非专利文献1:“Development of transflective LCD for high contrastand wide viewing angle by using homeotropic alignment”,M.Jisaki et al.,Asia Display/IDW’01,p.133-136(2001)
具体实施方式
下面,对本发明的实施例进行说明。另外,在各图中,为了使各层或各部件在附图上成为能够识别的程度的大小,使每个层或每个部件的缩放比例有所不同。
实施例1.
(液晶显示装置)
图1是构成本实施例的液晶显示装置的图像显示区域的配置成矩阵状的多个点的等效电路图,图2是表示该1个像素区域的结构的平面图,图3是表示液晶显示装置的剖面结构的图并且是沿图2的A-A线的部分剖面图。
本实施例的液晶显示装置100是具备作为作开关元件的TFT的有源矩阵方式的半透过反射型液晶显示装置。在本实施例的液晶显示装置100中,如图1所示,在构成图像显示区域的配置成矩阵状的多个点中分别形成了像素电极9和作为用于控制该像素电极9的开关元件的TFT30,供给图像信号的数据线(电极布线)6a电连接到该TFT30的源上。写入到数据线6a的图像信号S1、S2、...、Sn按照该顺序按线依次地供给,或者对于相邻接的多条数据线6a按每组进行供给。此外,扫描线(电极布线)3a电连接到TFT30的栅上,扫描信号G1、G2、...、Gm以指定的定时对于多条扫描线3a脉冲地按线依次地进行施加。此外,像素电极9电连接到TFT30的漏上,通过使作为开关元件的TFT30仅在固定期间导通,将从数据线6a供给的图像信号S1、S2、...、Sn以指定的定时写入。
通过像素电极9写入到液晶中的指定电平的图像信号S1、S2、...、Sn,在与后述的共用电极之间保持一定期间。液晶通过所施加的电压电平而分子集合的取向或秩序变化,由此来调制光而能够进行灰度显示。其中,为了防止所保持的图像信号泄漏,与在像素电极9和共用电极之间形成的液晶电容并联地附加了存储电容70。另外,标号3b是电容线。
接下来,根据图2对本实施例的液晶显示装置100的像素结构进行说明。如图2所示,在本实施例的液晶显示装置100中,设置了相互平行地延伸的扫描线3a、以及与这些扫描线交叉地延伸的数据线6a,与该扫描线3a和数据线6a的交叉区域对应地设置了平面看呈矩形状的点区域D1~D3。与1个点区域对应地形成了3原色中的1色的滤色器(着色层),在3个点区域D1~D3中形成了包括3色的滤色器22R、22G、22B的像素区域。另外,这些滤色器22R、22G、22B分别形成为沿图示上下方向延伸的条状,在其延伸方向上分别横跨多个点区域地形成,并且在图示左右方向上周期性地排列。
设置在点区域D1~D3中的像素电极9具备进行反射显示的反射电极部29a和进行透过显示的透明电极部29b。图示上侧的反射电极部29a由Al(铝)或Ag(银)等的光反射性的金属膜、或这些的金属膜与ITO(氧化铟锡)等的透明导电膜的层叠膜构成,形成了该反射电极部29a的区域成为反射显示区域R。在反射电极部29a的表面上形成凹凸形状,通过利用该凹凸使反射光散射,能够获得可见性良好的显示。此外,图示下侧的透明电极部29b由ITO(氧化铟锡)等的透明导电膜构成,形成了该透明电极部29b的区域成为透过显示区域T。即,本实施例的液晶显示装置100是在1个点区域内具备进行反射显示的反射显示区域R和进行透过显示的透过显示区域T的半透过反射型的液晶显示装置,各自的点区域的图示上侧的部分用于反射显示,图示下侧的部分用于透过显示。在图2中,反射显示区域R和透过显示区域T的边界用点划线表示。另外,反射电极部29a和透明电极部29b为平面看大致呈矩形状,这些电极部29a、29b通过相对的边缘部分重合而相互连结。
在图示下方侧的透明电极部29b与扫描线3a、数据线6a之间夹插TFT30。TFT30具备半导体层33、设置于半导体层33的下层侧(基板主体10A侧)的栅电极部32、设置于半导体层33的上层侧的源电极部34以及漏电极部35。在半导体层33的与栅电极部32相对的区域上形成了TFT30的沟道区域,在其两侧的半导体层上形成了源区域和漏区域。
栅电极部32是将扫描线3a的一部分沿数据线6a的延伸方向分支而形成的,其前端侧隔着图示省略的绝缘膜与半导体层33相对。源电极部34是将数据线6a的一部分沿扫描线3a的延伸方向分支而形成的,通过图示省略的接触孔与半导体层33的源区域电连接。漏电极35的一端侧通过图示省略的接触孔与上述漏区域电连接,漏电极35的另一端侧直接或者通过接触孔C与像素电极9电连接。在本实施例中,扫描线3a和TFT30形成在与对应的像素电极9平面看错开的位置上。即,连接到点区域DA的像素电极9的扫描线3a和TFT30配置在与点区域DA相邻的后级侧的点区域DB的反射电极部29a之下,TFT30的漏区域通过从该漏区域引绕到点区域DA侧的引绕布线36连接到点区域DA的像素电极9的端部。此外,由于将TFT30配置在后级侧的点区域DB,因此接触孔C能够在点区域内的任意位置形成。因此,在本实施例中,为了将液晶的取向紊乱的影响抑制为最小限度,在像素电极9的端部、特别是在透明电极部29b的角部的最贴近端缘处形成接触孔C。
并且,通过TFT30利用经由扫描线3a输入的栅信号仅在指定期间成为导通状态,将经由数据线6a供给的图像信号按指定的定时对于液晶写入。
另一方面,观察图3所示的剖面结构,液晶显示装置100具备元件基板10和与其相对配置的对置基板25,在上述基板10、25之间夹持有由初始取向状态为水平取向且扭转角为0°(均匀(homogeneous)取向)的介电各向异性为正的液晶构成的液晶层50。另外,能够将液晶的扭转角设定在0°~70°的范围内。如果在该范围内,则通过反射显示和透过显示双方而获得完美的显示。在位于元件基板10的外面侧的液晶单元的外侧,作为照明装置设置了具有光源、反射器和导光板等的背光源(图示省略)。
元件基板10以由石英、玻璃等的透光性材料构成的基板主体10A为基体而形成,在基板主体10A的内面侧(液晶层侧)形成了扫描线3a。并且,覆盖扫描线3a形成了栅绝缘膜(图示省略),在该栅绝缘膜上形成了引绕布线36和数据线6a等(参照图2),进而隔着覆盖该数据线等而形成的层间绝缘膜(绝缘层)15形成了像素电极9。如上所述,像素电极9由用Al等构成的反射电极部29a和用ITO等构成的透明电极部29b构成。透明电极部29b经由在层间绝缘膜15上开口的接触孔C连接到引绕布线36。通过该引绕布线36连接的TFT30和扫描线3a配置在与该像素电极的点区域DA相邻的后级侧点区域DB的反射电极部29a之下。即,向点区域DA供给信号的扫描线3a、TFT30和引绕布线36的一部分与后级侧点区域DB的反射电极部29a平面重叠地配置,由此,形成开口率不降低的构成。
此外,虽然省略图示,覆盖像素电极9和层间绝缘膜15形成了聚酰亚胺等的取向膜,使液晶分子的初始取向相对于基板面水平地取向。在基板主体10A的外面侧层叠配置了相位差板16和偏振板17。
对置基板25以由石英、玻璃等的透光性材料构成的基板主体25A为基体形成,在基板主体25A的内面侧横跨反射显示区域R和透过显示区域T地设置了滤色器(滤色器层)22。滤色器22由相互色不同的多种滤色器(着色层)22R、22G、22B构成,在构成这些滤色器22的各滤色器22R~22B之间,根据需要配置由黑色树脂等构成的遮光层(黑色矩阵)。
在滤色器22的内面侧与反射显示区域R对应地有选择地形成了绝缘膜40。这样,利用在点区域内部分地形成的绝缘膜40使液晶层50的层厚在反射显示区域R和透过显示区域T中不同。绝缘膜40使用丙烯酸树脂等的有机材料膜形成。绝缘膜40,例如膜厚形成为2μm±1μm左右,不存在绝缘膜40的部分的液晶层50的厚度为2μm~6μm左右,反射显示区域R的液晶层50的厚度为透过显示区域T的液晶层50的厚度的大约一半。即,绝缘膜40通过其自身的膜厚而作为使反射显示区域R和透过显示区域T的液晶层50的层厚不同的液晶层厚调整层发挥作用,因此实现多间隙结构。本例的液晶显示装置100利用这样的结构而获得明亮的高对比度的显示。另外,在反射显示区域R和透视显示区域T的边界附近形成了绝缘膜40的层厚连续地变化的倾斜面,该倾斜面与反射电极29a的点区域中央侧的端缘部平面看基本重合。
进而,在基板主体25A的内面侧,覆盖滤色器22和绝缘膜40的表面而形成了对置电极31。对置电极31是全平面状的由ITO等构成的透明导电膜。此外,虽然图示省略,覆盖对置基板31形成了聚酰亚胺等的取向膜,使液晶分子的初始取向相对于基板面水平地取向。
在基板主体25A的外面侧上层叠配置了相位差板36和偏振板37。上述偏振板17、37具有仅使沿特定方向振动的线偏振光透过的功能。此外,相位差板16、36采用相对于可见光的波长具有大致1/4波长的相位差的λ/4板。偏振板17、37的透过轴与相位差板16、36的迟相轴成大致45°地配置,偏振板17、37与相位差板16、36共同作用作为圆偏振板发挥作用。利用该圆偏振板能够将线偏振光变换成圆偏振光、或将圆偏振光变换成线偏振光。另外,作为偏振板和相位差板的结构,一般采用“偏振板+λ/4板的结构的圆偏振板”,但通过使用“偏振板+λ/2板+λ/4板的结构的圆偏振板(宽频带圆偏振板)”也能够使黑显示更加无彩色。
如以上说明,按照本实施例的液晶显示装置100,由于采用在点区域内部分地设置了液晶层厚调整用的绝缘膜40的多间隙结构,因此能够在透过显示区域T和反射显示区域R中使液晶层50的延迟一致,从而在透过显示和反射显示的任意一种模式中都能够获得高对比度的显示。
此外,在本实施例中,由于驱动像素电极9(点区域DA)的TFT30配置在其它点区域(相邻的点区域DB)中,因此在反射电极部29a的下层侧的布局上产生余量。因此,提高了点区域的设计的自由度,即使在高精细化的情况下也不会使开口率降低。此外,由于将TFT30和接触孔C配置在不同的点区域中,因此与以往相比,能够将接触孔C配置在点区域的端部,相应地能够减小由于接触孔C所引起的取向紊乱的影响。即,虽然在接触孔C的部分上因凹凸而产生液晶的取向紊乱,但在本实施例的液晶显示装置100中,由于将接触孔C形成在最贴近像素电极9的端缘处,因此能够将这样的取向紊乱的影响抑制为最小限度。在这种情况下,虽然前级侧点区域(点区域DA)的接触孔C和后级侧点区域(点区域DB)的反射电极部29a接近地配置,但由于在点区域间液晶的取向紊乱被消除,因此在接触孔C产生的取向紊乱的影响不会直接波及到相邻的点区域侧。
实施例2.
(液晶显示装置)
接下来,对本发明的实施例2进行说明。图4是表示本实施例的液晶显示装置200的1个像素区域的结构的平面图,图5是表示液晶显示装置的剖面结构的沿图4的A-A线的局部剖面图。另外,在本实施例中,对于与上述实施例1同样的部件或部位附加相同标号,省略其详细说明。
在本实施例中,与上述实施例1的不同点仅在于,作为液晶模式采用垂直取向模式、将1个点区域内的像素电极9分割为岛状的多个子像素并与各个子像素对应地在对置基板侧设置了用于规定液晶的取向的电介质突起18、以及改变了扫描线和像素电极的配置。除此以外的结构与上述实施例1相同。
如图4所示,在本实施例的液晶显示装置200中,设置在点区域D1~D3的像素电极9,通过形成在各点区域内的缝隙19而被分割成多个(在本实施例中为3个)子像素(岛状部)29a、29b,各子像素在中央部连结(连结部29c)。图示上侧的子像素29a由Al(铝)、Ag(银)等的光反射性的金属膜或者这些金属膜与ITO(氧化铟锡)等的透明导电膜的层叠膜构成。该子像素29a作为反射电极部发挥作用,形成有该子像素29a的区域成为反射显示区域R。在反射电极部的表面形成有凹凸形状,利用该凹凸使反射光散射而获得可见性良好的显示。此外,图示下侧的2个子像素29b、29b由ITO(氧化铟锡)等的透明导电膜形成。这些子像素29b、29b作为透明电极部发挥作用,形成有该子像素29b、29b的区域成为透过显示区域T。即,本实施例的液晶显示装置200是在1个点区域内具备进行反射显示的反射显示区域R和进行透过显示区域T的半透过反射型的液晶显示装置,能够显示的区域的大致1/3的面积用于反射显示,剩下的大致2/3的面积用于透过显示。在图4中,用点划线表示反射显示区域R和透过显示区域T的边界。另外,连结子像素与子像素的连结部29c由ITO等的透明导电膜构成,该连结部29c也用于透过显示。在各个子像素29a、29b的中央部配置了作为用于固定液晶的取向的取向规定装置的电介质的突起18。对各子像素29a、29b的角部实施倒棱等使子像素29a、29b为平面看大致八边形状乃至大致圆形状。
在图示下方侧的子像素29b与扫描线3a、数据线6a之间介插有TFT30。TFT30具备半导体层33、半导体层33的下层侧(基板主体10A侧)所设置的栅电极部32、半导体层33的上层侧所设置的源电极部34以及漏电极部35而构成。在与半导体层33的栅电极部32相对的区域上形成了TFT30的沟道区域,在其两侧的半导体层上形成了源区域和漏区域。
栅电极部32是将扫描线3a的一部分沿数据线6a的延伸方向分支而成的,其前端侧隔着图示省略的绝缘膜与半导体层33相对。源电极部34是将数据线6a的一部分沿扫描线3a的延伸方向分支而成的,通过图示省略的接触孔与半导体层33的源区域电连接。漏电极35的一端侧通过图示省略的接触孔与上述漏区域电连接,漏电极35的另一端侧直接或者通过接触孔C与子像素29b(像素电极9)电连接。在本实施例中,扫描线3a和TFT30形成在与对应的像素电极9平面看错开的位置上。即,连接到点区域DA的像素电极9的TFT30配置在与点区域DA相邻的后级侧的点区域DB的反射显示用子像素29a之下,连接到该TFT30的扫描线3a配置在后级侧点区域DB的像素电极9的连结部29c之下。并且,该TFT30的漏区域通过从该漏区域引绕到点区域DA侧的引绕布线36连接到点区域DA的像素电极9的端部。此外,由于将TFT30配置在后级侧的点区域DB,因此能够在点区域内的任意位置形成接触孔C。在本实施例中,为了将液晶的取向紊乱的影响抑制为最小限度,在像素电极9的端部、特别是透过显示用子像素29b的角部的最贴近端缘处形成接触孔C。
并且,通过使TFT30利用经由扫描线3a输入的栅信号只在指定期间成为导通状态,将经由扫描线6a供给的图像信号按指定的定时对于液晶写入。
另一方面,观察图5所示的剖面结构,液晶显示装置200具备元件基板10和与其相对配置的对置基板25,在上述基板10、25之间夹持有由初始取向状态呈垂直取向的介电各向异性为负的液晶(折射率各向异性Δn例如为0.1)构成的液晶层50。在位于元件基板10的外表面侧的液晶单元的外侧作为照明装置设置有具有光源、反射器以及导光板等的背光源(图示省略)。
元件基板10以由石英、玻璃等的透光性材料形成的基板主体10A为基体而形成,在基板主体10A的内面侧(液晶层侧)形成了扫描线3a。并且,覆盖扫描线3a而形成了栅绝缘膜(图示省略),在该栅绝缘膜之上形成了引绕布线36和数据线6a等(参照图4),进而隔着覆盖该数据线等所形成的层间绝缘膜15形成了像素电极9。如上所述,像素电极9利用由Al等构成的反射显示用子像素29a和由ITO等构成的透过显示用子像素29b构成。透过显示用子像素29b经由在层间绝缘膜15中开口的接触孔C连接于引绕布线36。通过该引绕布线36连接的TFT30和扫描线3a配置在与该像素电极的点区域DA相邻的后级侧点区域DB的反射显示用子像素29a之下。即,向点区域DA供给信号的扫描线3a、TFT30和引绕布线36的一部分与后级侧点区域DB的反射显示用子像素29a平面重叠地配置,由此,形成不降低开口率的结构。
此外,在此省略了图示,覆盖像素电极9和层间绝缘膜15形成了聚酰亚胺等的取向膜,从而使液晶分子的初始取向相对于基板面垂直地取向。在基板主体10A的外表面侧层叠配置了相位差板16和偏振板17。
对置基板25以由石英、玻璃等的透光性材料构成的基板主体25A为基体而成,在基板主体25A的内面侧横跨反射显示区域R和透过显示区域T设置了滤色器(滤色器层)22。滤色器22由相互色不同的多种滤色器(着色层)22R、22G、22B构成,在构成这些滤色器22的各滤色器22R~22B之间,根据需要配置由黑色树脂等构成的遮光层(黑色矩阵)。
在滤色器22的内面侧与反射显示区域R对应地有选择地形成了绝缘膜40。利用这样地在点区域内部分地形成的绝缘膜40,使液晶层50的层厚在反射显示区域R和透过显示区域T内不同。绝缘膜40使用丙烯酸树脂等的有机材料膜形成。绝缘膜40例如膜厚形成为2μm±1μm左右,不存在绝缘膜40的部分的液晶层50的厚度为2μm~6μm左右,反射显示区域R的液晶层50的厚度为透过显示区域T的液晶层50的厚度的大约一半。即,绝缘膜40利用自身的膜厚,作为使反射显示区域R和透过显示区域T的液晶层50的层厚不同的液晶层厚调整层发挥作用,由此实现多间隙结构。本例的液晶显示装置200,利用这种结构而获得明亮的高对比度的显示。另外,在反射显示区域R和透过显示区域T的边界附近形成了绝缘膜40的层厚连续地变化的倾斜面,该倾斜面与反射电极29a的点区域中央侧的端缘部平面看大致重叠。
进而,在基板主体25A的内面侧覆盖滤色器22和绝缘膜40的表面形成了对置电极31。对置电极31是全平面状的由ITO等构成的透明导电膜,在这样的对置电极31上与像素电极9相对的位置上设置了突出到液晶层50的剖面大致三角形状的电介质突起18。在透过显示区域T上与2个子像素29b、29b的各个对应地在与其中央部相对的位置上分别各1个地形成了电介质突起18,在反射区域R上与子像素29a对应地在与其中央部相对的位置上形成了1个电介质突起18。此外,虽然省略了图示,覆盖对置电极31和电介质突起18而形成了聚酰亚胺等的垂直取向膜,从而使液晶分子51的初始取向相对于基板面垂直地取向。
在基板主体25A的外表面侧层叠配置了相位差板36和偏振板37。上述偏振板17、37具有仅使在特定方向振动的线偏振光透过的功能。此外,相位差板16、36采用具有相对于可见光的波长为大致1/4波长的相位差的λ/4板。将偏振板17、37的透过轴与相位差板16、36的迟相轴成约45°地配置,偏振板17、37和相位差板16、36共同地作为圆偏振板发挥作用。利用该圆偏振板,能够将线偏振光变换成圆偏振光、将圆偏振光变换成线偏振光。此外,使偏振板17的透过轴与偏振板37的透过轴正交地配置,使相位差板16的迟相轴与相位差板36的迟相轴也正交地配置。另外,作为偏振板和相位差板的结构,虽然一般是“偏振板+λ/4板的结构的圆偏振板”,但通过使用“偏振板+λ/2板+λ/4板的结构的圆偏振板(宽频带圆偏振板)”还能够使黑显示更加无彩色。
(显示动作)
接下来,对本实施例的液晶显示装置200的显示动作进行说明。
首先,在透过模式中,从背光源照射的光透过偏振板17和相位差板16被变换成圆偏振光并入射到液晶层50。由于在无电压施加时在与基板垂直取向的液晶分子中几乎没有折射率各向异性,所以入射光保持为圆偏振光原样地在液晶层50中行进。进而,透过相位差板36的入射光被变换成与偏振板37的透过轴正交的线偏振光。并且,由于该线偏振光不透过偏振板37,所以在本实施例的液晶显示装置200中,在无电压施加时进行黑显示(常黑模式)。
另一方面,当对液晶层50施加电场后,则液晶分子倒向基板面方向地取向,相对于透过光呈折射率各向异性。因此,从背光源入射到液晶层50的圆偏振光在透过液晶层50的过程中被变换成椭圆偏振光。即使该入射光透过相位差板36也不变换成与偏振板37的透过轴正交的线偏振光,其全部或一部分透过偏振板37。因此,在本实施例的液晶显示装置200中,在施加电压时进行白显示。此外,在所这样的结构的基础上通过调整施加到液晶层50的电压能够进行灰度显示。此时,在本实施例中,由于在与各子像素29b、29b的中央部相对的位置上配置了电介质突起18、18,因此液晶分子51相对于子像素29b的轮廓向垂直方向倾倒。此外,在电介质突起18的周边,在无电压施加时,液晶分子51垂直于电介质突起18的倾斜面取向,在电压施加时,如图4所示,液晶分子51从电介质突起18向外侧倾倒,液晶分子51以其为中心的平面放射状地取向。因此,在本实施例的液晶显示装置200中,在电压施加时液晶分子51指向朝向全方位,从而实现了视角极宽的显示。此外,在本实施例中,由于驱动像素电极9(点区域DA)的TFT30配置在相邻的其它像素电极9(点区域DB)的反射显示用子像素29a之下,因此即使在高精细化的情况下也不会降低开口率。此外,虽然在接触孔C的部分上由于凹凸而产生液晶的取向紊乱,但在本实施例的液晶显示装置中,由于将接触孔C形成在像素电极9的最贴近端缘处,所以能将这样的取向紊乱的影响抑制为最小限度。进而,由于扫描线3a配置在像素电极9的连结部29c之下,因此即使在扫描线3a与像素电极9之间产生寄生电容,也能够将由此引起的对显示的影响抑制为最小限度。
接下来,在反射模式中,从对置基板25的外侧入射的外光透过偏振板37和相位差板36被变换成圆偏振光而入射到液晶层50。在无电压施加时在与基板垂直取向的液晶分子中几乎没有折射率各向异性,因此入射光保持圆偏振光原样地在液晶层50中行进而到达子像素29a(反射电极部)。然后,被子像素29a反射而返回到液晶层50,再次入射到相位差板36。此时,由于被子像素29a所反射的圆偏振光其旋转方向反转,所以通过相位差板36被变换成与偏振板37的透过轴正交的线偏振光。并且,由于该线偏振光不透过偏振板37,因此在本实施例的液晶显示装置200中,在无电压施加时进行黑显示(常黑模式)。
另一方面,当对液晶层50施加电场后,则液晶分子倒向基板面方向地取向而相对于透过光呈折射率各向异性。因此,从对置基板25的外侧入射到液晶层50的圆偏振光在透过液晶层50的过程中被变换成线偏振光而到达子像素29a(反射电极部)。然后,在被子像素29a反射后,透过液晶层50再次入射到相位差板36。由于该反射光是与先前的入射光相同的旋转方向的圆偏振光,所以通过相位差板36被变换成与偏振板37的透过轴平行的线偏振光而透过偏振板37。因此,在本实施例的液晶显示装置200中,在施加电压时进行白显示。此外,在这样的结构的基础上通过调整施加到液晶层50的电压能够进行灰度显示。此时,在本实施例中,由于在与子像素29a的中央部相对的位置上配置了电介质突起18,因此液晶分子51相对于子像素29a的轮廓向垂直方向倾倒。此外,在电介质突起18的周边,在无电压施加时,液晶分子51垂直于电介质突起18的倾斜面地取向,在电压施加时,如图4所示,液晶分子51从电介质突起18向外侧倾倒,液晶分子51以其为中心平面放射状地取向。因此,在本实施例的液晶显示装置200中,在电压施加时,液晶分子51指向朝向全方位,从而实现了视角极宽的显示。此外,在本实施例中,由于使驱动像素电极9(点区域DA)的TFT30与接触孔C平面看分离而将接触孔C配置在透过显示区域T,因此在反射显示区域R不产生因接触孔C所引起的液晶的取向紊乱。另外,在本实施例的情况下,虽然前级侧点区域的接触孔C与后级侧点区域的反射显示用子像素29a靠近配置,但由于在点区域间消除了液晶的取向紊乱,因此在接触孔C处所产生的取向紊乱的影响不会直接影响到相邻的点区域侧。
如以上说明,按照本实施例的液晶显示装置200,由于采用多间隙结构,所以能够在反射显示和透过显示双方获得高对比度的显示。此外,由于像素电极9被分割成多个子像素29a、29b、29b并且与它们的中央部对应地设置了电介质突起18,因此在施加电压时,液晶分子51在图像显示区域内以电介质突起18为中心放射状地取向,从而实现了宽视角的显示。
此外,在本实施例中,由于驱动像素电极9(点区域DA)的TFT30配置在其它点区域(相邻的点区域DB),因此在反射电极部29a的下层侧的布局上产生余量。因此,提高了点区域的设计自由度,即使在高精细化的情况下也不会降低开口率。此外,由于将TFT30与接触孔C配置在不同的点区域,因此与以往相比,能够将接触孔C配置在点区域的端部,相应地能够减小因接触孔C所产生的取向紊乱的影响。
此外,在本实施例中,由于扫描线3a与子像素间的连结部29c平面重叠地配置,因此能够使扫描线3a与像素电极9的寄生电容为最小。此外,由于扫描线3a配置在连结部29c的形成区域,所以也能够将对开口率的影响抑制为最小限度。
(电子设备)
图6是表示本发明的电子设备的一例的立体图。该图所示的移动电话1300构成为,将本发明的液晶显示装置作为小尺寸的显示部1301,并具备多个操作按钮1302、受话口1303、以及送话口1304。
上述各实施例的显示装置并不限于上述移动电话,也可以作为电子书籍、个人计算机、数字照相机、液晶电视、取景器型或监视器直视型视频磁带录像机、汽车导航装置、寻呼机、电子记事本、计算器、文字处理机、工作站、可视电话、POS终端、以及具备触摸面板的设备等的图像显示装置而最佳地使用,并且在以上的任意一种电子设备中,都能够进行明亮的、高对比度且宽视角的透过/反射显示。
以上,虽然参照附图对本发明的最佳的实施例进行了说明,但当然本发明不限于所涉及的例子。上述的例子中所示的各构成部件的各种形状或组合等只是一例,而在不脱离本发明的宗旨的范围内能够根据设计要求等进行各种变更。
例如,在上述实施例2中,虽然由光反射性的导电材料形成反射电极部29a,但也可以代替此而形成为将像素电极9全部由ITO等的透明导电材料形成并与其不同地形成光反射用的反射膜的结构。在这种情况下,光反射膜需要配置在TFT30或扫描线3a之上(观察侧)。
此外,在上述实施例中,虽然将大致圆锥状的电介质突起18作为液晶的取向规定装置配置在子像素的中央部,但也可以取而代之,将切去液晶驱动用的电极(像素电极9或对置电极31)的一部分而形成的缝隙状的开口部(电极缝隙)作为取向规定装置来使用。虽然电极缝隙与突起在原理上不同,但起大致相同的作用。进而,取向规定装置也可以是突起与电极缝隙的组合。这些取向规定装置不一定必须形成在与滤色器22相同的基板上,也可以将滤色器22和取向规定装置形成在不同的基板上。
此外,在上述实施例中,虽然将液晶层厚调整用的绝缘膜40仅形成在反射显示区域R,但绝缘膜40不仅可以在反射显示区域R而且也可以在透过显示区域T形成。在这种情况下,以使反射显示区域R的液晶层厚比透过显示区域T的液晶层厚小的方式来调节各个区域的绝缘膜的厚度。例如,按照使反射显示区域R的绝缘膜的厚度比透过显示区域T的绝缘膜的厚度更厚的方式进行调节。此外,该绝缘膜40不仅在一方的基板上形成,也可给在双方基板上形成。
此外,在上述实施例中,虽然作为像素驱动用的元件使用了作为三端子元件的TFT,但也可以取而代之地使用作为二端子元件的TFD(ThinFilm Diode)。