CN1768166A - 磁性石榴石单晶膜形成用基板、光学元件及其制造方法 - Google Patents
磁性石榴石单晶膜形成用基板、光学元件及其制造方法 Download PDFInfo
- Publication number
- CN1768166A CN1768166A CNA2004800086810A CN200480008681A CN1768166A CN 1768166 A CN1768166 A CN 1768166A CN A2004800086810 A CNA2004800086810 A CN A2004800086810A CN 200480008681 A CN200480008681 A CN 200480008681A CN 1768166 A CN1768166 A CN 1768166A
- Authority
- CN
- China
- Prior art keywords
- substrate
- film
- magnetic garnet
- monocrystal film
- garnet monocrystal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F41/00—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
- H01F41/14—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates
- H01F41/24—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates from liquids
- H01F41/28—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates from liquids by liquid phase epitaxy
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B19/00—Liquid-phase epitaxial-layer growth
- C30B19/02—Liquid-phase epitaxial-layer growth using molten solvents, e.g. flux
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B29/00—Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
- C30B29/10—Inorganic compounds or compositions
- C30B29/16—Oxides
- C30B29/22—Complex oxides
- C30B29/28—Complex oxides with formula A3Me5O12 wherein A is a rare earth metal and Me is Fe, Ga, Sc, Cr, Co or Al, e.g. garnets
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F10/00—Thin magnetic films, e.g. of one-domain structure
- H01F10/08—Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers
- H01F10/10—Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers characterised by the composition
- H01F10/18—Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers characterised by the composition being compounds
- H01F10/20—Ferrites
- H01F10/24—Garnets
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/0009—Materials therefor
- G02F1/0036—Magneto-optical materials
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Power Engineering (AREA)
- Materials Engineering (AREA)
- Crystallography & Structural Chemistry (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Inorganic Chemistry (AREA)
- Crystals, And After-Treatments Of Crystals (AREA)
- Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)
- Thin Magnetic Films (AREA)
Abstract
用于液相外延生长不产生结晶缺陷、翘曲、裂纹、剥离等的厚膜状的磁性石榴石单晶膜的磁性石榴石单晶膜形成用基板(2)。该基板(2)具备:基底基板(10),其包含对于液相外延生长所用的助熔剂不稳定的石榴石类单晶;缓冲层(11a),其在基底基板(10)中结晶培育面(10a)上形成、且包含对于助熔剂稳定的石榴石类单晶薄膜;以及保护层(11b),其至少在与基底基板(10)中结晶培育面交叉的所述基底基板的侧面(10b)形成、且对于助熔剂稳定。使用该基板,能够制备高质量的磁性石榴石单晶膜。该磁性石榴石单晶膜能够作为光隔离器、光环形器、光磁传感器等所用的法拉第元件等光学元件使用。
Description
技术领域
本发明涉及用于使得例如铋置换稀土类铁榴石(Bi-RIG)单晶等的磁性石榴石单晶膜液相外延生长的磁性石榴石单晶膜形成用基板、使用该基板进行结晶生长的单晶膜的制造方法、以及利用该制造方法制备的单晶膜及光学元件。
背景技术
作为光隔离器、光环行器、光磁传感器等使用的法拉第转子等光学元件的材料,通常使用在单晶基板上外延生长了磁性石榴石单晶膜的材料。作为在基板上生长的磁性石榴石单晶膜,为了得到希望的法拉第效应,希望具有很大的法拉第旋转系数。此外,为了通过外延生长成膜出高品质的单晶膜,在成膜温度至室温的温度区域内,要求基板单晶与生长的单晶膜之间的晶格常数差非常小。
众所周知,通过用铋置换稀土类成分的一部分,磁性石榴石单晶膜的法拉第旋转系数显著增加。铋置换量的增加,同时会带来磁性石榴石单晶膜的晶格常数的增加,因此要求用于成膜的基板材料具有更大的晶格常数,例如通过添加Ca、Zr、Mg等增大晶格常数的钆镓石榴石(GGG)用作单晶基板材料(参照专利文献1、特公昭60-4583号公报)。
但是,在该添加了Ca、Zr、Mg等的GGG单晶基板上试图使得铋置换稀土类铁榴石单晶生长为厚膜状(例如200μm以上的膜厚)时,在成膜中及成膜后的基板或单晶膜上易出现翘曲或裂纹等,导致成膜时和加工时的制造成品率降低。
为了解决这个问题,本发明的发明人提出一种特定组成的石榴石单晶基板,其在室温至850℃的温度范围内,与结晶方位<111>正交的面内的热膨胀系数具备与铋置换稀土类铁榴石单晶极为相近的值(参照专利文献2、特开平10-139596号公报)。通过使用该单晶基板,能够通过液相外延生长形成不产生结晶缺陷、翘曲、裂纹等的厚膜状的铋置换稀土类铁榴石单晶膜。
但是,本发明的发明人发现,该特定组成的石榴石单晶基板,对于液相外延生长铋置换稀土类铁榴石(Bi-RIG)单晶膜时作为析出助溶介质使用的氧化铅助熔剂不稳定,得到高品质的铋置换稀土类铁榴石单晶的成品率差。发现其中尤以包含Nb或Ta的基板组成下这种倾向严重。
因此,本发明的发明人开发了一种基板,其在包含对于助熔剂不稳定的石榴石类单晶的基底基板的底面上形成了包含对于助熔剂稳定的石榴石类单晶薄膜的缓冲层,并在先进行了申请(参照专利文献3、PCT/JP02/06223)。
但是,仅在作为基底基板的培育面的底面上形成缓冲层时,基底基板的侧面与助熔剂反应,粉末状剥离,使得磁性石榴石单晶膜的质量恶化,由此出现了制造成品率降低的问题。
鉴于以上情况,本发明的目的在于:提供一种通过液相外延生长,可高品质、成品率高且稳定地形成不产生结晶缺陷、翘曲、裂纹、剥离等的厚膜状的磁性石榴石单晶膜的磁性石榴石单晶膜形成用基板、光学元件及其制造方法。
发明内容
为了达到上述目的,本发明的磁性石榴石单晶膜形成用基板,为用于使得磁性石榴石单晶膜液相外延生长的磁性石榴石单晶膜形成用基板,其特征在于具备:基底基板,其包含对于液相外延生长所用的助熔剂不稳定的石榴石类单晶;缓冲层,其在所述基底基板中结晶培育面上形成、且包含对于所述助熔剂稳定的石榴石类单晶薄膜;以及保护层,其至少在与所述基底基板中所述结晶培育面交叉的所述基底基板的侧面形成、且对于所述助熔剂稳定。
对所述助熔剂,没有特殊限制,例如可以使用含有氧化铅和/或氧化铋的助熔剂。此外,在本发明中,所谓“对于助熔剂不稳定”,是指助熔剂中的助熔剂成分,在以对象物(基底基板或缓冲层)为核开始结晶的所谓过饱和状态下,构成对象物的材质的至少一部分向助熔剂溶出的现象、和/或由于助熔剂成分的至少一部分扩散至对象物,而阻碍单晶膜的液相外延生长的现象。此外,“对于助熔剂稳定”,表示与“对于助熔剂不稳定”相反的现象。
根据本发明,通过液相外延生长而形成的作为对象的磁性石榴石单晶,选择例如具有与铋置换稀土类铁榴石单晶极为相近的热膨胀系数的特定组成的石榴石单晶基板,该基板即使对于助熔剂不稳定,也能稳定地进行液相外延生长。这是因为在基底基板的结晶培育面上形成了对于助熔剂稳定的缓冲层。
特别是由于本发明中除缓冲层外,在与基底基板中结晶培育面交叉的基底基板的侧面还形成了保护层,因此基底基板的侧面不与助熔剂反应,提高了磁性石榴石单晶膜的质量,制造成品率也得到了提高。
因此,本发明中,能够抑制结晶缺陷、翘曲、裂纹、剥离等的产生,以高品质、高制造成品率液相外延生成用于法拉第转子等光学元件的铋置换稀土类铁榴石单晶膜。即,根据本发明,能够通过液相外延生长得到较厚膜(例如200μm以上)、大面积(例如直径3英寸以上)的磁性石榴石单晶膜。
所述保护层,优选由与所述缓冲层相同的膜构成。通过由与缓冲层同样的膜构成所述保护层,能够在缓冲层成膜的同时,形成保护层,其制造工序变得容易。
另外,在本发明中,由于没有必要在保护层上有意地形成磁性石榴石单晶膜,因此保护层只要是对于助熔剂而言稳定的膜即可,没有必要一定是石榴石类单晶薄膜。因此,作为保护层,也可以由氧化硅膜或氧化铝膜等构成。保护层除了采用缓冲层的成膜方法外,还可以通过化学溶液法、溅射法、MOCVD法、脉冲激光蒸镀法等薄膜形成法成膜。
所述基底基板,优选具有与所述磁性石榴石单晶膜的热膨胀系数大致相等的热膨胀系数。例如,在0℃~1000℃的温度范围内,所述基底基板的热膨胀系数,相对于所述磁性石榴石单晶膜的热膨胀系数,在±2×10-6/℃以下的范围。
通过使得基底基板的热膨胀系数与磁性石榴石单晶膜的热膨胀系数大致相等,能够有效防止外延生长后的膜从基板上剥离或龟裂、碎裂等(以下也称之为“龟裂等”)质量降低。这是因为通过外延生长形成磁性石榴石单晶膜时,温度上升至将近1000℃,之后又恢复至室温,如果热膨胀系数不同的话,容易在外延生长膜上产生龟裂等。
此外,缓冲层的热膨胀系数,没有必要一定与磁性石榴石单晶膜的热膨胀系数大致相等。这是因为相对于基底基板的厚度而言,缓冲层的膜厚非常薄,对于外延生长膜而言热膨胀差所致的影响很小。
所述基底基板,优选具有与所述磁性石榴石单晶膜的晶格常数大致相等的晶格常数。例如,所述基底基板的晶格常数,相对于所述磁性石榴石单晶膜的晶格常数,在±0.02以下的范围。
通过使得基底基板的晶格常数与磁性石榴石单晶膜的晶格常数大致相等,在缓冲层上液相外延生长磁性石榴石单晶膜变得容易。
所述基底基板,优选含有Nb或Ta。通过使得所述基底基板含有Nb或Ta,容易使得基底基板的热膨胀系数和/或晶格常数与所述磁性石榴石单晶膜的晶格常数大致相等。但是,所述基底基板中含有Nb或Ta的话,对于助熔剂的稳定性出现劣化的倾向。
所述缓冲层,优选为基本不含Nb和Ta的石榴石类单晶薄膜。这是因为基本上不含Nb和Ta的石榴石类单晶薄膜,对于助熔剂比较稳定。
所述缓冲层,优选为由通式R3M5O12(其中,R为稀土类金属的至少1种,M为选自Ga、Fe的1种)表示的,
或为X置换钆镓石榴石(其中X为Ca、Mg、Zr中的至少1种)。
包含这样的材质的缓冲层,对于助熔剂比较稳定,并且具有与磁性石榴石单晶膜的晶格常数相近的晶格常数,因此优选使用。
所述缓冲层的厚度优选为1~10000nm,进一步优选为5~50nm,所述基底基板的厚度为0.1~5mm,进一步优选为0.2~2.0mm。缓冲层的厚度过薄的话,本发明的效果很小,而过厚的话,不仅成本高,而且由于热膨胀系数的差异等,对于外延生长膜,有出现龟裂等坏影响的倾向。此外,基底基板的厚度过薄的话,出现机械强度不够、操作作业性变差的倾向,而过厚的话,出现龟裂等发生增加的倾向。
本发明的磁性石榴石单晶膜的制造方法,具备:
使用本发明的磁性石榴石单晶膜形成用基板,在所述缓冲层上,通过液相外延生长法,生长磁性石榴石单晶膜的工序。
本发明的光学元件的制造方法,具备:使用本发明的磁性石榴石单晶膜的制造方法,形成所述磁性石榴石单晶膜后,除去所述基底基板和缓冲层,形成包含所述磁性石榴石单晶膜的光学元件的工序。
优选在除去所述基底基板和缓冲层的同时,除去形成于所述基底基板侧面的磁性石榴石膜,仅残留形成于所述基底基板的结晶培育面上的磁性石榴石单晶膜,形成包含所述磁性石榴石单晶膜的光学元件。
在本发明中,在基底基板的侧面也将形成磁性石榴石膜。本发明中,形成于基底基板侧面的磁性石榴石膜,与形成于基底基板的结晶培育面上的磁性石榴石单晶膜相比,其质量差,因此优选除去该部分后作为光学元件使用。
本发明的光学元件,通过本发明的光学元件的制造方法制备得到。
附图的简单说明
以下,根据附图所示的实施方案,对本发明进行说明。
图1为显示本发明的实施方案之一的磁性石榴石单晶膜形成用基板、以及使用其生长得到的铋置换稀土类铁榴石单晶膜的断面图。
图2为用于进行结晶生长的装置的概略图。
图3A为使用本发明的实施方案之一的磁性石榴石单晶膜形成用基板结晶生长时的表面光学显微镜照片。
图3B为使用本发明的比较例的磁性石榴石单晶膜形成用基板结晶生长时的表面光学显微镜照片。
图4A为本发明的实施例之一的磁性石榴石单晶膜形成用基板的表面SEM像。
图4B为图4A所示的基板的断面SEM像。
图5为在本发明的实施例之一的磁性石榴石单晶膜形成用基板的表面上成膜了铋置换稀土类铁榴石单晶膜的状态的断面SEM像。
图6A为在本发明的比较例1的磁性石榴石单晶膜形成用基板的表面上成膜了铋置换稀土类铁榴石单晶膜的状态的表面SEM像。
图6B为在本发明的比较例2的磁性石榴石单晶膜形成用基板的表面上成膜了铋置换稀土类铁榴石单晶膜的状态的表面SEM像。
实施发明的最佳方案
如图1所示,本实施方案中的磁性石榴石单晶膜形成用基板2,具有基底基板10、以及在该基底基板10的底面(结晶培育面)10a以及侧面10b整个周围面上连续形成的缓冲层11。基底基板10虽然具有与包含铋置换稀土类铁榴石单晶的磁性石榴石单晶膜12在值上极为相近的晶格常数和热膨胀系数,但对于氧化铅助熔剂不稳定。缓冲层11由对于氧化铅助熔剂稳定的石榴石类单晶薄膜构成。在本实施方案中,缓冲层11,由在基底基板10的底面10a形成的底面缓冲层11a、以及在基底基板10的侧面10b形成的侧面缓冲层(保护层)11b构成。
在该基板2的缓冲层11上,铋置换稀土类铁榴石单晶膜12液相外延生长。基底基板10通过缓冲层11,生长磁性石榴石单晶膜12,因此与单晶膜12的晶格匹配性好,且线性热膨胀系数具备与单晶膜12的线性热膨胀系数相近的特性。
基底基板10,由例如通式M1xM2yM3zO12表示的非磁性石榴石系单晶构成。在该通式中,M1为例如选自Ca、Sr、Cd以及Mn的金属。M1以2+价数稳定存在,可以取配位数8,这种状态下的离子半径,优选在0.096~0.126nm的范围内。M2为例如选自Nb、Ta以及Sb的金属。M2以5+价数稳定存在,可以取配位数6,这种状态下的离子半径,优选在0.060~0.064nm的范围内。M3为例如选自Ga、Al、Fe、Ge、Si以及V的金属。M3在3+、4+或者5+价数下稳定存在,可以取配位数4,这种状态下的离子半径,优选在0.026~0.049nm的范围内。此外,这些离子半径,是根据シヤノン法(R.D.Shannon)确定的有效离子半径的值。这些M1、M2以及M3,可以分别为单一金属,也可以是2种以上的金属的组合。
进一步,M1的金属,为了对价数和晶格常数进行调整,可以根据需要,在不足50原子%的范围内,其一部分可以用能与其组成中Ca或Sr置换的金属M4置换。作为M4,优选为例如选自Cd、Mn、K、Na、Li、Pb、Ba、Mg、Fe、Co、稀土类金属及Bi的至少1种、优选配位数能取8的。
此外,M2与M1一样,在不足50原子%的范围内,其一部分可以用能与其组成中Nb、Ta或Sb置换的金属M5置换。作为M5,给出了例如选自Zn、Mg、Mn、Ni、Cu、Cr、Co、Ga、Fe、Al、V、Sc、In、Ti、Zr、Si及Sn中的至少1种,优选配位数能取6的。
具备这样组成的单晶基板,热膨胀系数与生长的铋置换稀土类铁榴石单晶的热膨胀系数近似,并且与该单晶的晶格匹配性良好。所述通式中,尤其优选x为2.98~3.02、y为1.67~1.72以及z为3.15~3.21。
具备这样组成的基底基板10的热膨胀系数,在室温~850℃下,为1.02×10-5/℃~1.07×10-5/℃左右,与铋置换稀土类铁榴石单晶膜的同一温度范围内的热膨胀系数1.09×10-5/℃~1.16×10-5/℃非常接近。
此外,对于该基底基板10的厚度,没有特殊限制,但成膜为膜厚200μm以上的厚膜的铋置换稀土类铁榴石单晶膜时,由抑制成膜时基板及单晶膜的裂纹或翘曲等的产生、得到质量良好的单晶膜这一点出发,厚度为1.5mm以下为好。基底基板的厚度超过1.5mm的话,伴随厚度的增加,在基板与单晶膜的界面附近能够看到龟裂产生增加的倾向。此外,单晶基板10的厚度过薄的话,机械强度变小,操作性变差,因此优选厚度为0.1mm以上。
在单晶基板10上形成的缓冲层11,由石榴石类单晶薄膜构成。作为该石榴石类单晶薄膜,举出了由通式R3M5O12(其中,R为稀土类金属的至少1种,M为选自Ga、Fe的1种)表示的,或X置换钆镓石榴石(其中X为Ca、Mg、Zr中的至少1种)等。
这些当中,优选使用选自钕镓石榴石、钐镓石榴石、钆镓石榴石、以及X置换钆嫁石榴石(其中,X为Ca、Mg、Zr中的至少1种)的1种。但如果是对于氧化铅助熔剂稳定的石榴石类材料的话,则不限于此。
对于本发明的磁性石榴石单晶膜形成用基板中基底基板10的制造方法,无特殊限制,可以采用以往制造GGG单晶基板等制造时惯用的方法。
例如,首先调制出均质的熔融混合物,其分别以规定的比例含有:从上述通式中的M1所示的金属、M2所示的金属、以及M3所示的金属中分别选择1种或2种以上的金属;以及从根据情况使用的M4所示的金属以及M5所示的金属中分别选择1种或2种以上的金属。接着,在该熔融混合物中,通过将例如长轴方向为<111>的GGG种晶等垂直于液面浸渍,一边慢慢旋转一边上提,形成多晶体。
该多晶体中存在很多龟裂,因此从中选择没有龟裂的单晶部分,确认结晶方位后,作为种晶,在上述熔融混合物中,再次使得结晶方位<111>相对于液面垂直而浸渍,一边慢慢旋转一边上提,形成没有龟裂的单晶。接着,在与生长方向垂直的方向上将该单晶切断为规定的厚度,将两面镜面抛光后,用例如热磷酸等进行蚀刻处理,得到基底基板10。
通过溅射法、CVD法、脉冲激光蒸镀法、溶液法或其他薄膜成膜技术,在这样得到的基底基板10上,形成包含具备上述组成的石榴石类单晶薄膜的缓冲层11。
在本实施方案中,缓冲层11不仅形成在基底基板10的底面10a上,而且在基底基板10的侧面10b上,也作为保护层形成。因此,在本实施方案中,不仅是基底基板10的底面10a,侧面10b也进行抛光,对侧面10b也在形成缓冲层11的条件下进行成膜。例如采用溅射法时,通过将成膜压力设为0.1~10Pa、优选设为1~3Pa,不仅在基底基板10的底面10a,而且在侧面10b上也形成缓冲层(保护层)11b。
或者如果采用MOCVD法的话,在通常的成膜条件下,不仅在基底基板10的底面10a上,而且在侧面10b上也形成缓冲层11。此外,采用溶胶凝胶法等的化学溶液法时,将基底基板10的整个表面浸渍于用于形成缓冲层11的溶液中即可。或者也可以使用笔或喷雾器等,涂覆用于形成缓冲层11的溶液。
在本发明中,形成在基底基板10的底面10a上的底面缓冲层11a的材质和形成在基底基板10的侧面10b的侧面缓冲层11b的材质,可以不同,也可以相同。其中,优选这些缓冲层11a和11b同时形成。这样能够削减缓冲层11的形成工序。
另外,侧面缓冲层(侧面保护层)11b,与底面缓冲层11a相比,其膜质差一些也可以。这是因为将形成在侧面缓冲层11b的表面的石榴石膜12b是可以通过后续工序除去的部分。此外,底面缓冲层11a的厚度,与侧面缓冲层11b的厚度,可以相同,也可以不同。其中,这些缓冲层11a和11b的厚度,优选在1~10000nm的范围内,进一步优选在5~50nm的范围内。这些缓冲层11a和11b的厚度如果过薄的话,本发明的效果很小。过厚的话,不仅成本高,而且由于热膨胀系数的差异等,对于外延生长膜,出现龟裂等坏影响。
使用这样构成的磁性石榴石单晶膜形成用基板2,通过液相外延生长法,形成包含铋置换稀土类铁榴石单晶膜的磁性石榴石单晶膜12。在本实施方案中,不仅在磁性石榴石单晶膜形成用基板2的底面,而且在侧面也形成了磁性石榴石单晶膜12。其中,在基板2的侧面形成的侧面石榴石膜12b通常比在底面形成的底面单晶膜12a的膜质差,以后除去。
构成该磁性石榴石单晶膜12的铋置换稀土类铁榴石单晶膜的组成,由例如通式BimR3-mFe5-nMnO12(式中的R为稀土类金属的至少1种,M为选自Ga、Al、In、Sc、Si、Ti、Ge及Mg中的至少1种金属,m和n在0<m<3.0、0≤n≤1.5的范围)表示。
该通式中,R表示的稀土类金属,可举出例如Y、La、Pr、Nd、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu等,可以含有其中1种,也可以含有2种以上。
该该单晶中,R表示的稀土类金属的一部分用铋置换,用铋进行置换的该比例用m表示,该m的值,在0<m<3.0的范围内,但特别是在0.5~1.5的范围内时,由于单晶的热膨胀系数与单晶基板的线热膨胀系数极其相近,因此有利。此外,M为可与Fe置换的非磁性金属元素,为Ga、Al、In、Sc、Si、Ti、Ge、Mg,可以含有其中1种,也可以含有2种以上。该非磁性金属元素与Fe置换的比例n在0~1.5的范围选择。
通过液相外延生长法形成铋置换稀土类铁榴石单晶膜时,例如,首先,调制出均质的熔融混合物,其分别以规定的比例含有:(1)氧化铋、(2)至少1种稀土类金属氧化物、(3)氧化铁、以及(4)根据情况使用的选自Ga、Al、In、Sc、Si、Ti、Ge以及Mg的至少1种金属的氧化物。作为析出用助熔剂,通常使用氧化铅作为主要构成成分,但也可以使用氧化铋等其他的析出用介质。此外,也可以根据需要含有氧化硼等作为结晶生长促进剂。
接着,通过在该熔融混合物(如图2所示的坩埚20内的助熔剂助熔剂22)中浸渍本发明的基板2,在基板2的缓冲层11的表面,由熔融混合物外延生长单晶,成膜为磁性石榴石单晶膜12。此时的熔融混合物的温度,根据原料混合物的组成等而不同,通常在600~1000℃的范围内选择。此外,基板2可以静置在熔融混合物中外延生长,也可以通过图2所示的旋转轴24边适当旋转边外延生长。旋转基板2时,其转速为10~200rpm左右时比较有利。此外,成膜速度通常为0.08~0.8μm/分左右。浸渍时间根据成膜速度及希望的膜厚等而不同,不能一概而论,但通常为10~100小时左右。
外延生长完成后,从熔融混合物中将基板2取出,将附着的熔融混合物充分甩掉后,冷却至室温。接着,在稀硝酸等无机酸水溶液中浸渍,除去附着在形成的单晶膜表面的熔融混合物的固化物后,进行水洗、干燥。这样,形成在基板2上的由铋置换稀土类铁榴石单晶构成的磁性石榴石单晶膜12的厚度,通常在100~1000μm的范围。此外,其热膨胀系数在室温~850℃下为1.0×10-5/℃~1.2×10-5/℃左右。
这样,基板2上形成的铋置换稀土类铁榴石单晶膜的结晶结构和组成,可以分别利用X射线衍射及荧光X射线进行的组成分析等进行鉴定。此外,该单晶膜12的性能,可通过对基板2(基底基板10+缓冲层11)进行抛光加工等从单晶膜12上除去,之后对单晶膜12的两面进行抛光加工处理后,在其两面设置无反射膜,求出法拉第旋转系数、透射损失以及温度特性等来进行评价。
本实施方案中,使用单晶膜12作为光学元件时,优选通过抛光加工等除去形成在基板2侧面的石榴石膜12b,仅用形成于基板2的底面的单晶膜12a形成光学元件。
此外,本发明不限于上述实施方案,可以在本发明的范围内进行种种改变。例如,在图1所示的实施方案中,仅在基底基板10的底面10a以及侧面10b上形成了缓冲层11,在本发明中,也可以包含基底基板10的上表面10c,在基底基板10的整个面上形成缓冲层11。
此外,在本发明中,形成在基底基板10的侧面10b的保护层(侧面缓冲层11b)没有必要一定与底面缓冲层11a相同,只要是对于助熔剂稳定的膜即可,没有必要是石榴石类单晶薄膜。因此,作为保护层(侧面缓冲层11b),也可以由氧化硅膜或氧化铝膜等构成。这些保护层,除了采用缓冲层11a的成膜方法外,还可以通过化学溶液法、溅射法、MOCVD法、脉冲激光蒸镀法等薄膜形成法成膜。
实施例
以下,根据详细的实施例,对本发明进行进一步说明。但本发明不限于这些实施例。
实施例1
称取CaCO3、Nb2O5和Ga2O3,使得熔融液的组成为Ca3Nb1.7Ga3.2O12,在大气中、1350℃下进行烧结,确认石榴石单相后,装入铱坩埚中,在98体积%氮气和2体积%氧气的混合气体气氛中,通过高频感应加热到约1450℃,使其熔融。之后,使得长轴方向为<111>的5mm方柱状的上述组成的种晶垂直于液面浸渍在该熔融液中,在20rpm的转数下,以3mm/小时的速度将其提起,然后得到整体上完全不存在龟裂的透明的单晶。
接着,从该结晶的上部和下部分别切取各约1g的试样,利用荧光X射线分析仪,对各成分金属元素进行定量分析,结果确认在结晶上部和结晶下部,均具有Ca3Nb1.7Ga3.2O12(CNGG)的组成。
将得到的单晶沿着与生长方向垂直的方向切断成规定的厚度,将两面镜面抛光后,使用热磷酸进行蚀刻处理,制成CNGG单晶基板(基底基板10)。该单晶基板在室温~850℃下的热膨胀系数(α)为1.07×10-5/℃。该CNGG单晶基板的厚度为0.6mm。
在该CNGG单晶基板的底面和侧面,利用溅射法,形成Nd3Ga5O12(NGG)薄膜(缓冲层11)。具体而言,使用NGG烧结体作为靶,在下述成膜条件下进行溅射成膜,之后进行退火处理。
(溅射成膜条件)
基板温度:600℃、
输入功率:300W、
气氛:Ar+O2(10体积%)、1.5Pa、
成膜时间:30分钟、
底面缓冲层11a的膜厚:250nm、
侧面缓冲层(侧面保护层)11b的膜厚:20nm。
(退火处理)
气氛:O2、1atm、
温度:800℃、
时间:30分钟。
NGG膜表面的SEM像如图4A所示。此外,其断面SEM像如图4B所示。可以确认能得到平滑的NGG膜。另外,利用荧光X射线对NGG膜进行组成分析,可以确认能得到几乎为化学计量组成的Nd3Ga5O12(NGG)薄膜。
使用这样得到的带有侧面及底面NGG膜的CNGG基板(基板2),通过液相外延生长法,形成铋置换稀土铁榴石单晶膜。具体而言,在铂制坩埚内放入Ho2O35.747g、Gd2O36.724g、B2O343.21g、Fe2O3126.84g、PbO989.6g、Bi2O3826.4g,在约1000℃下熔融,搅拌使其均质化后,以120℃/hr的速度降温,保持832℃的过饱和状态。接着,在该熔融液中浸渍按照上述方法得到的在侧面也形成缓冲层的基板2,以100rpm的转数边旋转基板,边使得单晶膜液相外延生长40小时,在基板2的底面形成膜厚约450μm的铋置换稀土类铁榴石单晶膜12a。并且,能够确认在基板2的侧面也生长了石榴石膜12b。
利用荧光X射线法对形成在该基板2的底面的单晶膜12a的组成进行分析,结果能够确认其为Bi1.1Gd1.1Ho0.8Fe5.0O12(Bi-RIG)。该单晶膜12a的断面SEM图象如图5所示。此外,利用光学显微镜照片对该单晶膜12a的表面进行拍摄的结果如图3A所示。
由这些结果可以确认,能够在不产生龟裂或剥离等的情况下,外延生长表面平滑、致密且高质量的、几乎为化学计量组成的Bi-RIG单晶膜。此外,由图3A所示的照片可知,利用面积比对表面缺陷(蚀坑/图3所示的黑点)密度进行调查,可以确认为0.04%,缺陷比较少。
此外,对该单晶膜的晶格常数和作为基底基板的CNGG基板的晶格常数之间的差异进行测定,结果可确认其为0.009,在±0.02以内。此外,对该单晶膜的晶格常数和作为缓冲层的NGG薄膜的晶格常数之间的差异进行测定,结果可以确认其为0.007。晶格常数的测定,是通过X射线衍射法进行的。
另外,通过抛光加工,从该单晶膜12a上除去基板2(基底基板10和缓冲层11)及侧面的石榴石膜12b,对单晶膜12a的两面进行抛光加工,在其两面设置由SiO2或Ta2O5构成的无反射膜,对波长1.55μm下的法拉第旋转角、法拉第旋转角45deg下的透射损失以及温度特性进行评价,结果法拉第旋转系数为0.125deg/μm、透射损失为0.05dB,温度特性为-0.065deg/℃。均达到了满足作为光隔离器的光学特性要求的水平。
此外,法拉第旋转角是通过使得波长为1.55μm的偏振激光入射到单晶膜上,对射出的光的偏振面的角度进行测定而求出的。透射损失是通过透射过单晶膜的波长1.55μm的激光强度与不存在单晶膜的状态下的光强度的差而求出的。温度特性是通过使得试样的温度在-40℃~85℃的范围内变化而测定旋转角,根据该测定值计算得出的。
进一步,该单晶膜在室温~850℃下的热膨胀系数(α)为1.10×10-5/℃。基底基板与单晶膜之间的热膨胀系数的差为0.03×10-5/℃。此外,能够确认得到的单晶膜上未产生龟裂。
比较例1
通过溅射法,使得作为缓冲层11的NGG薄膜在基底基板10上成膜时,除了NGG薄膜不在基底基板10的侧面形成,而仅在其底面形成,在通常的溅射法条件下进行外,其余与实施例1同样地制作带有NGG薄膜的CNGG单晶基板。使用该带有NGG薄膜的CNGG单晶基板,与实施例1同样,通过液相外延生长法,形成铋置换稀土类铁榴石单晶膜。
在光学显微镜下对该单晶膜的表面进行拍摄的结果如图3B所示。由图3B所示的结果可知,利用面积比对表面缺陷(蚀坑/图3所示的黑点)密度进行调查,可以确认为0.92%。能够确认其与图3A所示的结果相比,缺陷很多。
比较例2
利用与实施例1同样的手法制作CNGG单晶基板,在其上完全不形成由对于氧化铅稳定的单晶薄膜构成的缓冲层,通过与实施例1相同的波相外延生长法,形成铋置换稀土类铁榴石单晶膜。
图6B是实验后的基板的表面SEM图象,能够确认其表面被严重蚀刻。此外,由荧光X射线分析可知,铋置换稀土类铁榴石单晶膜未形成。此外,图6A是用于与比较例2进行比较的比较例1中的单晶膜的表面SEM图象。
实施例2
采用与所述实施例1相同的手法制作CNGG单晶基板。
利用脉冲激光蒸镀法,在该CNGG单晶基板(基底基板10)的底面及侧面形成Gd2.65Ca0.35Ga4.05Mg0.3Zr0.65O12(GCGMZG)薄膜(缓冲层11)。具体而言,对GCGMZG单晶靶以2.0J/cm2的激光照射密度照射KrF激基激光,在氧分压1Pa、照射时间5分钟的条件下,在基板温度保持在800℃的CNGG基板的底面和侧面上形成基板底面处的膜厚为约10nm的GCGMZG薄膜。对该GCGMZG薄膜进行荧光X射线分析,能确认其为与靶具备同样组成的GCGMZG。该GCGMZG薄膜的基板侧面处的膜厚为5nm。
使用这样得到的带有GCGMZG薄膜的CNGG单晶基板,通过与实施例1同样的液相外延生长法形成铋置换稀土类铁榴石单晶膜。得到的单晶膜上看不到龟裂。
实施例3
采用与所述实施例1相同的手法制作带有NGG薄膜的CNGG单晶基板。使用该带有NGG薄膜的CNGG单晶基板,通过液相外延生长法,形成铋置换稀土类铁榴石单晶膜。
具体而言,在铂制坩埚内放入Tb4O712.431g、Yb2O31.464g、B2O343.21g、Fe2O3121.56g、PbO989.6g、Bi2O3826.4g,在约1000℃下熔融,搅拌使其均质化后,以120℃/hr的速度降温,保持840℃的过饱和状态。接着,在该溶液中浸渍在基板厚0.6mm的CNGG基板的底面和侧面形成了250nm的NGG薄膜的单晶基板材料,以100rpm的转数边旋转基板,边使得单晶膜液相外延生长43小时,在基板的底面形成膜厚560μm的铋置换稀土类铁榴石单晶膜。并且,在基板的侧面也形成了铋置换稀土类铁榴石单晶膜。
得到的单晶膜和单晶基板二者均未发现龟裂。利用荧光X射线法对该单晶膜的组成进行分析,能够确认其为Bi1.0Tb1.9Yb0.1Fe5.0O12。
此外,对该单晶膜的晶格常数和作为基底基板的CNGG基板的晶格常数之间的差异进行测定,结果可确认其为0.005,在±0.02以内。此外,对该单晶膜的晶格常数和作为缓冲层的NGG薄膜的晶格常数之间的差异进行测定,为0.004。
此外,对该单晶膜,与实施例1一样对波长1.55μm下的法拉第旋转角、法拉第旋转角45度下的透射损失以及温度特性进行评价,结果法拉第旋转系数为0.090deg/μm,透射损失为0.15dB,温度特性为-0.045deg/℃。并且该单晶膜的热膨胀系数为1.09×10-5/℃。基底基板与单晶膜之间的热膨胀系数的差为0.02×10-5/℃。此外,得到的单晶膜上未发现龟裂。
实施例4
采用与所述实施例1相同的手法制作带有NGG薄膜的CNGG单晶基板。使用该带有NGG薄膜的CNGG单晶基板,通过液相外延生长法,形成铋置换稀土类铁榴石单晶膜。
具体而言,在铂制坩埚内放入Gd2O37.653g、Yb2O36.778g、B2O343.21g、Fe2O3113.2g、Ga2O319.02g、Al2O33.35g,PbO 869.7g、Bi2O3946.3g,在约1000℃下熔融,搅拌使其均质化后,以120℃/hr的速度降温,保持829℃的过饱和状态。接着,在该溶液中浸渍在基板厚0.6mm的CNGG基板的底面和侧面形成了250nm的NGG薄膜的单晶基板材料,以100rpm的转数边旋转基板,边使得单晶膜液相外延生长43小时,在基板的底面形成膜厚520μm的铋置换稀土类铁榴石单晶膜。并且,在基板的侧面也形成了铋置换稀土类铁榴石单晶膜。
得到的单晶膜和单晶基板双方均未发现龟裂。利用荧光X射线法对该单晶膜的组成进行分析,为Bi1.3Gd1.2Yb0.5Fe4.2Ga0.6Al0.2O12。
此外,对该单晶膜的晶格常数和作为基底基板的CNGG基板的晶格常数之间的差异进行测定,结果可确认其为0.014,在±0.02以内。此外,对该单晶膜的晶格常数和作为缓冲层的NGG薄膜的晶格常数之间的差异进行测定,结果为0.013。
此外,对该单晶膜,与实施例1一样对波长1.55μm下的法拉第旋转角、法拉第旋转角45度下的透射损失以及温度特性进行评价,结果法拉第旋转系数为0.113deg/μm,透射损失为0.05dB,温度特性为-0.095deg/℃。并且该单晶膜的热膨胀系数为1.05×10-5/℃。基底基板与单晶膜之间的热膨胀系数的差为0.02×10-5/℃。此外,确认得到的单晶膜上未发现龟裂。
评价
根据实施例1~4,单晶膜均匀生长、且结晶表面光滑,能看到光泽,而与此相反,根据比较例2,由于在生长膜和基板之间的界面处发生了反应,因此能够观察到单晶膜没有均匀生长,产生了部分剥离。
此外,实施例1~4与比较例1相比,如图3所示,可确认能降低单晶膜的表面上的缺陷密度。
以上所述实施方案及实施例均为举例式说明本发明,而非限定性说明本发明,本发明也可以通过各种变形和变更实施方案而得以实施。
发明的效果
如上所述,通过本发明,能够提供一种通过液相外延生长,可高品质、成品率良好且稳定地形成不产生结晶缺陷、翘曲、裂纹、剥离等的厚膜状的磁性石榴石单晶膜的磁性石榴石单晶膜形成用基板、光学元件及其制造方法。
Claims (17)
1.磁性石榴石单晶膜形成用基板,其为用于使得磁性石榴石单晶膜液相外延生长的磁性石榴石单晶膜形成用基板,其特征在于具备:
基底基板,其包含对于液相外延生长所用的助熔剂不稳定的石榴石类单晶;
缓冲层,其在所述基底基板中结晶培育面上形成、且包含对于所述助熔剂稳定的石榴石类单晶薄膜;以及
保护层,其至少在与所述基底基板中所述结晶培育面交叉的所述基底基板的侧面形成、且对于所述助熔剂稳定。
2.如权利要求1所述的磁性石榴石单晶膜形成用基板,其特征在于含有氧化铅和/或氧化铋作为所述助熔剂的主成分。
3.如权利要求1或2所述的磁性石榴石单晶膜形成用基板,其特征在于所述基底基板具有与所述磁性石榴石单晶膜的热膨胀系数大致相等的热膨胀系数。
4.如权利要求3所述的磁性石榴石单晶膜形成用基板,其特征在于在0℃~1000℃的温度范围内,所述基底基板的热膨胀系数,相对于所述磁性石榴石单晶膜的热膨胀系数,在±2×10-6/℃以下的范围。
5.如权利要求1~4任一项所述的磁性石榴石单晶膜形成用基板,其特征在于所述基底基板具有与所述磁性石榴石单晶膜的晶格常数大致相等的晶格常数。
6.如权利要求5所述的磁性石榴石单晶膜形成用基板,其特征在于所述基底基板的晶格常数,相对于所述磁性石榴石单晶膜的晶格常数,在±0.02以下的范围。
7.如权利要求1~6任一项所述的磁性石榴石单晶膜形成用基板,其特征在于所述基底基板含有Nb或Ta。
8.如权利要求1~7任一项所述的磁性石榴石单晶膜形成用基板,其特征在于所述缓冲层为基本上不包含Nb和Ta的石榴石类单晶薄膜。
9.如权利要求1~8任一项所述的磁性石榴石单晶膜形成用基板,其特征在于所述缓冲层为由通式R3M5O12表示的,其中,R为稀土类金属的至少1种,M为选自Ga、Fe的1种,或为X置换钆镓石榴石,其中X为Ca、Mg、Zr中的至少1种。
10.如权利要求1~9任一项所述的磁性石榴石单晶膜形成用基板,其中所述缓冲层的厚度为1~10000nm,所述基底基板的厚度为0.1~5mm。
11.如权利要求1~10任一项所述的磁性石榴石单晶膜形成用基板,其中所述保护层由与所述缓冲层相同的膜构成。
12.如权利要求1~10任一项所述的磁性石榴石单晶膜形成用基板,其中所述保护层由与所述缓冲层不同的膜构成。
13.如权利要求1~10任一项所述的磁性石榴石单晶膜形成用基板,其中所述保护层由氧化硅膜或氧化铝膜构成。
14.磁性石榴石单晶膜的制造方法,该方法具备使用如权利要求1~13任一项所述的磁性石榴石单晶膜形成用基板,通过液相外延生长法,在所述缓冲层上生长磁性石榴石单晶膜的工序。
15.光学元件的制造方法,该方法具备使用如权利要求14所述的磁性石榴石单晶膜的制造方法形成所述磁性石榴石单晶膜后,除去所述基底基板和缓冲层,形成包含所述磁性石榴石单晶膜的光学元件的工序。
16.如权利要求15所述的光学元件的制造方法,该制造方法具备:
在除去所述基底基板和缓冲层的同时,除去形成于所述基底基板侧面的磁性石榴石膜,
仅残留形成于所述基底基板的结晶培育面上的磁性石榴石单晶膜,
形成包含所述磁性石榴石单晶膜的光学元件的工序。
17.光学元件,其通过如权利要求15或16所述的光学元件的制造方法得到。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP020195/2003 | 2003-01-29 | ||
JP2003020195 | 2003-01-29 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN1768166A true CN1768166A (zh) | 2006-05-03 |
Family
ID=32820623
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CNA2004800086810A Pending CN1768166A (zh) | 2003-01-29 | 2004-01-28 | 磁性石榴石单晶膜形成用基板、光学元件及其制造方法 |
Country Status (5)
Country | Link |
---|---|
US (1) | US20060112873A1 (zh) |
EP (1) | EP1593759A1 (zh) |
JP (1) | JPWO2004067813A1 (zh) |
CN (1) | CN1768166A (zh) |
WO (1) | WO2004067813A1 (zh) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2010111832A1 (en) * | 2009-03-31 | 2010-10-07 | Hong Kong Applied Science and Technology Research Institute Co. Ltd | Substrate warpage-reducing structure |
CN109796197A (zh) * | 2019-03-25 | 2019-05-24 | 中国科学院上海硅酸盐研究所 | 一种类单晶结构氧化铝透明陶瓷的制备方法 |
Families Citing this family (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101061263B (zh) * | 2004-11-19 | 2011-03-23 | Tdk株式会社 | 磁性石榴石单晶及使用其的光学元件和单晶的制造方法 |
US7695562B2 (en) * | 2006-01-10 | 2010-04-13 | Tdk Corporation | Magnetic garnet single crystal and method for producing the same as well as optical element using the same |
JP4720730B2 (ja) * | 2006-01-27 | 2011-07-13 | Tdk株式会社 | 光学素子の製造方法 |
JP4702090B2 (ja) * | 2006-02-20 | 2011-06-15 | Tdk株式会社 | 磁性ガーネット単結晶及びそれを用いた光学素子 |
US7758766B2 (en) * | 2007-09-17 | 2010-07-20 | Tdk Corporation | Magnetic garnet single crystal and Faraday rotator using the same |
US7879438B2 (en) * | 2009-03-26 | 2011-02-01 | Hong Kong Applied Science And Technology Research Institute Co., Ltd. | Substrate warpage-reducing structure |
JP5729182B2 (ja) | 2010-08-31 | 2015-06-03 | 株式会社リコー | n型III族窒化物単結晶の製造方法、n型III族窒化物単結晶および結晶基板 |
US10068689B2 (en) | 2011-08-17 | 2018-09-04 | Regents Of The University Of Minnesota | Iron nitride permanent magnet and technique for forming iron nitride permanent magnet |
CN105074836B (zh) | 2013-02-07 | 2018-01-05 | 明尼苏达大学董事会 | 氮化铁永磁体和形成氮化铁永磁体的技术 |
JP6132429B2 (ja) * | 2013-04-01 | 2017-05-24 | 信越化学工業株式会社 | ファラデー回転子及び光アイソレータの製造方法 |
KR101665648B1 (ko) | 2013-06-27 | 2016-10-12 | 리전츠 오브 더 유니버시티 오브 미네소타 | 질화철 재료 및 질화철 재료를 포함하는 자석 |
JP2017517630A (ja) | 2014-03-28 | 2017-06-29 | リージェンツ オブ ザ ユニバーシティ オブ ミネソタ | コーティングされたナノ粒子を含む鉄窒化物磁性材料 |
US9994949B2 (en) | 2014-06-30 | 2018-06-12 | Regents Of The University Of Minnesota | Applied magnetic field synthesis and processing of iron nitride magnetic materials |
US10002694B2 (en) | 2014-08-08 | 2018-06-19 | Regents Of The University Of Minnesota | Inductor including alpha″-Fe16Z2 or alpha″-Fe16(NxZ1-x)2, where Z includes at least one of C, B, or O |
US10072356B2 (en) | 2014-08-08 | 2018-09-11 | Regents Of The University Of Minnesota | Magnetic material including α″-Fe16(NxZ1-x)2 or a mixture of α″-Fe16Z2 and α″-Fe16N2, where Z includes at least one of C, B, or O |
CA2957732A1 (en) | 2014-08-08 | 2016-02-11 | Regents Of The University Of Minnesota | Forming iron nitride hard magnetic materials using chemical vapor deposition or liquid phase epitaxy |
US10573439B2 (en) | 2014-08-08 | 2020-02-25 | Regents Of The University Of Minnesota | Multilayer iron nitride hard magnetic materials |
CN109279645A (zh) * | 2018-11-26 | 2019-01-29 | 吉林大学 | 一种立方相CaGa2O4化合物的高温高压制备方法 |
US12018386B2 (en) | 2019-10-11 | 2024-06-25 | Regents Of The University Of Minnesota | Magnetic material including α″-Fe16(NxZ1-x)2 or a mixture of α″-Fe16Z2 and α″-Fe16N2, where Z includes at least one of C, B, or O |
CN115522262B (zh) * | 2022-09-30 | 2024-03-12 | 电子科技大学 | 一种磁光传感用成像单晶晶片快速生产的方法 |
CN115537915B (zh) * | 2022-09-30 | 2024-03-12 | 电子科技大学 | 一种单晶外延生长中重复使用石榴石衬底的方法 |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03232798A (ja) * | 1990-02-05 | 1991-10-16 | Nippon Telegr & Teleph Corp <Ntt> | ガーネット薄膜の形成方法 |
JP3484738B2 (ja) * | 1993-12-21 | 2004-01-06 | 株式会社村田製作所 | 表面静磁波素子用磁性ガーネット単結晶膜およびその製造方法 |
CN1547627A (zh) * | 2001-06-22 | 2004-11-17 | Tdk��ʽ���� | 磁性石榴石单晶膜形成用衬底、光学元件及其制备方法 |
-
2004
- 2004-01-28 CN CNA2004800086810A patent/CN1768166A/zh active Pending
- 2004-01-28 JP JP2005504724A patent/JPWO2004067813A1/ja not_active Withdrawn
- 2004-01-28 WO PCT/JP2004/000747 patent/WO2004067813A1/ja not_active Application Discontinuation
- 2004-01-28 US US10/543,655 patent/US20060112873A1/en not_active Abandoned
- 2004-01-28 EP EP04705934A patent/EP1593759A1/en not_active Withdrawn
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2010111832A1 (en) * | 2009-03-31 | 2010-10-07 | Hong Kong Applied Science and Technology Research Institute Co. Ltd | Substrate warpage-reducing structure |
CN109796197A (zh) * | 2019-03-25 | 2019-05-24 | 中国科学院上海硅酸盐研究所 | 一种类单晶结构氧化铝透明陶瓷的制备方法 |
CN109796197B (zh) * | 2019-03-25 | 2021-08-06 | 中国科学院上海硅酸盐研究所 | 一种类单晶结构氧化铝透明陶瓷的制备方法 |
Also Published As
Publication number | Publication date |
---|---|
JPWO2004067813A1 (ja) | 2006-05-18 |
EP1593759A1 (en) | 2005-11-09 |
US20060112873A1 (en) | 2006-06-01 |
WO2004067813A1 (ja) | 2004-08-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN1768166A (zh) | 磁性石榴石单晶膜形成用基板、光学元件及其制造方法 | |
CN1547627A (zh) | 磁性石榴石单晶膜形成用衬底、光学元件及其制备方法 | |
CN101061263A (zh) | 磁性石榴石单晶及使用其的光学元件和单晶的制造方法 | |
JPWO2002022920A1 (ja) | 希土類−鉄ガーネット単結晶体及びその製造方法 | |
JPWO2002022920A6 (ja) | 希土類−鉄ガーネット単結晶体及びその製造方法並びに希土類−鉄ガーネット単結晶体を用いたデバイス | |
JP5377785B1 (ja) | ビスマス置換希土類鉄ガーネット単結晶及びその製造方法 | |
JP2004269305A (ja) | 磁性ガーネット単結晶膜形成用基板、その製造方法、光学素子およびその製造方法 | |
CN103221585B (zh) | 铋置换型稀土类铁石榴石晶体膜和光隔离器 | |
JP5794955B2 (ja) | β−Ga2O3単結晶膜付基板の製造方法 | |
US20060150893A1 (en) | Substrate for forming magnetic garnet single-crystal film, process for producing the same, optical device and process for producing the same | |
CN114318536B (zh) | 铋掺杂稀土铁石榴石单晶薄膜、其制备方法以及光学器件 | |
Morales Ramírez et al. | Y 2 O 3: Eu 3+, Tb 3+ thin films prepared by sol–gel method: structural and optical studies | |
JP2011190138A (ja) | 電気磁気効果単結晶の製造方法 | |
JP2017200864A (ja) | CaMgZr置換型ガドリニウム・ガリウム・ガーネット(SGGG)単結晶とその育成方法 | |
CN1878892A (zh) | 石榴石单晶的制备方法和由该方法制得的石榴石单晶 | |
CN1026823C (zh) | 通过液相外延生长的M1-xNxTiAst-aPaO5波导 | |
CN1329184A (zh) | 铋取代的石榴石厚膜材料及其生产方法 | |
JP2004269283A (ja) | 磁性ガーネット単結晶膜形成用基板、その製造方法、光学素子およびその製造方法 | |
JP6887678B2 (ja) | 磁性ガーネット単結晶の製造方法 | |
CN101978102A (zh) | 制造ZnO单晶的方法、由此得到的自支撑ZnO单晶晶片、以及自支撑含Mg的ZnO系混合单晶晶片和用于其的制造含Mg的ZnO系混合单晶的方法 | |
JPH09202697A (ja) | Bi置換型ガーネットの製造方法 | |
JP2005272203A (ja) | 膜形成用基板および半導体膜の形成方法 | |
JP2002308696A (ja) | ガーネット単結晶基板およびそれを用いたビスマス置換希土類ガーネット単結晶膜の製造方法 | |
JP2018095486A (ja) | ビスマス置換型希土類鉄ガーネット結晶膜とその製造方法、及び光アイソレータ | |
JPH10139596A (ja) | 単結晶基板 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C02 | Deemed withdrawal of patent application after publication (patent law 2001) | ||
WD01 | Invention patent application deemed withdrawn after publication |