CN1757077A - 混合离子导体 - Google Patents

混合离子导体 Download PDF

Info

Publication number
CN1757077A
CN1757077A CNA2004800055850A CN200480005585A CN1757077A CN 1757077 A CN1757077 A CN 1757077A CN A2004800055850 A CNA2004800055850 A CN A2004800055850A CN 200480005585 A CN200480005585 A CN 200480005585A CN 1757077 A CN1757077 A CN 1757077A
Authority
CN
China
Prior art keywords
ion conductor
mixed ion
sintered body
perovskite oxide
bace
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CNA2004800055850A
Other languages
English (en)
Other versions
CN100593825C (zh
Inventor
谷口升
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Publication of CN1757077A publication Critical patent/CN1757077A/zh
Application granted granted Critical
Publication of CN100593825C publication Critical patent/CN100593825C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/50Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on rare-earth compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • H01B1/08Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances oxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G15/00Compounds of gallium, indium or thallium
    • C01G15/006Compounds containing, besides gallium, indium, or thallium, two or more other elements, with the exception of oxygen or hydrogen
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/6261Milling
    • C04B35/6262Milling of calcined, sintered clinker or ceramics
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • H01B1/12Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances organic substances
    • H01B1/122Ionic conductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M8/124Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte
    • H01M8/1246Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte the electrolyte consisting of oxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/30Three-dimensional structures
    • C01P2002/34Three-dimensional structures perovskite-type (ABO3)
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/77Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by unit-cell parameters, atom positions or structure diagrams
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3215Barium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3229Cerium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3232Titanium oxides or titanates, e.g. rutile or anatase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3244Zirconium oxides, zirconates, hafnium oxides, hafnates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3286Gallium oxides, gallates, indium oxides, indates, thallium oxides, thallates or oxide forming salts thereof, e.g. zinc gallate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3418Silicon oxide, silicic acids or oxide forming salts thereof, e.g. silica sol, fused silica, silica fume, cristobalite, quartz or flint
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • C04B2235/449Organic acids, e.g. EDTA, citrate, acetate, oxalate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/76Crystal structural characteristics, e.g. symmetry
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/76Crystal structural characteristics, e.g. symmetry
    • C04B2235/761Unit-cell parameters, e.g. lattice constants
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/76Crystal structural characteristics, e.g. symmetry
    • C04B2235/762Cubic symmetry, e.g. beta-SiC
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/76Crystal structural characteristics, e.g. symmetry
    • C04B2235/765Tetragonal symmetry
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/76Crystal structural characteristics, e.g. symmetry
    • C04B2235/768Perovskite structure ABO3
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/78Grain sizes and shapes, product microstructures, e.g. acicular grains, equiaxed grains, platelet-structures
    • C04B2235/786Micrometer sized grains, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/79Non-stoichiometric products, e.g. perovskites (ABO3) with an A/B-ratio other than 1
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/80Phases present in the sintered or melt-cast ceramic products other than the main phase
    • C04B2235/81Materials characterised by the absence of phases other than the main phase, i.e. single phase materials
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9669Resistance against chemicals, e.g. against molten glass or molten salts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Conductive Materials (AREA)
  • Fuel Cell (AREA)

Abstract

本发明的混合离子导体包括Ba、Ce和In的钙钛矿氧化物。该钙钛矿氧化物是表示为Ba(Ce1-xInx) pO3的晶态化合物,其中x为0.4至0.6,而p为1至1.02。本发明的电化学器件包括作为固体电解质的混合离子导体。在该电化学器件中,在固体电解质的厚度方向上吸引由氧化还原反应产生的电子。利用该结构,本发明可提供具有高电导率和高可靠性的混合离子导体,以及使用该混合离子导体的电化学器件。

Description

混合离子导体
技术领域
本发明涉及一种适用于诸如燃料电池或传感器的电化学器件的混合离子导体,本发明还涉及一种使用该混合离子导体的器件。
背景技术
混合离子导体具有长久的历史,到目前为止已经开发了各种类型的混合离子导体。具体而言,固体氧化物(例如氧化锆或氧化铈)的混合离子导体已被用于诸如燃料电池或气体传感器的电化学器件。质子导体,例如SrCe1-xMxO3、CaZr1-xMxO3或SrZr1-xMxO3(M为三价元素,而0<x<1,这对以下组成均适用,除非另有说明)是已知的。此外,钡和铈的氧化物BaCe1-xMxO3作为同时传导氧化物离子和质子的混合离子导体已经被报道。特别地,若M为Gd且x为0.16至0.23,则混合离子导体具有较高的电导率(参见JP 5(1993)-28820 A(专利文件1))。
虽然已发现了许多混合离子导体,但其中仅有少数被投入实际使用。目前使用氧化锆作为氧传感器,并且使用SrCe1-xMxO3或CaZr1-xMx03检测熔炼炉中的氢浓度。然而,这些混合离子导体是在受限制的环境中工作,而且并非完全可靠。例如,若将混合离子导体在水中煮沸,则它们在超过约1至100小时的情况下分解。此外,在85℃且85%RH(相对湿度)下观察到由于材料分解而引起的变化。公知的钙钛矿氧化物的质子导体几乎不能在高湿度下稳定存在。JP2000-302550 A(专利文件2)公开了一种混合离子导体,特别是考虑到沸水中的稳定性的钙钛矿氧化物,例如BaZr1-x-yCexMyO3或BaZr1-x-yCexMyO3(0.01≤y≤0.3)。然而,离子电导率低于BaCe1-xMxO3
JP 9(1997)-295866 A(专利文件3)公开了Ba1-xLxCe1-yMyO3-a(L是Mg、Ca或Sr,而M是La、Pr、Nd、Pm、Sm或Eu)。JP 2001-307546A(专利文件4)公开了BaZr1-xCexO3-p。JP 6(1994)-231611 A(专利文件5)公开了BaCe1-xMxO3-y。这些晶体均具有高温下电导率低的缺点。
固体氧化物的混合离子导体通常在高温下使用,因此需要耐热冲击。然而,传统的钙钛矿氧化物的混合离子导体不具有足够的机械强度,并容易由于热冲击而导致破裂。
专利文件1:JP 5(1993)-28820 A
专利文件2:JP 2000-302550 A
专利文件3:JP 9(1997)-295866 A
专利文件4:JP 2001-307546 A
专利文件5:JP 6(1994)-231611 A
如上所述,可靠的混合离子导体,特别是钙钛矿氧化物质子导体是稀少的。随着开发诸如燃料电池的电化学器件中的发展,对于在苛刻的环境下使用时可具有高电导率和高可靠性的混合离子导体的需求在增加。
发明内容
因此,本发明的目的是提供一种具有高电导率和高可靠性的混合离子导体,以及使用该混合离子导体的电化学器件。
本发明的混合离子导体包含Ba、Ce和In的钙钛矿氧化物。该钙钛矿氧化物是表示为Ba(Ce1-xInx)pO3的晶态化合物,其中x为0.4至0.6,而p为1至1.02。
本发明的电化学器件包括作为固体电解质的上述混合离子导体。在该电化学器件中,由氧化还原反应产生的电子沿固体电解质的厚度方向被吸引。
附图说明
图1所示为本发明混合离子导体的一个实施例中电导率的阿累尼乌斯曲线图(Arrhenius plot);
图2所示为本发明混合离子导体的一个实施例中晶格常数、电导率以及耐湿性之间的关系图;
图3所示为作为本发明的电化学器件之一的燃料电池的一个实施例的透视截面图;
图4所示为作为本发明的电化学器件之一的气体传感器的一个
实施例的截面视图。
具体实施方式
本发明的混合离子导体包括Ba、Ce和In的钙钛矿氧化物。该钙钛矿氧化物是表示为Ba(Ce1-xInx)pO3的晶态化合物,其中x为0.4至0.6,而p为1至1.02。例如,钙钛矿氧化物可具有表示为BaCe1-xInxO3(x的范围与上述相同)的组成。在该混合离子导体(第一混合离子导体)中,x优选为0.5。若将晶体的晶胞轴表示为a、b和c(a≥b≥c),则a优选为0.40nm至0.50nm。
在本发明的混合离子导体中,p可大于1且不大于1.02。该混合离子导体(第二混合离子导体)为具有表示为Ba(Ce1-xInx)pO3(x和p的范围与上述相同)的组成的钙钛矿氧化物。
在本发明的混合离子导体的一个优选实施例中,钙钛矿氧化物基本上是单相的多晶,并且该多晶的晶系是立方晶系、四方晶系或斜方晶系。若将晶系的晶胞轴表示为a、b和c(a≥b≥c),则a大于0.43nm且小于0.44nm,而b/a不小于0.99。该结构可实现适于离子导电以及化学上和物理上稳定的晶体结构的原子间距离。在这种情况下,“基本上”是指比例为50重量%或更高,且在下文中同样适用。
优选地,该钙钛矿氧化物传导选自包括氧离子、氧化物离子和质子的组中的至少一种。因此,本发明的混合离子导体可以具有优异的电导率。
优选地,该钙钛矿氧化物基本上为单相的烧结体,并且该烧结体的密度不小于计算密度的96%。该计算密度是由晶格常数确定的。
优选地,该钙钛矿氧化物基本上为单相的烧结体,并且该烧结体的平均颗粒尺寸为1微米至30微米。该平均颗粒尺寸为构成该烧结体的颗粒的平均颗粒直径。
根据该优选实施例,可以通过控制该烧结体的密度或平均颗粒尺寸来提高该混合离子导体的耐湿性和耐热冲击性。
可进一步将选自包括Al、Si、Zr和Ti的组中的至少一种元素添加到该晶态化合物中。在这种情况下,相对于100原子%的钙钛矿氧化物(第三混合离子导体),所加元素的比例大于0原子%且不大于0.5原子%。当计算化学计量比时,不考虑所加的元素。也就是说,所加的元素不存在于晶格中,但可为一种成分。利用该结构,可进一步提高混合离子导体的化学和物理稳定性。
在本发明的混合离子导体(第四混合离子导体)的另一个优选实施例中,钙钛矿氧化物基本上是单相多晶,而该多晶的晶系是立方晶系、四方晶系或斜方晶系。若将晶系的晶胞轴表示为a、b和c(a≥b≥c),则a大于0.43nm且小于0.44nm,而b/a不小于0.99。
本发明的混合离子导体基本上可通过用于制造钙钛矿氧化物的混合离子导体的任何传统方法制得。具体而言,这些传统的方法包括例如固相烧结法、共沉淀法、硝化法和喷雾造粒法。该氧化物的形状并不局限于块状,还可为薄膜。在这种情况下,还可使用CVD法、溅射法、热喷涂法或激光烧蚀法。
如上所述,本发明的混合离子导体包括Ba、Ce和In的钙钛矿氧化物。该钙钛矿氧化物是表示为Ba(Ce1-xInx)pO3的晶态化合物,其中x为0.4至0.6,而p为1至1.02。该混合离子导体具有高电导率和可靠性,并可用于电化学器件。
下面将通过特别的实例详细描述本发明的混合离子导体。然而,本发明的混合离子导体并不仅限于以下实例。
实例1
实例1描述混合离子导体。本实例的混合离子导体包括第一混合离子导体、第二混合离子导体、第三混合离子导体以及传导氧离子、氧化物离子和质子中的任何一种的混合离子导体。
通过固相烧结法(固相反应)制造混合离子导体。首先,分别以预定量称量乙酸钡、氧化铈和氧化铟的粉末材料。然后将这些粉末材料粉碎,并且使用乙醇溶剂在玛瑙研钵中将它们混合。将这些粉末材料充分混合之后,将溶剂蒸发,并用燃烧器使该混合物脱脂。再次于玛瑙研钵中将该混合物反复地粉碎并混合。接着,将所得到的混合物压制成型而具有圆柱形状,随后在1200℃下燃烧10小时。将经燃烧的物质粉碎成粗颗粒,随后使用苯溶剂由行星式球磨机将其粉化成平均颗粒尺寸约为3微米的小颗粒。此外,将产物粉末于150℃下在真空中干燥,用2000kg/cm2的冷等静压使其形成圆柱体,并立即在1650℃下燃烧10小时,从而得到作为混合离子导体的烧结体。该混合离子导体是直径为13毫米且高度为10毫米的圆柱形烧结体。
以这种方式来制造具有以下13种组成的烧结体。+号表示添加元素(对于其他实例同样适用)。
(1)BaCe0.75In0.25O3
(2)BaCe0.6In0.4O3
(3)BaCe0.5In0.5O3
(4)BaCe0.4In0.6O3
(5)BaCe0.25In0.75O3
(6)Ba(Ce0.5In0.5)1.02O3
(7)Ba(Ce0.6In0.4)1.01O3
(8)Ba(Ce0.6In0.4)1.03O3
(9)BaCe0.5In0.5O3+Zr0.01
(10)BaCe0.5In0.5O3+Al0.02
(11)BaCe0.4In0.6O3+Ti0.01
(12)BaCe0.5In0.5O3+Si0.02
(13)BaCe0.5In0.5O3+Al0.2
所有烧结体均是致密的,其密度不小于计算密度的96%。因此,它们基本上是单相钙钛矿氧化物。用扫描电子显微镜(SEM)对这些烧结体横截面的观察表明,颗粒尺寸为1至30微米,而平均颗粒尺寸为10微米。
为研究电导率,将各烧结体加工成圆盘(0.5毫米厚×13毫米直径),并且将铂电极焙烧在该圆盘的两个面上。于300℃或500℃下在(1)空气、(2)氮气以及(3)含有3体积%氢气+97体积%氮气的气氛中测量具有电极的圆盘形烧结体的电导率。测量表明,所有烧结体均在空气和氢气气氛中具有电导率。为了进行比较,以与上述相同的方式测量传统材料(BaZr0.4Ce0.4In0.2O3)的电导率。表1所示为于500℃或300℃下在(3)含有3体积%氢气+97体积%氮气的气氛中测得的各烧结体的电导率。在(1)空气和(2)氮气中电导率的值几乎相同。
如表1所示,BaCe0.6In0.4O3、BaCe0.5In0.5O3和BaCe0.4In0.6O3的电导率高于通常已知的BaZr0.4Ce0.4In0.2O3约1个数量级。图1为示出典型烧结体的电导率的Arrhenius曲线图。通过四端交流阻抗法测量电导率。
接着,制成气体浓度电池或电化学泵,以确定由氧离子、氧化物或质子的传导产生的电导率。
使用氢泵来评估质子的传导。具体而言,在各烧结体的电极之间施加电压,且正极处于氢气气氛中而负极处于氩气气氛中,以研究从负极抽出的氢。结果,以近似100%的效率将氢抽出。因此,所有烧结体均传导质子。
使用氧浓度电池来评估氧离子和氧化物离子的传导。具体而言,将例如101,325 Pa和10,132.5 Pa的氧分压施加在通过离子导体连接的各个电极上,并且电动势的值符合表示为公式1的Nemst公式:
E = - RT nF ln [ Po 1 ] [ P o 2 ] 公式1
其中,E为电势,R为气体常数,T为绝对温度,F为法拉第常数,[Po1]为氧化剂的分压1,[Po2]为氧化剂的分压2。因此,这些烧结体传导氧离子和氧化物离子。
因此证明上述烧结体为混合离子导体。
此外,评估各烧结体的耐湿性。具体而言,在高温(85℃)和高湿度(85%RH)的条件下观察这些烧结体的外观。表1所示为这些烧结体耐湿性的结果。
下面详细描述外观观察。在约100小时之后,使被认为是由热分解产生的碳酸钡的白色颗粒从BaCe0.75In0.25O3和BaCe0.25In0.75O3的表面沉淀。在约200小时之后,BaCe0.6In0.4O3的表面发生变化。即使经过约1000小时之后,BaCe0.5In0.5O3和BaCe0.4In0.6O3的表面也几乎不发生变化。特别是,即使经过约3000小时或更久之后,也观察不到颗粒从BaCe0.5In0.5O3的表面沉淀。
                                    表1
  氧化物组成                               电导率   耐湿性
  500℃(S/cm) 评价   300℃(S/cm) 评价
  BaZr0.4Ce0.4In0.2O3(传统材料) 0.2×10-2 - 0.08×10-3 -   1000小时或更久
  BaCe0.75In0.25O3   1.1×10-2   5.5倍   0.6×10-3   7.5倍   100小时
  BaCe0.6In0.4O3   1×10-2   5倍   1.2×10-3   15倍   200小时
BaCe0.5In0.5O3 1×10-2 5倍 1×10-3 12.5倍   1000小时或更久
BaCe0.4In0.6O3 0.9×10-2 4.5倍 0.8×10-3 10倍   1000小时或更久
BaCe0.25In0.75O3 0.6×10-2 3倍 0.2×10-3 25倍   1000小时或更久
Ba(Ce0.5In0.5)1.02O3 1×10-2 5倍 0.9×10-3 11.25倍   1000小时或更久
Ba(Ce0.6In0.4)1.01O3 0.9×10-2 4.5倍 0.8×10-3 10倍   1000小时或更久
Ba(Ce0.6In0.4)1.03O3 0.7×10-2 3.5倍 0.5×10-3 6.25倍   1000小时或更久
BaCe0.5In0.5O3+Zr0.01 0.9×10-2 4.5倍 0.9×10-3 11.25倍   1000小时或更久
BaCe0.5In0.5O3+Al0.02 0.8×10-2 4倍 0.8×10-3 10倍   1000小时或更久
BaCe0.4In0.6O3+Ti0.01 0.8×10-2 4倍 0.8×10-3 10倍   1000小时或更久
BaCe0.5In0.5O3+Si0.02 0.8×10-2 4倍 0.8×10-3 10倍   1000小时或更久
BaCe0.5In0.5O3+Al0.2 0.7×10-2 3.5倍 0.4×10-3 5倍   1000小时或更久
根据表1,具有本发明范围内的组成的钙钛矿氧化物表现出高电导率和耐湿性。也确认这些钙钛矿氧化物可传导选自氧离子、氧化物离子和质子中的至少一种。
实例2
实例2描述混合离子导体。本实例的混合离子导体包括第四混合离子导体以及传导氧离子、氧化物离子和质子中的任何一种的混合离子导体。
通过固相反应制造混合离子导体。首先,分别以预定量称量乙酸钡、氧化铈、氧化铟以及取代元素的粉末材料。然后将这些粉末材料粉碎,并使用乙醇溶剂在玛瑙研钵中将它们混合。将这些粉末材料充分混合之后,将溶剂蒸发,并用燃烧器使该混合物脱脂。用球磨机将该混合物进一步粉碎以使材料混合得更加充分。接着,将所得到的混合物压制成型而具有圆柱形状,随后在1200℃下燃烧10小时。将经燃烧的物质粉碎成粗颗粒,随后使用苯溶剂由行星式球磨机将其粉化成平均颗粒尺寸约为3微米的小颗粒。此外,将产物粉末于150℃下在真空中干燥,用2000kg/cm2的冷等静压使其形成圆柱体,并立即在1650℃下燃烧10小时,从而得到作为混合离子导体的烧结体。
以这种方式,通过改变乙酸钡、氧化铈、氧化铟以及取代元素的粉末材料中的每一种来制造具有20种组成的烧结体。
所有烧结体均是致密的,其密度不小于计算密度的96%。因此,它们基本上是单相多晶体。用SEM对这些烧结体横截面的观察表明,颗粒尺寸为1至30微米。分析各烧结体的晶格常数、电导率和耐湿性。以与实例1相同的方式来评估电导率和耐湿性。
各烧结体的晶系为立方晶系、四方晶系或斜方晶系。图2所示为这20种烧结体的晶格常数、电导率和耐湿性的结果。表2所示为一些烧结体的晶格常数。
                                表2
  氧化物成分   a(nm)   b/a   电导率   耐湿性
  BaCe0.75In0.25O3   0.4365   0.976   ○   ×
  BaCe0.6In0.4O3   0.4344   0.994   ○   ○
  BaCe0.5In0.5O3   0.4325   0.995   ○   ○
  BaCe0.4In0.6O3   0.4311   0.992   ○   ○
  BaCe0.25In0.75O3   0.4302   0.984   ×   ○
电导率评定
○:电导率不小于传统材料的10倍。
×:电导率小于传统材料的10倍。
耐湿性评定
○:在1000小时或更久之后烧结体表面不发生变化。
×:在100小时或更短之后烧结体表面发生变化。
图2中,阴影线部分表示耐湿性和电导率均特别高。因此根据图2,若将晶系的晶胞轴表示为a、b和c(a≥b≥c),且0.43nm<a<0.44nm且b/a≥0.99,具有本发明的组成的钙钛矿氧化物表现出特别高的电导率和耐湿性。也确认这些钙钛矿氧化物可传导氧离子、氧化物离子和质子中的至少一种。
实例3
在本实例中,通过固相反应制造混合离子导体。首先,分别以预定量称量乙酸钡、氧化铈、氧化铟以及取代元素的粉末材料。然后将这些粉末材料粉碎,并使用乙醇溶剂在玛瑙研钵中将它们混合。将这些粉末材料充分混合之后,将溶剂蒸发,并用燃烧器使该混合物脱脂。用球磨机将该混合物进一步粉碎以使材料混合得更加充分。在这种情况下,使用直径为4毫米(Φ4毫米)或更小的球作为球磨机的研磨介质。
接着,将所得到的混合物压制成型而具有圆柱形状,随后在1200℃至1300℃下燃烧10小时。将经燃烧的物质粉碎成粗颗粒,随后使用苯溶剂由行星式球磨机将其粉化成平均颗粒尺寸约为3微米的小颗粒。此外,将产物粉末于150℃下在真空中干燥,用2000kg/cm2的冷等静压使其形成圆柱体,并立即在1600℃至1650℃下燃烧10小时,从而得到作为混合离子导体的烧结体。该烧结体的密度不小于理论密度的96%。X射线分析和X射线荧光分析表明,该烧结体基本上为单相的钙钛矿氧化物。
除未实施球磨粉碎之外,以与上述相同的方法制造具有相同组成的另一种烧结体,从而制得混合离子导体。
以这种方式,制造具有以下9种组成的烧结体。
(1)BaCe0.6In0.4O3
(2)BaCe0.5In0.5O3
(3)BaCe0.4In0.6O3
(4)Ba(Ce0.5In0.5)1.02O3
(5)Ba(Ce0.6In0.4)1.01O3
(6)BaCe0.5In0.5O3+Zr0.01
(7)BaCe0.5In0.5O3+Al0.02
(8)BaCe0.4In0.6O3+Ti0.01
(9)BaCe0.5In0.5O3+Si0.02
各烧结体的密度均小于计算密度的96%。
此外,评估各烧结体的耐湿性。具体而言,在高温(85℃)和高湿度(85%RH)的条件下观察这些烧结体的外观。表3所示为这些烧结体耐湿性的结果。若密度不小于96%,则烧结体表面在1000小时之后不发生变化或改变。相反,若密度小于96%,则烧结体表面在几百至1000小时以内发生分解或变得更白。
                            表3
氧化物组成   实际密度/计算密度之比  耐湿性(发生任何外观变化时的时间)
  BaCe0.6In0.4O3   96.1%  1000小时或更久
94.0% 150小时
  BaCe0.5In0.503   97.2%  1000小时或更久
95.6% 760小时
  BaCe0.4In0.6O3   98.2%  1000小时或更久
95.5% 400小时
  Ba(Ce0.5In0.5)1.02O3   96.8%  1000小时或更久
95.6% 820小时
  Ba(Ce0.6In0.4)1.01O3   97.2%  1000小时或更久
94.2% 210小时
  BaCe0.5In0.5O3+Zr0.01   96.5%  1000小时或更久
95.3% 800小时
  BaCe0.5In0.5O3+Al0.02   97.3%  1000小时或更久
94.6% 840小时
  BaCe0.4In0.6O3+Ti0.01   96.1%  1000小时或更久
95.7% 410小时
  BaCe0.5In0.5O3+Si0.02   97.7%  1000小时或更久
95.4% 900小时
X射线分析和X射线荧光分析表明,如此制得的这些烧结体基本上为单相的钙钛矿氧化物。
根据表3,若密度不小于计算值的96%,则具有本发明的组成的钙钛矿氧化物表现出高耐湿性和可靠性。
实例4
在本实例中,通过固相反应制造混合离子导体。首先,分别以预定量称量乙酸钡、氧化铈、氧化铟以及取代元素的粉末材料。然后将这些粉末材料粉碎,并使用乙醇溶剂在玛瑙研钵中将它们混合。将这些粉末材料充分混合之后,将溶剂蒸发,并用燃烧器使该混合物脱脂。用球磨机将该混合物进一步粉碎以使材料混合得更加充分。在这种情况下,使用直径为4毫米(Φ4毫米)或更小的球作为球磨机的研磨介质。
接着,将所得到的混合物压制成型而具有圆柱形状,随后在1200℃至1300℃下燃烧10小时。将经燃烧的物质粉碎成粗颗粒,随后使用苯溶剂由行星式球磨机将其粉化成平均颗粒尺寸约为3微米的小颗粒。在这种情况下,使用直径为10毫米(Φ10毫米)或更大的球作为球磨机的研磨介质。此外,将产物粉末于150℃下在真空中干燥,用2000kg/cm2的冷等静压使其形成圆柱体,并立即在1600℃至1650℃下燃烧10小时,从而得到作为混合离子导体的烧结体。该烧结体基本上为单相的钙钛矿氧化物,且平均颗粒尺寸为1微米至30微米。
除将第二燃烧处理的温度改变为1675℃之外,以与上述相同的方法制造具有相同组成的另一种烧结体,从而制得混合离子导体。虽然由此制得的烧结体是致密的,但可能发生晶粒生长,而使颗粒尺寸增加至100微米。
除将第二燃烧处理的温度改变为1500℃之外,以与上述相同的方法制造具有相同组成的再一种烧结体,从而制得混合离子导体。因为在燃烧以前颗粒已发生聚集,所以由此制得的烧结体是不适当的。
以这种方式,制造具有以下9种组成的烧结体。
(1)BaCe0.6In0.4O3
(2)BaCe0.5In0.5O3
(3)BaCe0.4In0.6O3
(4)Ba(Ce0.5In0.5)1.02O3
(5)Ba(Ce0.6In0.4)1.01O3
(6)BaCe0.5In0.5O3+Zr0.01
(7)BaCe0.5In0.5O3+Al0.02
(8)BaCe0.4In0.6O3+Ti0.01
(9)BaCe0.5In0.5O3+Si0.02
通过重复从室温至1000℃的热循环来进行各烧结体的耐热性测试。即使在100次热循环之后,平均颗粒尺寸为1微米至30微米的烧结体也不会发生破裂或产生裂纹。然而,几乎没有平均颗粒尺寸大于30微米的烧结体能承受100次热循环。
X射线分析和X射线荧光分析表明,如此制得的这些烧结体基本上为单相的钙钛矿氧化物。
由上述解释可以明显看出,当平均颗粒尺寸为1微米至30微米时,具有本发明的组成的钙钛矿氧化物表现出高耐热冲击性和可靠性。
本发明不局限于上述各实例的组成。例如,混合离子导体可同时满足晶系、晶格常数、密度和颗粒尺寸中的两个或更多个条件。
下面将描述使用本发明混合离子导体的电化学器件的实例。
图3所示为本发明的燃料电池的一个实施例的透视图。将阴极(空气电极)1、固体电解质2和阳极(燃料电极)3在该平板燃料电池中分层排列以构成一个分层的单元7,而多个分层的单元7与分隔器4交替地形成。
在发电时,为阴极1提供氧化气体6(例如空气),并为阳极3提供燃料气体5(例如还原气体,如氢气或天然气)。然后使由各个电极中的氧化还原反应产生的电子经过固体电解质2被吸引至外部。
图4所示为本发明气体传感器的一个实施例的横截面视图。在该HC传感器(烃类传感器)中,通过固体电解质14来叠置正极15和负极16。利用无机粘结剂18将该叠层体固定在基底(陶瓷基底)17上,从而使该叠层体与基底17之间存在一个空间。内部空间20通过扩散速率限定孔13与外部相连。
当在两个电极15和16之间施加并保持预定的电压(例如1.2V),则根据与正极15接触的空间中包括的烃类的浓度,产生电流作为传感器的输出。在测量过程中,通过连接于基底17的加热器19使传感器保持在预定的温度下。扩散速率限定孔13限制测量种类(烃类)流入内部空间20的量。
本实施例描述为HC传感器。然而,通过替换图4结构中的正极和负极,其可用作氧传感器。此外,本发明的混合离子导体并不局限于上述实例,还可应用于各种电化学器件。
工业实用性
本发明的混合离子导体可用于诸如燃料电池的电化学器件。

Claims (14)

1、一种混合离子导体,包含:
Ba、Ce和In的钙钛矿氧化物,
其中该钙钛矿氧化物是表示为Ba(Ce1-xInx)pO3的晶态化合物,而x为0.4至0.6,且p为1至1.02。
2、根据权利要求1所述的混合离子导体,其中x是0.5。
3、根据权利要求1所述的混合离子导体,其中所述钙钛矿氧化物是单相多晶。
4、根据权利要求3所述的混合离子导体,其中所述多晶的晶系是立方晶系、四方晶系或斜方晶系。
5、根据权利要求1所述的混合离子导体,其中,若将所述晶体的晶胞轴表示为a、b和c(a≥b≥c),则a为0.40nm至0.50nm。
6、根据权利要求5所述的混合离子导体,其中a大于0.43nm且小于0.44nm。
7、根据权利要求1所述的混合离子导体,其中,若将所述晶体的晶胞轴表示为a、b和c(a≥b≥c),则b/a不小于0.99。
8、根据权利要求1所述的混合离子导体,其中所述钙钛矿氧化物传导选自包括氧离子、氧化物离子和质子的组中的至少一种。
9、根据权利要求1所述的混合离子导体,其中所述钙钛矿氧化物基本上为单相的烧结体,并且该烧结体的密度不小于计算密度的96%。
10、根据权利要求1所述的混合离子导体,其中所述钙钛矿氧化物基本上为单相的烧结体,并且该烧结体的平均颗粒尺寸为1微米至30微米。
11、根据权利要求1所述的混合离子导体,其中,进一步将选自包括Al、Si、Zr和Ti的组中的至少一种元素添加到该晶态化合物中。
12、根据权利要求11所述的混合离子导体,其中,相对于100原子%的钙钛矿氧化物,所添加的元素的比例大于0原子%且不大于0.5原子%。
13、一种电化学器件,包含:
作为固体电解质的根据权利要求1至12中的任何一项所述的混合离子导体,
其中在所述固体电解质的厚度方向上吸引由氧化还原反应产生的电子。
14、根据权利要求13所述的电化学器件,其中所述电化学器件为燃料电池或气体传感器。
CN200480005585A 2003-09-03 2004-08-30 混合离子导体 Expired - Fee Related CN100593825C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP311720/2003 2003-09-03
JP2003311720 2003-09-03

Publications (2)

Publication Number Publication Date
CN1757077A true CN1757077A (zh) 2006-04-05
CN100593825C CN100593825C (zh) 2010-03-10

Family

ID=34269711

Family Applications (1)

Application Number Title Priority Date Filing Date
CN200480005585A Expired - Fee Related CN100593825C (zh) 2003-09-03 2004-08-30 混合离子导体

Country Status (6)

Country Link
US (1) US7419736B2 (zh)
EP (1) EP1662512B1 (zh)
KR (1) KR20060119701A (zh)
CN (1) CN100593825C (zh)
CA (1) CA2516809C (zh)
WO (1) WO2005024850A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101450858B (zh) * 2007-11-30 2012-01-25 北京有色金属研究总院 一种降低单畴YBaCuO超导块成本的掺杂材料及其掺杂方法
CN105393393A (zh) * 2013-07-18 2016-03-09 住友电气工业株式会社 燃料电池用复合材料、燃料电池用复合材料的制造方法以及燃料电池

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7625653B2 (en) 2005-03-15 2009-12-01 Panasonic Corporation Ionic conductor
JP5040123B2 (ja) 2006-02-28 2012-10-03 トヨタ自動車株式会社 プロトン伝導性電解質およびそれを用いた電気化学セル
US20070231704A1 (en) * 2006-03-30 2007-10-04 Ohara Inc. Lithium ion conductive solid electrolyte and production process thereof
JP2007317627A (ja) * 2006-05-29 2007-12-06 Toyota Motor Corp 燃料電池
JP5720001B1 (ja) 2013-05-07 2015-05-20 パナソニックIpマネジメント株式会社 プロトン伝導体およびプロトン伝導デバイス
JP5914846B2 (ja) * 2013-10-08 2016-05-11 パナソニックIpマネジメント株式会社 酸化物膜およびプロトン伝導デバイス

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0830758B2 (ja) 1989-12-06 1996-03-27 原子燃料工業株式会社 原子燃料輸送容器
JP2586760B2 (ja) 1991-07-01 1997-03-05 株式会社イナックス 発泡建材及びその製造方法
JP2882104B2 (ja) 1991-07-17 1999-04-12 松下電器産業株式会社 プロトン伝導体およびその製造方法
JPH06186193A (ja) * 1992-09-03 1994-07-08 Noritake Co Ltd 炭酸ガスセンサ素子および炭酸ガス濃度測定方法
JP2864928B2 (ja) 1993-02-04 1999-03-08 松下電器産業株式会社 混合イオン導電体
JP3498772B2 (ja) * 1995-03-31 2004-02-16 株式会社豊田中央研究所 薄膜式ガスセンサ及びその製造方法
JP2951887B2 (ja) 1996-04-26 1999-09-20 松下電器産業株式会社 混合イオン導電体
CA2298850A1 (en) * 1999-02-17 2000-08-17 Matsushita Electric Industrial Co., Ltd. Mixed ionic conductor and device using the same
JP4608047B2 (ja) 1999-02-17 2011-01-05 パナソニック株式会社 混合イオン伝導体およびこれを用いたデバイス
US6361584B1 (en) * 1999-11-02 2002-03-26 Advanced Technology Materials, Inc. High temperature pressure swing adsorption system for separation of oxygen-containing gas mixtures
US6517693B2 (en) * 2000-02-14 2003-02-11 Matsushita Electric Industrial Co., Ltd. Ion conductor
JP3733030B2 (ja) * 2000-02-14 2006-01-11 松下電器産業株式会社 イオン伝導体

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101450858B (zh) * 2007-11-30 2012-01-25 北京有色金属研究总院 一种降低单畴YBaCuO超导块成本的掺杂材料及其掺杂方法
CN105393393A (zh) * 2013-07-18 2016-03-09 住友电气工业株式会社 燃料电池用复合材料、燃料电池用复合材料的制造方法以及燃料电池
CN105393393B (zh) * 2013-07-18 2018-05-01 住友电气工业株式会社 燃料电池用复合材料、燃料电池用复合材料的制造方法以及燃料电池

Also Published As

Publication number Publication date
US7419736B2 (en) 2008-09-02
CA2516809C (en) 2011-06-07
KR20060119701A (ko) 2006-11-24
CN100593825C (zh) 2010-03-10
EP1662512A1 (en) 2006-05-31
EP1662512B1 (en) 2013-07-24
EP1662512A4 (en) 2011-02-16
CA2516809A1 (en) 2005-03-17
US20060166068A1 (en) 2006-07-27
WO2005024850A1 (ja) 2005-03-17

Similar Documents

Publication Publication Date Title
CN1279646C (zh) 对燃料电池和相关装置所作改进
CN102301516B (zh) 用于固体氧化物燃料电池堆的共掺杂的ysz电解质
JP4931362B2 (ja) 燃料電池セル及び燃料電池
Murphy et al. Tape casting of lanthanum chromite
CN103151533A (zh) 固体氧化物燃料电池复合阴极Ln2CuO4-Ce0.9Gd0.1O1.95及其制备方法
CN1757077A (zh) 混合离子导体
JP2003308846A (ja) ペロブスカイト型酸化物及び燃料電池用空気極
JP4334894B2 (ja) 固体電解質の製造方法
CN102299354B (zh) 管式固体氧化物燃料电池用复合陶瓷连接体及其制备方法
JP2004339035A (ja) ランタンガレート系焼結体およびその製造方法、ならびにそれを用いた用途
JP4589683B2 (ja) 混合イオン伝導体
JP2003123789A (ja) 固体電解質材料、その製造方法およびそれを用いた固体電解質型燃料電池
JP2003323903A (ja) スカンジアを固溶させたジルコニア材料およびこれを用いた固体電解質型燃料電池
CN1165091C (zh) 一种熔融碳酸盐燃料电池阴极材料及其制备方法
JP3598956B2 (ja) ガレート複合酸化物固体電解質材料とその製造方法
WO2023079892A1 (ja) 酸化物イオン伝導性固体電解質
KR101806441B1 (ko) 지르코니아-비스무스 산화물 소결체 및 이의 제조방법
WO2023032584A1 (ja) 酸化物イオン伝導性固体電解質
Zahir et al. Wet Atomisation of Gd‐doped CeO2 Electrolyte Slurries for Intermediate Temperatures' Microtubular SOFC Applications
WO2023032787A1 (ja) 酸化物イオン伝導性固体電解質
JP2002316872A (ja) ランタンガレート系固体電解質材料、その製造方法および固体電解質型燃料電池
KR100754851B1 (ko) 저온형 고체산화물 연료전지용 백금미세입자가 첨가된페로브스카이트 구조의 금속산화물 공기극 소재 및 그제조방법
JP2001143525A (ja) 固体電解質、その製造方法、並びに該固体電解質を用いた燃料電池
JP2002050362A (ja) 電極部材およびその電極部材を使用した固体電解質型燃料電池
JP3311872B2 (ja) 導電性セラミックス

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20100310

CF01 Termination of patent right due to non-payment of annual fee