CN1751376B - 供电控制单元 - Google Patents

供电控制单元 Download PDF

Info

Publication number
CN1751376B
CN1751376B CN2004800042460A CN200480004246A CN1751376B CN 1751376 B CN1751376 B CN 1751376B CN 2004800042460 A CN2004800042460 A CN 2004800042460A CN 200480004246 A CN200480004246 A CN 200480004246A CN 1751376 B CN1751376 B CN 1751376B
Authority
CN
China
Prior art keywords
power
power supply
power consumption
supply
adjusting part
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN2004800042460A
Other languages
English (en)
Other versions
CN1751376A (zh
Inventor
彼得·韦德姆斯
阿尔弗雷德·特拉驰
迪特尔·米尔
格尔哈德·策林格
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Trumpf Huettinger GmbH and Co KG
Original Assignee
Huettinger Elektronik GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huettinger Elektronik GmbH and Co KG filed Critical Huettinger Elektronik GmbH and Co KG
Publication of CN1751376A publication Critical patent/CN1751376A/zh
Application granted granted Critical
Publication of CN1751376B publication Critical patent/CN1751376B/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F1/00Automatic systems in which deviations of an electric quantity from one or more predetermined values are detected at the output of the system and fed back to a device within the system to restore the detected quantity to its predetermined value or values, i.e. retroactive systems
    • G05F1/10Regulating voltage or current
    • G05F1/12Regulating voltage or current wherein the variable actually regulated by the final control device is ac

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Automation & Control Theory (AREA)
  • Plasma & Fusion (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • Plasma Technology (AREA)
  • Supply And Distribution Of Alternating Current (AREA)
  • Physical Vapour Deposition (AREA)
  • Ac-Ac Conversion (AREA)
  • Prostheses (AREA)
  • Apparatus For Radiation Diagnosis (AREA)
  • Air Bags (AREA)

Abstract

一种供电控制单元(1)和用于控制由一个交流电源(2)向至少两个耗电器件,特别是等离子处理中的耗电器件提供电功率的方法,其中向该耗电器件提供的实际电功率供给被检测,并与一个给定的期望电功率供给进行比较,当存在差异时,通过提供和/或去除该交流电源(2)和至少一个所述耗电器件之间的功率,调节每一耗电器件的电功率供给。该方法和控制单元(1)能够独立于该交流电源的类型控制提供给等离子处理中电极的电功率供给,使其等于给定的电功率供给。

Description

供电控制单元
技术领域
本发明涉及一种用于将交流电源提供的功率提供给两个耗电器件的方法,以及一种用于执行该方法的设备。
背景技术
在等离子处理中,设计为电极的耗电器件位于等离子腔内。为了激发等离子处理,该电极被连接于电源的交流电压上。电极与所谓的靶标相接触。该靶标由例如需要涂层的基底材料构成。在这种等离子涂层过程中,该材料被从靶标上去除。这种结构的靶标通常都是类似的,即它们都由相同的材料构成,具有基本上相同的大小和相同的结构,因此通常被提供基本上相同的功率。在等离子处理中,这些靶标因此以基本上相同的速度被消融。但是,非常小的差异是无法消除的。这些靶标最初可能是不均匀的,或在处理过程中变得不均匀。这些不均匀将引起靶标阻抗和燃烧电压的差异。这些差异导致了不同的电源电压和不同的磨损周期。这将导致已经在更大程度上使用过的靶标消耗比其他靶标更多的功率,并因而甚至燃烧得更迅速。最终的结果是一个靶标被完全烧尽而其它靶标仍然具有充足的材料。这种情况是非常不希望出现的。虽然这个问题已经出现了很久,但至今没有解决。
因此本发明的一个根本的目的就是提供一种为耗电器件分配功率的方法,及相关的设备。
发明内容
本发明实现的一个目标是提供一种从一个交流电源向至少两个耗电器件分配功率的方法,该方法在第一步骤检测向该耗电器件提供的实际的电功率,在第二步骤比较检测到的实际电功率与一个给定的期望电功率,当二者存在差异时调节该电功率供给。
当出现偏差时,所述调节通过从/向该交流电源和至少一个耗电器件提供或去除功率来发生作用。该过程确保了该电功率供给是基于所提供的实际功率的测量。该独创性的方法可以独立于等离子处理中的交流电源的类型对提供给电极的功率进行控制,使得其对应于预定的功率供给。也可以通过以实际电功率供给等于期望电功率供给的方式来改变对该交流电源的控制,以进行调节。
在等离子处理中,该交流电压源的每一连接都可以是连接到至少一个电极。此时,这些电极是被提供了电功率的耗电器件。
该交流电源被认为是一个在其输出端具有一个交流电压和一个交流电流的电源。可以是一个具有电流源或电压源特性或其他特性的电源,且该电压和电流可以是任意形式的甚至包含一个DC部分。特别地,出于电隔离的缘故该交流电源还可以在其输出端仅包含AC部分而没有DC部分。也可以利用对该交流电源的控制来为这样的没有DC部分的交流电源将实际提供的电功率调节到期望电功率。
预定的期望电功率供给因此可以是对称的或不对称的。根据预先确定的期望电功率是对称的还是不对称的,该交流电源提供的电功率根据该独创性的方法以一种实际提供给消耗器的电功率等于期望电功率的方式来进行控制。为了确保这些靶标具有相同的磨损期,该预定的期望电功率供给最好是对称的。可以理解对于不对称的期望电功率供给的处理也是有意义的,如以期望的方式抵消已经产生的无规律的磨损或消融不同材料或结构的靶标。
在本发明的一个特定实施方式中,该实际电功率供给通过确定每一可能以最为不同的方式发生作用的耗电器件的与功率相关的值来检测。一个与功率相关的值例如可以是电极的温度或电极处通过等离子体辐射的辐射量。为了确定该与功率相关的值,通常测量耗电器件中的电流和电压。
在一个包括两个电极的等离子处理中,其中每一电极都与该交流电源相连,每一电极的平均有效功率基本上等于该电极方向的电流乘以地电位与该电极之间测量到的电压。
在一个有利的方法变型中,该交流电源的频率在1kHz到1MHz之间,特别地,位于50kHz到500kHz之间。
本发明实现的另一目标是提供一个供电控制单元,该单元包括一个控制组件和一个调节组件,其中该控制组件根据由一个检测装置检测到的实际电功率供给与一个给定的期望电功率供给之间的比较结果确定一个控制值,并且其中该调节组件可以在该交流电源和至少一个耗电器件之间环接,并根据该控制值调节供电。这里环接意味着该调节组件与该交流电源串联连接。通过在该交流电源和该耗电器件间的连接导线上插入该调节组件,该设备能提供多种应用,并且还能改进现有的系统。多条连接导线可以合并为一条多导体连接导线。
本发明一个很重要的优点在于对耗电器件的实际电功率供给的检测使得能够实现对供电的控制。在等离子处理中每一个耗电器件被设计为至少一个电极。对于一个具有两个连接的交流电源,一个电极可分别被连接至该交流电源的一个连接端。也可连接多个电极至一个连接端。该供电控制单元因此可以影响连接至该电极的各个靶标的磨损时间。
该调节组件最好包括一个可控DC电压源。这是能够以一种特别简单的方式实现的向电极提供电功率的一种可能的方式。正电压和负电压都可设置在直流电压源处,这取决于哪个耗电器件将被提供电功率。该直流电压源可以具有任意设计,如甚至以反并联的方式连接的两个直流电压源,并且可以是每个单独的输出只有一个正电压,或者根据电压极性的需要交替连接。
在另一实施方式中,该调节组件可以包括至少一个可控电阻负载。电功率供给因此受到从至少一个耗电器件去除功率的影响。如果在一个等离子处理中,一个电极被连接至交流电源的每一连接端,则提供给该电极的电功率由该电极方向的电流和电极与地电位之间的电压所决定,该功率的去除可由一个环接的电阻负载控制,因为该电阻负载被控制,以使得在时间上随该交流电源的频率在一个电流方向总是具有一个比其它电流方向上更高的电阻值。这需要对该电阻负载进行复杂和精确的驱动。在一种结构中,该电阻负载的驱动不是那么复杂,其中两个电阻负载通过以反并联的方式连接的二极管环接,这样每个电阻负载与一个电流方向相关。
在另一实施方式中,该电阻负载包括几个可控的半导体,特别是所谓的绝缘栅双极性晶体管(IGBT)。通过相应的切换,这些元件能够以一种非常简单的方式产生电阻负载,其通过一个驱动电路实施例由该控制值来控制。
在另一实施方式中,该调节组件可以包括两个阻抗,该阻抗可以是电感可控的且由反并联的二极管隔开。它们也可以被控制来去除功率,将实际电功率供给调节到期望电功率供给。
在另一实施方式中,该调节组件可以包括一个电压器,其初级绕组可以环接在交流电源与消耗器间的连接导线上,并且在其次级绕组上提供有一个具有半导体元件的切换装置,该元件可由该控制值进行调节。这些也都以去除功率将实际电功率供给调节到期望电功率供给的方式被控制。
其它用于提供和去除功率的调节组件的任意实施方式都是可行的,以及上面提到的如提供以及去除功率的实施方式的组合也是可行的。
在本发明的另一实施方式中,检测装置被设计成一个与功率相关的值的测量设备,其可以以不同的方式实现。一种可能的测量设备是由用于测量每一耗电器件的电压特别是耗电器件与地电位之间的电压的测量装置、另一个用于测量流入耗电器件中的电流的测量装置、以及一个用于确定由所测量到电压和测量到电流得出的每一耗电器件的功率的乘法组件构成的。还有其它可能的方式来确定与功率相关的值,仅示例性地提及其中一种,即每一耗电器件上的温度测量设备。
本发明另外实现的目标是提供一个电源,该电源包括一个供电控制单元和如上所述的交流电源。当该交流电源和供电控制单元组合在一个单元中时,可利用同样的电流和电压测量装置来控制该交流电源和该供电控制单元。
在一个实施方式中,该交流电源包括一个输出变压器,其输出端有一个交流电压,其在功率方面与地电隔离,并且只有一个AC部分而没有DC部分,通过连接导线与耗电器件连接。包括输出变压器的这种结构的优点在于该交流电压可以在电源的输出端通过改变输出变压器的绕组数目根据耗电器件的需要进行调节。除了输出变压器之外,相同的电源也可以提供给不同的应用范围。该输出变压器可以具有一种非常简单的设计。“在功率方面与地电隔离”意味着在流过大量电流的等离子腔外部,交流电源的地电位与交流电压之间没有电气连接。根据本发明规定“在功率方面与地电隔离”,即使电源输出端的交流电压与地电位之间提供了一个高阻抗的连接,如为了测量电压或使电极的电荷放电,或者即使电极和地电位之间在等离子腔内具有电连接。截至目前,对于这样的结构,还没有可能分配功率至这些电极上。燃烧电压及因此自动形成的电极上提供的电功率不可能互相干扰。本发明现在提供了即使对于这样的电源也能控制耗电器件的供电的可能性。
在另一实施方式中,该电源在输出变压器的初级侧具有一个振荡电路,其通常是以近似谐振的方式工作,也即所谓的谐振电路。这种类型的交流电源具有很高的效率。来自输出变压器的初级电感可用作该谐振电路的电感。
在一个实施方式中,该电源包括一个电弧管理电路,其产生作用于调节组件的另一控制值。等离子处理不总是完全连续地进行。杂质、暂时及局部有限的充电或腔体中的其它不稳定因素在不规则的时间间隔内产生了等离子中的火花,即所谓的电弧。这些电弧多数情况下造成不希望的后果,如快速电流增长及电压回落。等离子处理被靶标和等离子处理产生的这些不希望的结果打乱。为此,为等离子处理的电源提供了所述的电弧管理电路。它们在每次这样的电弧发生时停止不希望的电功率分配。当检测到这样的一个电弧时,电源通常尽可能快地或者在一段预定的时间周期后被切断。因此尽可能快地中断对等离子处理的电功率供应以保护电源、靶标和被涂层的对象通常是非常重要的。
该电弧管理电路最好与调节组件连接,当发生电弧时如果该管理电路停止为电极供电,功率总是通过该调节组件被去除。由该电弧管理电路产生的控制值比控制组件产生的控制值优先。
本发明实现的目标还包括提供一个电源,该电源包括一个控制组件,用于通过一个由检测设备检测到的实际电功率供给和一个给定的期望电功率供给的比较结果来确定一个控制值,以及一个由控制装置所驱动的交流电源,其中该控制装置根据该控制组件传送的控制值来驱动该交流电源,以使得该交流电流的属性发生变化,从而使得到达耗电器件的实际电功率供给等于期望的电功率供电。
该交流电源可以是如一个具有一个后接谐振电路的桥电路。为该桥电路提供DC电流。桥电路的对称驱动产生一个对称的交流电流和一个对称的AC电压,其可以通过如一个输出变压器被传送。该输出变压器可以是一个谐振电路的一部分。
如果桥电路是被不对称驱动的,则该桥电路的切换元件通过一个不对称的占空因子来驱动,其能够产生如正的半波周期,并扩展该AC电压的负的半波周期。如果缩短的半波的幅度相应大于扩展的半波的幅度,则能获得一个没有DC部分的信号,该信号可通过输出变压器被传送至该交流电源的输出端。通过对等离子处理的测试,这种类型的不对称信号对所示的耗电器件(靶标)产生不对称的负载属性。负载的不对称性属性可以通过交流电源的不对称控制进行控制。实际电功率供给从而能够为了对称和不对称的期望电功率供给被调节到期望的电功率供给。
这种类型的不对称驱动在输出变压器中产生很大的电流,能够导致具有铁芯或铁磁芯的常规变压器磁芯材料的饱和,如US 6532161所描述的。空气变压器因为没有铁芯或铁磁芯因此不会饱和。因此,推荐使用空气变压器。
本发明的其它的特征和优点可以从下面对本发明具体实施方式、示出细节的附图的描述中得出,其实质上等同于本发明并来自权利要求书。在本发明的变型中,各个特征可以独立或者以任意组合方式共同实现。
附图说明
附图中示出了将在下面进行详细描述的本发明的供电控制单元的具体实施方式。
图1示出了具有交流电源和等离子腔的一个供电控制单元;
图2示出了组合了交流电源、供电控制单元和一个电弧管理电路及一个等离子腔的电源;
图3示出了一个输出变压器和谐振电路的交流电源;
图4示出了一个具有受控直流电压源的调节组件;
图5示出了一个具有两个电阻负载最好是IGBT的调节组件;
图6示出了一个具有两个可控阻抗的调节组件;
图7示出了一个具有可在次级侧短路的变压器的调节组件;
图8示出了一个具有也可在次级侧短路的变压器的调节组件;以及
图9示出了一个具有可驱动的交流电源的电源。
具体实施方式
图1示出了一个供电控制单元1和一个交流电源2及一个等离子腔3。该交流电源通过两条连接导线10a,10b与设计为电极4a,4b且位于等离子腔3中的两个耗电器件相连接。供电控制单元1包括三个元件:调节组件5、控制组件6和测量值检测组件7。该调节组件5环接在连接导线10b中。其通过连接11从控制组件6接收控制值。连接导线10a,10b上的节点9a,9b处的电压被测量,并且分别被处理为一个电压信号。测量装置8测量连接导线10b中的电流并将其处理为一个电流测量信号。测量值检测组件7、测量装置8和节点9a,9b上的电压测量代表一个用于检测进入耗电器件的实际电功率供给的检测设备。测量值检测组件7检测分别来自对应于到达电极4a,4b的有效电功率供给的测量信号的一个功率信号。电极4a中的功率主要由电极4a或节点9a上测得的电压乘以该电极方向的电流得到。电极4b中的功率主要由电极4b或节点9b上测得的电压乘以该电极方向的电流得到。测量装置8测得的电流可被分为一个正的和一个负的部分。正的电流部分乘以节点9a上测得的电压表示到达电极4a的有效功率。负的电流部分乘以节点9b上测量的电压表示到达电极4b的有效功率。因此一个乘法组件根据电流测量信号部分和电压测量信号为每一电极计算一个功率信号。实际分配给电极的功率由两个功率信号确定。其通过连接导线12传送给控制组件6。该控制组件6比较该实际的电功率供给和一个内部的期望电功率供给。如果是对称的,该控制组件6就调节控制值以使得为两个电极提供相同的功率。该调节组件5可以在任意电流方向分配或去除功率。这将参照这里描述的具体实施方式在图4到图8的描述中详细描述。
图2示出了一个电源20,其包括根据图1的交流电源2和供电控制单元1,和一个附加的电弧管理电路23。相同的组件和元件采用与图1相同的附图标记。在该实施方式中,电弧管理电路23确定通过测量装置21的电流和节点22a,22b上的电压,以允许通过该电弧管理电路进行电弧的检测。其通过连接25控制交流电源2并通过连接24控制调节组件5。以这种方式,如果该电弧管理电路中断向设计为电极4a,4b的耗电器件的供电,剩余的功率可通过该调节组件5去除。
图3示出了图1和图2中的交流电源2的特定实施方式。该交流电源包括一个输出变压器,该变压器具有一个初级绕组31a和一个次级绕组31b及一个振荡电路电容器32。这样一个交流电源的交流电压在其输出端没有DC部分。电容器32和变压器(31a,31b)的初级电感共同构成一个以近似于谐振方式工作的振荡电路。这种类型的交流电源特别有利。输出电压和输出电流可通过改变变压器的次级绕组31b被理想地调节,以满足耗电器件的需要。对于不同的耗电器件,只需使用一个不同的变压器,而不是必须使用一个全新的电流源。谐振电路确保了该电流源的高效率。
图4至7示出了图1中的调节组件5的实施例。每个实施例中其都环接在交流电源2和等离子腔间的连接导线10b中。
图4中该调节组件的附图标记为40。其在接点47和48处与连接导线10b环接,并通过连接42接收控制值,并在驱动电路41中将其转换为用于两个反并联的可调直流电源45a,45b的一个驱动信号46。开关43由该驱动电路41产生的另一驱动信号44驱动。其连接具有理想的极性的直流电源45a,45b中的一个。这种设置用来分配功率。不是采用两个可切换的直流电源,也可以采用具有一个能够改变极性的设备的直流电源或者具有两个输出极性的直流电源。
图5中的调节组件的附图标记为50。其在接点57和58处与连接导线10b环接,并通过连接52接收控制值,并在驱动电路51中将其转换为两个IGBT 56a,56b的驱动信号54a,54b。这两个IGBT与反并联的二极管55a,55b以这样一种方式连接,使得总是有一个IGBT56a,56b在一个方向上承载电流。IGBT 56a,56b以它们在导电方向上表现为电阻负载的方式被驱动,以此实现对每一电流方向的独立控制。由于分别进入两个电极中的一个的功率直接取决于该电极方向上的电流,因此对每一电极的独立的功率控制是可能的。
图6中调节组件的附图标记为60。其在接点67和68处与连接导线10b环接。其通过连接62接收控制值,并在驱动电路61中将其转换为两个电感可控的阻抗64a,64b的驱动信号65,66。两个电感可控的阻抗与反并联的二极管63a,63b相连接使得总是有一个阻抗在一个方向上承载电流,以使得一个高直流部分流过该阻抗。这些阻抗被设计成以这种直流部分工作于饱和状态,并且对于通过的电流仅表现为一个很小的电阻。阻抗64a,64b可通过电路65和66预磁化,这样它们就可以通过可控的方式独立地去饱和,从而对于通过的电流表现为一个更高的电阻,以在每一电流方向上重新分别调节电功率。
图7中调节组件的附图标记为70。其在接点77和78处与连接导线10b环接,并通过连接72接收控制值,并在驱动电路71中将其转换为两个反并联的IGBT 73,74的驱动信号79a,79b。一个具有初级绕组75a的变压器连接在接点77和78之间。次级绕组75b在通常情况下由IGBT 73,74短路。根据功率被去除的电流方向,或者是IGBT73通过驱动信号79a变为高阻状态,或者IGBT 74通过驱动信号79b变为高阻状态。这使得可以在每一电流方向上重新分别调节电功率。
图8中调节组件的附图标记为80。其在接点87和88处与连接导线10b环接。通过连接82接收控制值,并在驱动电路81中将其转换为在网络节点89处连接的两个IGBT 84a,84b的驱动信号86a,86b。一个具有初级绕组85a的变压器连接在接点87和88之间。次级绕组85b以类似于图7的方式在通常情况下被短路。此时,电流另外流过二极管83a和83b,该二极管可能是IGBT 84a,84b的寄生二极管或外部二极管。IGBT 84a,84b可以通过驱动信号86a,86b被分别互相独立地变为高阻状态,以使得可以在每一电流方向上分别调节电功率。
图9示出了一个电源20,该电源包括一个交流电源2,其由直流供电,一个控制组件6和一个测量值检测组件7。与图1至3相同的附图标记被用于表示相同的组件和元件。控制组件6与一个控制装置90连接。该控制装置90控制桥电路91。一个谐振电路92与桥电路92连接,其中输出变压器31作为谐振电路92的一部分。作为检测设备一部分的测量值检测组件7检测到的与功率相关的实际值在控制组件6中与期望值进行比较。控制组件6从中确定一个将被传送到控制装置90的控制值。控制装置90控制开和关的时间,即桥电路91的各次切换的占空因子,以使得所检测到的实际功率值等于给定的期望值。谐振电路92将桥电路91的输出电压形成为一个近似于正弦的波形。该信号可能是不对称的。没有DC部分通过变压器31被传送。分配给耗电器件4a,4b的功率可能不同,但可通过桥电路91的开关的驱动、以控制装置预先确定的特定的占空因子进行调节。该占空因子对于每一开关或开关对可以是不同的和不对称的,即开和关的时间可以具有不同的长度。实际到达耗电器件的电功率供给因此可以被调节到预先期望的电功率供给。

Claims (21)

1.一个控制由交流电源(2)向至少两个耗电器件提供电功率的方法,其中通过驱动包含在该交流电源(2)中的一个桥电路(91)来控制该交流电源(2),并且其中检测提供给所述至少两个耗电器件的每一个的实际电功率,并将所述至少两个耗电器件的每一个的实际电功率分别与一个给定的期望电功率供给进行比较,在所述至少两个耗电器件的每一个的实际电功率与所述期望电功率供给存在差异时,调节每一耗电器件的电功率供给。
2.如权利要求1所述的方法,其特征在于为每一耗电器件调节电功率供给是通过提供或去除所述交流电源(2)和至少一个耗电器件之间的功率而实现的。
3.如权利要求1或2所述的方法,其特征在于一个对称或不对称的期望电功率供给被预先确定。
4.如权利要求1或2所述的方法,其特征在于所述实际电功率供给通过确定每一耗电器件的与功率相关的值而被检测。
5.如权利要求1或2所述的方法,其特征在于该交流电源产生一个频带范围为1kHz至1MHz之间的交流电流。
6.如权利要求5所述的方法,其特征在于该桥电路(91)的开关受一个不对称的占空因子所控制。
7.电源(20),包括:
一个具有桥电路(91)的交流电源(2),用于产生交流电源;
供电控制单元(1),其设置在该交流电源(2)以及至少两个耗电器件之间,用于控制由该交流电源(2)传送至所述至少两个耗电器件中的功率;
所述供电控制单元(1)包括:
一个控制组件(6),用于根据一个检测设备检测到的由该交流电源(2)传送至所述至少两个耗电器件中的实际电功率供给和一个给定的期望电功率供给之间的比较结果来确定一个控制值,并且
一个调节组件(5,40,50,60,70,80),该调节组件环接在该交流电源(2)和所述至少两个耗电器件的至少其中一个之间,并调节到该至少一个耗电器件的电功率供给,该检测设备连接到所述调节组件(5,40,50,60,70,80)并向该调节组件(5,40,50,60,70,80)提供控制值。
8.如权利要求7所述的电源(20),其特征在于所述交流电源(2)包括一个输出变压器(31a,31b),该变压器的输出端具有一个在功率方面与地电隔离并且仅包含交流(AC)部分的交流电压。
9.如权利要求8所述的电源(20),其特征在于该输出变压器(31a,31b)在其初级侧具有一个谐振电路(31a,32)。
10.如权利要求7至9中任一权利要求所述的电源(20),其特征在于,该电源包括一个电弧管理电路(23),其产生作用于所述调节组件(5,40,50,60,70,80)的另一个控制值。
11.如权利要求7至9中任一权利要求所述的电源(20),其特征在于该调节组件(40)包括至少一个可控直流电压源(45a,45b)。
12.如权利要求7至9中任一权利要求所述的电源(20),其特征在于该调节组件(50)包括至少一个可控电阻负载。
13.如权利要求12所述的电源(20),其特征在于该调节组件(50)包括两个通过反并联二极管(55a,55b)隔开的可控电阻负载。
14.如权利要求12所述的电源(20),其特征在于该电阻负载包括可控半导体。
15.如权利要求7至9中任一权利要求所述的电源(20),其特征在于该调节组件(60)包括两个阻抗(64a,64b),这两个阻抗是电感可控的,并且通过反并联的二极管(63a,63b)隔开。
16.如权利要求7至9中任一权利要求所述的电源(20),其特征在于该调节组件(70,80)包括一个变压器,其初级绕组(75a,85a)环接在交流电源(2)和耗电器件(4b)之间的一个连接导线(10b)中,其次级绕组(75b,85b)具有一个受驱动信号(79a,79b,86a,86b)控制的切换设备,这些驱动信号由一个驱动电路(71,81)根据该控制值产生。
17.如权利要求7至9中任一权利要求所述的电源(20),其特征在于该检测设备是用于测量与功率值相关的值的测量设备。
18.一种用于至少两个耗电器件的电源(20),包括:
交流电源(2),包括产生交流电的桥电路(91);
检测设备,检测到所述至少两个耗电器件的该交流电源(2)的实际电功率供给;
一个控制组件(6),其连接到所述检测设备,并且比较所述实际电功率供给与所述至少两个耗电器件的预定期望电功率供给,并根据比较结果确定控制值,以及
控制装置(90),其连接到所述控制组件(6)和所述桥电路(91),其中所述控制装置(90)以如下方式驱动桥电路(91),所述方式是控制所述桥电路的各次切换的占空因子,从而使到达所述至少两个耗电器件的实际电功率供给等于该期望电功率供给。
19.如权利要求18所述的电源(20),其特征在于该交流电源(2)包括一个接在该桥电路(91)之后的谐振电路(92)。
20.如权利要求18或19所述的电源(20),其特征在于该交流电源(2)包括一个附加的输出变压器(31)。
21.如权利要求20所述的电源(20),其特征在于该输出变压器(31)是一个空气变压器。
CN2004800042460A 2003-02-15 2004-02-12 供电控制单元 Expired - Fee Related CN1751376B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10306347.1 2003-02-15
DE2003106347 DE10306347A1 (de) 2003-02-15 2003-02-15 Leistungszufuhrregeleinheit
PCT/EP2004/001293 WO2004072754A2 (de) 2003-02-15 2004-02-12 Leistungszufuhrregeleinheit

Publications (2)

Publication Number Publication Date
CN1751376A CN1751376A (zh) 2006-03-22
CN1751376B true CN1751376B (zh) 2011-01-19

Family

ID=32747881

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2004800042460A Expired - Fee Related CN1751376B (zh) 2003-02-15 2004-02-12 供电控制单元

Country Status (7)

Country Link
US (2) US7586210B2 (zh)
EP (1) EP1593143B1 (zh)
JP (1) JP2006517718A (zh)
CN (1) CN1751376B (zh)
AT (1) ATE451713T1 (zh)
DE (2) DE10306347A1 (zh)
WO (1) WO2004072754A2 (zh)

Families Citing this family (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7586099B2 (en) 2005-03-30 2009-09-08 Huettinger Elektronik Gmbh + Co. Kg Vacuum plasma generator
EP1708239B1 (de) * 2005-03-30 2011-03-02 HÜTTINGER Elektronik GmbH + Co. KG Vakuumplasmagenerator
JP5065248B2 (ja) * 2005-05-05 2012-10-31 ハー.ツェー.スタルク ゲゼルシャフト ミット ベシュレンクテル ハフツング 基材表面の被覆法及び被覆製品
EP1720195B1 (de) * 2005-05-06 2012-12-12 HÜTTINGER Elektronik GmbH + Co. KG Arcunterdrückungsanordnung
DE102007011230A1 (de) * 2007-03-06 2008-09-11 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Magnetronplasmaanlage
US8815329B2 (en) * 2008-12-05 2014-08-26 Advanced Energy Industries, Inc. Delivered energy compensation during plasma processing
TWI511446B (zh) * 2010-01-26 2015-12-01 Applied Materials Inc 平衡的rf電橋組件
DE102010031568B4 (de) 2010-07-20 2014-12-11 TRUMPF Hüttinger GmbH + Co. KG Arclöschanordnung und Verfahren zum Löschen von Arcs
EP2463890A1 (en) 2010-12-08 2012-06-13 Applied Materials, Inc. Generating plasmas in pulsed power systems
JP5646398B2 (ja) * 2011-06-17 2014-12-24 住友重機械工業株式会社 成膜装置
CN103019359B (zh) * 2011-09-23 2015-12-02 中国科学院声学研究所 一种为amc卡动态分配功率的方法、装置和atca载板
EP2905802B1 (en) * 2014-02-07 2019-05-22 TRUMPF Huettinger Sp. Z o. o. Method of detecting arcs in a plasma process and power supply for supplying an output quantity to a plasma process
EP3396700A1 (en) * 2017-04-27 2018-10-31 TRUMPF Hüttinger GmbH + Co. KG Power converter unit, plasma processing equipment and method of controlling several plasma processes
CN110800378B (zh) * 2017-06-27 2021-12-28 佳能安内华股份有限公司 等离子体处理装置
KR102280323B1 (ko) 2017-06-27 2021-07-20 캐논 아네르바 가부시키가이샤 플라스마 처리 장치
KR102257134B1 (ko) 2017-06-27 2021-05-26 캐논 아네르바 가부시키가이샤 플라스마 처리 장치
KR102361377B1 (ko) 2017-06-27 2022-02-10 캐논 아네르바 가부시키가이샤 플라스마 처리 장치
WO2019003312A1 (ja) * 2017-06-27 2019-01-03 キヤノンアネルバ株式会社 プラズマ処理装置
JP7032101B2 (ja) * 2017-10-26 2022-03-08 日本特殊陶業株式会社 高電圧パルス電源及びその電力制御方法
US10555412B2 (en) 2018-05-10 2020-02-04 Applied Materials, Inc. Method of controlling ion energy distribution using a pulse generator with a current-return output stage
EP3817517A4 (en) 2018-06-26 2022-03-16 Canon Anelva Corporation PLASMA PROCESSING DEVICE, PLASMA PROCESSING METHOD, PROGRAM, AND MEMORY MEDIA
US11476145B2 (en) 2018-11-20 2022-10-18 Applied Materials, Inc. Automatic ESC bias compensation when using pulsed DC bias
WO2020154310A1 (en) 2019-01-22 2020-07-30 Applied Materials, Inc. Feedback loop for controlling a pulsed voltage waveform
US11508554B2 (en) 2019-01-24 2022-11-22 Applied Materials, Inc. High voltage filter assembly
WO2021021955A1 (en) 2019-07-29 2021-02-04 Advanced Energy Industries, Inc. Multiplexed power generator output with channel offsets for pulsed driving of multiple loads
EP3796362A1 (en) * 2019-09-23 2021-03-24 TRUMPF Huettinger Sp. Z o. o. Method of plasma processing a substrate in a plasma chamber and plasma processing system
US11848176B2 (en) 2020-07-31 2023-12-19 Applied Materials, Inc. Plasma processing using pulsed-voltage and radio-frequency power
US11798790B2 (en) 2020-11-16 2023-10-24 Applied Materials, Inc. Apparatus and methods for controlling ion energy distribution
US11901157B2 (en) 2020-11-16 2024-02-13 Applied Materials, Inc. Apparatus and methods for controlling ion energy distribution
US11495470B1 (en) 2021-04-16 2022-11-08 Applied Materials, Inc. Method of enhancing etching selectivity using a pulsed plasma
US11948780B2 (en) 2021-05-12 2024-04-02 Applied Materials, Inc. Automatic electrostatic chuck bias compensation during plasma processing
US11791138B2 (en) 2021-05-12 2023-10-17 Applied Materials, Inc. Automatic electrostatic chuck bias compensation during plasma processing
US11967483B2 (en) 2021-06-02 2024-04-23 Applied Materials, Inc. Plasma excitation with ion energy control
US11984306B2 (en) 2021-06-09 2024-05-14 Applied Materials, Inc. Plasma chamber and chamber component cleaning methods
US11810760B2 (en) 2021-06-16 2023-11-07 Applied Materials, Inc. Apparatus and method of ion current compensation
US11569066B2 (en) 2021-06-23 2023-01-31 Applied Materials, Inc. Pulsed voltage source for plasma processing applications
US11776788B2 (en) 2021-06-28 2023-10-03 Applied Materials, Inc. Pulsed voltage boost for substrate processing
US11476090B1 (en) 2021-08-24 2022-10-18 Applied Materials, Inc. Voltage pulse time-domain multiplexing
US11694876B2 (en) 2021-12-08 2023-07-04 Applied Materials, Inc. Apparatus and method for delivering a plurality of waveform signals during plasma processing
WO2023131710A1 (en) 2022-01-09 2023-07-13 TRUMPF Hüttinger GmbH + Co. KG Plasma power supply system and method
US11972924B2 (en) 2022-06-08 2024-04-30 Applied Materials, Inc. Pulsed voltage source for plasma processing applications

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5281321A (en) * 1991-08-20 1994-01-25 Leybold Aktiengesellschaft Device for the suppression of arcs
US5698082A (en) * 1993-08-04 1997-12-16 Balzers Und Leybold Method and apparatus for coating substrates in a vacuum chamber, with a system for the detection and suppression of undesirable arcing
US6132563A (en) * 1995-02-24 2000-10-17 Fraunhofer-Gesellschaft Zur Forderung Der Angewandten Forschung E.V. Reactive sputtering process
CN1358881A (zh) * 2001-11-20 2002-07-17 中国科学院长春光学精密机械与物理研究所 真空多元溅射镀膜方法

Family Cites Families (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4813296B1 (zh) 1968-07-09 1973-04-26
JPH0734670B2 (ja) 1987-05-20 1995-04-12 三洋電機株式会社 ブラシレスモ−タの駆動回路
JPH02156081A (ja) 1988-12-09 1990-06-15 Tokuda Seisakusho Ltd スパッタ装置
JPH02225662A (ja) 1989-02-27 1990-09-07 Tokuda Seisakusho Ltd スパッタ装置
DE58907133D1 (de) * 1989-10-09 1994-04-07 Siemens Ag Elektronisches Vorschaltgerät.
DE4106770C2 (de) 1991-03-04 1996-10-17 Leybold Ag Verrichtung zum reaktiven Beschichten eines Substrats
DE9109503U1 (zh) 1991-07-31 1991-10-17 Magtron Magneto Elektronische Geraete Gmbh, 7583 Ottersweier, De
DE4127505C2 (de) * 1991-08-20 2003-05-08 Unaxis Deutschland Holding Einrichtung zur Unterdrückung von Lichtbögen in Gasentladungsvorrichtungen
CA2078051C (en) * 1992-09-11 2000-04-18 John Alan Gibson Apparatus for efficient remote ballasting of gaseous discharge lamps
JPH06165385A (ja) 1992-11-24 1994-06-10 Toshiba Corp 電力調整制御装置
DE4324683C1 (de) * 1993-07-22 1994-11-17 Fraunhofer Ges Forschung Verfahren zur Anpassung des Generators bei bipolaren Niederdruck-Glimmprozessen
DE4326100B4 (de) 1993-08-04 2006-03-23 Unaxis Deutschland Holding Gmbh Verfahren und Vorrichtung zum Beschichten von Substraten in einer Vakuumkammer, mit einer Einrichtung zur Erkennung und Unterdrückung von unerwünschten Lichtbögen
JP3044361B2 (ja) 1993-09-07 2000-05-22 日本電子工業株式会社 グロー放電処理方法及び装置
US5463287A (en) * 1993-10-06 1995-10-31 Tdk Corporation Discharge lamp lighting apparatus which can control a lighting process
DE4418518A1 (de) 1994-05-27 1995-11-30 Philips Patentverwaltung Leistungsgenerator mit einem Transformator
TW339496B (en) * 1994-06-22 1998-09-01 Philips Electronics Nv Method and circuit arrangement for operating a high-pressure discharge lamp
DE19537212A1 (de) 1994-10-06 1996-04-11 Leybold Ag Vorrichtung zum Beschichten von Substraten im Vakuum
JPH08209353A (ja) 1995-02-03 1996-08-13 Technova:Kk プラズマプロセス装置及び方法
DE19605314C2 (de) * 1996-02-14 2002-01-31 Fraunhofer Ges Forschung Verfahren zum Bearbeiten von Substraten in einem bipolaren Niederdruck-Glimmprozeß
DE19651811B4 (de) 1996-12-13 2006-08-31 Unaxis Deutschland Holding Gmbh Vorrichtung zum Belegen eines Substrats mit dünnen Schichten
US6141448A (en) * 1997-04-21 2000-10-31 Hewlett-Packard Low-complexity error-resilient coder using a block-based standard
CA2267406C (en) * 1997-08-01 2006-03-07 Koninklijke Philips Electronics N.V. Circuit arrangement
US5910886A (en) * 1997-11-07 1999-06-08 Sierra Applied Sciences, Inc. Phase-shift power supply
US6011704A (en) * 1997-11-07 2000-01-04 Sierra Applied Sciences, Inc. Auto-ranging power supply
US6255635B1 (en) 1998-07-10 2001-07-03 Ameritherm, Inc. System and method for providing RF power to a load
JP2000295790A (ja) 1999-04-07 2000-10-20 Densei Lambda Kk バッテリー充放電部を備えた無停電電源装置
FR2801645B1 (fr) * 1999-11-30 2005-09-23 Matsushita Electric Ind Co Ltd Dispositif d'entrainement d'un compresseur lineaire, support et ensemble d'informations
US6532161B2 (en) 1999-12-07 2003-03-11 Advanced Energy Industries, Inc. Power supply with flux-controlled transformer
JP2001297896A (ja) 2000-04-14 2001-10-26 Keyence Corp プラズマ処理方法及びその装置
DE10018879B4 (de) * 2000-04-17 2013-02-28 Melec Gmbh Stromversorgungsgerät zur bipolaren Stromversorgung
AU2002224434A1 (en) * 2000-10-18 2002-04-29 Tecnu, Inc. Electrochemical processing power device
EP1342393B1 (en) * 2000-11-02 2006-06-14 Koninklijke Philips Electronics N.V. Digital ballast
US6608401B1 (en) * 2002-02-15 2003-08-19 Black & Decker Inc. Alternator/inverter with dual H-bridge
US7262606B2 (en) * 2005-03-26 2007-08-28 Huettinger Elektronik Gmbh + Co. Kg Method of arc detection

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5281321A (en) * 1991-08-20 1994-01-25 Leybold Aktiengesellschaft Device for the suppression of arcs
US5698082A (en) * 1993-08-04 1997-12-16 Balzers Und Leybold Method and apparatus for coating substrates in a vacuum chamber, with a system for the detection and suppression of undesirable arcing
US6132563A (en) * 1995-02-24 2000-10-17 Fraunhofer-Gesellschaft Zur Forderung Der Angewandten Forschung E.V. Reactive sputtering process
CN1358881A (zh) * 2001-11-20 2002-07-17 中国科学院长春光学精密机械与物理研究所 真空多元溅射镀膜方法

Also Published As

Publication number Publication date
DE10306347A1 (de) 2004-08-26
WO2004072754A2 (de) 2004-08-26
EP1593143B1 (de) 2009-12-09
US20080048498A1 (en) 2008-02-28
US7586210B2 (en) 2009-09-08
ATE451713T1 (de) 2009-12-15
CN1751376A (zh) 2006-03-22
EP1593143A2 (de) 2005-11-09
DE502004010489D1 (de) 2010-01-21
WO2004072754A3 (de) 2005-06-09
US20060032738A1 (en) 2006-02-16
JP2006517718A (ja) 2006-07-27

Similar Documents

Publication Publication Date Title
CN1751376B (zh) 供电控制单元
US6214297B1 (en) High voltage pulse generator
JP4589264B2 (ja) アーク抑圧装置及び交流電圧式ガス放電励起装置
RU2000124590A (ru) Аппарат для электродуговой сварки
CN102612246A (zh) 静电消除器
CN104955672B (zh) 模块化的高频逆变器及其运行方法
KR101658845B1 (ko) 위상 제어 장치 및 방법
US9780675B2 (en) System and method for controlling current in a power converter
US7656692B2 (en) Method and apparatus for supplying and switching power
US20010047982A1 (en) Resistance welding power supply apparatus
KR100845891B1 (ko) 다중 루프 코어 플라즈마 발생기를 구비한 플라즈마 반응기
JPH07249497A (ja) 除電器のバランス調整回路
US10453632B2 (en) Direct current switching device and use thereof
KR101706775B1 (ko) 공진 컨버터를 갖는 플라즈마 발생기용 전원 장치
US20230094863A1 (en) A power converter having multiple main switches in series and a power conversion method
KR100845912B1 (ko) 다중 루프 코어 플라즈마 발생기 및 이를 구비한 플라즈마반응기
US1913784A (en) Resistance in series with electrodes
US20020075709A1 (en) Freewheeling current conduction in welding power supply
US9434021B2 (en) Capacitive welder and method for charging same
JP3471511B2 (ja) 除電器のイオンバランス調整回路
JPH08330079A (ja) 多電極型放電用電源装置
KR101812735B1 (ko) 라디오 주파수 전력 발생 장치
JP2958683B2 (ja) パルス式交流高電圧電源
JPH0997700A (ja) 除電器のイオンバランス調整回路
US20030102822A1 (en) Circuit arrangement for generating a high voltage

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20110119

Termination date: 20160212