CN1826391B - 超疏水涂层 - Google Patents

超疏水涂层 Download PDF

Info

Publication number
CN1826391B
CN1826391B CN2004800208131A CN200480020813A CN1826391B CN 1826391 B CN1826391 B CN 1826391B CN 2004800208131 A CN2004800208131 A CN 2004800208131A CN 200480020813 A CN200480020813 A CN 200480020813A CN 1826391 B CN1826391 B CN 1826391B
Authority
CN
China
Prior art keywords
substrate
formula
compound
coating
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN2004800208131A
Other languages
English (en)
Other versions
CN1826391A (zh
Inventor
J·齐默尔曼
S·西格
G·阿图斯
S·容
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Universitaet Zuerich
Original Assignee
Universitaet Zuerich
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Universitaet Zuerich filed Critical Universitaet Zuerich
Publication of CN1826391A publication Critical patent/CN1826391A/zh
Application granted granted Critical
Publication of CN1826391B publication Critical patent/CN1826391B/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D4/00Coating compositions, e.g. paints, varnishes or lacquers, based on organic non-macromolecular compounds having at least one polymerisable carbon-to-carbon unsaturated bond ; Coating compositions, based on monomers of macromolecular compounds of groups C09D183/00 - C09D183/16
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24355Continuous and nonuniform or irregular surface on layer or component [e.g., roofing, etc.]
    • Y10T428/24372Particulate matter
    • Y10T428/2438Coated
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24355Continuous and nonuniform or irregular surface on layer or component [e.g., roofing, etc.]
    • Y10T428/24372Particulate matter
    • Y10T428/24421Silicon containing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/26Web or sheet containing structurally defined element or component, the element or component having a specified physical dimension
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/26Web or sheet containing structurally defined element or component, the element or component having a specified physical dimension
    • Y10T428/263Coating layer not in excess of 5 mils thick or equivalent
    • Y10T428/264Up to 3 mils
    • Y10T428/2651 mil or less
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2913Rod, strand, filament or fiber
    • Y10T428/2922Nonlinear [e.g., crimped, coiled, etc.]
    • Y10T428/2924Composite
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2913Rod, strand, filament or fiber
    • Y10T428/2929Bicomponent, conjugate, composite or collateral fibers or filaments [i.e., coextruded sheath-core or side-by-side type]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2913Rod, strand, filament or fiber
    • Y10T428/2929Bicomponent, conjugate, composite or collateral fibers or filaments [i.e., coextruded sheath-core or side-by-side type]
    • Y10T428/2931Fibers or filaments nonconcentric [e.g., side-by-side or eccentric, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2913Rod, strand, filament or fiber
    • Y10T428/2933Coated or with bond, impregnation or core
    • Y10T428/2962Silane, silicone or siloxane in coating
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2913Rod, strand, filament or fiber
    • Y10T428/2933Coated or with bond, impregnation or core
    • Y10T428/2964Artificial fiber or filament
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31551Of polyamidoester [polyurethane, polyisocyanate, polycarbamate, etc.]
    • Y10T428/31609Particulate metal or metal compound-containing
    • Y10T428/31612As silicone, silane or siloxane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31652Of asbestos
    • Y10T428/31663As siloxane, silicone or silane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/20Coated or impregnated woven, knit, or nonwoven fabric which is not [a] associated with another preformed layer or fiber layer or, [b] with respect to woven and knit, characterized, respectively, by a particular or differential weave or knit, wherein the coating or impregnation is neither a foamed material nor a free metal or alloy layer
    • Y10T442/2164Coating or impregnation specified as water repellent
    • Y10T442/218Organosilicon containing

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Paints Or Removers (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)
  • Laminated Bodies (AREA)
  • Surface Treatment Of Glass (AREA)
  • Silicon Polymers (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

一种涂层组合物,包含至少一种式(I)RaSi(R1)n(X1)3-n的化合物以及任选地至少一种式(II)RbSi(R2)m(X2)3-m的化合物,其中Ra是直链或支链的C1-24烃基,Rb是芳基,例如取代或未取代的、包含五元、六元或十元环系的碳环和杂环基团,它通过一个共价键或间隔单元如1-8个碳原子的直链或支链的烃基与Si原子连接,R1和R2彼此独立地为低级烃基,例如1-6个碳原子的直链和支链的烃基,X1和X2彼此独立地为可水解基团,例如卤素或烃氧基,并且n、m彼此独立地为0或1,前提是如果n和m彼此独立地为0或1,X可以表示相同或不同的基团。

Description

超疏水涂层
本发明涉及能够在表面上形成超疏水涂层的组合物,具有由这样的组合物形成的超疏水涂层的基底,以及制备这样的超疏水涂层的方法。优选所述涂层是透明的。
具有特殊润湿特性的表面即拒水表面被广泛地用于各种工业,例如纺织工业、建筑工业如防腐或防污、汽车工业、医药技术以及卫生制品,并且是各种工业非常感兴趣的。同样地,利用表面改性技术使各种天然或合成的基底如金属、玻璃、木材、陶瓷、纸、聚合物、织物、建筑材料如石头、混凝土、大理石、砖、瓦等的表面具有这样的性能以达到所需特性,也是一个被广泛研究的领域。
材料的疏水性即其拒水趋势,可以通过水滴与表面的接触角来确定。通常,疏水性是通过降低表面能来实现的。因此,可以通过涂布低表面能材料的表面涂层来使非疏水性材料变得疏水。从化学角度看,这可以通过例如在表面上结合非极性部分如甲基或三氟甲基来实现。超疏水性能还要求高的表面粗糙度,所谓超疏水性通常指接触角大于约150°,理论上最高达180°。在粗糙且疏水的表面上,空气能够被夹在水滴下面,而空气大大降低了实际的液/固接触面积,由此使接触角增加。在较高接触角的情况下,例如在大于约150°的接触角的情况下,可以得到其它重要的效果如自清洁性能或提高的水滑动性(Yoshimitsu,Z等,Langmuir 18,5818(2002))。然而,如果表面粗糙度太高并且达到亚微米级,光就会在表面上被散射,涂层看起来就不再透明。因此,为了得到光学上中性的涂层,粗糙度必须限制为大大低于可见光的波长。
文献中描述了许多使表面超疏水的技术(Nakajima,A等,Monatsh.Chem.132,31(2002);L.Feng等,Adv.Mater.14,1857(2002))。最常用的是非极性聚合物如聚丙烯或聚四氟乙烯的等离子聚合或蚀刻,甲基或含氟硅烷的等离子增强化学气相沉积,熔融聚合物或蜡、升华材料和涂料或含疏水化的微珠的喷雾的固化,或挥发性化合物的蒸发(Miwa,M等,Langmuir 16,5754(2000))。为了增加粗糙度,涂覆步骤之前或之后,更常用的其它步骤如机械处理、化学或等离子蚀刻或阳极氧化是必要的。然而,这些方法存在若干缺点,如复杂和因此耗时的程序、昂贵的原料如氟化硅烷和/或苛刻的反应条件,这将所述应用限制于很少的具有抵抗性的材料。另外,仅有很少的涂层是光学透明的。
因此,考虑到日常生活中非常需要透明和拒水涂层的材料种类繁多,显然存在对超疏水性的透明表面以及这样的表面的简单和经济的制备方法的需求,所述的表面和方法将克服上述缺陷。
因此,本发明的一个目的是提供能够在表面上形成超疏水性涂层的组合物,所述超疏水性涂层的特征在于接触角高于约140°,优选高于150°,更优选高于160°。
本发明的另一个目的是提供具有由这样的组合物形成的超疏水性涂层的基底。用这样的表面涂层处理的基底具有更高的疏水性,并因此表现出拒水性以及优异的耐久性和耐污性。另外,本发明的超疏水性涂层是光学透明的。
本发明的又一个目的是提供制备由本发明组合物形成的所述超疏水性涂层的方法,其特征在于简单、高效和低价。
将硅烷用作表面涂层在本领域是已知的。然而,在气相中用硅烷如三氯甲基甲硅烷(TCMS)或(3-苯基丙基)-甲基二氯甲硅烷(PMDS)硅烷化所得到的接触角分别为95°或约60°。更具体地说,对于在干燥气氛下的气相中用三氯甲基甲硅烷(TCMS)的硅烷化,并且仅仅考虑在基底表面上冷凝的水汽用于与所述硅烷反应来说,文献中报导了前进接触角为88°和104°(A.Y.Fadeev等,Langmuir 16,7268(2000);M.Trau等,J.Colloid Interface Sci.148,182,(1992))。对于在湿润气氛中用三氯甲基甲硅烷(TCMS)和类似硅烷的硅烷化,文献(WO02/28956)报导了接触角低于120°。因此,在这些已报导的条件下,所测角度明显位于上述需要的超疏水性范围之外。
然而,申请人现已惊讶地发现,用例如TCMS在气相中在一定条件下的硅烷化产生具有超疏水性能,即具有在超疏水范围内的接触角的聚硅氧烷涂层,优选得到的接触角高于约140°,优选高于150°,更优选高于160°。而且,这些涂层显示出具有对于10μl水滴来说低于20°的滑动角,并且是光学透明的。对于多种应用来说,这种透明涂层在透明基底如玻璃上是有用的,接触角最高达155°。
因此,申请人现已惊讶地发现,用包含至少一种式I的化合物和任选地至少一种式II的化合物的组合物硅烷化,产生具有超疏水性能,即具有在超疏水范围内的接触角的聚硅氧烷涂层,优选得到的接触角高于约140°,优选高于150°,更优选高于160°
RaSi(R1)n(X1)3-n    I
RbSi(R2)m(X2)3-m    II
其中,
Ra是直链或支链的C1-24烃基,
Rb是芳基,它通过一个共价键或间隔单元与Si原子连接,
R1和R2彼此独立地为低级烃基,
X1和X2彼此独立地为可水解基团,并且
n、m彼此独立地为0或1,
前提是如果n和m彼此独立地为0或1,X可以表示相同或不同的基团。而且,这些涂层显示出具有对于10μl水滴来说低于20°的滑动角,并且是光学透明的。
应当理解,术语“直链或支链的C1-24烃基”优选包括具有1-16个碳原子,更优选1-12个碳原子,更优选1-8个碳原子,最优选1-4个碳原子的直链和支链的烃基,如甲基、乙基、正丙基、异丙基、正丁基和异丁基。
应当理解,术语“芳基”包括取代或未取代的、包含五元、六元或十元环系的碳环和杂环基团,如呋喃、苯基、吡啶、嘧啶或萘,优选苯基,它未被取代或者被下列基团取代:任选被取代的低级烃基如甲基、乙基或三氟甲基,卤素如氟、氯、溴,优选氯,氰基或硝基。
应当理解,术语“间隔单元”包括具有1-8个碳原子,优选1-6个,更优选1、2或3个碳原子的直链或支链烃基。
应当理解,术语“低级烃基”包括具有1-6个碳原子,优选1-3个碳原子的直链和支链的烃基。甲基、乙基、丙基和异丙基是特别优选的。
应当理解,术语“可水解基团”包括卤素如氟或氯,优选氯,或者烃氧基如具有1-6个碳原子,优选1-3个碳原子的直链和支链的烃氧基,其中甲氧基、乙氧基、丙氧基和异丙氧基是特别优选的。
式I化合物的特别优选的实例包括三氯甲基甲硅烷(TCMS)、三氯乙基甲硅烷、三氯(正丙基)甲硅烷、三甲氧基甲基甲硅烷和三乙氧基甲基甲硅烷,式II化合物的特别优选的实例包括(3-苯基丙基)-甲基二氯甲硅烷(PMDS)、苄基三氯甲硅烷、甲基苄基三氯甲硅烷和三氟甲基苄基三氯甲硅烷。
在对酸敏感的基底的情况下,优选使用烃氧基硅烷如甲基三乙氧基甲硅烷、(3-苯基丙基)-甲基二甲氧基甲硅烷或(3-苯基丙基)-甲基二乙氧基甲硅烷,以避免在硅烷与水分子的水解过程中在反应体积或基底表面上形成氢氯酸。
如果涂层组合物包含式II的化合物,那么根据化合物的性质和基底的性质,式I的化合物与式II的化合物的体积比在1∶100-100∶1的范围内,优选在1∶50-50∶1的范围内,更优选在1∶10-10∶1的范围内,最优选在1∶1-5∶1的范围内。例如,在玻璃载片上,使用以3∶1的体积比包含TCMS和PMDS的组合物,观察到最高达165°的最高接触角。
本发明的组合物可以在一个涂层反应中涂布到选择的基底上,所述涂层反应是不利用载气的大气压化学气相沉积,包括下述步骤:
在第一步,从基底表面清洁掉微粒和任何吸附的杂质,例如通过在水中和通常在非极性溶剂中超声处理,优选通过在清洁剂溶液中在50℃下超声处理30分钟。例如,玻璃基底可以通过在氢氯酸和甲醇的混合物中和然后在三氯甲烷中进行超声处理来清洁。
这一步骤之后是任选的活化步骤,以在表面上以足够的量增加官能团如羟基等,以便使得与硅烷的缩合反应能够发生和确保涂层适当的粘合力。例如,使用在低压氧气、氮气或氢气气氛中的高频等离子处理,对所有材料来说都观察到了好的活化结果。在玻璃或其它具有抵抗性的材料的情况下,可供选择的是,可以使用piranha溶液(硫酸与过氧化氢之比为2∶1)。对于具有足够量的存在于表面上的官能团如羟基等的材料如纤维素,例如棉或木材来说,该活化步骤可以省略。
可以使用简单的干燥器作为硅烷化的反应器(图8)。将硅烷加入放在特殊夹具中的Eppendorf帽中。该夹具包括用于打开Eppendorf帽的机构,其可以通过磁铁从外部激发。将干燥器关闭并用合适的载气如氮气/水汽混合物冲洗。干燥器中所需的气体混合物的相对湿度可以通过用与流量计连接的两个阀门独立地调节干湿气流的流量来设定。将所述气流在混合室中混合,在混合室中通过湿度计控制相对湿度。冲洗干燥器直到由在干燥器出口处的第二湿度计测得的相对湿度保持恒定。将干燥器上的入口和出口旋塞阀关闭,并且通过打开Eppendorf帽开始涂层反应。取决于硅烷的挥发性,该反应可以在大气压下进行,或如果需要在更低压力下进行。该反应在0-24小时内完成,通常在12小时后完成。用任何含水溶剂如水漂洗后,涂覆的基体就可以使用了。
优选地,硅烷与水的摩尔比(调整干燥器中的湿度)在1∶10-10∶1的范围内。
最后一步,所述被涂覆的基底可以任选地经历固化步骤,以完成表面和层状物内部残留的游离羟基的缩合反应,由此通过在层内或基底与层之间形成额外的交联Si-O-Si键,进一步增加硅烷层的稳定性。
或者,硅烷化可以在溶液中完成,其中将清洁过的和任选活化过的基底在室温下在搅拌条件下放入预先制备的溶液中,所述溶液包含溶解或分散于非极性溶剂如甲苯中的两种硅烷。3-4小时后,取出基底,用例如乙醇和随后用水漂洗并干燥。
主要对清洁步骤和活化步骤进行些微改变(这对于本领域技术人员来说是显而易见的),还可以将所述涂层反应应用到其它材料上。
对本发明来说,感兴趣的基底可以包括多种天然或合成的材料,如金属(例如Al或Ti或它们的合金)、硅基材料如半导体、玻璃、陶瓷、纸、木材、聚合物、织物、纤维素及其衍生物、可生物降解的材料、建筑材料如石头、混凝土、大理石、砖、瓦和其它无机或有机材料,并且可以是多孔的或无孔的、模塑的或成型的、坚硬的或柔软的,呈各种形状和形式如膜、粉末、颗粒、微粒、机织和非机织层状物、网状物、带状物、格形物、管等。包含这样的材料的代表性基底可以包括织物、玻璃设备如窗玻璃、镜子等、卫生制品、汽车等。
通过扫描电子显微镜、透射电子显微镜和扫描力显微镜对本发明的表面涂层的表征表明形成了独特的几何形状如薄的细丝,产生了所需的表面粗糙度(图1-2,9)。该纤维是固体的,并且从非常短的、接近球形的基础丝直到长为几个微米,直径约10nm-160nm。
AFM测试表明,平均层厚为至少60nm至85nm。
扫描力显微镜测定的不同样品的均方根粗糙度为20nm-30nm。原子力显微镜测定的力-位移(force-displacement)曲线揭示了纳米纤维的机械柔韧性,同时还证实了长丝的长度为几百纳米(图12)。
根据被涂覆的基底的性质,观察到的表面粗糙度可以进一步增加:例如,喷砂玻璃表面的微米粗糙度可以加到所述涂层的纳米粗糙度上,类似于疏水性植物叶子上所见的表面结构。在这些情况下,对于10μl水滴,可以观察到大于160°的接触角和几乎测不出来的为2°的滑动角。
本发明的硅烷的自组织化,即自排列或自集合导致的在缩合反应过程中这种表面粗糙度的意外形成,大大优于许多其它的涂层方法,因为在一个步骤中解决了超疏水性的主要先决条件,即粗糙度和低表面能。
还显示出,本发明的涂层是透明的(图3),并具有高的耐久性。例如,在250℃下热处理24小时后,或者将涂覆的玻璃载片浸入液氮中几分钟后,以及在35mW/cm2下用UV光照射5小时后,没有观察到接触角的变化(图4)。
浸入水中的MPPS涂覆的玻璃载片显示了光在水-涂层界面处的全反射,如用疏水性植物叶片观察到的那样(图10)(A.Otten等,Langmuir 20,2405(2004))。取得该效果的原因在于涂层和水之间的空气薄层。该空气层在数周内是稳定的。对浸入水中的涂覆硅样品的开始的椭圆规研究表明,在折射指数为1.17、厚度为141nm的MPPS层上存在厚为170nm的空气层。这种空气层非常可能也是当用水漂洗涂覆的玻璃载片时呈现彩虹色的原因。
厚度约110nm、折射指数为1.17的涂层应当是抗反射的。对于MPPS涂覆的玻璃载片来说,通过UV-VIS吸收光谱可以显示这种性能(图3)。
对涂覆的硅样片的XPS研究证实,在误差范围内,聚合的TCMS的原子比C∶Si∶O=1∶1∶1.5。涂层中没有发现氯。在对三个不同样品的三次测试中,没有看到下面的基底材料的信号,表明涂层无缺陷。
此外,所述涂层对水蒸气(图5)和几种有机溶剂如乙醇、丙酮或三氯甲烷呈惰性。
下面的非限定性的实施例用于举例说明本发明。
附图说明
图1.在a)硅晶片和b)玻璃基底上的MPPS涂层的SEM图像。
图2.MPPS涂覆的玻璃载片的AFM高度图像。
图3.玻璃载片的UV光谱。虚线:MPPS涂覆在两侧;实线:用作比较的清洁过的和等离子处理过的玻璃载片。
图4.经过长时间UV照射的MPPS涂覆的玻璃载片的耐久性。
图5.在高压釜中经过水蒸气处理的MPPS涂覆的玻璃载片的耐久性。
图6.在涂覆的棉织物上的10μl水滴。
图7.在陶瓷上的10μl水滴。
图8.用于涂覆的试验装置。
图9.包埋在环氧树脂中的聚硅氧烷长丝的TEM图像。
图10.浸入水中的涂覆的玻璃载片(左)和未涂覆的玻璃载片(右)。涂覆的载片显示全反射。小泡是气泡。
图11.在漂冲洗时涂覆的玻璃载片的彩虹色现象。
图12.在MPPS涂覆的硅表面上的力-位移曲线。接近-缩回-循环的撤回曲线的不规则图案可以解释为从尖端逐步释放,所述尖端在尖端与表面接触时与所述长丝通过粘结力粘在一起。
实施例
材料:购自Menzel,Braunschweig,Germany的显微镜玻璃载片(26mm×76mm,厚0.13-0.16mm)和购自CrysTec,Berlin的抛光硅晶片(15mm×15mm)被用于接触角测量和AFM成像。硅悬臂式晶片被用作电子显微镜样品的硅基底。TCMS、PMDS和其它硅烷购自ABCR,Germany,没有进一步净化直接使用。
清洁:玻璃载片在浓HCl/甲醇的1∶1混合物中超声处理30分钟,用bidest水漂洗,并在氮气流中干燥。随后,在三氯甲烷中超声处理30分钟,再次用bidest水漂洗,并在氮气流中干燥。
将玻璃载片用deconex 11 universal的10%溶液(Borer ChemieAG)在50℃下超声处理30分钟,用bidest水漂洗,并在氮气流中干燥。
活化:得自Diener electronic,Nagold,Germany的实验室等离子机Femto被用于进行高频等离子活化。通过在氧气中的低压高频等离子处理得到了最好的活化效果。或者,在热Piranha溶液(比例为2∶1的浓H2SO4/H2O2)中处理20分钟的方法,可以用于玻璃基底。
表征方法:接触角和滑动角测量是用Contact Angle System OCA进行的,包括得自Dataphysics,Stuttgart,Germany的软件。将样品在恒温室中保持在25±1℃。在样品的同一位置测量特定液滴的接触角和滑动角。表面性能的表征是用10μl水滴进行的。
扫描力显微分析是用由RHK SPM1000电子系统和SPM32软件(RHKTechnology Inc.Troy,Michigan)控制的PicoSPM扫描头(MolecularImaging,Phoenix,Arizona)进行的。所有测试都是以与硅悬臂间歇接触的方式进行的。环辛烷中的测试是在得自Molecular Imaging的标准液体池中进行的。
为了进行扫描电子显微镜研究,在玻璃样品上溅射Au(<10nm),并在Jeol 25-S显微镜上测试。在硅样品上溅射C(3nm或8nm),并在Philips CM12显微镜上测试。所有图像是利用次级电子检测器得到的。
为了进行透射电子显微镜研究,使环氧树脂在与涂覆的玻璃样品接触的条件下聚合。由此,长丝被包埋在树脂中。取下硬化的树脂,并切成厚度为60nm的薄样品。所述样品用Philips CM12显微镜研究。
XPS测试是用VG ESCALAB 220光电分光计,使用Al Kα辐射进行的。样品是约1cm×1cm大小的涂覆的硅晶片。
静电充电:MPPS涂覆的玻璃载片可以被静电充电。用干燥手指简单的摩擦就足以对玻璃载片充电。充电后,就不可能在样品上放水滴了。水滴立即从玻璃载片上滑落下来。对这种效果的进一步研究还在进行中。
实施例1
通过用TCMS和PMDS的3∶1混合物在不使用载气的大气压化学气相沉积过程中对总面积约200cm2的玻璃载片进行硅烷化而得到的MPPS涂层:
硅烷化反应前,通过在盐酸和甲醇的混合物(比例为1∶1)中进行超声处理和然后在三氯甲烷中进行超声处理,清除玻璃载片上的颗粒和任何吸附的杂质,随后通过在90℃下用Piranha溶液(比例为2∶1的浓H2SO4/H2O2)处理30分钟进行表面活化。随后,用纯净水漂洗玻璃载片并在氮气中干燥。硅烷化反应是在作为反应器的一个简单的干燥器进行的,所述干燥器用氮气/水汽混合物吹洗。将装有两种硅烷的两个单独的烧瓶放入干燥器中,并将玻璃基底放在架台上。关闭干燥器,并在室温下进行反应12小时。用水漂洗后,涂覆的玻璃基底就可以使用了。
按照上述方法测量水滴的接触角和滑动角,并列在表1中。
通过原子力显微镜和X射线反射计测定均方根粗糙度RRMS和平均层厚。在MPPS涂覆的玻璃样品的情况下,观察到27nm的均方根粗糙度RRMS
实施例2-8
按照实施例1所述进行硅烷化。按照上述方法测试接触角和滑动角,并列在表1中。
表1:由各种硅烷混合物在玻璃上组成的涂层的接触角和滑动角
  实施例   式I化合物   式II化合物   A∶B   接触角   滑动角
  2   甲基三氯甲硅烷   (3-苯基丙基)-甲基二氯甲硅烷   3∶1   175°   13°-2°*
  3   甲基三氯甲硅烷   苄基三氯甲硅烷   3∶1   155.2°±2.1°   21.5°±2.5°
  4   甲基三甲氧基甲硅烷   (3-苯基丙基)-甲基二氯甲硅烷   3∶1   168°±4.8°   13.2°±1.3°
  5   甲基三乙氧基甲硅烷   (3-苯基丙基)-甲基二氯甲硅烷   3∶1   149.5°±2.9°   18.2°±0.8°
  6   乙基三氯甲硅烷   (3-苯基丙基)-甲基二氯甲硅烷   3∶1   164.6°±3.4°   8.0°±1.5°
  7   正丙基三氯甲硅烷   (3-苯基丙基)-甲基二氯甲硅烷   3∶1   163.7°±2.3°   14.7°±1.2°
  8   甲基三氯甲硅烷**   1∶0   155°±2°   18°±2°
*取决于玻璃类型
**实施例8是完全透明的
实施例9
按照上述方法测定了其它液体在MPPS涂覆的玻璃载片上的接触角(表2)。所有液体购自Fluka,是可以得到的最高纯度级别,并保持在适当的气氛(空气、N2、Ar)下。表2中给出的接触角是前进接触角(固定滴法)。对于每个接触角,用Dataphysics软件对生长的液滴(2μl-20μl)的4-6个画面逐格地自动评价,并随后手工检查一致性。删除不规则的数据(无会聚性、左右接触角差别大)。对于每种液体,将所得接触角平均。对于高于150°的大接触角,所述软件系统地过高估了接触角。对于硫代二乙二醇和甘油,手工测定接触角。
表2数种液体在MPPS涂覆的玻璃载片上的接触角
  液体   表面能[mN/m]   接触角
  环戊醇   32.7   7°±1°
  肉桂酸乙酯   37.17   22°±4°
  二乙二醇   44.6   112°±2°
  乙二醇   48   148°±5°
  硫代二乙二醇   53.5   156°±5°
  无水甘油   62.7   162°±5°
实施例10
按照上述方法(实施例1)在各种基底上制备MPPS涂层并测试接触角。接触角列在表3中。
表3:在各种基底上的MPPS涂层的接触角
  基底 接触角
  棉织物 155°-165°*
  木材 155-165°*
  纤维素 165°
  聚乙烯 155°
  铝 165°
  钛 165°
  硅(silicium) 165°
  硅(silicon) 165°
  陶瓷 155°
*没有准确的接触角测量值,可能是由于宏观表面粗糙度(同时参见图6和7)
实施例10
MPPS涂覆的玻璃载片的耐久性:
a)将实施例1的样品放入压力分别为1.5巴和2.6巴、温度分别为125℃和140℃的高压釜中最高达9小时。处理后测试的接触角显示与最初的接触角相比没有明显变化(表4)。
b)将实施例1的样品放入250℃的干燥室内24小时。处理后测试的接触角显示与最初的接触角相比没有明显变化(表4)。
c)将实施例1的样品放入液氮(-196℃)中10分钟。处理后测试的接触角显示与最初的接触角相比没有明显变化(表4)。
d)将实施例1的样品暴露于UV辐射(35瓦,样品与光源的距离为10cm)下3小时。处理后测试的接触角显示与最初的接触角相比没有明显变化(表4)。
e)将实施例1的样品暴露于各种市售的洗涤剂中24小时,随后用水或有机溶剂如丙酮、乙醇或氯仿漂洗并干燥。处理后测试的接触角显示与最初的接触角相比没有明显变化。
表4:MPPS涂覆的玻璃载片的耐久性测试
  耐久性测试   暴露时间   之前的接触角   之后的接触角
  a)   9h   169.1°   169.0°
  b)   24h   165.7°±1.9°   165.1°±1.6°
  c)   约10min   166.8°±1.6°   165.9°±1.9°
  d)   3h   170.3°±2.3°   168.8°±1.9°

Claims (26)

1.一种制备具有涂层的基底的方法,包括在所述基底上涂布一种组合物的步骤,该组合物包含至少一种式I的化合物以及任选地至少一种式II的化合物,
RaSi(R1)n(X1)3-n    I
RbSi(R2)m(X2)3-m    II
其中,
Ra是直链或支链的C1-24烃基,
Rb是芳基,它通过一个共价键或间隔单元与Si原子连接,
R1和R2彼此独立地为低级烃基,
X1和X2彼此独立地为可水解基团,并且
n、m彼此独立地为0或1,
前提是如果n和m彼此独立地为0或1,X1和X2可以表示相同或不同的基团;
其中涂布所述组合物的步骤在有气体混合物通过的反应器中进行,或通过将所述基底放置在包含所述组合物的溶液中而在溶液中进行。
2.权利要求1的方法,其中Rb是任选取代的、包含五元、六元或十元环系的碳环和杂环基团。
3.权利要求1的方法,其中所述间隔基团是具有1-8个碳原子的直链或支链的烃基。
4.权利要求1的方法,其中低级烃基是具有1-6个碳原子的直链或支链的烃基。
5.权利要求1的方法,其中所述可水解基团是卤素或烃氧基。
6.权利要求1的方法,其中式I的化合物与式II的化合物的体积比在1∶100-100∶1的范围内。
7.权利要求1的方法,其中式I的化合物与式II的化合物的体积比在1∶50-50∶1的范围内。
8.权利要求1的方法,其中式I的化合物与式II的化合物的体积比在1∶10-10∶1的范围内。
9.权利要求1的方法,其中式I的化合物与式II的化合物的体积比在1∶1-5∶1的范围内。
10.权利要求1的方法,其中涂布所述组合物的步骤在有气体混合物通过的干燥器中进行。
11.权利要求10的方法,其中所述气体混合物是氮气/水气体混合物。
12.权利要求11的方法,其中涂布所述组合物的步骤在这样的条件下进行,使得式I或II的硅烷化合物与水的摩尔比在1∶10-10∶1的范围内。
13.权利要求1的方法,还包括在涂布所述基底的步骤之前通过在基底表面上产生官能团来活化该基底的步骤。
14.权利要求1的方法,还包括使所得到的、带有涂层的基底经历固化步骤。
15.具有通过权利要求1-14中之一的方法得到的涂层的基底。
16.权利要求15的基底,其中所述涂层呈长丝形式。
17.权利要求15的基底,其中所述涂层的厚度为1-350nm。
18.权利要求15的基底,其中所述长丝从非常短、接近球形的基础丝直到长为几个微米,直径为10nm-160nm。
19.权利要求15的基底,其中所述涂层的平均层厚为至少60nm至85nm。
20.权利要求15的基底,其中所述涂层是透明的。
21.权利要求20的基底,其中所述基底是透明的。
22.权利要求15的基底,其中所述基底是天然或合成的,并选自织物、金属、玻璃、陶瓷、纤维素、纸、木材、硅基材料和聚合物。
23.权利要求22的基底,其中所述金属是Ti或Al。
24.权利要求15的基底,其中所述基底是织物。
25.权利要求15的基底,其中所述基底是玻璃设备。
26.权利要求15的基底,其中所述基底是卫生设备。
CN2004800208131A 2003-06-23 2004-06-23 超疏水涂层 Expired - Fee Related CN1826391B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP03405455.1 2003-06-23
EP03405455 2003-06-23
PCT/CH2004/000383 WO2004113456A2 (en) 2003-06-23 2004-06-23 Superhydrophobic coating

Publications (2)

Publication Number Publication Date
CN1826391A CN1826391A (zh) 2006-08-30
CN1826391B true CN1826391B (zh) 2012-12-12

Family

ID=33522502

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2004800208131A Expired - Fee Related CN1826391B (zh) 2003-06-23 2004-06-23 超疏水涂层

Country Status (5)

Country Link
US (2) US7914897B2 (zh)
EP (1) EP1644450B1 (zh)
JP (2) JP2007523959A (zh)
CN (1) CN1826391B (zh)
WO (1) WO2004113456A2 (zh)

Families Citing this family (58)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070005024A1 (en) * 2005-06-10 2007-01-04 Jan Weber Medical devices having superhydrophobic surfaces, superhydrophilic surfaces, or both
US8067065B2 (en) * 2005-12-08 2011-11-29 Toyota Motor Engineering & Manufacturing North America, Inc. Fibrillar, nanotextured coating and method for its manufacture
EP2077132A1 (en) 2008-01-02 2009-07-08 Boehringer Ingelheim Pharma GmbH & Co. KG Dispensing device, storage device and method for dispensing a formulation
US8066416B2 (en) * 2008-06-09 2011-11-29 Federal-Mogul Ignition Company Head lamp assembly and accent lighting therefor
DE102009013969B4 (de) * 2009-03-19 2011-03-31 Ab Skf Dichtungsanordnung
WO2010112358A2 (de) * 2009-03-31 2010-10-07 Boehringer Ingelheim International Gmbh Verfahren zur beschichtung einer oberfläche eines bauteils
US9353268B2 (en) 2009-04-30 2016-05-31 Enki Technology, Inc. Anti-reflective and anti-soiling coatings for self-cleaning properties
US8864897B2 (en) 2009-04-30 2014-10-21 Enki Technology, Inc. Anti-reflective and anti-soiling coatings with self-cleaning properties
US9376593B2 (en) 2009-04-30 2016-06-28 Enki Technology, Inc. Multi-layer coatings
US20100304086A1 (en) 2009-05-29 2010-12-02 Alain Robert Emile Carre Super non-wetting, anti-fingerprinting coatings for glass
FI122230B (fi) 2009-07-02 2011-10-31 Aalto Korkeakoulusaeaetioe Nestettä hylkivä materiaali
US10016568B2 (en) 2009-11-25 2018-07-10 Boehringer Ingelheim International Gmbh Nebulizer
JP5658268B2 (ja) 2009-11-25 2015-01-21 ベーリンガー インゲルハイム インターナショナル ゲゼルシャフト ミット ベシュレンクテル ハフツング ネブライザ
AU2011256396B2 (en) * 2010-05-17 2016-10-13 Petra International Holdings, Llc Hydrophobic cellulosic substrates and methods for producing the same
JP5874724B2 (ja) 2010-06-24 2016-03-02 ベーリンガー インゲルハイム インターナショナル ゲゼルシャフト ミット ベシュレンクテル ハフツング ネブライザ
BR112013007925A2 (pt) * 2010-10-07 2016-06-14 Dow Corning substratos celulósicos hidrofóbicos biodegradáveis e métodos para sua produção com o uso de silanos reativos
US20130197133A1 (en) * 2010-10-07 2013-08-01 Kevin Dale Lewis Biodegradable Hydrophobic Cellulosic Substrates And Methods For Their Production Using Halosilanes
MX2013003256A (es) * 2010-10-07 2013-05-01 Dow Corning Sustratos hidrofobos y metodos para su produccion utilizando aciloxisilanos.
US9157190B2 (en) 2011-01-18 2015-10-13 Petra International Holdings, Llc Method for treating substrates with halosilanes
US9827384B2 (en) 2011-05-23 2017-11-28 Boehringer Ingelheim International Gmbh Nebulizer
US9217094B2 (en) 2011-07-28 2015-12-22 The Board Of Trustees Of The University Of Illinois Superhydrophobic compositions
US9364859B2 (en) 2011-07-28 2016-06-14 Kimberly-Clark Worldwide, Inc. Superhydrophobic surfaces
US9237973B2 (en) 2012-01-31 2016-01-19 Kimberly-Clark Worldwide, Inc. Treated apertures
JP5224306B1 (ja) * 2012-01-31 2013-07-03 国立大学法人群馬大学 結晶化用基板、結晶化用容器、結晶化装置、及び、結晶の製造方法
WO2013152894A1 (de) 2012-04-13 2013-10-17 Boehringer Ingelheim International Gmbh Zerstäuber mit kodiermitteln
US20130323464A1 (en) * 2012-05-31 2013-12-05 Liang Liang Coated article comprising a hydrophobic anti-reflection surface, and methods for making the same
WO2014049208A1 (en) 2012-09-25 2014-04-03 Greenbutton Oy Hydrophobic material and method of producing the same
US8668960B1 (en) 2013-02-08 2014-03-11 Enki Technology, Inc. Flow coating apparatus and method of coating
JP6346456B2 (ja) * 2013-02-22 2018-06-20 国立研究開発法人産業技術総合研究所 撥水/撥油皮膜及びその製造方法
US10005917B2 (en) 2013-04-30 2018-06-26 Kimberly-Clark Worldwide, Inc. Non-fluorinated water-based superhydrophobic compositions
US9803100B2 (en) 2013-04-30 2017-10-31 Kimberly-Clark Worldwide, Inc. Non-fluorinated water-based superhydrophobic surfaces
WO2015013464A1 (en) 2013-07-23 2015-01-29 Lotus Leaf Coatings, Inc. Process for preparing an optically clear superhydrophobic coating solution
EP2835146B1 (en) 2013-08-09 2020-09-30 Boehringer Ingelheim International GmbH Nebulizer
KR101556677B1 (ko) 2014-02-25 2015-10-01 성균관대학교산학협력단 초소수성 박막, 및 이의 제조 방법
CA2945714A1 (en) * 2014-04-15 2015-10-22 Brookhaven Science Associates, Llc Superhydrophobic sponge as an efficient oil absorbent material for oil spill cleanup applications
EP2952267B1 (en) 2014-06-03 2018-07-11 Karlsruher Institut für Technologie Reactive superhydrophobic surfaces, patterned superhydrophobic surfaces, methods for producing the same and use of the patterned superhydrophobic surfaces
EP3164228B1 (en) 2014-07-02 2020-03-04 Silana GmbH Liquid coating compositions for use in methods for forming a superhydrophobic, superoleophobic or superamphiphobic layer
US9376589B2 (en) 2014-07-14 2016-06-28 Enki Technology, Inc. High gain durable anti-reflective coating with oblate voids
US9382449B2 (en) 2014-09-19 2016-07-05 Enki Technology, Inc. Optical enhancing durable anti-reflective coating
US9598586B2 (en) 2014-07-14 2017-03-21 Enki Technology, Inc. Coating materials and methods for enhanced reliability
WO2016070077A1 (en) * 2014-10-31 2016-05-06 Massachusetts, University Of Fabrication of micro-and nano-particle coated materials
CN107109123A (zh) 2014-10-31 2017-08-29 住友化学株式会社 透明被膜
CN107109124B (zh) 2014-10-31 2021-07-09 住友化学株式会社 透明被膜
JP6715530B2 (ja) 2014-10-31 2020-07-01 住友化学株式会社 撥水撥油コーティング混合組成物
JP6705752B2 (ja) 2014-11-12 2020-06-03 住友化学株式会社 撥水撥油コーティング組成物及び透明皮膜
WO2016089345A1 (en) 2014-12-01 2016-06-09 Hewlett-Packard Development Company, L.P. Coated substrates
WO2016138272A1 (en) 2015-02-27 2016-09-01 Kimberly-Clark Worldwide, Inc. Non-fluorinated water-based superhydrophobic compositions
EP3138624A1 (en) 2015-09-01 2017-03-08 Silana GmbH Material for the treatment of fluids or fluid mixtures
CN110582543A (zh) * 2017-03-08 2019-12-17 西拉纳有限公司 热绝缘材料
KR101953966B1 (ko) * 2017-03-15 2019-03-04 두산중공업 주식회사 초발수 표면이 구현된 전열관 및 이의 제조 방법
EP3498384A1 (en) * 2017-12-15 2019-06-19 Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. Nanofilament coatings on surfaces of non-planar, in particular tubular substrates, and methods for preparing the same
CN108159779A (zh) * 2018-02-10 2018-06-15 北京清正泰科技术有限公司 一种过滤材料以及基于该过滤材料的空气过滤设备
US10941270B2 (en) 2018-03-09 2021-03-09 John Nguyen Ta Biodegradation of polymer using surface chemistry
EP4074603A1 (en) 2021-04-15 2022-10-19 Airbus Defence and Space GmbH De-icing system, airfoil and aircraft having such a system, and de-icing method
CN113275224B (zh) * 2021-04-29 2022-09-23 杭州电子科技大学 一种钕铁硼永磁体的表面腐蚀防护方法
CN113278315A (zh) * 2021-05-27 2021-08-20 广州大学 一种防护涂料及其制备方法和应用
CN114932236A (zh) * 2022-05-18 2022-08-23 江苏大学 一种连续激光直接成形超疏水镍基表面制备方法
KR102643964B1 (ko) 2022-06-08 2024-03-07 한국생산기술연구원 결빙방지 효과가 우수한 불소계 유기 폴리실라잔

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3487122A (en) * 1966-11-21 1969-12-30 Owens Illinois Inc Organopolysiloxane composition containing an organic acid and a polyamide
US4299886A (en) * 1979-09-28 1981-11-10 Daicel Chemical Industries, Ltd. Process for surface coating of molded polycarbonate resin product
US4408009A (en) * 1982-02-17 1983-10-04 Union Carbide Corporation Co-condensates of alkyl silicates and alkoxy silanes
JP2005509710A (ja) * 2001-11-16 2005-04-14 ハネウェル・インターナショナル・インコーポレーテッド フォトリソグラフィ用のスピンオングラス反射防止性コーティング

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE465549A (zh) * 1940-11-16 1900-01-01
US2824778A (en) * 1954-09-28 1958-02-25 Robbart Edward Process for imparting water repellency to cellulosic material comprising cellulosic fibers by reaction with an aerosol containing organo silicon halide
US4339479A (en) * 1966-01-24 1982-07-13 Edward Robbart Treatment of cellulose
DE2536013A1 (de) * 1975-08-13 1977-03-03 Bosch Gmbh Robert Verfahren zur verbesserung der haltbarkeit von aus siliciumoxiden bestehenden schutzschichten
JPS53130732A (en) * 1977-03-18 1978-11-15 Rohm & Haas Weatherproof and wearrresistant coating composition and method of bonding same
JPS6021936B2 (ja) * 1978-01-18 1985-05-30 武田薬品工業株式会社 ガラス成形品の表面処理方法
US4834020A (en) * 1987-12-04 1989-05-30 Watkins-Johnson Company Atmospheric pressure chemical vapor deposition apparatus
GB9115818D0 (en) * 1991-07-23 1991-09-04 Impact International Inc Oligoorganosilasesquioxanes
JPH05309316A (ja) * 1992-05-12 1993-11-22 Olympus Optical Co Ltd ラングミュア・ブロジェット膜の作製方法
BR9608251A (pt) * 1995-04-28 1999-06-29 Minnesota Mining & Mfg Artigo e filamento abrasivo
JPH08337654A (ja) * 1995-06-14 1996-12-24 Matsushita Electric Ind Co Ltd 化学吸着膜の製造方法及びこれに用いる化学吸着液
JPH101610A (ja) * 1996-06-14 1998-01-06 Nippon Shokubai Co Ltd 水性有機ケイ素系組成物および土木建築材料
JPH10237431A (ja) * 1997-02-27 1998-09-08 Toto Ltd 超撥水性表面を有する部材
TW437017B (en) 1998-02-05 2001-05-28 Asm Japan Kk Silicone polymer insulation film on semiconductor substrate and method for formation thereof
US6432846B1 (en) 1999-02-02 2002-08-13 Asm Japan K.K. Silicone polymer insulation film on semiconductor substrate and method for forming the film
JP2000230140A (ja) * 1999-02-08 2000-08-22 Nippon Telegr & Teleph Corp <Ntt> 撥水塗料
JP2000273395A (ja) * 1999-03-24 2000-10-03 Matsushita Electric Works Ltd 無機質コーティング剤と塗装品
JP5229843B2 (ja) * 1999-05-18 2013-07-03 戸田工業株式会社 疎水化された金属化合物粒子粉末及びその製造法
US6472076B1 (en) * 1999-10-18 2002-10-29 Honeywell International Inc. Deposition of organosilsesquioxane films
JP2004521988A (ja) * 2000-02-28 2004-07-22 アドシル・エルシー シラン類および金属アルコレート類から製造される非水性コーテイング組成物
US6743516B2 (en) 2000-09-29 2004-06-01 Guardian Industries Corporation Highly durable hydrophobic coatings and methods
US6951598B2 (en) * 2002-11-06 2005-10-04 Kimberly-Clark Worldwide, Inc. Hydrophobically modified cationic acrylate copolymer/polysiloxane blends and use in tissue

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3487122A (en) * 1966-11-21 1969-12-30 Owens Illinois Inc Organopolysiloxane composition containing an organic acid and a polyamide
US4299886A (en) * 1979-09-28 1981-11-10 Daicel Chemical Industries, Ltd. Process for surface coating of molded polycarbonate resin product
US4408009A (en) * 1982-02-17 1983-10-04 Union Carbide Corporation Co-condensates of alkyl silicates and alkoxy silanes
JP2005509710A (ja) * 2001-11-16 2005-04-14 ハネウェル・インターナショナル・インコーポレーテッド フォトリソグラフィ用のスピンオングラス反射防止性コーティング

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
全文.

Also Published As

Publication number Publication date
JP2007523959A (ja) 2007-08-23
CN1826391A (zh) 2006-08-30
WO2004113456A3 (en) 2006-01-19
EP1644450A2 (en) 2006-04-12
JP5572746B2 (ja) 2014-08-13
JP2013256672A (ja) 2013-12-26
US7914897B2 (en) 2011-03-29
US8586693B2 (en) 2013-11-19
EP1644450B1 (en) 2015-08-19
US20110165808A1 (en) 2011-07-07
US20070264437A1 (en) 2007-11-15
WO2004113456A2 (en) 2004-12-29

Similar Documents

Publication Publication Date Title
CN1826391B (zh) 超疏水涂层
Rao et al. Preparation of MTMS based transparent superhydrophobic silica films by sol–gel method
CN101270260B (zh) 一种超疏水表面涂层材料及其制备方法
CN103596701B (zh) 疏水性烃涂层
Dey et al. Cleaning and anti-reflective (AR) hydrophobic coating of glass surface: a review from materials science perspective
ES2275039T3 (es) Procedimiento para la produccion de revestimientos laminares desprendibles, repelentes de la suciedad y del agua.
JP3498881B2 (ja) 撥水性ガラスの製法
JP2017518895A (ja) 疎水性物品
JP2017523917A (ja) 超疎水性、超疎油性又は超両疎媒性層を形成する方法において使用するための液体コーティング組成物
CN108300299B (zh) 一种具有防滑功能的保护性涂层组合物、涂布制品及其制备方法
EP1080794B1 (en) Method and apparatus for the production of a coating film
Karlina et al. Synthesis and characterization of hydrophobic silica prepared by different acid catalysts
WO2017146652A1 (en) Durable hydrophobic coating composition
Pai et al. Synthesis of mesoporous organosilicate films in supercritical carbon dioxide
JP2008503893A (ja) テーラーメイドで官能化されたケイ素及び/又はゲルマニウム表面
CN110387191B (zh) 一种疏水涂层及其制备方法、疏水涂层溶液
Ni et al. Light-induced crystallization-driven formation of hierarchically ordered superhydrophobic sol-gel coatings
Abu-Dheir et al. Sol-gel coating of colloidal particles deposited glass surface pertinent to self-cleaning applications
Uricanu et al. Organic–inorganic hybrids made from polymerizable precursors
WO2019154962A1 (en) Process for modification of a solid surface
TWI600725B (zh) 一種具有防滑功能的保護性塗層組合物、塗佈製品及其製備方法
EP3524582A1 (en) Process for modification of a solid surface
Lee et al. The importance of precursor molecules symmetry in the formation of self-assembled monolayers
Smet et al. Cross-Linking Nanometer-Sized Reactive Spherosilicates to Synthesize Tuneable Hydrophobic POSiSil Foams Suitable for Applications as Sensors
Yun Formation of SiO: CH ultra water repellent thin films by inductively coupled RF PECVD

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20121212

Termination date: 20210623

CF01 Termination of patent right due to non-payment of annual fee