CN1771212A - 二氧化铈基电解质的密实化 - Google Patents

二氧化铈基电解质的密实化 Download PDF

Info

Publication number
CN1771212A
CN1771212A CNA200480009486XA CN200480009486A CN1771212A CN 1771212 A CN1771212 A CN 1771212A CN A200480009486X A CNA200480009486X A CN A200480009486XA CN 200480009486 A CN200480009486 A CN 200480009486A CN 1771212 A CN1771212 A CN 1771212A
Authority
CN
China
Prior art keywords
concentration
ionogen
divalent cation
mole
tricationic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CNA200480009486XA
Other languages
English (en)
Other versions
CN100381395C (zh
Inventor
布赖恩·查理·希尔顿·斯梯尔(已故)
吉恩·刘易斯
内奥凯·欧雪伊
艾米特·塞尔卡克
Original Assignee
Ceres Power Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ceres Power Ltd filed Critical Ceres Power Ltd
Publication of CN1771212A publication Critical patent/CN1771212A/zh
Application granted granted Critical
Publication of CN100381395C publication Critical patent/CN100381395C/zh
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F17/00Compounds of rare earth metals
    • C01F17/10Preparation or treatment, e.g. separation or purification
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M8/124Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte
    • H01M8/1246Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte the electrolyte consisting of oxides
    • H01M8/126Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte the electrolyte consisting of oxides the electrolyte containing cerium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/50Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on rare-earth compounds
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3206Magnesium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3229Cerium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3241Chromium oxides, chromates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3262Manganese oxides, manganates, rhenium oxides or oxide-forming salts thereof, e.g. MnO
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3262Manganese oxides, manganates, rhenium oxides or oxide-forming salts thereof, e.g. MnO
    • C04B2235/3265Mn2O3
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3272Iron oxides or oxide forming salts thereof, e.g. hematite, magnetite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3275Cobalt oxides, cobaltates or cobaltites or oxide forming salts thereof, e.g. bismuth cobaltate, zinc cobaltite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • C04B2235/6582Hydrogen containing atmosphere
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • C04B2235/6583Oxygen containing atmosphere, e.g. with changing oxygen pressures
    • C04B2235/6584Oxygen containing atmosphere, e.g. with changing oxygen pressures at an oxygen percentage below that of air
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Structural Engineering (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Materials Engineering (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Geology (AREA)
  • Inorganic Chemistry (AREA)
  • Fuel Cell (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)
  • Inert Electrodes (AREA)
  • Conductive Materials (AREA)

Abstract

本发明公开了在低于1200℃,优选在约1000℃下制造具有密度大于理论可达到密度97%的二氧化铈基电解质的方法。该电解质具有二价阳离子的浓度减去调整后的三价阳离子的浓度的值在0.01摩尔%到0.1摩尔%之间。

Description

二氧化铈基电解质的密实化
技术领域
本发明涉及可用于诸如燃料电池和氧发生器中的二氧化铈基电解质的密实化。
背景技术
已知在多孔铁素体不锈钢箔基板上制造厚膜固体氧化物燃料电池(SOFC)结构的过程。该金属支撑的电池可容易地通过将每个电池激光焊接到金属双极板上以组装成列。这样的技术在GB 2,368,450中有描述。已经证明,二氧化铈基电解质,例如Ce0.9Gd0.1O1.95(CGO10)可在比先前采用的温度更低的温度下在金属基板上烧结,以提供致密的不渗透的电解质膜。在更低的温度如1000℃下烧结电解质可使对不锈钢微结构的改变最小化,降低制造成本,并且由于来自基板和其保护的氧化物的气态金属物质的输送还可降低电解质中转变金属阳离子(transition metal cations)的浓度。
EP-A-1000913描述了在相对低的温度(~1000℃)下生产致密的(>理论可达到密度的97%)二氧化铈电解质。该专利申请说明,当小量的(1~2摩尔%)CuO、NiO或CoO加入到市售的二氧化铈基电解质粉末(例如由Rhodia、France出售的)中时,从那些滴下的丸粒压缩的丸粒(pellets)与没有任何转变金属阳离子添加物的丸粒通常所需的1350℃相比,可在低至1000℃的温度下烧结成密度大于理论可达到密度的97%。应注意,在密度为理论可到达密度的97%的二氧化铈基电解质是不渗透的,并且因此显著减少在阴极和阳极气体间的气体泄漏。
然而,转变金属阳离子的添加并不是没有问题。在650℃下对烧结粉末制造的薄(~1mm)盘进行电动势(EMF)测定。在相同的实验条件下,没有二价阳离子添加物的电解质盘的EMF值(910mV)至少比含有2摩尔%Co2+或1摩尔%Mn2+的薄盘记录的值(800mV)高100mV。显然,转变金属阳离子的加入引入了显著的电子电导率,这是不希望的副效应,因为它将对合并有阳离子添加物的二氧化铈基电解质的中等温度固体氧化物燃料电池(IT-SOFC)堆叠的性能特性产生主要影响。
发明内容
本发明的一个目的是有助于克服上述问题中的一个或多个,以在不过度降低EMF下进行致密的电解质的烧结。
根据本发明的第一方面,提供一种在制得的电解质中确定有效二价阳离子浓度的方法,该方法包括:
确定在制得的电解质中二价阳离子浓度;
确定在制得的电解质中三价阳离子浓度,和从二价阳离子的浓度中减去调整的三价阳离子的浓度以得到有效的二价阳离子的浓度。由于三价阳离子的有害作用,有必要将其确定的浓度乘以一个5到10之间的系数,该系数在下面进行描述。
该方法可确定在电解质中二价阳离子的有效浓度。一旦二价阳离子的有效浓度可以确定,就可以在希望的条件,如大约1000℃下确保电解质充分的密实化。应强调的是,在此描述的过程应用于具有典型密度在50~60%范围的沉积的“绿”电解质层(“green”electrolyte layers)。达到该要求的可能的制造途径在专利申请GB 0205291中已经描述了,并且优选的方法涉及通过EPD随后通过均衡压制沉积电解质粉末来制造。
在制造过程中,二价和三价阳离子均可合并到电解质膜中,但是已发现它们的作用却十分不同。二价阳离子可增强密实化工艺,而已发现三价阳离子的存在对密实化工艺有相反的作用。为保证在1000℃下电解质密实化,已发现二价阳离子的浓度需超过三价阳离子的浓度,有必要有意地在电解质中加入少量的二价阳离子(例如Mn2+、Fe2+、Mg2+等)以克服三价阳离子(例如Cr3+、Fe3+、Al3+等)的有害作用。
在制得的电解质中二价阳离子的浓度可以通过如下方法而检测:将在制造工艺完成前被加入电解质中的二价阳离子的浓度加上在制造工艺后如果没有添加物将在电解质中测得的二价阳离子的浓度。
在制造工艺后存在于电解质中的二价阳离子可有几个来源。二价阳离子可来源于固有的三价阳离子转变或还原为二价阳离子。例如,在制造过程中处理条件可以改变以减少有害的三价阳离子的浓度,例如通过适当控制烧结炉内氧或水的分压,Fe3+可被还原为Fe2+。电解质中的二价阳离子可来源于金属基板和/或金属基板上的氧化物层的蒸气。二价阳离子可在适当的时机加入到电解质中,例如在烧结工艺前。各种阳离子杂质的量和类型水平又影响着烧结动力学,并决定了是否能在1000℃获得电解质的充分的密实化(通常理想的结果需要大于可达到密度的97%)。
本发明的发明人惊奇地发现二价阳离子的有效浓度(二价阳离子的浓度-调整的三价阳离子的浓度)在0.01摩尔%~0.1摩尔%时可用于在大约1000℃下产生具有密度大于可达到密度97%的电解质。另外,这样的二价阳离子的有效浓度不产生象含有更高二价阳离子浓度的电解质那样EMF的严重减小。
优选,二价阳离子的有效浓度在0.02摩尔%~0.09摩尔%的范围内。
更优选,二价阳离子的有效浓度在0.03摩尔%~0.08摩尔%的范围内。
根据本发明的第二方面,提供一种制备具有理想有效阳离子浓度的电解质的方法,该方法包括制造电解质,并在制造之前或期间通过以下一种或多种方法增加二价阳离子的浓度:
从与电解质相连接的金属基板或在该基板上的氧化物层产生的蒸气接收二价阳离子;
将基板材料中的三价阳离子还原为二价阳离子;或有意在制造之前或期间向电解质中加入二价阳离子;
这样二价阳离子的有效浓度减去制得的电解质中调整后的三价阳离子浓度的值在希望的范围内。
希望的范围可包括或在0.01摩尔%~0.1摩尔%之间,但是优选为0.02摩尔%~0.09摩尔%,和更优选为0.03摩尔%~0.08摩尔%。
根据本发明的第三方面,提供一种电解质,该电解质具有二价阳离子的有效浓度通过从基板的二价阳离子的浓度中减去调整后的在电解质中三价阳离子的浓度而测得。该有效阳离子浓度在0.01摩尔%~0.1摩尔%,但是优选在0.02摩尔%~0.09摩尔%,和更优选在0.03摩尔%~0.08摩尔%。
根据本发明的第四方面,提供一种包括基板、电极和根据本发明第三方面的电解质的半电池(half cell)。
根据本发明的第五方面,提供一种燃料电池,包括本发明第四方面的半电池和在电解质的与另一电极相对的一侧提供进一步的电极。
根据本发明的第六方面,提供一种扬氧气发生器,包括第四方面的半电池和在电解质的与另一电极相对的一侧提供进一步的电极。
附图说明
下面将以实施例的方式参考附图对本发明优选的实施方式进行描述,其中:
图1说明了对于0,1%和2%的阳离子添加物,二氧化铈基电解质丸粒的烧结特性;
图2说明了对于0和0.1%的阳离子添加物,二氧化铈基电解质丸粒的烧结特性;和
图3是金属箔支撑的厚膜单电池组件的示意性图。
具体实施方式
采用名称为1.4509的钛-铌稳定的铁素体不锈钢基板(~18%Cr)实施实验。在指定了Fe2+(0.25摩尔%)和Cr3+(0.005摩尔%)的阳离子杂质含量的基板上分析烧结的电解质。随后的研究显示,可采用各种具有不同初始组分和氧化特性的铁素体不锈钢完成CGO10电解质。这些不同的基板和处理工艺的变化共同对结合到CGO电解质中的金属杂质的浓度和价态造成显著的改变。
图1概括了对二氧化铈基电解质,Ce0.9Gd0.1O1.95,粉末的烧结特性的研究。对图1的检查揭示,1~2摩尔%的二价阳离子(例如,Co2+,Fe2+,Mn2+)的阳离子添加物可从工艺上产生有益的约为理论可达到密度的97/98%的丸粒密度,而三价阳离子(Fe3+,Mn3+)则严重延缓烧结动力学。图2显示,在0.1%水平的阳离子添加物下,烧结丸粒的密度对于分别加入Mn2+,Mg2+,Ca2+是大约相同的,并且与前面提到的开发的没有阳离子添加物的丸粒的密度(理论可达到密度的~93%)相当。Co2+和Fe2+降低烧结动力学,并且特别显著的是由于Fe3+和Cr3+的添加物极大地减少了烧结密度,甚至阳离子添加物低至0.1%。
图1和图2中所概括的研究显示,二价阳离子的加入提高密实化工艺,而三价阳离子的存在则对该密实化工艺有负面的效果。然而,这些研究指出,二氧化铈基的丸粒需要密度为2%量级的二价阳离子以产生理论可达到密度97%的密实度。图1和图2中所概括的研究突出的是令人惊奇地用相对较低的二价阳离子浓度制造出致密的电解质厚膜。
与丸粒相比,电解质厚膜的观察到的密实化可与发生在氧分压梯度下烧结工艺的实现相关。该相关的氧流量有助于金属基板箔的氧化。同时,在相反方向的少量但显著的阳离子流量影响如图3所示的由阳离子输送控制的烧结动力学。当多组分氧化物相被置入氧化学势梯度中时,可产生阴离子流和阳离子流二者,并且相关的不同的输送工艺是形成分层现象的原因。不论增强的烧结机理的细节如何,其现象是一个重要的技术革新,并且本申请人的研究已提供了涉及使二氧化铈电解质密实的最优工艺参数,该二氧化铈电解质可用于支撑于金属基板上的SOFC结构、氧发生器等中。
已开发了以下的经验方程式以确保高的(>理论可达到密度的98%)电解质密度,以及对于各种金属基板,阴极组合物和SOFC构造的最优工艺条件。
[M2- E]=[M2- A]+[M2+ I]-Y[M3+ I]·······(A)
[M2+ E]表示二价阳离子(例如,Mn2+、Fe2+、Mg2+等)在特定电解质中的有效浓度。实验显示,确保密实化(>理论可达到密度的98%)所需的二价阳离子的最小有效密度典型地为0.01~0.1摩尔%(200~1000ppm),该浓度低于先前公开物如EP-A-1000913中提及的值。应注意,所选择的阳离子杂质,如Fe、Mn的价态将依赖于在烧结炉中建立的氧分压。
[M2+ A]表示在高温制造工序之前加入电解质中的二价阳离子(例如,Mn2+、Fe2+、Mg2+等)的浓度。
[M2+ I]表示在制造工艺之后测得的电解质中的二价阳离子(例如,Mn2+、Fe2+等)的浓度(没有在先添加物)。杂质的浓度可通过动力学次级离子质谱法(SIMS)或辉光放电发射光谱法(GDOES)来测定。二价阳离子有益于在1000℃增强烧结。
注:理想地,对于Fe2+和Mn2+离子[M2+ I]应不超过0.1%,以避免在电解质中显著的电子电导率。
在制造工艺之后电解质中的二价阳离子可来自金属基板的蒸气,或基板上的氧化物或来自例如电解质层中三价阳离子的还原。
[M3+ I]表示在制造工艺之后测得的电解质中的三价阳离子(例如,Fe3+、Cr3+、Al3+等)的浓度。该杂质的浓度与上述在制造工艺后无在先添加物的电解质中二价阳离子浓度的确定相同。三价阳离子对在1000℃下烧结的增强是有害的。
Y表示放大系数(典型地为5~10)。三价阳离子的存在对于烧结工艺非常有害,所以考虑到它们对烧结行为的严重影响,将它们的实际浓度乘以系数Y。还需要根据三价阳离子的性质和分布改变Y值。例如,在研磨工艺中引入的离散的Al2O3粒子中的Al3+的影响与CGO粉末表面广泛分布的Al3+界面物质的作用不同。
实施例
图3显示的是用于以下一些实施例中的金属箔支撑的厚膜单电池组件的示意性图。
1、CGO直接沉积在1.4509金属基板上(无预氧化处理)。该CGO在1000℃、设计在1000℃建立pO2值为10-14的H2/H2O/氩气氛中烧结。[M2+ E]确定为+0.1%(表1),并产生密实的电解质。Fe和Cr通过蒸气相物质,例如:Fe(g),Fe(OH)2(g),Cr(g),Cr(OH)3(g)输送到电解质中。注意,气态金属氧化物物质的浓度将受到在该金属氧化物覆层中该金属热力学活性,以及在烧结炉中p(H2O)(工艺可变的)的影响。
2、CGO电解质膜直接沉积在1.4509金属基板上(预氧化处理),并在1000℃、设计在1000℃建立pO2值为10-14的CO2/H2氩气氛中烧结。由于Al3+的污染,[M2+ E]确定为-0.07%(表1)。该电解质不致密。
3、在1.4509金属基板顶上(预氧化处理)制造Ni-CGO阴极。CGO膜接着沉积在该阴极上(见图3),并在1000℃、设计在1000℃建立pO2值为10-14的CO2/H2氩气氛中烧结。由于Al3+的污染,[M2+ E]确定为-0.05%(表1)。该电解质不致密。
4、在JS-3金属基板上(预氧化处理)制造Ni-CGO阴极。CGO膜接着沉积在该阴极上(见图3),并在1000℃、设计在1000℃建立pO2值为10-14的H2/H2O/氩气氛中烧结。由于除了Al3+的污染还有高含量Mn3+,所以[M2+ E]确定为+0.1%(表1)。
产生致密的电解质。
5、在JS-3金属基板上(预氧化处理)制造Ni-CGO阴极。Mn(0.1阳离子%)加入到该CGO粉末中。CGO膜接着沉积在该阴极上(见图3),并在1000℃、设计在1000℃建立pO2值为10-14的H2/H2O/氩气氛中烧结。由于除了Al3+的污染还有高含量Mn3+并且Fe以Fe3+的形式存在,[M2+ E]确定为+0.1%(表1)。
产生致密的电解质。
6、在ZMG232金属基板上(预氧化处理)制造Ni-CGO阴极。CGO膜接着沉积在该阴极上(见图3),并在1000℃、设计在1000℃建立pO2值为10-14的H2/H2O/氩气氛中烧结。由于除了Al3+的污染还有高Mn3+含量,[M2+ E]确定为+0.08%(表1)。
产生致密的电解质。
表1
  铁素体不锈钢基板   氧化物   阴极                     电解质   结果
  [M2+ A]%   [M2+ I]%   [M3+ I]%   [M2+ E]%
  1.4509   NT   NP   0   0.15   0.05   +0.1   致密
  1.4509   T   NP   0   0.03   0.1   -0.07   不致密
  1.4509   T   Ni-CGO   0   0.05   0.1   -0.05   不致密
  JS-3   T   Ni-CGO   0   0.2   0.1   +0.1   致密
  JS-3   T   Ni-CGO   0.1   0.1   0.1   +0.1   致密
  ZMG232   T   Ni-CGO   0   0.2   0.12   +0.08   致密
NT指无预处理形成氧化物膜
Ni-CGO的存在降低了Cr和Fe在电解质中的浓度(这些物质可能以NiFe2O4、NiCr2O4形式而被捕获)。除非有足够的二价离子例如Mn2+(例如JS-3),否则电解质不致密。

Claims (33)

1、一种在制得的电解质中确定二价阳离子有效浓度的方法,该方法包括:
确定在制得的电解质中二价阳离子的浓度;
确定在制得的电解质中三价阳离子的浓度,和从二价阳离子的浓度中减去调整后三价阳离子的浓度以得到二价阳离子的有效浓度。
2、根据权利要求1所述的方法,其中在制得的电解质中二价阳离子的浓度是通过如下方法确定的:将在制造工艺完成前被加入该电解质中二价阳离子的浓度,加上在制造工艺后如果没有添加物将在电解质中测得的二价阳离子的浓度。
3、根据权利要求1或2所述的方法,其中至少所述二价阳离子中的一些是通过将三价阳离子转变或还原成二价阳离子而在电解质中产生的。
4、根据权利要求3所述的方法,其中三价阳离子在制造工艺期间转变或还原成二价阳离子。
5、根据权利要求4所述的方法,其中在制造工艺期间通过适当控制在烧结炉中的氧或水的分压使三价阳离子转变或还原成二价阳离子。
6、根据前述任意一项权利要求所述的方法,其中在制造工艺完成前将二价阳离子加入所述电解质中。
7、根据前述任意一项权利要求所述的方法,其中电解质中至少二价阳离子中的一些源自产生于金属基板或在金属基板上的氧化物层的蒸气。
8、根据前述任意一项权利要求所述的方法,其中控制阳离子的浓度,使得二价阳离子的有效浓度在0.01摩尔%~0.1摩尔%的范围内。
9、根据权利要求8所述的方法,其中二价阳离子的有效浓度在0.02摩尔%~0.09摩尔%的范围内。
10、根据权利要求9所述的方法,其中二价阳离子的有效浓度在0.03摩尔%~0.08摩尔%的范围内。
11、根据前述任意一项权利要求所述的方法,其中确定的三价阳离子的浓度通过典型地乘以一个5到10之间的系数而被调整。
12、一种制备具有密度大于理论可达到密度97%的二氧化铈基电解质的方法,该方法包括:
提供二氧化铈基电解质,和
在1200℃或更低的温度下烧结该电解质,使得在该烧结的电解质中二价阳离子的浓度减去调整后三价阳离子的浓度的值在0.01摩尔%~0.1摩尔%之间。
13、根据权利要求12所述的方法,其中控制烧结工艺的条件,以将在该电解质中至少一些三价阳离子还原为二价阳离子。
14、根据权利要求13所述的方法,其中控制烧结工艺的条件产生合适的氧或水的压力,以将合适数量的三价阳离子还原为二价阳离子。
15、根据权利要求12、13或14中任意一项所述的方法,其中所述电解质被提供在基板上,并且选择该基板材料以在电解质中产生所需的二价阳离子浓度减去调整后三价阳离子的浓度的值。
16、根据权利要求15所述的方法,其中在所述电解质或基板之间提供电极。
17、根据权利要求12到16中的任意一项所述的方法,其中在烧结工艺之前或期间将二价阳离子加入电解质中。
18、根据权利要求12到17中的任意一项所述的方法,其中在烧结的电解质中二价阳离子的浓度减去调整后三价阳离子的浓度的值在0.02摩尔%~0.09摩尔%的范围内。
19、根据权利要求18所述的方法,其中在烧结的电解质中二价阳离子的浓度减去调整后三价阳离子的浓度的值在0.03摩尔%~0.08摩尔%的范围内。
20、根据权利要求12到19中的任意一项所述的方法,其中三价阳离子的浓度通过乘以一个5到10的数值而被调整。
21、根据权利要求12到20中的任意一项所述的方法,其中所述电解质在1100℃或更低的温度下被烧结。
22、根据权利要求21所述的方法,其中所述电解质在1050℃或更低的温度下被烧结。
23、根据权利要求22所述的方法,其中所述电解质在1000℃或更低的温度下被烧结。
24、根据权利要求12到23中任意一项所述的方法,其中所述电解质以厚膜的形式被提供。
25、一种二氧化铈基电解质,该电解质具有大于理论可达到密度97%的密度,并且具有二价阳离子的浓度减去调整后三价阳离子的浓度的值在0.01摩尔%~0.1摩尔%的范围内。
26、根据权利要求25所述的电解质,其中二价阳离子的浓度减去调整后三价阳离子的浓度的值在0.02摩尔%~0.09摩尔%的范围内。
27、根据权利要求26所述的电解质,其中二价阳离子的浓度减去调整后三价阳离子的浓度的值在0.03摩尔%~0.08摩尔%的范围内。
28、根据权利要求25到27中任意一项所述的方法,其中三价阳离子的浓度通过乘以一个5到10的数值而被调整。
29、根据权利要求25到28中任意一项所述的方法,其中所述电解质以厚膜的形式被提供。
30、一种半电池组件,包括基板、电极和权利要求25到29中任意一项所述的电解质。
31、一种燃料电池组件,包括权利要求30所述的半电池,和在所述电解质的与第一电极相对的一侧提供的进一步的电极。
32、根据权利要求31所述的燃料电池,其中该第一电极是阳极,和该进一步的电极是阴极。
33、一种氧发生器,包括权利要求30所述的半电池,和在所述电解质的与第一电极相对的一侧提供的进一步的电极。
CNB200480009486XA 2003-04-09 2004-03-25 二氧化铈基电解质的密实化 Expired - Lifetime CN100381395C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
GB0308215.3 2003-04-09
GB0308215A GB2400486B (en) 2003-04-09 2003-04-09 Densification of ceria based electrolytes

Publications (2)

Publication Number Publication Date
CN1771212A true CN1771212A (zh) 2006-05-10
CN100381395C CN100381395C (zh) 2008-04-16

Family

ID=9956496

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB200480009486XA Expired - Lifetime CN100381395C (zh) 2003-04-09 2004-03-25 二氧化铈基电解质的密实化

Country Status (16)

Country Link
US (2) US7947212B2 (zh)
EP (1) EP1608605B1 (zh)
JP (1) JP5048322B2 (zh)
KR (1) KR101065949B1 (zh)
CN (1) CN100381395C (zh)
AU (1) AU2004228427B2 (zh)
BR (1) BRPI0409093B1 (zh)
CA (1) CA2521901C (zh)
DK (1) DK1608605T3 (zh)
EA (1) EA009103B1 (zh)
ES (1) ES2444217T3 (zh)
GB (1) GB2400486B (zh)
HK (1) HK1069680A1 (zh)
MX (1) MXPA05010789A (zh)
WO (1) WO2004089848A1 (zh)
ZA (1) ZA200508144B (zh)

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4937755B2 (ja) * 2004-10-15 2012-05-23 パナソニック株式会社 燃料電池システム
GB2440038B (en) 2006-07-07 2009-04-15 Ceres Ip Co Ltd Metal substrate for fuel cells
US9162931B1 (en) * 2007-05-09 2015-10-20 The United States Of America As Represented By The Secretary Of The Air Force Tailored interfaces between two dissimilar nano-materials and method of manufacture
US9120245B1 (en) 2007-05-09 2015-09-01 The United States Of America As Represented By The Secretary Of The Air Force Methods for fabrication of parts from bulk low-cost interface-defined nanolaminated materials
US8617456B1 (en) 2010-03-22 2013-12-31 The United States Of America As Represented By The Secretary Of The Air Force Bulk low-cost interface-defined laminated materials and their method of fabrication
KR101478207B1 (ko) * 2007-11-23 2015-01-02 삼성전자주식회사 이동통신 단말에서 블루투스를 이용하여 자바푸시를요구하는 기기들을 식별하기 위한 방법 및 장치
GB2461115A (en) 2008-04-23 2009-12-30 Ceres Power Ltd Fuel Cell Module Support
JP5499033B2 (ja) 2008-08-21 2014-05-21 セレス インテレクチュアル プロパティー カンパニー リミテッド 空気分配装置を用いた改良型燃料電池スタックの流路フードの気流
FR2948821B1 (fr) 2009-08-03 2011-12-09 Commissariat Energie Atomique Cellule electrochimique a metal support et son procede de fabrication
CN101654366B (zh) * 2009-09-10 2012-10-24 中国矿业大学(北京) 复合助烧剂及其用于低温制备纳米晶陶瓷的方法
DE102012211669A1 (de) * 2012-07-04 2014-01-09 Behr Gmbh & Co. Kg Klimaanlage
GB2517927B (en) * 2013-09-04 2018-05-16 Ceres Ip Co Ltd Process for forming a metal supported solid oxide fuel cell
GB2517928B (en) 2013-09-04 2018-02-28 Ceres Ip Co Ltd Metal supported solid oxide fuel cell
US10270119B2 (en) 2014-03-12 2019-04-23 Ceres Intellectual Property Company Limited Fuel cell stack arrangement
GB2534124B (en) 2014-12-19 2017-04-19 Ceres Ip Co Ltd A swirl burner assembly and method
US11527766B2 (en) 2014-12-19 2022-12-13 Ceres Intellectual Property Company Limited Fuel cell system and tail gas burner assembly and method
GB2563848B (en) 2017-06-26 2022-01-12 Ceres Ip Co Ltd Fuel cell stack assembly
GB201913907D0 (en) 2019-09-26 2019-11-13 Ceres Ip Co Ltd Fuel cell stack assembly apparatus and method
GB201915294D0 (en) 2019-10-22 2019-12-04 Ceres Ip Co Ltd Alignment apparatus and methods of alignment
GB201915438D0 (en) 2019-10-24 2019-12-11 Ceres Ip Co Ltd Metal-supported cell unit
GB2591462B (en) 2020-01-27 2022-04-20 Ceres Ip Co Ltd Interlayer for solid oxide cell
GB202009687D0 (en) 2020-06-25 2020-08-12 Ceres Ip Co Ltd Layer
WO2023078944A1 (en) 2021-11-08 2023-05-11 Rhodia Operations Cerium-gadolinium composite oxide
CN118201892A (zh) 2021-11-08 2024-06-14 罗地亚经营管理公司 铈钆复合氧化物

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB205291A (en) 1922-09-07 1923-10-18 Francis Mcnally Improvements in thermometers
US5403461A (en) * 1993-03-10 1995-04-04 Massachusetts Institute Of Technology Solid electrolyte-electrode system for an electrochemical cell
JPH092873A (ja) * 1995-01-10 1997-01-07 Tosoh Corp ホタル石型セリア系固体電解質
US5665482A (en) * 1995-01-10 1997-09-09 Tosoh Corporation Fluorite structure type ceria type solid electrolyte
JPH10154523A (ja) * 1996-09-27 1998-06-09 Tosoh Corp 欠陥ホタル石型セリア系固体電解質
ATE228982T1 (de) 1998-11-13 2002-12-15 Eidgenoess Tech Hochschule Verfahren zur herstellung von dotierter ceroxidkeramik
CN1150647C (zh) * 2000-02-16 2004-05-19 刘向荣 中温氧化物燃料电池的复合陶瓷材料
DE60142036D1 (de) * 2000-03-10 2010-06-17 Univ Danmarks Tekniske Herstellungsverfahren für eine festoxidbrennstoffzelle
JP4352594B2 (ja) * 2000-03-15 2009-10-28 三菱マテリアル株式会社 酸化物イオン伝導体及びその製造方法並びにこれを用いた燃料電池
GB2368450B (en) 2000-10-25 2004-05-19 Imperial College Fuel cells
US6770392B2 (en) * 2001-04-27 2004-08-03 Air Products And Chemicals, Inc. Ceria based solid electrolytes
GB2386126B (en) * 2002-03-06 2006-03-08 Ceres Power Ltd Forming an impermeable sintered ceramic electrolyte layer on a metallic foil substrate for solid oxide fuel cell

Also Published As

Publication number Publication date
US20070020498A1 (en) 2007-01-25
CA2521901C (en) 2011-09-06
KR20060012271A (ko) 2006-02-07
CA2521901A1 (en) 2004-10-21
WO2004089848A1 (en) 2004-10-21
CN100381395C (zh) 2008-04-16
EP1608605A1 (en) 2005-12-28
EA200501588A1 (ru) 2006-04-28
AU2004228427A1 (en) 2004-10-21
BRPI0409093B1 (pt) 2013-08-27
JP2006523002A (ja) 2006-10-05
ZA200508144B (en) 2006-10-25
AU2004228427B2 (en) 2009-09-17
GB2400486A (en) 2004-10-13
HK1069680A1 (en) 2005-05-27
EP1608605B1 (en) 2013-08-28
DK1608605T3 (da) 2013-12-09
EA009103B1 (ru) 2007-10-26
US7947212B2 (en) 2011-05-24
KR101065949B1 (ko) 2011-09-19
US20110177427A1 (en) 2011-07-21
GB2400486B (en) 2006-05-10
ES2444217T3 (es) 2014-02-24
MXPA05010789A (es) 2006-03-30
JP5048322B2 (ja) 2012-10-17
BRPI0409093A (pt) 2006-04-11
GB0308215D0 (en) 2003-05-14

Similar Documents

Publication Publication Date Title
CN1771212A (zh) 二氧化铈基电解质的密实化
JP4084602B2 (ja) Sofc高温燃料電池の集電体
Choi et al. Development of MnCoO coating with new aluminizing process for planar SOFC stacks
CN103403938A (zh) 层结构和其在高温燃料电池的连接体与阴极之间形成陶瓷层结构的用途
Solovyev et al. Solid oxide fuel cell with Ni–Al support
EP3000149B1 (de) Mehrlagige schichtanordnung für einen festkörperelektrolyt
US20120064436A1 (en) Interconnecting plate for solid oxide fuel cell and manufacturing method thereof, and solid oxide fuel cell using the interconnecting plate
KR102213228B1 (ko) 비화학량론적 조성 기반의 층상 페로브스카이트 산화물을 포함하는 고체산화물 연료전지용 공기극 소재, 및 이를 포함하는 중저온 고체산화물 연료전지용 공기극
KR101042249B1 (ko) 전기 전도도 및 내산화성이 우수하고 Cr 휘발성이 낮은 연료전지 금속접속자 및 그 제조방법
CN104583450A (zh) 燃料电池互连体和制备燃料电池互连体的方法
CN111587299A (zh) 氧透过元件和溅射靶材料
CN100534950C (zh) 一种LaGaO3基固体电解质靶材的制备方法
JP6910172B2 (ja) セル間接続部材の製造方法
KR20080057550A (ko) 고체산화물 연료전지용 분리판 및 이의 제조방법
Sochugov et al. Advanced fuel cell development in Russia
Umer et al. Intermediate-temperature protonic solid oxide fuel cell made of pulsed laser deposition-based functional layers and interlayers on an optimally tailored anode substrate
KR20240063012A (ko) 고체 산화물 전기화학 전지 스택을 위한 금속성 인터컨넥트의 바인더 젯 프린팅
JP2023172701A (ja) セラミック焼結体
CN114682104A (zh) 一种钙钛矿型导电陶瓷膜及其制备方法和应用
Burye et al. Nano-Ceria Pre-Infiltration and Precursor Solution Additives Improve Open-Circuit La0. 6Sr0. 4Co0. 8Fe0. 2O3-δ Infiltrated Solid Oxide Fuel Cell Cathode Performance and Stability
Erning et al. The electrochemical behavior of high temperature fuel cell cathodes made by screen printing
JPH06290788A (ja) 空気極前駆グリーンシートおよびこれを用いた溶融炭酸塩型燃料電池
KR20170076143A (ko) 반응방지층을 포함하는 고체산화물 연료전지용 셀 및 그 제조방법

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C41 Transfer of patent application or patent right or utility model
TR01 Transfer of patent right

Effective date of registration: 20090109

Address after: West Sussex, England

Patentee after: CERES INTELLECTUAL PROPERTY CO.,LTD.

Address before: West Sussex, England

Patentee before: Ceres Power Ltd.

ASS Succession or assignment of patent right

Owner name: SERRES INTELLECTUAL RIGHT CO., LTD.

Free format text: FORMER OWNER: SERRES DYNAMICS CO., LTD.

Effective date: 20090109

CX01 Expiry of patent term
CX01 Expiry of patent term

Granted publication date: 20080416