえ、屈折率制御に熱光学効果を用いる場合には応答速度も問題になる。また、回折格子型の波長可変光源においては、高度な回折格子設計技術およびその高精細な加工技術が必要なため量産は容易ではなく、発振波長の安定な制御も容易ではない。
本発明の目的は、簡易な構成で、かつ量産性に優れたモノリシック集積型の波長可変の光源装置を提供することである。
本発明の第1視点によれば、第1光導波路、第2光導波路、及び第3光導波路を備え、発振する波長は、第1光導波路及び第3光導波路により選択され、第1光導波路の一方の端面と第2光導波路の一方の端面とが空隙を介して対向して配され、かつ第2光導波路の他方の端面と第3光導波路の一方の端面とが空隙を介して対向して配され、対向する端面対を通じて光導波路間で光が伝搬するように第1光導波路、第2光導波路、及び第3光導波路は同一半導体基板上に配置されており、第2光導波路は、光の増幅媒体及び増幅媒体の活性機構を有する半導体光増幅器として形成されており、第1光導波路及び第3光導波路は、両端面が反射鏡となるファブリ・ペロ共振器として形成されており、第1光導波路の一方の端面及び第3光導波路の一方の端面のうち少なくとも一方が、第2光導波路の対向する端面に対して斜めに配されてなる光源装置光源装置を提供する。
上記第1視点の好ましい形態によれば、第1光導波路の両端面間で形成される光路長と第3光導波路の両端面間で形成される光路長とは異なっている。
上記第1視点の好ましい形態によれば、第2光導波路の両端面は、第2光導波路の光導波軸に対して垂直になっていない。
上記第1視点の好ましい形態によれば、半導体基板と平行な投影面において、第1光導波路の光導波軸と第2光導波路の一方の端面の第1法線とのなす角は、第2光導波路の光導波軸と第1法線とのなす角、及び第2光導波路及び間隙の実効屈折率に応じて規定され、半導体基板と平行な投影面において、第3光導波路の光導波軸と第2光導波路の他方の端面の第2法線とのなす角は、第2光導波路の光導波軸と第2法線とのなす角、及び第2光導波路及び間隙の実効屈折率に応じて規定されている。
上記第1視点の好ましい形態によれば、第2光導波路の両端面には低反射膜が形成されている。
上記第1視点の好ましい形態によれば、第1光導波路及び第3光導波路のうち少なくとも1つは、光導波路の実効屈折率を変える屈折率可変機構を有する。
上記第1視点の好ましい形態によれば、第1光導波路及び第3光導波路のフリースペクトラルレンジは互いに異なっている。第1光導波路のフリースペクトラルレンジと第3光導波路のフリースペクトラルレンジの最小公倍数は、第2光導波路の利得波長帯域幅より大きい。
上記第1視点の好ましい形態によれば、第1光導波路及び第3光導波路のフリースペクトラルレンジは互いに異なっている。第2光導波路を含む第1光導波路の一方の端面と第3光導波路の一方の端面間のフリースペクトラルレンジは、第1光導波路のフリースペクトラルレンジと第3光導波路のフリースペクトラルレンジの間にある。
上記第1視点の好ましい形態によれば、第2光導波路は、3以上の入出力路を有する多モード干渉型光導波路であり、各入出力路には、第1光導波路、第3光導波路、及び出力光を導波するための出力光導波路が形成されている。さらに好ましい形態によれば、光出力を監視する受光領域が第2光導波路の入出力路に形成されている。
上記第1視点の好ましい形態によれば、第1光導波路の一方の端面、第2光導波路の両端面及び第3光導波路の一方の端面は、エッチングにより形成されている。
第1に、本発明においては、発振波長を選択する外部鏡として、構造が単純な一対の単一モード光導波路をベースとした導波路型ファブリ・ペロ共振器領域(FP領域)を用いている。また、利得媒質となる半導体光増幅器領域(SOA領域)は、この一対の導波路型ファブリ・ペロ共振器と同一基板上かつほぼ直列にモノリシック集積することができる。これにより、本発明によれば、簡易な構成かつ小型の波長可変光源装置を得ることができる。
第2に、本発明においては、SOA領域及びFP領域の設計及び製造には、これまでに実績のある光素子の設計・製造技術を活用することができる。また、各領域間における光の結合状態に影響するSOA領域及びFP領域の相対的位置関係は、エピタキシャル成長とリソグラフィ工程で再現性良く決めることができ、共振状態の不安定要因となり得る可動部が排除され、組み立て時に作業負荷が最も大きい光軸調芯が不要となる。これにより、本発明によれば、従来の波長可変光源装置に比べて、素子設計、製造及びモジュール組立の各工程を簡略化することができると共に、歩留まりを向上させることができる。したがって、低コストかつ量産性に優れた光源装置を得ることができる。
第3に、本発明においては、発振波長を選択する手段として回折格子を必要としない。これにより、本発明によれば、回折格子形成工程における導波路の結晶性劣化及びキャリア注入阻害などの問題を回避することができる。したがって、発振特性の信頼性が高い光源装置を得ることができる。
本発明の光源装置について説明する。図1に、本発明の光源装置の構成を示す概念図を示す。光源装置1は、第1光導波路として第1ファブリ・ペロ共振器(FP;Fabry-Perot)領域2、第2光導波路として半導体光増幅器(SOA;Semiconductor Optical Amplifier)領域3、及び第3光導波路として第2ファブリ・ペロ共振器領域4を備える。第1FP領域2、SOA領域3及び第2FP領域4は、第1FP領域2の第2端面2bとSOA領域3の第1端面3aとが対向するように、及びSOA領域3の第2端面3bと第2FP領域4の第1端面4aとが対向するように、ほぼ直列(直線)状に同一半導体基板5上に配置されている。
SOA領域3は、好ましくは、直線状であり、電流注入手段など増幅媒体を活性化させる活性機構としてアンドープ活性層へキャリア注入するための電極を有し、発光を担うアンドープ活性層への光閉じ込めと電流狭窄に優れたいわゆる埋め込みヘテロ構造の導波路型半導体光増幅器領域として形成されている。したがって、SOA領域3は、発振波長域の光が光源装置1全体を往復する際に受ける透過損失を補償して発振するのに十分な光利得を生じさせる利得媒質(例えば白色光源)として機能する。
図2に、図1に示す光源装置における第1FP領域2の第2端面2bとSOA領域3の第1端面3aとが対向する部分の拡大図を示す。SOA領域3の両端面3a,3bは、光が両端面3a,3b間で共振しないように、SOA領域3の光導波軸3cに対して斜めになっている(垂直になっていない)。すなわち、半導体基板5面に平行な投影面において、光導波軸3cとSOA領域3の両端面3a,3bにおける法線3dとは、角度θSOAで交差するように形成されている。SOA領域3の端面3a,3bは、例えば、ドライエッチング技術により楔形溝の側壁の一部として形成することができる。
SOA領域3の両端面3a,3bには、反射抑制及び信頼性の観点から、誘電体膜(低反射膜・反射防止膜)(不図示)が形成されていると好ましい。両端面3a,3bの実効端面反射率は、SOA領域3における光利得にも依存するが、0.1%以下とすると好ましく、例えば、低反射膜を使用すると共に、光導波軸3cと法線3dとのなす角θSOAを6°〜8°に設定することによりこのような低反射率を設定することができる。第1端面3aにおける角度θSOAと第2端面3bにおける角度θSOAとは互いに異なる値でもよいが、レイアウトの簡略化のためには両角度は同じ値(絶対値)であると好ましい。SOA領域3の第1端面3aの向きに対する第2端面3bの向きは、図1に示すようにSOA領域3が平行四辺形状となるような点対称であってもよいし、図3に示すようにSOA領域3が台形状となるような線対称であってもよい。
第1FP領域2及び第2FP領域4は、導波路型ファブリ・ペロ共振器領域となるものであり、第1FP領域2の両端面2a,2b及び第2FP領域4の両端面4a,4bが反射鏡を形成している。第1FP領域2及び第2FP領域4は、好ましくは、直線状の埋め込みヘテロ構造単一モード光導波路である。第1FP領域2におけるフリースペクトラルレンジ(光波長間隔)(FSR;Free Spectral Range)ΔλFP1と第2FP領域4におけるFSRΔλFP2とが互いに異なるように設定できるようにする。例えば、第1FP領域2の両端面2a,2b間で形成される光路長と第2FP領域4の両端面4a,4b間で形成される光路長とは異なるようにすると好ましい。また、第1FP領域2及び第2FP領域4のうち少なくとも一方は、電流注入、電圧印加、温度調節などによって光導波路の実効屈折率を変えることができる屈折率可変機構を有するようにする。特に、電流注入又は電圧印加による屈折率変化は、その応答時間がナノ秒程度と高速なので、動的選択波長切替動作に適しており、温度変化による屈折率変化は、その応答時間がミリ秒以上と遅いので、主に素子製造時に生じた反射スペクトルの中心波長のずれの静的補正に適している。第1FP領域2及び第2FP領域4の形状は、ファブリ・ペロ共振動作が得られるものであればいずれの形状でもよいが、設計及び製造の観点から直線状であると好ましい。
第1FP領域2及び第2FP領域4の各端面における反射率を変えるためには、部分蒸着や化学的エッチングを利用して所望の誘電体膜を形成すると好ましい。特に、第1FP領域2及び第2FP領域4が波長選択性反射器としての動作に必要な両端面の反射率積(例えば、第1FP領域2における第1端面2aの反射率と第2端面2bの反射率の積)が得られない場合、第1FP領域2及び第2FP領域4の端面には高反射膜を形成するようにする。
また、第1FP領域2及び第2FP領域4は、光損失を補うために光利得を発生させる機構を有してもよい。
第1FP領域2とSOA領域3、及びSOA領域3と第2FP領域4は、一方の端面から放出された光が、互いに対向する端面(の対)を通じて光導波路間の間隙を介して他方へ伝搬されるように配置されている。第1FP領域2と第2FP領域4は、それぞれ、SOA領域3の端面3a,3bと間隙6を介して配置されている。例えば、図2に示すように、第1FP領域2とSOA領域3との関係に着目すると、半導体基板面に平行な投影面において、第2端面2bの法線方向を示す第1FP領域2の光導波軸2cとSOA領域3の第1端面3aの法線3dとが角度θgapで交差するように、第1FP領域2とSOA領域3は配置されている。角度θgapは、SOA領域3の実効屈折率nSOA、間隙6の実効屈折率ngapとするとSnellの法則より、数1が得られる。そして、数1から数2が導き出される。
Figure 0005034572
Figure 0005034572
第1FP領域2及び第2FP領域4とSOA領域3との間の間隙6における光路長は、5μm以下であると好ましい。間隙6の光路長が長いと、各光導波路から出射された光は、間隙6においては光閉じ込めされないので指数関数的に減衰してしまい、各光導波路間の実効的な光結合効率が低下してしまうからである。
次に、光源装置1の詳細な構成について説明する。図4に、光源装置1の概略平面図を示す。図5に、図4のV−V線における概略断面図(ハッチング省略)を示し、図6に、図4のVI−VI線における概略断面図(ハッチング省略)を示す。図4において、光導波路(アンドープ活性層24及びアンドープコア層44)は点線で示されている。
図1及び図2を用いて説明したように、第1FP領域2、SOA領域3及び第2FP領域4は、端面を対向させてほぼ直列に配置されている。第1FP領域2とSOA領域3間の間隙6及びSOA領域3と第2FP領域4間の間隙7は、最上面から下部クラッド層22,42くらいまでエッチングされた領域である。すなわち、間隙6の内壁面が、第1FP領域2の第2端面2b及びSOA領域3の第1端面3aになるように、間隙7の内壁面がSOA領域3の第2端面3b及び第2FP領域4の第1端面4aになるように、楔形状ないし三角形状のエッチング処理を施す。例えば、θSOAが6°〜8°の範囲内、θgapが19°〜22°の範囲内になるようにエッチング処理を施すと好ましい。
半導体基板5上には、電流注入あるいは電圧印加する領域が複数形成されているので、第1FP領域2、SOA領域3及び第2FP領域4は、それぞれ互いに電気的に絶縁(隔離)する必要がある。そこで、第1FP領域2及び第2FP領域4においては、導波路に沿ってアンドープコア層44の両側に絶縁溝54をエッチング処理により形成し、SOA領域3においては、導波路に沿ってアンドープ活性層24の両側に絶縁溝34をエッチング処理によって形成して、各領域間の絶縁性を確保している。絶縁溝34,54は、例えば幅5μm〜10μmの溝として形成することができる。図4に示す形態においては、絶縁溝54、間隙6、絶縁溝34及び間隙7は、連通するように形成されている。
光源装置1の両端面(第1FP領域2の第1端面2a及び第2FP領域4の第2端面4b)は、劈開によって形成すると好ましい。所望の特性が得られるように、第1FP領域2の両端面2a,2b及び第2FP領域4の両端面4a,4bには高反射膜(不図示)を、SOA領域3の両端面3a,3bには低反射膜(不図示)を、適宜形成する。
各上部電極32,52の端部は、例えば、各領域の各端面から5μm〜10μm内側に形成する。
図5に示すように、SOA領域3は、半導体基板5上に、下部クラッド層22、アンドープ下部光閉じ込め層23、アンドープ活性層24、アンドープ上部閉じ込め層25、上部クラッド層26、及びコンタクト層27を有し、これらの層は、両側を埋め込み層28、キャリア捕獲層29及び埋め込みクラッド層30によって埋め込まれている。埋め込み層28、キャリア捕獲層29及び埋め込みクラッド層30には、アンドープ活性層24などに沿って絶縁溝34が両側に形成されている。また、電流注入のための上部電極32及び下部電極33、及び絶縁膜31が形成されている。
図6に示すように、FP領域2,4は、SOA領域3と同様の構成を有し、半導体基板5上に、下部クラッド層42、アンドープ下部光閉じ込め層43、アンドープコア層44、アンドープ上部閉じ込め層45、上部クラッド層46、及びコンタクト層47を有し、これらの層は、両側を埋め込み層48、キャリア捕獲層49及び埋め込みクラッド層50によって埋め込まれている。埋め込み層48、キャリア捕獲層49及び埋め込みクラッド層50には、アンドープコア層44などに沿って絶縁溝54が両側に形成されている。また、屈折率を変化させるのための上部電極52及び下部電極53、及び絶縁膜51が形成されている。
次に、光源装置1の製造方法について説明する。図7に、概略平面図による製造工程図を示し、図8に、図4のV−V線における概略断面図によるSOA領域3の製造工程図(ハッチング省略)を示す。図7においては、SOA領域3等の各領域を形成する位置を点線で図示してある。
まず、第1回目の結晶成長においてSOA領域3の積層構造22〜27を形成した(図7(A))。すなわち、半導体基板5上に、下から順に下部クラッド層22、アンドープ下部光閉じ込め層23、アンドープ活性層24、アンドープ上部光閉じ込め層25、上部クラッド層26、へテロ障壁緩和層(膜厚が薄いため図示せず)、及びコンタクト層27を、有機金属気相成長法(MOVPE)などを用いて連続して成長させる。
次に、コンタクト層27上に、SOA領域3を残すためにエッチングから保護するエッチング阻止膜35を形成する(図7(B)、図8(a))。
次に、SOA領域3外部に形成された積層構造22〜27をエッチングにより除去する(図7(C))。
次に、第2回目の結晶成長において、第1FP領域2及び第2FP領域4の積層構造42〜47を、SOA領域3の周囲に形成する(図7(D))。すなわち、第1回目の結晶成長と同様にして、SOA領域3の周囲の半導体基板5上に、下から順に下部クラッド層42、アンドープ下部光閉じ込め層43、アンドープコア層44、アンドープ上部光閉じ込め層45、上部クラッド層46、へテロ障壁緩和層(膜厚が薄いため図示せず)、及びコンタクト層47を有機金属気相成長法(MOVPE)などを用いて連続して成長させる。
次に、第1FP領域2、SOA領域3及び第2FP領域4の導波路となる積層構造を残すために、エッチングから保護するエッチング阻止膜36をコンタクト層27,47上に形成する(図7(E))。
次に、導波路となる領域に以外に形成された積層構造22〜27,42〜47をエッチングにより除去する(図7(F)、図8(b))。
次に、第3回目の結晶成長において、導波路となる領域の周囲に埋め込み層を形成する(図7(G)、図8(c))。すなわち、半導体基板5上に、埋め込み層28,48、キャリア捕獲層29,49及び埋め込みクラッド層30,50を連続して成長させた。
次に、エッチング阻止膜37を、コンタクト層27,47及び埋め込みクラッド層30,50上に形成し、間隙6,7(各領域2,3,4の端面)及び絶縁溝34,54をエッチングにより形成する(図8(d))。図8(H)は、エッチング阻止膜37を除去した後の状態を示す。
次に、光導波路に電流注入ないし電圧印加するための上部電極32,52、下部電極33,53及び絶縁膜31,51を形成する(図8(e))。
最後に、必要に応じて、SOA領域3の両端面3a,3bに低反射膜(不図示)を形成し、第1FP領域2及び第2FP領域4の両端面2a,2b,4a,4bに高反射膜(不図示)を形成する。
次に、本発明の光源装置1の動作について説明する。まず、SOA領域3に電流注入され、SOA領域3中の光は、第1FP領域2の第2端面2bと第2FP領域4の第1端面4aを反射鏡として、第1FP領域2の第2端面2bと第2FP領域4の第1端面4a間を往復して増幅される。このとき、第1FP領域2の第2端面2b及び第2FP領域4の第1端面4aで反射される光の一部は、第1FP領域2及び第2FP領域4内へ伝搬される。
ここで、第1FP領域2及び第2FP領域4は、一定の光波長間隔(FSR;Free Spectral Range)ΔλFPで周期的にピークが現れる波長選択性のある反射器である。図9に、本発明の光源装置1におけるスペクトル特性の概念図を示す。図9(a)は、第1FP領域2によって選択されるスペクトル特性の概念図、図9(b)は、第2FP領域4によって選択されるスペクトル特性の概念図、図9(c)は、図9(a)と図9(b)の重なり部分のスペクトル特性の概念図、及び図9(d)は、SOA領域3の利得波長のスペクトル特性の概念図を示す。第1FP領域2のFSRΔλFP1と第2FP領域4のFSRΔλFP2とが互いに異なっていれば、両FSRΔλFP1,ΔλFP2の最小公倍数となるFSRΔλ毎に反射ピークが重なり、発振波長λが選択される。
図9(c)に示すように、重なるピークが複数生じたとしても、SOA領域3における利得波長帯域ΔλGainとの組み合わせにより多モード発振を回避することができる。すなわち、図9(d)に示すように、発振波長λが利得波長帯域ΔλGainに含まれるようにすると共に、FSRΔλ>利得波長帯域ΔλGainの条件が満たされるように設定することによって、単一モード発振を確保することができる。
さらに、第1FP領域2の第2端面2bと第2FP領域4の第1端面4a間の共振、すなわちSOA領域3とその両側の間隙6,7における共振を利用して帯域幅を狭めることにより、選択波長の精度をさらに高めることもできる。例えば、第1FP領域2のFSRΔλFP1を197.5GHz、SOA領域3を含む両端面2b,4a間のFSRΔλSOAを200GHz、及び第2FP領域4のFSRΔλFP2を202.5GHzとすることにより、選択波長の精度を高めることができる。
この発振波長λの光が十分な利得に達すると、光源装置1は単一軸モード発振を開始する。第1FP領域2及び第2FP領域4の実効屈折率を変化させれば、反射ピークの重なり位置を広い波長域に亘って変化させることができ、光源装置1は、単一軸モード発振可能な波長可変光源として機能する。なお、このように、互いにFSRの異なる一対の波長選択性反射器の反射スペクトルをわずかにシフトさせることで波長選択域を広げる原理は、ノギスの主目盛りと副尺(バーニア)目盛りとの関係にちなんで、バーニア原理(あるいはバーニア効果)と呼ばれている。
第1FP領域2のFSRΔλFP1と第2FP領域4のFSRΔλFP2の差は、何波長チャンネル分発振させるかによって決定する。波長チャンネル数は、第1FP領域2のFSRΔλFP1と第2FP領域4のFSRΔλFP2の平均値を、両FSRの差で割った値{(ΔλFP1+ΔλFP2)/2}/(ΔλFP1−ΔλFP2)でほぼ決定することができる。例えば、ΔλFP1=202.5GHz、ΔλFP2=197.5GHzであれば40波長チャンネル分程度が発振される。
本発明の光源装置によれば、SOA領域と一対のFP領域がモノリシック集積された簡易かつ小型の構成で波長を変化させることができる。光源装置の製造においても、複雑な回折格子を形成する必要なく、また、SOA領域とFP領域の相対的位置関係も高精度リソグラフィ工程で決めることができるので、光軸調芯・固定作業が不要となり、製造コストを抑えることができる。さらに、すでに高い実用化実績を有しているファブリ・ペロ型半導体レーザダイオード(FP−LD)と基本的に同じプロセスで製造することができる。
次に、本発明の第2実施形態に係る光源装置について説明する。図10に、本発明の第2実施形態に係る光源装置の構成例を示す概略平面図を示す。図10において、光導波路及び活性層は点線で図示してある。第2実施形態においては、多モード干渉型光合分波器の構造を有するSOA領域63が使用されている。
光源装置61は、第1実施形態と同様にして、SOA領域63の両側に、第1FP領域62及び第2FP領域64が形成されている。ここで、SOA領域63は、図10に示すように、計4本の入出力路を有するアクティブMMIとして構成されている。第1FP領域62と第2FP領域64は、SOA領域63の対角線上の入出力路に対向配置されている。第1FP領域62とSOA領域63との間には間隙72がエッチング処理により形成され、第1FP領域62の第2端面62b及びSOA領域63の光導波軸に対して斜めになっている第1端面63aが形成されている。同様に、第2FP領域64とSOA領域63との間には間隙73がエッチング処理により形成され、第2FP領域64の第1端面64a及びSOA領域63の光導波軸に対して斜めになっている第2端面63bが形成されている。
光源装置61の外方を向いている第1FP領域62の第1端面62a及び第2FP領域64の第2端面62bは、間隙72,73と同様にしてエッチングにより形成したエッチング領域70によって形成されている。
光源装置61はさらに受光領域65を備え、受光領域65は1つの入出力路に対向して配置されている。受光領域65は、逆バイアスを印加した状態で受光して光電流を測定することで発振状態の光出力を監視することができる。受光領域65は、図5に示すSOA領域の概略断面図と同様の構造を有している。
残りの入出力路には光を取り出す出力光導波路コア層66(FP領域と同様の積層構造)がSOA領域63から光源装置61の端部にまで延在している。
好ましくは、光源装置61の端面(受光領域65及び出力光導波路66の端面)、第1FP領域62の両端面62a,62b及び第2FP領域64の両端面64a,64bには、高反射膜(不図示)が形成され、SOA領域63の両端面63a,63bには低反射膜(不図示)が形成される。
4本の入出力路は、結晶成長後、例えば誘導結合プラズマ反応性イオンエッチング技術を用いて形成することができる。
本発明の第1実施形態に係る光源装置の実施例について説明する。本実施例においては、図4〜図6に示すような光源装置を図7及び図8に図示した工程で作製した。まず、SOA領域として、n−Inp半導体基板上に、下から順にn−InP下部クラッド層、アンドープInGaAsP下部光閉じ込め層(波長組成1250nm)、アンドープInGaAsP/InGaAsP歪多重量子井戸活性層(遷移波長1560nm)、アンドープInGaAsP上部光閉じ込め層(波長組成1250nm)、p−InP上部クラッド層、p−InGaAsPへテロ障壁緩和層(波長組成1400nm)、p−InGaAsコンタクト層を、有機金属気相成長法(MOVPE)を用いて連続して成長させた。導波路の積層構造は、SiNエッチング阻止膜をマスクとして、誘導結合プラズマ反応性イオンエッチング技術を用いて幅1.3μmに加工した。
次に、導波路の積層構造の両側面に、埋め込み層として、Ruドープ半絶縁性InP層、n−Inpホールトラップ層、及びp−InP埋め込みクラッド層を形成した。次に、SiN膜をエッチング阻止膜として形成した後、埋め込み層の両側面の絶縁溝、及び光導波軸に対して端面が斜めになった間隙を、2周波RF励起誘導結合プラズマ型反応性イオンエッチングにより形成して、埋め込みヘテロ構造単一モード光導波路を形成した。なお、この埋め込み層の形成及び絶縁溝と間隙の形成は、第1FP領域及び第2FP領域の作製と同時に行った。次に、歪多重量子井戸活性層へキャリア注入するためのTi−Pt−Au電極及び絶縁膜を形成した。また、SOA領域の両端面には低反射膜を形成した。
FP領域としては、一対の導波路型ファブリ・ペロ共振器領域を形成した。n−InP半導体基板上に、下から順にn−InP下部クラッド層、アンドープInGaAsP下部光閉じ込め層(波長組成1300nm)、アンドープInGaAsP/InGaAsP多重量子コア層(遷移波長1400nm)、アンドープInGaAsP上部光閉じ込め層(波長組成1300nm)、p−InP上部クラッド層、p−InGaAsPへテロ障壁緩和層(波長組成1400nm)、p−InGaAsコンタクト層を有機金属気相成長法(MOVPE)を用いて連続して成長させた。次に、先に述べたように、SOA領域作製と同時に、埋め込み層、絶縁溝及び間隙を形成した。次に、実効屈折率を制御するために多重量子井戸コア層へキャリア注入するためのTi−Pt−Au電極及び絶縁膜を形成した。
SOA領域の光導波方向の長さは400μmであり、波長1530〜1570nmの信号光に対する実効屈折率はほぼ3.45で一定であった。SOA領域の両端面の法線は、n−InP半導体基板に平行かつ信号光伝搬軸に対して7°傾いており、両端面の実効残留端面反射率は0.1%以下であった。
一対のFP領域は、それぞれ、SOA領域に対して光路長で3μmの空隙を隔てて、各信号光伝搬軸がSOA領域の端面に対して成す角度θgapが約22°になるように配置した。FP領域における波長1530〜1570nmの信号光に対するキャリア非注入時の実効屈折率はともに3.35でほぼ一定であり、それぞれのFSRは素子長の長い方が50GHz、短い方が51GHzであった。
SOA領域に順方向バイアス電流を流すと、25℃にてしきい値電流20mA、発振波長1550nm、サイドモード抑圧比50dB以上で単一軸モード発振した。また、各FP領域へ注入する電流を0mA〜15mAの範囲で最適に制御することにより、1530nm〜1570nmの広い波長域にわたる広帯域波長可変動作を実現した。さらに、発振波長の切替に要する時間は約10nsec以下と実用上支障の無い十分な高速性を確認した。
本発明の第2実施形態に係る光源装置の実施例について説明する。本実施例においては、図10に示すような光源装置を作製した。SOA領域、第1FP領域及び第2FP領域における導波路及び埋め込み層の積層構造は、実施例1と同様である。
SOA領域においては、第1回目の結晶成長の後、誘導結合プラズマ反応性イオンエッチング技術を用いて、幅12μm、長さ239μmで、計4本の単一モード光導波路(幅1.3μm)が接続した多モード干渉(MMI)型光合分波器の形状に加工した。
計4本の単一モード光導波路の波長1530〜1570nmの信号光に対する実効屈折率はほぼ3.35で一定であった。そのFP領域に対向する両端面の法線は、n−InP基板に平行かつ信号光伝搬軸に対して7°傾いていた。この両斜め端面に施された低反射膜を含めた実効残留端面反射率は0.1%以下に抑えられていた。
一対の導波路型FP光共振器領域(FP領域)は、長さ3μmの空隙を隔ててその片端面が上記SOA領域のそれぞれの斜め端面に対向して配置され、FP領域とSOA領域のそれぞれの信号光伝搬軸が成す角度θgapは約22°に設定した。
また、実施例1のSOA領域と同一構造を有する受光領域を1つの導波路上に形成した。
SOA領域に順方向バイアス電流を流すと、25℃にてしきい値電流40mA、発振波長1550nm、サイドモード抑圧比50dB以上で単一軸モード発振した。また、それぞれの導波路型FP光共振器領域へ注入する電流を0mA〜15mAの範囲で最適に制御することにより、1530nm〜1570nmの広い波長域にわたる広帯域波長可変動作を実現した。さらに、発振波長の切替に要する時間は約10nsec以下と実用上支障の無い十分な高速性を確認した。また、受光領域に逆方向バイアス電圧を印加すると、発振光出力に比例した光電流が取り出された。
本発明の光源装置は、上記実施形態及び実施例を用いて説明したが、上記実施形態及び実施例に限定されることなく、本発明の範囲内において種々の変形、変更及び改良を含むことができることはいうまでもない。
本発明の第1実施形態に係る光源装置の構成例を示す概念図。 図1に示す光源装置の一部の拡大図。 本発明の第1実施形態に係る光源装置の別の構成例を示す概念図。 本発明の第1実施形態に係る光源装置の概略平面図。 図4のV−V線における概略断面図。 図4のVI−VI線における概略断面図。 本発明の第1実施形態に係る光源装置の製造方法を説明するための概略平面図。 本発明の第1実施形態に係る光源装置におけるSOA領域の製造方法を説明するための概略断面図。 本発明の光源装置におけるスペクトル特性の概念図。 本発明の第2実施形態に係る光源装置の概略平面図。
符号の説明
1 光源装置
2 第1FP領域
2a 第1端面
2b 第2端面
2c 光導波軸
3 SOA領域
3a 第1端面
3b 第2端面
3c 光導波軸
3d 法線
4 第2FP領域
4a 第1端面
4b 第2端面
5 半導体基板
6 間隙
7 間隙(エッチング領域)
22 下部クラッド層
23 アンドープ下部光閉じ込め層
24 アンドープ活性層
25 アンドープ上部光閉じ込め層
26 上部クラッド層
27 コンタクト層
28 埋め込み層
29 キャリア捕獲層
30 埋め込みクラッド層
31 絶縁膜
32 上部電極
33 下部電極
34 絶縁溝
35 エッチング阻止膜
36 エッチング阻止膜
37 エッチング阻止膜
42 下部クラッド層
43 アンドープ下部光閉じ込め層
44 アンドープコア層
45 アンドープ上部光閉じ込め層
46 上部クラッド層
47 コンタクト層
48 埋め込み層
49 キャリア捕獲層
50 埋め込みクラッド層
51 絶縁膜
52 上部電極
53 下部電極
54 絶縁溝
61 光源装置
62 第1FP領域
62a 第1端面
62b 第2端面
63 SOA領域
63a 第1端面
63b 第2端面
64 第2FP領域
64a 第1端面
64b 第2端面
65 受光領域
66 出力光導波路コア層
67 上部電極
68 上部電極
69 上部電極
70 エッチング領域
71 絶縁溝
72 間隙(エッチング領域)
73 間隙(エッチング領域)

Claims (11)

  1. 第1光導波路、第2光導波路、及び第3光導波路を備え、
    発振する波長は、前記第1光導波路及び前記第3光導波路により選択され、
    前記第1光導波路の一方の端面と前記第2光導波路の一方の端面とが空隙を介して対向して配され、かつ前記第2光導波路の他方の端面と前記第3光導波路の一方の端面とが空隙を介して対向して配され、
    対向する端面対を通じて光導波路間で光が伝搬するように前記第1光導波路、前記第2光導波路、及び前記第3光導波路は同一半導体基板上に配置されており、
    前記第2光導波路は、光の増幅媒体及び前記増幅媒体の活性機構を有する半導体光増幅器として形成されており、
    前記第1光導波路及び前記第3光導波路は、両端面が反射鏡となるファブリ・ペロ共振器として形成されており、
    前記第1光導波路の前記一方の端面及び前記第3光導波路の前記一方の端面のうち少なくとも一方が、前記第2光導波路の対向する端面に対して斜めに配されてなることを特徴とする光源装置。
  2. 前記第1光導波路の両端面間で形成される光路長と前記第3光導波路の両端面間で形成される光路長とは異なっていることを特徴とする請求項1に記載の光源装置。
  3. 前記第2光導波路の両端面は、前記第2光導波路の光導波軸に対して垂直になっていないことを特徴とする請求項1又は2に記載の光源装置。
  4. 前記半導体基板と平行な投影面において、前記第1光導波路の光導波軸と前記第2光導波路の前記一方の端面の第1法線とのなす角は、前記第2光導波路の光導波軸と前記第1法線とのなす角、及び前記第2光導波路及び前記間隙の実効屈折率に応じて規定され、
    前記半導体基板と平行な投影面において、前記第3光導波路の光導波軸と前記第2光導波路の前記他方の端面の第2法線とのなす角は、前記第2光導波路の光導波軸と前記第2法線とのなす角、及び前記第2光導波路及び前記間隙の実効屈折率に応じて規定されていることを特徴とする請求項1〜3のいずれか一項に記載の光源装置。
  5. 前記第2光導波路の両端面には低反射膜が形成されていることを特徴とする請求項1〜4のいずれか一項に記載の光源装置。
  6. 前記第1光導波路及び前記第3光導波路のうち少なくとも1つは、光導波路の実効屈折率を変える屈折率可変機構を有することを特徴とする請求項1〜5のいずれか一項に記載の光源装置。
  7. 前記第1光導波路及び前記第3光導波路のフリースペクトラルレンジは互いに異なっており、
    前記第1光導波路のフリースペクトラルレンジと前記第3光導波路のフリースペクトラルレンジの最小公倍数は、前記第2光導波路の利得波長帯域幅より大きいことを特徴とする請求項1〜6のいずれか一項に記載の光源装置。
  8. 前記第1光導波路及び前記第3光導波路のフリースペクトラルレンジは互いに異なっており、
    前記第2光導波路を含む前記第1光導波路の前記一方の端面と前記第3光導波路の前記一方の端面間のフリースペクトラルレンジは、前記第1光導波路のフリースペクトラルレンジと前記第3光導波路のフリースペクトラルレンジの間にあることを特徴とする請求項1〜7のいずれか一項に記載の光源装置。
  9. 前記第2光導波路は、3以上の入出力路を有する多モード干渉型光導波路であり、
    各入出力路には、前記第1光導波路、前記第3光導波路、及び出力光を導波するための出力光導波路が形成されていることを特徴とする請求項1〜8のいずれか一項に記載の光源装置。
  10. 光出力を監視する受光領域が前記第2光導波路の前記入出力路に形成されていることを特徴とする請求項9に記載の光源装置。
  11. 前記第1光導波路の前記一方の端面、前記第2光導波路の前記両端面及び前記第3光導波路の前記一方の端面は、エッチングにより形成されていることを特徴とする請求項1〜10のいずれか一項に記載の光源装置。
JP2007060742A 2007-03-09 2007-03-09 光源装置 Expired - Fee Related JP5034572B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007060742A JP5034572B2 (ja) 2007-03-09 2007-03-09 光源装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007060742A JP5034572B2 (ja) 2007-03-09 2007-03-09 光源装置

Publications (2)

Publication Number Publication Date
JP2008227010A JP2008227010A (ja) 2008-09-25
JP5034572B2 true JP5034572B2 (ja) 2012-09-26

Family

ID=39845304

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007060742A Expired - Fee Related JP5034572B2 (ja) 2007-03-09 2007-03-09 光源装置

Country Status (1)

Country Link
JP (1) JP5034572B2 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019197837A (ja) 2018-05-10 2019-11-14 富士通オプティカルコンポーネンツ株式会社 多波長光源、及びこれを用いた光モジュール

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60187078A (ja) * 1984-03-06 1985-09-24 Matsushita Electric Ind Co Ltd 半導体レ−ザ装置
JPH0821706B2 (ja) * 1987-06-22 1996-03-04 松下電器産業株式会社 光集積回路
US4896325A (en) * 1988-08-23 1990-01-23 The Regents Of The University Of California Multi-section tunable laser with differing multi-element mirrors
DE3931588A1 (de) * 1989-09-22 1991-04-04 Standard Elektrik Lorenz Ag Interferometrischer halbleiterlaser
JP2770900B2 (ja) * 1992-08-17 1998-07-02 日本電信電話株式会社 分布反射器及びそれを用いた波長可変半導体レーザ
JPH0992924A (ja) * 1995-09-25 1997-04-04 Nippon Telegr & Teleph Corp <Ntt> 半導体レーザ
JP2001237494A (ja) * 2000-02-25 2001-08-31 Mitsubishi Electric Corp 半導体レーザ装置
JP2002176224A (ja) * 2000-12-07 2002-06-21 Fuji Photo Film Co Ltd レーザー光源
JP2003133637A (ja) * 2001-10-25 2003-05-09 Yokogawa Electric Corp 波長可変半導体レーザ及びその製造方法
JP4033822B2 (ja) * 2002-09-19 2008-01-16 日本電信電話株式会社 Dbr型波長可変光源
JP2004221267A (ja) * 2003-01-14 2004-08-05 Nippon Telegr & Teleph Corp <Ntt> 高速波長可変分布帰還型半導体レーザアレイ及び分布帰還型半導体レーザ
KR100532303B1 (ko) * 2003-11-15 2005-11-29 삼성전자주식회사 다중 채널 광원과 그를 이용한 다중 채널 광모듈
JP4639663B2 (ja) * 2004-07-01 2011-02-23 旭硝子株式会社 波長可変ミラーおよび波長可変レーザ
KR100620391B1 (ko) * 2004-12-14 2006-09-12 한국전자통신연구원 집적형 반도체 광원
JP2006278770A (ja) * 2005-03-29 2006-10-12 Nec Corp 波長可変レーザ

Also Published As

Publication number Publication date
JP2008227010A (ja) 2008-09-25

Similar Documents

Publication Publication Date Title
US10193305B2 (en) Wavelength tunable laser device and laser module
JP5692387B2 (ja) 半導体光素子
US9312663B2 (en) Laser device, light modulation device, and optical semiconductor device
US7738527B2 (en) Wavelength switchable semiconductor laser using half-wave coupled active double-ring resonator
US9318868B2 (en) Tunable hybrid laser with carrier-induced phase control
JP5206187B2 (ja) 光半導体装置
US8155161B2 (en) Semiconductor laser
US7136553B2 (en) Tunable demultiplexer and tunable laser with optical deflector
US8005123B2 (en) Wavelength tunable laser
US7242699B2 (en) Wavelength tunable semiconductor laser apparatus
US20100284019A1 (en) Semiconductor integrated optical device and method of making the same
JP5867509B2 (ja) 光半導体素子
JP2011253930A (ja) 半導体光装置
US20100142568A1 (en) Wavelength tunable filter and wavelength tunable laser module
JP4954992B2 (ja) 半導体光反射素子及び該半導体光反射素子を用いる半導体レーザ及び該半導体レーザを用いる光トランスポンダ
US20140254617A1 (en) Tunable laser diode device with amzi-fp filter
WO2016152274A1 (ja) 波長可変レーザ素子およびレーザモジュール
US8149889B2 (en) Semiconductor laser device
US7949020B2 (en) Semiconductor laser and optical integrated semiconductor device
EP1796231A2 (en) Wavelength tunable light source
JP5001239B2 (ja) 半導体波長可変レーザ
JP2011086714A (ja) 波長可変レーザ
JP5034572B2 (ja) 光源装置
CN113644543B (zh) 一种波长可调谐的半导体激光器
Arimoto et al. Wavelength-tunable short-cavity DBR laser array with active distributed Bragg reflector

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100218

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111206

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120206

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120605

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120618

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150713

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees