CN1832110A - 外延生长方法 - Google Patents

外延生长方法 Download PDF

Info

Publication number
CN1832110A
CN1832110A CNA200510131733XA CN200510131733A CN1832110A CN 1832110 A CN1832110 A CN 1832110A CN A200510131733X A CNA200510131733X A CN A200510131733XA CN 200510131733 A CN200510131733 A CN 200510131733A CN 1832110 A CN1832110 A CN 1832110A
Authority
CN
China
Prior art keywords
layer
gan
epitaxial
single crystalline
epitaxial growth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CNA200510131733XA
Other languages
English (en)
Other versions
CN100530543C (zh
Inventor
朴性秀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Corning Precision Materials Co Ltd
Original Assignee
Samsung Corning Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Samsung Corning Co Ltd filed Critical Samsung Corning Co Ltd
Publication of CN1832110A publication Critical patent/CN1832110A/zh
Application granted granted Critical
Publication of CN100530543C publication Critical patent/CN100530543C/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E06DOORS, WINDOWS, SHUTTERS, OR ROLLER BLINDS IN GENERAL; LADDERS
    • E06BFIXED OR MOVABLE CLOSURES FOR OPENINGS IN BUILDINGS, VEHICLES, FENCES OR LIKE ENCLOSURES IN GENERAL, e.g. DOORS, WINDOWS, BLINDS, GATES
    • E06B1/00Border constructions of openings in walls, floors, or ceilings; Frames to be rigidly mounted in such openings
    • E06B1/04Frames for doors, windows, or the like to be fixed in openings
    • E06B1/36Frames uniquely adapted for windows
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/40AIIIBV compounds wherein A is B, Al, Ga, In or Tl and B is N, P, As, Sb or Bi
    • C30B29/403AIII-nitrides
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • C30B25/04Pattern deposit, e.g. by using masks
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • C30B25/18Epitaxial-layer growth characterised by the substrate
    • C30B25/183Epitaxial-layer growth characterised by the substrate being provided with a buffer layer, e.g. a lattice matching layer
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/40AIIIBV compounds wherein A is B, Al, Ga, In or Tl and B is N, P, As, Sb or Bi
    • C30B29/403AIII-nitrides
    • C30B29/406Gallium nitride
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/0242Crystalline insulating materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02455Group 13/15 materials
    • H01L21/02458Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02494Structure
    • H01L21/02513Microstructure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02538Group 13/15 materials
    • H01L21/0254Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02656Special treatments
    • H01L21/02658Pretreatments

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Structural Engineering (AREA)
  • Civil Engineering (AREA)
  • Chemical Vapour Deposition (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

提供了一种用于形成高质量外延生长半导体晶片的外延生长方法。该方法包括:在单晶晶片上形成单晶层;在单晶层上形成具有纳米尺寸点的掩模层;通过蚀刻掩模层和单晶层的表面形成具有纳米尺寸气孔的多孔缓冲层;退火多孔缓冲层;以及利用外延生长工艺在多孔缓冲层上形成外延材料层。根据本发明,利用刻蚀工艺在单晶晶片上形成了具有多孔缓冲层的外延材料层。由于该多孔缓冲层是利用刻蚀工艺和退火工艺形成的,因此晶片可以由多种材料形成。而且,本发明降低了外延生长衬底的缺陷密度、应力和弯曲程度,从而能够形成高质量的半导体晶片并提高成品率。

Description

外延生长方法
技术领域
本发明涉及一种外延生长方法,尤其涉及一种GaN外延生长方法。
背景技术
利用外延生长方法在衬底上形成外延层,衬底可能会弯曲,且由于晶格失配以及衬底和外延层之间热膨胀系数的差异在外延层中可能会产生许多晶体缺陷。因此,在使用外延生长方法形成单晶半导体材料层时必须克服上述问题。
美国专利No.6579359公开了一项利用多孔缓冲层(porous bufferlayer)吸收内应力的技术。在该技术中,多孔缓冲层形成于SiC衬底上,而外延层形成于多孔缓冲层上。由于缓冲层是多孔的,因此它吸收了由晶格失配引起的应力。
不过,由于多孔缓冲层是利用阳极氧化工艺形成的,因此应当使用导电衬底,这样就只有有限种类的材料可以用作衬底。而且,阳极氧化法非常复杂而昂贵。
发明内容
本发明提供了一种通过容易地形成多孔缓冲层以低成本形成半导体外延层的方法。
根据本发明的一方面,提供了一种外延生长方法,包括:在单晶晶片上形成单晶层;在所述单晶层上形成具有纳米尺寸点的掩模层;通过蚀刻所述掩模层和所述单晶层的表面形成具有纳米尺寸气孔的多孔缓冲层;退火所述多孔缓冲层;以及利用外延生长工艺在所述多孔缓冲层上形成外延材料层。
在本发明中,所述外延材料层可以由III族氮化物半导体形成。
而且,所述单晶晶片可以由Si、GaAs、SiC、GaN和Al2O3之一形成。优选地,所述单晶晶片可以由Al2O3形成,且所述单晶层和所述外延材料层可以由GaN形成。
在一个实施例中,所述掩模层可以由Si、诸如Al、Co、Cr和Pt的金属或金属的氧化物形成。
在另一个实施例中,所述掩模层可以由比所述单晶层具有更低蚀刻速率的材料形成。
所述外延材料层可以利用气相淀积工艺形成,具体地,可以利用卤素或氢化物气相外延(HVPE)工艺、金属有机化学气相淀积(MOCVD)和分子束外延(MBE)工艺之一形成。
附图说明
通过参考附图详细描述本发明的示范性实施例,本发明的上述和其他特征和优势将变得更加明显,附图中:
图1到5是示出根据本发明示范性实施例的外延生长方法的截面图。
具体实施方式
现在将在下文中参考附图更全面地描述根据本发明的外延生长方法,附图中示出了本发明的示范性实施例。
参考图1,在制备好的单晶晶片1上形成单晶半导体层2,例如,III族氮化物半导体层,具体地说,GaN层(在下文中使用GaN层2)。在这种情况下,单晶晶片1可以由,例如Si、GaAs、SiC、GaN或Al2O3(蓝宝石)形成。而且,GaN层2可以通过堆叠与晶片1的材料种类相同的材料形成。例如,GaN层2可以通过在GaN晶片上生长GaN结晶层形成。或者,GaN层2可以通过堆叠与晶片1的材料种类不同的材料形成。例如,GaN层2可以通过在Al2O3晶片上生长GaN结晶层形成。
具体而言,为了形成GaN层2,将Al2O3晶片1载入卤素或氢化物气相外延(HVPE)反应器中,并将反应器的内部温度升高到大约1050℃的生长温度。
尔后,以1∶20的比例将III族材料和IV族材料,即,GaCl和NH3与N2气混合,并将混合物注入反应器约3分钟,使得GaN层2在Al2O3晶片1上生长到2到3μm的厚度。之后,将反应器冷却到室温,并从反应器中载出其上形成有GaN层2的Al2O3晶片1。
参考图2,在GaN层2上形成具有纳米尺寸点3a的掩模层3。掩模层3可以由Si、诸如Al、Co、Cr和Pt的金属或金属的氧化物形成。当掩模层3由Si形成时,它是通过在GaN层2淀积Si纳米颗粒形成的,纳米颗粒是利用气溶胶(aerosol)或灼烧(pyrosis)形成的。当掩模层3由金属形成时,它是通过淀积过程获得的。此外,当掩模层3由金属氧化物形成时,它是通过金属淀积过程或氧化过程获得的。能够通过调节淀积厚度控制掩模层3的点3a的尺寸。
参考图3,利用刻蚀工艺在GaN层2上形成多孔缓冲层2a。为了形成多孔缓冲层2a,使用对于GaN层2比掩模层3具有更高溶解度的蚀刻剂。因此,未被点3a覆盖的GaN层2的部分以高速率被蚀刻,而掩模层3以低速率被蚀刻。刻蚀工艺继续直到完全除去掩模层3且气孔2a′形成至几十nm的直径和深度为止。结果,如图3所示,在GaN层2的表面上形成了预定厚度的具有纳米尺寸气孔2a′的多孔缓冲层2a。
参考图4,利用快速热退火(RTA)工艺对其中形成有多孔缓冲层2a的GaN层2退火。为了这一工艺,将Al2O3晶片1载入保持在NH3气氛中的炉中,然后在850℃或更高的温度下退火。结果,形成于缓冲层2a的表面中的(即,形成于GaN层2上的)气孔2a′大部分闭合,缓冲层2a的表面(即,GaN层2的表面)平坦化了。
参考图5,利用典型的外延生长工艺在缓冲层2a上形成期望的外延材料层4。外延材料层4可以由与其下方的GaN层2种类相同或不同的材料形成。优选地,外延材料层4可以在GaN层2上由III族氮化物半导体形成,例如GaN。在这种情况下,将Al2O3晶片1载入HVPE反应器中,在HCl和Ga之间发生反应,从而生成GaCl,且在GaCl和NH3气体之间发生反应,从而在GaN层2的表面上生长厚度为几个μm的GaN外延材料层4。在外延生长工艺期间,控制工艺条件,使得在水平方向上测量到的外延生长速率高于在垂直方向上测量到的外延生长速率。
一旦外延生长工艺结束,将HVPE反应器冷却至室温,并从HVPE反应器中载出其上生长有GaN半导体外延材料层4的Al2O3晶片1。
当通过上述工艺实际形成了GaN外延材料层时,获得了以下测量结果。即,GaN外延材料层具有大约5×107/cm2的缺陷密度,这小于常规的5×109/cm2的缺陷密度,GaN外延材料层还具有常规GaN层约1/5的应变应力。
可以在经历过上述工艺的晶片1上直接形成光学器件。或者,为了获得独立的GaN晶片,可以再次将Al2O3晶片1载入HVPE反应器,并可以进一步在GaN外延材料层4上生长另一个GaN外延材料层至大约300μm或更大的厚度。随后,可以利用公知的激光剥离工艺(laser lift-off process)除去Al2O3晶片1,从而获得缺陷密度大约为5×105/cm2的高质量的独立GaN晶片。
根据本发明,利用刻蚀工艺在单晶晶片上形成了具有多孔缓冲层的外延材料层。具体地,在晶片上形成掩模层以获得具有多孔缓冲层的外延材料层。由于该多孔缓冲层是利用刻蚀工艺和退火工艺形成的,因此晶片可以由多种材料形成。
而且,本发明降低了外延生长衬底的缺陷密度、应力和弯曲程度,从而能够形成高质量的半导体晶片并提高成品率。此外,由于上述物理性能的改善,有可能制造更大直径的外延生长半导体晶片。
此外,本发明适用于在另一衬底上非独立地形成的单晶半导体晶片,例如,III族氮化物半导体晶片,如GaN晶片。
尽管已经参考本发明的示范性实施例展示和描述了本发明,本领域的普通技术人员应当理解,在不背离由权利要求所界定的本发明的精神和范围的情况下可以在其中做出许多形式和细节上的变化。

Claims (9)

1.一种外延生长方法,包括:
在单晶晶片上形成单晶层;
在所述单晶层上形成具有纳米尺寸点的掩模层;
通过蚀刻所述掩模层和所述单晶层的表面形成具有纳米尺寸气孔的多孔缓冲层;
退火所述多孔缓冲层;以及
利用外延生长工艺在所述多孔缓冲层上形成外延材料层。
2.根据权利要求1所述的方法,其中所述外延材料层由III族氮化物半导体形成。
3.根据权利要求1所述的方法,其中所述单晶晶片由从Si、GaAs、SiC、GaN和Al2O3构成的组中选择的一种形成。
4.根据权利要求1到3中任一项所述的方法,其中所述单晶晶片由Al2O3形成,且所述单晶层和所述外延材料层由GaN形成。
5.根据权利要求4所述的方法,其中所述掩模层由Si、Al、Co、Cr和Pt构成的组中选择的一种形成。
6.根据权利要求1所述的方法,其中所述掩模层由比所述单晶层具有更低蚀刻速率的材料形成。
7.根据权利要求1所述的方法,其中所述外延材料层是利用气相淀积工艺形成的。
8.根据权利要求7所述的方法,其中所述气相淀积工艺是从由卤素或氢化物气相外延工艺、金属有机化学气相淀积和分子束外延工艺构成的组中选择的一种。
9.根据权利要求1所述的方法,其中所述多孔缓冲层的退火是在850℃或更高温度下进行的。
CNB200510131733XA 2005-01-07 2005-12-16 外延生长方法 Expired - Fee Related CN100530543C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1541/05 2005-01-07
KR1020050001541A KR100682880B1 (ko) 2005-01-07 2005-01-07 결정 성장 방법

Publications (2)

Publication Number Publication Date
CN1832110A true CN1832110A (zh) 2006-09-13
CN100530543C CN100530543C (zh) 2009-08-19

Family

ID=36653811

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB200510131733XA Expired - Fee Related CN100530543C (zh) 2005-01-07 2005-12-16 外延生长方法

Country Status (4)

Country Link
US (1) US7407865B2 (zh)
JP (1) JP4871588B2 (zh)
KR (1) KR100682880B1 (zh)
CN (1) CN100530543C (zh)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102231414A (zh) * 2011-06-03 2011-11-02 王楚雯 Led的形成方法
CN102263178A (zh) * 2011-06-03 2011-11-30 王楚雯 外延片及其形成方法
CN101409229B (zh) * 2007-10-12 2012-01-04 台达电子工业股份有限公司 外延基板及发光二极管装置的制造方法
CN102315347A (zh) * 2010-07-05 2012-01-11 展晶科技(深圳)有限公司 发光二极管磊晶结构及其制造方法
CN101436531B (zh) * 2007-10-24 2012-07-04 硅得荣株式会社 用于制备化合物半导体衬底的方法
CN102593297A (zh) * 2011-01-04 2012-07-18 半材料株式会社 模板、其制造方法及制造半导体发光器件的方法
CN102644119A (zh) * 2011-02-22 2012-08-22 深圳信息职业技术学院 一种多孔氮化镓衬底的处理方法及氮化镓膜的生长方法
CN103915320A (zh) * 2014-04-22 2014-07-09 西安神光皓瑞光电科技有限公司 一种通过化学处理缓冲层提高晶体质量的方法
CN104681411A (zh) * 2015-01-29 2015-06-03 江苏能华微电子科技发展有限公司 用于生长外延晶体的半导体衬底及半导体器件
CN108922947A (zh) * 2018-07-04 2018-11-30 中国科学院半导体研究所 一种基于多孔外延模板的紫外发光二极管及其制作方法

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100682881B1 (ko) * 2005-01-19 2007-02-15 삼성코닝 주식회사 결정 성장 방법
KR100695117B1 (ko) * 2005-10-25 2007-03-14 삼성코닝 주식회사 GaN 제조방법
WO2007104443A1 (de) * 2006-03-14 2007-09-20 Institut Für Mikroelektronik Stuttgart Verfahren zum herstellen einer integrierten schaltung
TWI334164B (en) * 2006-06-07 2010-12-01 Ind Tech Res Inst Method of manufacturing nitride semiconductor substrate and composite material substrate
KR100867518B1 (ko) * 2006-09-06 2008-11-07 삼성전기주식회사 질화물계 반도체 발광소자의 제조방법
KR100763467B1 (ko) * 2007-04-18 2007-10-04 주식회사 시스넥스 단결정 질화갈륨 기판의 제조방법
KR100878512B1 (ko) * 2007-05-14 2009-01-13 나이넥스 주식회사 GaN 반도체 기판 제조 방법
WO2008146699A1 (ja) * 2007-05-25 2008-12-04 Tohoku University GaN系窒化物半導体自立基板の作製方法
JP4672753B2 (ja) 2007-05-25 2011-04-20 エー・イー・テック株式会社 GaN系窒化物半導体自立基板の作製方法
EP2003696B1 (en) * 2007-06-14 2012-02-29 Sumitomo Electric Industries, Ltd. GaN substrate, substrate with epitaxial layer, semiconductor device and method of manufacturing GaN substrate
DE102007029576A1 (de) * 2007-06-26 2009-01-08 Evonik Degussa Gmbh Verfahren zur Herstellung von folienartigen Halbleiterwerkstoffen und/oder elektronischen Elementen durch Urformen und/oder Beschichtung
KR100871649B1 (ko) * 2007-06-26 2008-12-03 고려대학교 산학협력단 발광 다이오드의 사파이어 기판 패터닝 방법
US20090001416A1 (en) * 2007-06-28 2009-01-01 National University Of Singapore Growth of indium gallium nitride (InGaN) on porous gallium nitride (GaN) template by metal-organic chemical vapor deposition (MOCVD)
US7928448B2 (en) 2007-12-04 2011-04-19 Philips Lumileds Lighting Company, Llc III-nitride light emitting device including porous semiconductor layer
WO2011013363A1 (ja) 2009-07-30 2011-02-03 キヤノン株式会社 微細構造の製造方法
WO2012050888A2 (en) * 2010-09-28 2012-04-19 North Carolina State University Gallium nitride based structures with embedded voids and methods for their fabrication
US20130140517A1 (en) * 2011-06-29 2013-06-06 Purdue Research Foundation Thin and Flexible Gallium Nitride and Method of Making the Same
KR101245509B1 (ko) * 2011-10-18 2013-03-20 전북대학교산학협력단 다공성 기판의 제조 및 이에 의한 발광다이오드 제조 방법
KR101420265B1 (ko) * 2011-10-21 2014-07-21 주식회사루미지엔테크 기판 제조 방법
CN103388178B (zh) * 2013-08-07 2016-12-28 厦门市三安光电科技有限公司 Iii族氮化物外延结构及其生长方法
KR102094471B1 (ko) * 2013-10-07 2020-03-27 삼성전자주식회사 질화물 반도체층의 성장방법 및 이에 의하여 형성된 질화물 반도체
KR102099877B1 (ko) 2013-11-05 2020-04-10 삼성전자 주식회사 질화물 반도체 디바이스의 제조 방법
CN107305818A (zh) * 2016-04-18 2017-10-31 致伸科技股份有限公司 背光模块的组装方法以及应用该方法的组装系统
CN108878261B (zh) * 2018-06-05 2021-10-29 太原理工大学 一种纳米多孔GaN结构及其制备方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6579359B1 (en) * 1999-06-02 2003-06-17 Technologies And Devices International, Inc. Method of crystal growth and resulted structures
JP2001007379A (ja) * 1999-06-24 2001-01-12 Sharp Corp 窒化ガリウム系化合物半導体受光素子
WO2003015143A1 (fr) * 2001-08-01 2003-02-20 Nagoya Industrial Science Research Institute Film semi-conducteur en nitrure du groupe iii et son procede de production
KR100408743B1 (ko) * 2001-09-21 2003-12-11 삼성전자주식회사 양자점 형성 방법 및 이를 이용한 게이트 전극 형성 방법
JP4131101B2 (ja) * 2001-11-28 2008-08-13 日亜化学工業株式会社 窒化物半導体素子の製造方法
WO2005024952A2 (en) * 2003-09-05 2005-03-17 The University Of North Carolina At Charlotte Quantum dot optoelectronic devices with nanoscale epitaxial overgrowth and methods of manufacture

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101409229B (zh) * 2007-10-12 2012-01-04 台达电子工业股份有限公司 外延基板及发光二极管装置的制造方法
CN101436531B (zh) * 2007-10-24 2012-07-04 硅得荣株式会社 用于制备化合物半导体衬底的方法
CN102315347A (zh) * 2010-07-05 2012-01-11 展晶科技(深圳)有限公司 发光二极管磊晶结构及其制造方法
CN102593297A (zh) * 2011-01-04 2012-07-18 半材料株式会社 模板、其制造方法及制造半导体发光器件的方法
CN102644119A (zh) * 2011-02-22 2012-08-22 深圳信息职业技术学院 一种多孔氮化镓衬底的处理方法及氮化镓膜的生长方法
CN102644119B (zh) * 2011-02-22 2015-08-05 深圳信息职业技术学院 一种多孔氮化镓衬底的处理方法及氮化镓膜的生长方法
CN102231414A (zh) * 2011-06-03 2011-11-02 王楚雯 Led的形成方法
CN102263178A (zh) * 2011-06-03 2011-11-30 王楚雯 外延片及其形成方法
CN103915320A (zh) * 2014-04-22 2014-07-09 西安神光皓瑞光电科技有限公司 一种通过化学处理缓冲层提高晶体质量的方法
CN104681411A (zh) * 2015-01-29 2015-06-03 江苏能华微电子科技发展有限公司 用于生长外延晶体的半导体衬底及半导体器件
CN108922947A (zh) * 2018-07-04 2018-11-30 中国科学院半导体研究所 一种基于多孔外延模板的紫外发光二极管及其制作方法

Also Published As

Publication number Publication date
KR100682880B1 (ko) 2007-02-15
KR20060081108A (ko) 2006-07-12
US20060154451A1 (en) 2006-07-13
US7407865B2 (en) 2008-08-05
JP2006191073A (ja) 2006-07-20
JP4871588B2 (ja) 2012-02-08
CN100530543C (zh) 2009-08-19

Similar Documents

Publication Publication Date Title
CN100530543C (zh) 外延生长方法
CN100418191C (zh) 外延生长方法
JP3886341B2 (ja) 窒化ガリウム結晶基板の製造方法及び窒化ガリウム結晶基板
EP1885918B1 (en) Methods of preparing controlled polarity group iii-nitride films
EP1182697B1 (en) Sapphire substrate, electronic component, and method of its manufacture
US9142723B2 (en) Semiconductor wafer comprising gallium nitride layer having one or more silicon nitride interlayer therein
JP3631724B2 (ja) Iii族窒化物半導体基板およびその製造方法
CN100341116C (zh) 多孔基板及其制造方法、GaN系半导体叠层基板及其制造方法
KR100710435B1 (ko) 반도체소자 및 반도체소자의 제조 방법
US7435666B2 (en) Epitaxial growth method
JP3821232B2 (ja) エピタキシャル成長用多孔質基板およびその製造方法ならびにiii族窒化物半導体基板の製造方法
US20060270200A1 (en) III group nitride semiconductor substrate, substrate for group III nitride semiconductor device, and fabrication methods thereof
US8349633B1 (en) Aluminum nitride transitional layer for reducing dislocation density and cracking of AlGaN epitaxial films
GB2440484A (en) Group 3-5 nitride semiconductor multilayer substrate, method for manufacturing group 3-5 nitride semiconductor free-standing substrate
US7361522B2 (en) Growing lower defect semiconductor crystals on highly lattice-mismatched substrates
CN100547734C (zh) 半导体多层衬底、半导体自立衬底及其制备方法以及半导体器件
US8736025B2 (en) III-nitride semiconductor growth substrate, III-nitride semiconductor epitaxial substrate, III-nitride semiconductor element, III-nitride semiconductor freestanding substrate all having improved crystallinity
CN113120856B (zh) 一种基于蓝宝石衬底的AlON矩形纳米阵列及其制备方法
JP2010524267A (ja) (al,in,ga,b)nの堆積の方法
JP5684551B2 (ja) Iii族窒化物半導体成長用基板、iii族窒化物半導体エピタキシャル基板、iii族窒化物半導体素子およびiii族窒化物半導体自立基板、ならびに、これらの製造方法
KR101216363B1 (ko) 다수의 보이드를 갖는 질화물 반도체 및 그 제조 방법.
JP2006185962A (ja) 半導体成長用基板および半導体膜の製造方法
KR20120073045A (ko) 반도체 박막 성장 방법 및 이에 의해 성장된 반도체의 박막
KR20030061940A (ko) 질화물 반도체 제조방법
WO2011111647A1 (ja) 窒化物系化合物半導体基板の製造方法、窒化物系化合物半導体基板及び窒化物系化合物半導体自立基板

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
ASS Succession or assignment of patent right

Owner name: SAMSUNG CORNING PRECISION GLASS CO., LTD.

Free format text: FORMER OWNER: SAMSUNG CORNING CO., LTD.

Effective date: 20080613

C41 Transfer of patent application or patent right or utility model
TA01 Transfer of patent application right

Effective date of registration: 20080613

Address after: South Korea Gyeongbuk Singapore City

Applicant after: Samsung Corning Precision Glass

Address before: Gyeonggi Do, South Korea

Applicant before: Samsung Corning Co., Ltd.

C14 Grant of patent or utility model
GR01 Patent grant
C56 Change in the name or address of the patentee

Owner name: SUMSUNG KANGNING PRECISION MATERIAL CO., LTD.

Free format text: FORMER NAME: SAMSUNG CORNING PRECISION GLASS

CP01 Change in the name or title of a patent holder

Address after: South Korea Gyeongsang North Fishtail City

Patentee after: Samsung Corning Precision Materials Co., Ltd.

Address before: South Korea Gyeongsang North Fishtail City

Patentee before: Samsung Corning Precision Glass

CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20090819

Termination date: 20151216

EXPY Termination of patent right or utility model